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The Third Nordic Conference on Mathematics Education – Norma 01 – was held
June 8-12 2001 in Kristianstad, Sweden, with 85 participants from 16 countries
of 5 continents. Previous conferences in the series were Norma 94 in Lahti
(Finland) and Norma 98 in Kristiansand (Norway). Norma 05 will take place in
Trondheim (Norway) in September 2005. This volume contains most of the
papers presented at Norma 01, including workshops and posters.

The theme of the conference – Conceptions of Mathematics – was to be inter-
preted to include ideas and images that students, teachers, researchers, and
society have on the nature, concepts and processes, and teaching and learning of
mathematics at all levels. These ideas and images permeate activities, engage-
ment, attitudes, and knowledge and skill development of all individuals and
groups engaged in mathematics education, i.e. students, teachers, researchers,
and policy makers. Therefore it is important to understand the nature of and
relationship between such conceptions and different aspects of the theory and
practice of mathematics education. This was also reflected in many of the
contributions at the conference, and presented in this volume.

We could feel that the participants did enjoy the early June summer days in
Kristianstad, deeply engaged in deep and highly professional and supportive
discussions in a friendly and relaxed atmosphere. We want to thank all who
contributed to Norma 01, by plenary, paper, workshop, and poster presentations,
and all who shared their ideas and took part in the discussions. Thanks also to
Högskolan Kristianstad (Kristianstad University) for hosting the conference and
to SMDF, the Swedish Society for Research in Mathematics Education, for
publishing this book of proceedings in its book series. A big thanks also to the
local organisers for their careful preparation, to the city of Kristianstad for giving
a most generous reception, and Gleerups förlag for supplying conference
material. And finally – on behalf of the Norma 01 conference – we express our
gratitude for the economic support from Riksbankens Jubileumsfond (The Bank
of Sweden Tercentenary Foundation�  and from Högskolan Kristianstad that
made this conference possible.

Linköping and Lund, July 2005

Christer Bergsten, Barbro Grevholm
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Maria  Alessandra Mariotti
Università di Pisa

Abstract
This paper aims to contribute to the debate on proof that has been
conducted in the last years within the community of mathematics
educators. I will discuss both the importance of proof, and more
generally of theoretical thinking, and the possibility of its introduction
in the mathematical curriculum.

A long-term research project, aiming to introduce pupils to proof,
has been carried out, involving a number of 9th-10th grade classes.
Some results drawn from this project will be presented and some
examples discussed, to support general hypotheses concerning the
mediating function of particular micro-worlds, in respect to the
introduction to theoretical thinking.

Introduction
In the last decade, mathematical proof has been at the core of an active debate
in the community of mathematics educators:  often claimed to be responsible of
pupils’ difficulties, but also recognised as a crucial aspect of mathematics acti-
vity.

In the recent past the role and the place that proof takes in the mathematical
curriculum have often changed. For instance, in the United States, after a
period of ‘banishment’ proof has got a central position in the new Standards
(Knuth, 2000).

To give an example, consider the following excerpts drawn form the last
version of the Principles and standards for school mathematics published in
year 2000.

Reasoning and Proof as fundamental aspects of mathematics. Reaso-
ning and Proof are not special activities reserved for special times or
special topics in the curriculum but should be a natural, ongoing part of
classroom discussions, no matter what topic is being studied.” (NCTM,
2000, p. 342)

By the end of the secondary school, student should be able to under-
stand and produce mathematical proofs – arguments consisting of
logically rigorous deductions of conclusions from hypotheses – and
should appreciate the value of such arguments. […] Reasoning mathe-
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matically is a habit of mind, and like all habits, it must be developed
through consistent use of many contexts  (NCTM, 2000, p. 56)

Nevertheless, certainly the idea of “proof for all” is not a view most teachers
hold, and even where there is a longstanding tradition of including proof in the
curriculum  (for instance in my country, Italy), the main difficulties encoun-
tered have lead many teachers to abandon this practice.

Thus the new trend, in order to become accepted and introduced in school
practice must be supported by a deep discussion clarifying two main points:

• why proof is so crucial in the mathematics culture to be worth to be
included in school curriculum;

• how it is possible to overcome the difficulties so often described.

An historic and epistemological analysis highlights the role of proof in the evo-
lution and systematisation of mathematics knowledge throughout the centuries.

Mathematics cannot be reduced to theoretical systems, but certainly its
theoretical nature constitutes a fundamental component, as clearly expressed by
Hilbert and Cohn Vossen in the introduction to their book “Intuitive geometry”.

In mathematics … we find two tendencies present. On the one hand,
the tendency towards abstraction seeks to crystallise the logical rela-
tions in the maze of material that is being studied, and to correlate the
material in a systematic and orderly manner. On the other hand, the
tendency towards intuitive understanding foster a more immediate
grasp of the objects, a live rapport with them, so to speak, which stress
the correct meaning of their relations. (Hilbert & Cohn – Vossen, 1932)

A twofold nature characterises mathematics: On the one hand intuitive under-
standing and on the other hand a systematic order within logical relations.

Thus, the theoretical perspective is a crucial aspect in mathematics and
from the educational point of view it seems difficult to ignore it. The following
question arises: If mathematics is such a complex activity how much is it
possible to elude this complexity without loosing its sense?

The theoretical component of mathematics
The theoretical perspective of mathematics has old roots, leading us to the
ancient book of Euclid’s Elements. That particular way of presenting the
‘corpus’ of knowledge, the deductive way which characterised since then math
exposition and more generally the scientific discourse. Heath in his edition of
the Euclid’s Elements reports the following passage from Proclo.

Now it is difficult, in each science, both to select and arrange in due
order the elements from which all the rest proceeds, and into which all
the rest is resolved. (…) In all these ways Euclid ’s system of elements
will be found to be superior to the rest. (Heath, 1956, vol. I, pp. 115-
116)
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The crucial point seems to be the suitable order in which a set of known
properties may be expressed and communicated. The problem of the transmis-
sion of knowledge was solved by Euclid in a very peculiar way: rather than in
terms of “revelation”, the elements have been transmitted according to  “logic
arguments”.

 And one of the salient features of the structure of Euclid’s Elements is
certainly its logical structure, the deductive structure, although this definitely
differs from the “deductive structure of logic derivation within a formal theory”
(Rav, 1999, p. 29). The main difference consists by the fact that, contrary to
what happens within a formal theory, in a mathematical proof deduction
depends on understanding and on prior assimilation of the meaning of the
concepts from which certain properties are to follow logically. It is in this sense
that Euclid’s work has to be interpreted: the elements are to be considered as
means of fostering understanding of the whole geometry.

The style of rationality introduced by Euclid has become a prototype for all
science, and the power of this method may be related to its treatment of truth.
A twofold criterion of truth characterises the structure of Euclid’s Elements:
evidence, on which principles are based, and consistency, on which the truth of
derived knowledge is based. As expressed by Lakatos:

a truth-injection at the top (a finite conjunction of axioms) – so that
truth, flowing down from the top through the safe truth-preserving
channels of valid inferences, inundates the whole system. (Lakatos,
1967, p. 33)

In this framework a deep unity relates organisation of knowledge and under-
standing, making organisation functional to understanding, which become
strictly tied to the constraints of acceptability and validation within a scientific
community.

A crucial point that I like to stress is that of the twofold aim: on the one
hand the need of understanding on the other hand the need of validity, i.e. to be
accepted by a community. These two aspects seem to be recognised as charac-
teristic of a theoretical corpus and can be found in most of the discussions
about the nature and the function of proof. Let us take for instance the follow-
ing quotation from a classic paper by Hanna.

Mathematicians accept a new theorem only when some combination of the
following holds:

1) They understand the theorem (that is, the concepts embodied in it,
its logical antecedents, and its implications) and there is nothing to
suggest it is not true;

2)The theorem is significant enough to have implications in one or
more branches of mathematics, and thus to warrant a detailed study
and analysis;

3) The theorem is consistent with the body of accepted results;
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4)The author has an unimpeachable reputation as an expert in the
subject of the theorem;

5)There is a convincing mathematical argument for it, rigorous or
otherwise, of a type they have encountered before.

(Hanna, 1989, pp. 21-22)

Despite the crucial change of perspective which has characterised the
beginning of the last century and led the mathematicians to a radical revision of
the idea of truth, the relationship between understanding and acceptability  of
mathematical statements, has not dramatically changed in the centuries, and
still constitutes a characterising element of this discipline.

The slow elaboration of the idea of rigour which had its climax at the end
of the XIX century, has a counterpart in the development of the relationship,
more and more complex, between two fundamental moments of the production
of mathematical knowledge: the formulation of a conjecture, as the core of the
production of knowledge, and the systematisation of such knowledge within a
theoretical corpus.

This leads one to recognise a deep continuity between the development of
knowledge and its systematisation within a theoretical “corpus”, between
aspects relevant in the communication process, such as the need of understan-
ding and aspects related to the fact that knowledge is a shared cultural product,
such as acceptability.

Different approaches to the problem of proof
Certainly the relationship between the semantic and the theoretical perspective
raises the issue of understanding, and in particular the issue of the relationship
between proof as an hypothetical-deductive argument and its explaining func-
tion. Different opinions are possible, according to the relevance acknowledged
to the distance between the semantic level, where the truth (the epistemic
value) of a statement is fundamental and the theoretical level, where only the
logical validity of an argument is concerned.

If the logical dependence of a statement in respect to axioms and theorems
of the theory is considered independent from the epistemic value that one
attributes to the propositions in play, the distance may be thought of as a
cognitive rupture (Duval, 1991). On the contrary if the independence is refused
so is the rupture and the peculiarity of theoretical arguments.

These two points of view are not necessarily opposite (Balacheff, 1987),
they simply focus on different crucial aspects of proof: the function of
theoretical validation and the function of explanation, strictly related to under-
standing.

The issue of understanding arises as far as it refers to the links between the
meanings involved both in the statement and the arguments. On the one hand,
these links may not necessarily be expressed through the structure of logic
consequence; on the other hand, when required, it is impossible to formulate
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and prove the logic link between two statements without any reference to
meanings.

In other terms, in spite of the fact that, at the theoretical level, the epistemic
value has no relevance it is impossible to conceive a practice of mathematical
proof without any reference to the semantic level. From both an episte-
mological and a cognitive point of view, is seems impossible to make a clear
separation between the semantic and the theoretical level, as required by a pure
formal perspective on mathematics.

to expose, or to find, a proof people certainly argue, in various ways,
discursive or pictorial, possibly resorting to rhetorical expedients, with
all the resources of conversation, but with a special aim ... that of
letting the interlocutor see a certain pattern, a series of links connecting
chunks of knowledge. (Lolli, 1999)

The explanation function of proof is fundamental, because it provides the
support needed for understanding, but this function depends on the semantics
of the statements and the truth values given to them. As a consequence, in spite
of the fact of its theoretical autonomy, from the cognitive point of view, proof
is strictly related to semantic.

In this perspective, interesting studies have been carried out, in the field of
mathematics education, aiming to clarify the relationship between the process
of producing a conjecture and the proof provided. The notion of cognitive unity
(Garuti et al. 1996; Mariotti et al., 1997) has been introduced for this purpose;
interesting results have already been obtained. Evidence has been found of
argumentative processes appearing in the solution of open-ended problems that
require both a conjecture and its proof. Thus, producing theorems, that is for-
mulating a conjecture in a statement and producing a proof for this statement,
has been suggested as a powerful approach to the idea of proof (Boero et al.,
1996).

Nevertheless, as Duval reminds us, the rupture between the two levels (the
semantic and the theoretical) may be irretrievable, and the conception of proof
as a process of which the basic aim is to affect the epistemic value of a state-
ment, may become a main obstacle to produce and accept a mathematical
proof, i.e. an argument consistent with the rules of acceptability of the commu-
nity of mathematicians1.

The main point seems to be how to manage this rupture and the consequent
possible conflict between the two functions of proof, achieving a flexible
thinking moving from one function to the other, from validating to explaining
and vice versa.

In their practice mathematicians prove what they call “true” statement, but
“truth” is meant relatively to certain theory; it is a relative truth, drawn from
the hypothetical truth of the stated axioms and from accepting the fact that the

                                                  
1 Only by entering the game of deduction within a theory is it possible to overcome the
difficulty of making sense of a proof of an obvious statement.
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rules of inference “transform truth into truth”. However, relativity of truth is
fundamental: axioms are neither absolute nor factual truths.

A statement B can be a theorem only relatively to some theory; it is
senseless to say that it is a theorem (or a truth) in itself: even a pro-
position like '2+2=4' is a theorem in a theory A (e.g. some fragment of
arithmetic). (Arzarello, 2000)

It seems not spontaneous to reach such a perspective of relative truth, which on
the contrary becomes automatic and unconscious for the expert; in this sense,
this way of thinking may be considered an educational goal.

However, the complexity of this goal should not be ignored. In fact, the
confusion between the two functions (validation and explication) may have
serious consequences.

Ce serait à mes yeux une erreur de caractère épistémologique que de
laisser croire aux élèves, par quelque effet jourdain, qu’ils seraient
capables de production de preuves mathématiques quand ils n’auraient
qu’argumenté. (Balacheff, 1999)

Thus, taking into account the complex relationship between explaining and
validating, education cannot ignore the theoretical perspective.

The following sections will be devoted to discuss a proposal concerning the
possibility of introducing pupils to theoretical thinking.

A teaching experiment
In the last years a long term research project has been carried out, consisting of
a sequence of teaching experiments. A number of experimental classes have
been involved, each of them for at least two years, with the constraint that the
experiment had to be included in the regular curriculum at the upper secondary
school level (9th and 10th grades). The content of the Geometry curriculum
was not upset, but the general approach changed dramatically through the use
of the software Cabri-géomètre; the software was integrated in the classroom
activity, not only as a didactic support, but as an essential part of the teaching/
learning process.

The experiment is in the line of "research for innovation" (Bartolini Bussi,
1994), i.e. the experience in the classroom is both a means and a result of the
evolution of the research study. That means that, as long as the project
developed, different issues arose all of them related to the general research aim:
to investigate the feasibility of a teaching approach to theoretical thinking.

Characteristics of the experiment
Classroom activities were organized within the Field of Experience (Boero &
al., 1995, p. 153) of Geometrical constructions within the microworld Cabri;
the evolution of the field of experience was realized through the social
activities of the class, and the core was constituted by mathematical discussions
(Bartolini Bussi, 1996, 1998), aimed at social construction of knowledge.
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According to a Vygotskian perspective, our main hypothesis was that of using
the different tools, provided by Cabri as instruments of semiotic mediation
(Vygotsky, 1978).

Geometry theory, as imbedded in the Cabri microworld, may be evoked by
the observable phenomena and the commands available in the Cabri menu.
Figures and commands may be thought of as external signs of Geometry
theory, and as such they may become instruments of semiotic mediation as long
as they can be used by the teacher in the concrete realization of classroom
activity and according to the motive of introducing pupils to theoretical
thinking (Mariotti, in press c).

The construction task
The basic element of our experimental project is the idea of construction as a
geometrical (theoretical) problem; the core of all the activities proposed to the
pupils is the "construction task".

Since antiquity geometrical constructions have had a fundamental theore-
tical importance (Heath, 1956, p. 124) clearly illustrated by the history of the
classic impossible problems, which so much puzzled the Greek geometers.

Actually, the theoretical meaning of geometrical constructions, i. e. the
relationship between a geometrical construction and the theorem which vali-
dates it, is very complex and certainly, not immediate for students, as clearly
described and discussed by Schoenfeld (1985). As the author clearly explains
in that case “many of the counterproductive behaviors we see in students are
learned as unintended by-products of their mathematics instruction” (p. 374). It
seems that the very nature of the construction problem makes it difficult to take
a theoretical perspective, as shown in a completely different school context
(Mariotti, 1996).

In spite of the long tradition, geometrical constructions have lost their
position in the geometry curriculum; in Italy, for instance construction prob-
lems have completely disappeared and they can only be found as a topic  within
Technical Drawing at the junior school level.

The appearance of Dynamic Geometry Softwares has renewed the interest
for constructions and the basic role played by construction has been brought on
the scene by the instrumental approach related to the use of graphic tools.

In particular, Cabri-géomètre offers a microworld which embodies Eucli-
dean geometry, referring to the classic world of "ruler and compass" con-
structions. In fact, any Cabri-figure is the result of a construction process, i.e. it
is obtained after the repeated use of tools, chosen among those available  in the
“tool bar”; moreover, the effect of most of the Cabri tools corresponds to the
effect of the classic geometric tools, i.e. ruler and compass: a Cabri-figure is
obtained intersecting lines, lines and circles, constructing perpendicular or
parallel lines or the like.

But the main characteristic which makes Cabri so interesting is the fact that
there is the possibility of direct manipulation of its figures and that this manipu-
lation is conceived in terms of the logic system of Euclidean geometry. Cabri-
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figures possess an intrinsic logic that is the logic of their construction; the
elements of a figure are related in a hierarchy of relationships, corresponding to
the procedure of construction.

But there is something more. The Cabri environment introduces a specific
criterion of validation for the solution of the construction problems: a solution
is valid if and only if the figure on the screen is stable under the dragging test.

Thus, the dynamic system of Cabri-figures embodies a system of relation-
ships consistent in the broad system of a geometrical theory; in other terms
solving construction problems means accepting not only all the facilities of the
software, but also accepting a logic system within which to make sense of
them.

For all these reasons, the idea of geometrical construction within the Cabri
environment may be considered a key to accessing theoretical thinking.

In fact, within the Cabri environment the teacher can find specific tools of
semiotic mediation to be used in the discussion in order to guide the evolution
of personal senses towards the theoretical meaning of a construction.

Pupils’ development of a theoretical perspective is based on the process of
semiotic mediation, accomplished by the teacher through the use of specific
elements of the software.

Semiotic Mediation
As reminded above, Geometry theory (elementary Euclidean geometry) is
imbedded in the Cabri microworld and evoked by the observable phenomena
and the commands available in the Cabri menu.

According to the Vygotskian theory, figures and commands may be
thought of as external signs of Geometry theory, and as such they may become
instruments of semiotic mediation (Vygotsky, 1978)  as long as they can be
used by the teacher in the concrete realization of classroom activity and
according to the motive of introducing pupils to theoretical thinking (Mariotti,
in press a, b).

The sequence of activities developed in a structured manner, where activi-
ties within the microworld (construction tasks) alternated with activities of
collective discussions where, under the guidance of the teacher pupils
constructed a parallel between the world of Cabri constructions and Geometry
as a theoretical system. Let us describe how this parallel is conceived.

The construction of a Theory
In Mariotti et al (1997) we referred to “Mathematical Theorem” as the unity of
a statement, a proof and a theory of reference. In fact, when a deductive system
is concerned, there are two interwoven aspects: the idea of proof and the idea of
theoretical system (both local and global theorization may be considered).
These two aspects correspond to two levels of difficulties: on the one hand, the
idea of validation must be introduced, on the other hand the rules of validation
must be stated. The acceptance of validation depends on the acceptance of rules
and of the meaning of these rules.
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Starting from the basic relationship between Cabri constructions and geomet-
rical theorems we guided pupils to enter the geometrical system, through the
solution of construction tasks.

Taking advantage of the flexibility of the Cabri microworld we adapted the
menu to our educational objective. At the beginning, an empty menu is
presented and the choice of commands discussed, according to specific state-
ments selected as axioms; in this way a double process is started, concerning on
the one hand the enlargement of the Cabri menu and on the other hand the
enlargement of the theoretical system. New constructions are achieved in the
microworld and, in parallel, the corresponding theorems are added to the
theory: new elements are introduced by theorems and definitions, new
commands are introduced in the menu.

Table 1 contains a short summary of the first part of the sequence, based on
the parallel development of Geometry Theory and Cabri environment. On one
side one finds the new elements enclosed in the Cabri menu, on the other side
one finds the theoretical elements discussed and enclosed in the shared
theoretical system.

In this way a main difficulty can be overcome. In fact, when the whole
Cabri menu is used, the whole Euclidean geometry is available, thus the
complexity of the theoretical system may become too high to be dominated by
novices. Because of the richness of the 'geometrical tools' available, it is
difficult to state what is given (axioms or 'old' theorems) and what must be
proved ('new' theorems). The richness of the environment may emphasize the
ambiguity about intuitive facts and theorems and may constitute an obstacle to
the choice of correct elements of the deductive chain of a proof.  In other terms,
there is the risk that pupils will not be able to control the relationship between
what is given and what is to be deduced.

On the contrary, in our sequence the system is built up, step by step, slowly
increasing its complexity, a complexity which can be manageable by pupils and
directly checked through the availability of the tools. In this sense the instru-
mental aspect of the axioms and the theorems may be experienced by pupils,
contributing to constructing the meaning of proof.

Moreover, we aimed to make pupils take part in the construction of a
deductive system. Instead of proposing an already-made Euclidean axiomati-
sation, pupils were directly involved in the construction of both the Cabri menu
and the corresponding geometry system. According to our hypothesis, partici-
pating in that process is fundamental for the evolution of the meaning of
theory.2

                                                  
2 See also  (Mariotti & Fischbein, 1997) about the case of definitions.



� � � � � � � � � � � � � � � �

� +

• Definition of the primitive
elements Criteria of congruence in
terms of construction and in the
classic way

• Transport of an angle (Theorem)

• Construction of the angle bisector
(Theorem)

• Def. Perpendicular line as angle
bisector of a straight angle

• Construction of the Perpendicular
line from a point to a given line

• P ∈ r
• P ∉ r

(Theorem)

• Definition of parallel lines
• Construction of a parallel line to a

given line (Theorem)
• Axiom of  parallel lines
 r // s  , - internal alternate angles
are equal.

• Intersection of two objects
• (Creation) line, circle, segment,

…
• (Construction) Report of Segment

• Report of Angle

• (Construction) Angle Bisector

• (Construction) Perpendicular line

• (Construction) Parallel line  

Note: What has to be included in the theory and what has to be added to the Cabri
menu is always discussed collectively.

Table 1 The parallel between Geometry and Cabri tools

GEOMETRY  THEORY        CABRI    MENU
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A very particular element of the class activity is constituted by the production of
a personal notebook; each pupil has his/her own notebook, where all the new
achievements in the theory are reported and commented: axioms and definition,
new constructions and related theorems, all this material is systematically
reported. The teacher periodically revises these notebooks, but most of the time
this revision is made as a social activity, where pupils compare their texts and
comment on them. This constitutes a fundamental part of the teaching – learning
activity. Results coming from the analysis of these reports are discussed in
Mariotti (in press b).

Collective discussions
As described above the second basic element of our experiment is the practice of
mathematical discussions. Among the classroom activities, collective discussions
play an essential part in the teaching/learning process, with specific aims:
cognitive (construction of knowledge) and meta-cognitive (construction of
attitudes towards learning mathematics).

In the literature, the role of discussion in the introduction of the idea of proof
has been analyzed and the difference between an argumentation and a proof has
been clearly described.

...il y avait une très grande distance cognitive entre le fonctionnement
d'un raisonnement qui est centré sur les valeurs épistémique liées à la
compréhension du contenu des propositions et le fonctionnement d'un
raisonnement centré sur les valeurs épistémique lieées au statut théorique
des propositions. (Duval, 1992-93)

Our proposal refers to a specific type of discussion, 'Mathematical Discussion'
defined as "a polyphony of articulated voices on a mathematical object"
(Bartolini Bussi, 1996).

Mathematical Discussion is neither a simple comparison of different points
of view, nor a simple contrast between arguments, its main characteristic is the
cognitive dialectics between different personal senses and the general meaning
(the terms are used according to Leont'ev, 1981), which is constructed and pro-
moted by the teacher.

 In this case, the cognitive dialectics concerns the sense of justification and
the general meaning of mathematical proof. The motive of the discussion activity
concerns the evolution of the meaning of justification, related to the problem of
construction.

The role played by the teacher is fundamental in every mathematical discus-
sion. In this case, the discussion is developed in a special context, Cabri
constructions. As discussed above, Cabri offers specific tools of semiotic media-
tion which can be used by the teacher according to the particular educational
goal. Consequently in addition to the standard strategies that are used by the
teacher to manage discussions in a whichever context, we have strategies that are
specific for the Cabri environment.
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An example, concerning the History command and its potential as an instrument
of semiotic mediation is fully discussed in (Mariotti & Bartolini Bussi, 1998).
The History tool is used by the teacher in order to orientate collective discussion
towards the intended mathematical meaning of proof.

When a construction task is considered, taking a theoretical perspective
means to interpret the question about the correctness of the drawing, as referred
to the geometrical figure that it represents. Actually, it is very difficult, and often
impossible, to directly access this theoretical meaning of the construction task;
the main point consists of the shift of focus from the drawing to the procedure
which produced it.

The specificity of the Cabri environment makes sense of the question about
the procedure, rather than about the drawing produced; so that the mediation of
the Cabri environment makes this meaning accessible. In particular, the History
command, as it represents an external sign of the construction procedure .

When a given construction is under discussion, the teacher shows the history
in the "master computer" and recurs to two games:

1) the interpretation game, lead by questioning which could have been the
intention or the goal of the author in making such construction; for
instance the teacher can ask: why did the authors choose this operation?
what is the use for it?

2) the prediction game, lead by questioning which could have been the
following step in this construction; for instance the teacher can ask how
would you go on from this point?

Both games are possible because the History command provides a decontextua-
lised, depersonalised and detemporalised copy of the construction procedure,
which becomes the object of the discourse.

The evolution of the sense of justification
This section is devoted to discuss a few examples illustrating pupils’ solution to
construction tasks. We aim to give an idea of the evolution of pupils’ solution as
far as the theoretical perspective is concerned.

The construction of the angle bisector
Let us start with describing the context in which pupils work. As already said,
any task is referred to a specific set of tools available in the Cabri environment
and to a specific set of properties available in the Geometry theory (see Table 1).
At this point of the teaching sequence, besides the primitives of the creation
menu, in the construction menu the commands are reduced to include only two
commands: the Report of Segment and the Report of Angle. From the theoretical
point of view, this situation corresponds to the three criteria of congruence for
the triangles, that pupils already have included in their theoretical system and that
they know are the only principles they can refer to in their justifications. The
following task is presented to the pupils.
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Construct the bisector of an angle. Describe and geometrically justify your
solution.

This is one of the first construction problems proposed to the pupils; they are
grouped in pairs at the computer and they are asked to provide a joint text for the
solution.

Students do not experience great difficulties in finding the construction
procedure, but carrying out the procedure is only the first step of the task.
Difficulties arise when the procedure must be described and justified according
to the accepted rules, i. e. referring to the principles stated in the theory.

The following protocols show some examples of solutions that can be
expected. At the beginning, not everybody has successfully entered the theore-
tical perspective; although a general acceptance of the validation by dragging is
present, not everybody clearly relates the construction to the Theory available.

Alex and Gio (9th grade )
1° Attempt: We took two points and we made a line pass through them,

then we took another point C, which does not belong to the first line.
We joined the point which doesn't belong to r1 with a second line, in so
doing we determined an angle.
We transferred (ital. abbiamo riportato) a segment AB, belonging to r2
and we transferred the same segment on r1 (AB=AC); we drew two
circles (centre, point) centre in C and point A and centre in B and point A
(puntando in C e apertura AC e puntando in B con apertura AB).
We joined A and D (line through two points). We took the intersection
between the circle and the line, but FAILED!

2° attempt: We drew an angle as we did in the first attempt. We drew a
circle (centre/point), taking a point belonging to r1.
This circle gave us the segments AB and AC belonging to r1 and r2,
which are equal because rays of the same circle. We drew two circles
(centre B and C point A) using the intersection of two objects (of the two
circles) we found the point D that we joined with A determining the
angle bisector.

B
A

C
D B

A

C
D

Figure 1a. 1° attempt                                       Figure 1b.   2° Attempt
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The solution presents two successive attempts. In the first attempt, something
happens in the realization, which leads the construction to fail; in fact, the pupils
made the two segments equal “by eye”. After the first failure pupils start a new
attempt. It is interesting to remark that the first attempt is considered a failure
because it does not pass the dragging test; that means that the dragging test has
been accepted as means of validation. In the second part, the text of the
description is more accurate, as if, after the first failure, the pupils had felt the
need of being more attentive; at the same time, a first rudimentary trace of a
justification appears.

This circle gave us two segments AB and CD belonging to r1 and r2,
which are equal because they are rays of the same circle.

Although this sentence, just inserted within the description of the procedure,
cannot be considered a "proof”, it witnesses that the pupils have accepted the
request of a justification; this sentence may be considered the germ of a proof, in
fact it shows that pupils entered the game of construction, in fact they try to use
the validating principles coming from the command used.

The following example shows a more developed solution. The protocol does
not present any description of the procedure, but there is a sketch of the Cabri-
figure, drawn with ruler and compass.

Lorenzo (9th grade)
I consider the triangles ABD and ACD. They have the side AD in
common and the side AB of the first is equal to the side AC of the
second. In fact, if I take the circle with the centre in A and point B, it
passes through both B and C. Thus, the sides AB and AC are equal
because they can be considered as rays of a circle.

If I also point in D with the ray DC, the circle passes through both C and
B. Thus, the sides BD and DC are equal for the same reason of the

r1

A

B

C

D

Figure 2. � � � � � � � � � � � � � � � � � � � � �
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previous ones.
I discovered that the triangles ABD and ADC have the sides respectively
equal; for this reason the 2 triangles are congruent for the 3rd criterion of
congruence.
If the two triangles are equal, there is the rule that equal sides are
opposite to equal angles.
Thus the angles 1 and 2, which are opposite to equal sides BD and DC,
are equal.

This protocol shows a more developed form of 'proof', although the difficulty in
selecting the correct hypotheses clearly appears. Such a difficulty is also
witnessed by the fact that after the first step, when the equality of two of the sides
is correctly derived from the construction, the second step consider the equality
of the other sides by considering the circle with centre D and ray DB; actually,
the fact that "the circle with centre D and passing through B will pass also
through C", is a consequence of the construction of the point D.

It is interesting to remark that, once the construction of the three circles is
done, the sequence of the operations used in the construction is non more
available. Certainly it disappears in the sketch drawn on the paper, but even in
the Cabri-figure, the correct order of the construction cannot be established
immediately; when the figure is dragged the mutual relationships among the
three circles are preserved and it is impossible to state which circle was drawn
first. Only referring to the basic points allows to detect the correct relationship.
The configuration is globally clear, but Lorenzo is not able to  keep the logic
control of the relationships between the elements of the geometrical figure.
Let us consider a last example of  solution for this task.

Massimiliano (9th grade)
Prove that the angle bisector "by construction" (in Italian, "per costru-
zione") is angle bisector "by the equality criterion" (in Italian, "per
criterio di uguaglianza").

AB = AC because
of circle.
AO in common.
OB = OC because
of circle centre C
and B.
The two triangles
are equal because
of the third
criterion of
equality; (ABO =
AOC).
Equal sides are
opposite to equal

A

B

C

O

Figure 3.   Massimiliano’s construction
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angles, thus OAC = BAO. AO ... is the angle bisector of BAC as we
wanted to prove.

The text is synthetic but effective, mainly in expressing the core of the problem.
Some expressions are incorrect and the justification is certainly insufficient. For
instance, the statement “AB = AC” is justified by an unspecified “circle”, instead
of saying that the two segments are rays of the same circle with centre A.
Nevertheless, Massimiliano shows a good control on the theoretical sense of his
solution, in fact, his arguments are based on the construction procedure and find
their justification in the axioms assumed, i.e. the criteria of congruence.

The construction of the perpendicular
As the sequence of activities progresses, theory is slowly enlarged; new
constructions have become part of the theory. For example, at the point at which
students encounter the next task, the theory contains some more elements; after
the construction of the angle bisector, perpendicularity was introduced according
to the following definition: "line t is perpendicular to line s if and only if t is the
angle bisector of a straight angle with the vertex on s". Then the theorem of the
isosceles triangle was proved. At this point, the following task was proposed to
the students:

Given a straight line r and a point P on it, construct the perpendicular to r
passing through P.

Let us consider the following protocol. It refers to the pair of pupils Alex and
Gio, who were not successful in the first task concerning the construction of the
angle bisector. A clear improvement is observable.

Alex & Gio  (9th grade)
We took a  line  r, passing through points A and B, then we took a point C
∉    r.
Then we drew a circle (centre, point) having AC as its radius and then we
traced it, entering taking the
centre in A. We drew a circle
(centre, point) having radius
BA and centre B.
We then determined points C
and D with “intersection of
two objects” and we joined C
and D.
CD ⊥ AB

Proof
Let us consider the triangles
ABC and ABD, which are
equal for the 3rd criterion !

AB in common,

A

C

B

D

O

Figure 4.   The construction of the perpendicular line
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AC = AD because they are radii of the same circle.
DB = CB because radii of the same circle.
Equal angles are opposed to equal sides, therefore the equal angles ∠
ABC and ∠ ABD are opposed to sides CA and AD. Angles CAB and
BAD are opposed to sides CB and BD. We know that angles ∠ BCD and
∠ BDC are equal because they are at the basis of an isosceles triangle
and also angles ∠ ACD and ∠ ADC are equal.
Triangles DOA and AOC  [point O is marked on the drawing but it was
not explicitly defined] are equal according to the 2nd criterion, namely
equal angles are opposed to equal sides, therefore angles COA and DOA
are equal and right angles … angles AOC and BOD are equal because
they are vertically opposite angles.

Compare this protocol with the previous one reporting the solution of Alex and
Gio to the first construction task; a clear change is evident.

The pupils show a good theoretical control of the figure, i.e. the image on the
screen and its construction. The pupils clearly separate the description of the
construction and its justification, the justification is correctly referred to the
theory available and can be considered an acceptable proof. This is not a
common construction, and actually, the use of the two points (A and B) deter-
mining the given line r, originates two circles with different rays, this makes the
validation more complicated, requiring a delicate analysis of the figure in order
to overcome intuitive evidence; nevertheless, the pupils succeed in finding the
way of correctly relating the construction process to their argument, referring to
the theory.

Conclusions
The discussion, we started with, introduced the main issue of this paper: the
claim of educational value of introducing pupils to theoretical thinking.

Proof and theory are a challenge for mathematics education; difficulties and
obstacles have been largely described and discussed. The main challenge consists
in elaborating specific approaches to theoretical thinking that take into account
different modalities of thought and introduce a theoretical perspective without
ignoring or neglecting other ways of thinking. The objective is to make pupils
achieve a flexible way of thinking, which takes advantage of different type of
argument, but maintains the consciousness of their diversity.

Solving a mathematical problem is a very complex task; it is not so important
to provide a rigorous proof of its solution, but rather to have an idea of what such
a proof should consist of and know that it will be required for a final acceptance.

In this stream, a possible proposal was presented in the previous sections,
based on the potentiality offered by a particular microworld. The proposal is
centered on the activity of construction, in particular construction in the Cabri
environment, and aims at making a theoretical perspective evolve.

Our results are very encouraging. The sense of a construction, deeply rooted
in the experience in the Cabri environment, is put into question in the collective
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discussions. As a consequence, the descriptions of the construction procedure
change, improving their clarity through an increasing master of correct terms; on
the other hand, the argumentation approach the status of theorems, that is the
justifications provided by the pupils assume the form of a proposition and a
proof. Pupils show that they achieve a theoretical perspective in the solution of
construction problems, and moreover, this seems to provide a key of accessing
the general meaning of Theorem.

Certainly, a successful experiment does not solve the problem; difficulties do
not disappear by magic. As shown in our classes, argumentation does not evolve
in a proof spontaneously, nevertheless this evolution is possible: the specificity
of the environment to which argumentation is related and the direct guide of the
teacher may determine this evolution. All that requires a long and patient work.
In our opinion it is worth making such an effort; mathematics without the flavour
of theory looses one of its main cultural values.
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John Mason
Open University

Abstract
I am interested in the lived experience of mathematics, whether in
doing it, learning it, or teaching it. I am concerned that, in England at
least, many teachers’ lived experience does not include awareness
that I have of potential afforded by tasks for students to encounter
mathematical thinking, heuristics, and themes, or to use their own
mathematical powers. I conjecture that this is at least partly because
they are unaware of significant aspects of mathematical thinking, of
major heuristics, and of principal themes. Lacking functional aware-
nesses, they are not in a position to recognise mathematical potential
in tasks, and are therefore not in a position to exploit the thinking
that is available. In order to understand this state, I turn my attention
to how it is that I recognise the possibilities that I do, in order to
support others in doing the same. 

Although different conceptions of mathematics and of how children learn
mathematics most effectively may be used to account for different states of
awareness, I challenge the construct of ‘conception’ itself as generative, sug-
gesting instead that it is at best participative. I look in detail at just one aware-
ness: how some tasks could be seen to be on the boundary of arithmetic and
algebra, and therefore could be used to promote shifts in children’s thinking. I
surmise that if teachers are unaware of the value of, the need for, or the nature of
such a shift, indeed if they have not themselves made a similar shift securely,
become aware of that shift, and become aware of how to prompt that shift in
others, then they are not in a strong position to stimulate the education of
children’s awarenesses, and hence cannot be effective even in training child-
ren’s behaviour, much less in prompting them to educate their awareness.

Conceptions and awareness
It is common to discuss beliefs, attitudes, conceptions, perspectives, etc. as if
they were well defined ‘things’ which people possess in the way that they
occupy a body and can think. For example, the question ”what do you
believe…?” is usually awkward to deal with, yet in the midst of making asser-
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tions it is not uncommon to find yourself saying “I believe that…”. It takes only
a moment’s reflection to recognise that beliefs are things we assert when we are
challenged to justify some other assertion, and what other people construct in
order to account for what they observe in our behaviour (our actions speech,
writing, gesture, posture, …). But it does not follow that ‘beliefs generate beha-
viour’. The most we can say is that beliefs are constructions which may appear
to be consistent or inconsistent with observed behaviour, bearing in mind that
observations are themselves based on the observer’s own sensitivities to notice.

Attitudes are constructions of pitch, yaw and roll, that is, orientation in three
dimensions, taken metaphorically over into the affective domain. However, just
like a body in space, our affect also pitches, yaws, and rolls. I suggest that
people do not ‘have conceptions or attitudes’ in the sense of possessing some-
thing. Rather they have a variety of habitual patterns of behaviour which are
displayed on different occasions, triggered by different factors, and which can
be accounted for locally by saying that they ‘have these conceptions or those
attitudes’. More precisely, we each have multiple selves. ‘Attitudes’ are per-
spectives manifested by different selves (Bennett, 1964; Marton, 1981; Minsky,
1986). But to express is to over stress: the act of bringing to expression neces-
sarily overlooks subtle details and stresses some features of what is being
attended to over others. Consequently great caution is needed in taking what
people say about their beliefs and attitudes at face value.

What to me is much more important is that in each moment we are aware of
some things consciously and of other things subconsciously, while being obli-
vious to many other things, all at the same time. What is significant is the scope
and structure of that awareness at each moment, because this is what defines
what is possible in the next moment, and this is what surrounds and imbues
students, creating possibilities for learning. Furthermore we all have characte-
ristic triggers which alert us to notice certain features or aspects of situations,
and to overlook or ignore others. These can usefully be accounted for in terms
of multiple selves which take over control of the psyche.

I am trying to be cautious here, because just because someone says some-
thing, it does not follow (for me at least) that they always believe and act as if
they believe, nor even sometimes believe or sometimes act as if they believe.
What is articulated is only a tiny part of the lived experience. I have found that
the best way to make contact with lived experience in others is to make contact
with it in myself. Once I am sensitised and aware of that sensitivity, I can learn to
let go of my own propensities and to use that sensitivity to become aware of
what others are experiencing. 

In the spirit of phenomenography (Marton, 1981; Marton & Booth, 1997), I
record here some of the variation in conceptions of mathematics that I have
heard or seen expressed.

Mathematics as (consisting of, consisting mainly of) skills to be mastered
(even delivered!);
Mathematics as (consisting of, consisting mainly of) rules to be memorised;
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Mathematics as (consisting of, consisting mainly of) topics to take in;
Mathematics as (consisting of, consisting mainly of) opportunity to exercise
powers;
Mathematics as (consisting of, consisting mainly of) a social practice;
Mathematics as (consisting of, consisting mainly of) an economic gate-
keeper;
Mathematics as (consisting of, consisting mainly of) the language of
modelling;
Mathematics as (consisting of, consisting mainly of) social or psychological
watershed;
Mathematics as (consisting of, consisting mainly of) a specialised discourse;
Mathematics as (consisting of, consisting mainly of) a personal construction;
Mathematics as (consisting of, consisting mainly of) part of the format of
culture-society;
Mathematics as (consisting of, consisting mainly of) a formal game with
symbols;
Mathematics as (consisting of, consisting mainly of) training for work;
Mathematics as (consisting of, consisting mainly of) the language in which
to articulate the laws of science;
Mathematics as (consisting of, consisting mainly of) the language in which
to describe the material world and through which to control it;
Mathematics as (consisting of, consisting mainly of) a domain of explo-
ration.
Mathematics as a necessary evil;
Mathematics as the home of certainty in an uncertain world;

We can also consider each of these from the point of view of a child, of a
bemused or frustrated adult, of a mathematician, and of a harassed teacher. Each
conception will read differently in those different contexts.

I hope that you may recognise some of them at least. If there are some which
resonate less well for you, then it may be worth while exploring those dimen-
sions, because each of these have been maintained as primary or central by one
or more thinkers.

Whatever aspects of mathematics are being stressed at a given moment, each
mathematics teacher arranges that children are given tasks to do which at least
superficially have to do with mathematics. The question I am pursuing here is
how one goes about recognising mathematical potential, that is, potential for
mathematical thinking, which is presumably the mathematical purpose in enga-
ging in the task. As Christiansen and Walter (1986) observed, activity is what
arises when a task is taken on. But of course the task as conceived by its author,
the task as set by a teacher, the task as construed by children, the task as
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tackled, and where assessed, the task outcome as expected by the marker, are
often quite different. 

Method
My approach to investigating questions is to interrogate my own experience as
closely as possible; to locate distinctions which make sense to me, which help
me make sense of past and present experience, and which seem to be effective in
informing future actions by providing me with additional sensitivity so that I can
choose to respond freshly to situations; and to develop and refine task-exercises
which seem to provide others with access to those same distinctions, those same
sensitivities, so that they too can test out in their past, present, and future
experience whether those distinctions are helpful.

My own data are drawn from my experience, but the data I offer you comes
from your experience: that which comes to your awareness as you engage in
some task-exercises. I begin therefore with some tasks for you to undertake.
What you notice, what you distinguish, constitutes the data which I will then
address.

Data collection: Task-exercises
I have chosen three domains of tasks to illustrate issues in being aware of
mathematical possibilities: arithmetic calculations, arithmogons as a structure
exploiting arithmetic, and word problems, all with the potential for leading to
algebraic thinking. I invite you, in reflecting upon your experience of the
following tasks, to consider how that experience might be different if at the
same time, you were also led to articulate different conceptions such as those
listed above.

Doing & undoing

Write down a number which when doubled and added to three, then
divided by four, then has five subtracted, gives six. 

Where you surprised that the answer was not a whole number? How did you
find it? Did you work forwards by trying an example, seeing if it worked, and
then adjusting it to make it work? When abstracted as a process independent of
particular problems, this approach is the origin of the rules of false position and
of double false position, which dominated medieval European mathematics,
traces of which can be found in ancient Chinese manuscripts and Egyptian
papyri.

Perhaps you found yourself working backwards, undoing the stated
calculations (add 5, multiply by 4, subtract 3, divide by 2).

Attention placed on how people find answers, will reveal, perhaps on trying
several such examples, that each operation can be undone by using its reverse
or inverse operation. 
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Pause for a moment and consider the range-of-change possible in such a task.
What are the limits beyond which the structure changes and requires a fresh
technique in addition to or instead of reversing each operation in turn?

I am confident that you are aware that the specific numbers used are
irrelevant, as is the order of the operations or the number of compounded opera-
tions. These represent some of the possible range-of-change, the dimensions of
variation, as Ulla Runesson called it (this volume, p. 36; see also Marton &
Booth, 1997). Attention can be drawn away from specific numbers and a speci-
fic sequence of operations, and onto the way in which the undoing reverses the
order and reverses the operation. This is of course a central notion in mathema-
tics. Dave Hewitt (OU 1991) uses such sequences to get students at the end of
an hour’s lesson, having never solved equations before, to be able to solve a
general equation of the form

((ax + b)/g – d)e + z = h

but with more operations and in different orders, the Greek letters for the
coefficients being entirely unfamiliar signs to them! Even if they don’t go this
far, students can at least develop a general rule for answering a whole class of
specific questions like the one given but starting with any final number. The sig-
nificance of the task is to appreciate and be led to employ symbols to stand for
particular but as yet unspecified numbers. Now try this one.

Write down a number which when doubled and added to 7 gives a
number which leaves a remainder of 3 when divided by 8. Write down
such a number which you are confident no-one else will write down!
Write down all such numbers!

Using remainders forces us to look for a whole number. Note the device of
asking for a particular, a peculiar (e.g. one that you think no-one else will write
down, or one which is unusual in some way), and a general. This three-pronged
task almost forces students to become aware of and to contemplate the range-
of-change, the range of possibilities from which they can choose, rather than
jumping at the first example that comes to mind. Algebraic thinking depends on
awareness of scope of generality, that is, the range-of-change under which some
structure stays invariant. This important awareness has to be not just within the
experience of teachers, but part of their conscious pedagogic awareness if it is to
be employed successfully with pupils. As I developed elsewhere (Mason, 1998),
to function effectively in mathematics you need to employ

awareness-in-action consisting of the powers of construal and of acting in
the material world which we have from birth and which are manifested by
gaining observable mechanical skills, including mathematical routines;

In order to become an expert practitioner (e.g. a mathematician), you need
awareness of awareness-in-action, or awareness-in-discipline, which enab-

les articulation and formalisation of awarenesses-in-action, and which is closely
linked to one form of shift of attention; this is how disciplines arise.
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In his presentation at this conference, I saw Bill Barton as inviting participants
to consider alternative awarenesses-in-discipline starting from awarenesses-in-
action displayed by south-sea islanders among others, in order to broaden and
enrich mathematics beyond that developed in Europe.

To become an effective teacher, you may not need to hone your awareness-
in-discipline to the same level of precision as a mathematician, but you need
enough in order to develop

awareness of awareness-in-discipline or awareness-in-counsel, which is the
self-awareness required in order to be sensitive to what others require in order to
build their own awarenesses-in-action and in-discipline, that is, to teach (Mason,
1998).

In order to experience the working of such awarenesses, pause for a
moment and think about the various ways that the ‘doubled and added to
seven leaves a remainder of 3 on dividing by 8‘ task could be altered, varied,
and augmented. What is the range-of-change, what are the dimensions of varia-
tion within which it remains the same sort of task calling upon the same sorts of
powers, and affording encounters with the same sorts of mathematical ideas?

This pausing and becoming aware of the range-of-change, the scope of
generality, is an important part of pedagogic preparation. It mirrors for teachers
what students need to do, which is to appreciate what an example exemplifies.
This means becoming aware of what could be changed without substantially
altering those principles, powers, and techniques used to resolve a problem, but
possibly extending that thinking. Thus each problem that a student works on is
not just a task to be completed but represents a class of tasks or problems. The
aim of resolving a problem is to become aware of the method as a method, that
is, of the particular as representative of a general class, so that the method
becomes a formula, an algorithm, or a method. Some students (typically but not
exclusively male) are content to get a task finished, while others (typically but
not exclusively female) are not content unless they have reached a state in
which they think they could solve the problem again in the future. Most
students will benefit from being stimulated and enculturated into the practice of
‘seeing the general through the particular’ by seeing a particular problem as
typical of a whole class of problems which can be solved using the same tech-
nique. Stimulating and enculturating requires awareness on the part of the
teacher.

Now write down a number which when doubled and added to 7 gives a
number which leaves a remainder of 3 when divided by 8 less than the
original number. 

Suddenly there are only finitely many integer solutions. Has this example altered
your awareness of the range-of-change of this task type? It certainly introduces
the need for a new technique for resolving problems such as

‘for what values of y will x = 

€ 

0 1
2

+
−

y

y
 have integer solutions?’.
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One approach is to perform the synthetic division to reach x = 

€ 

4
5 6

5

+
−y

 which

forces y – 2 to be factor of 20 which forces y – 2 to be…
The point is to experience a shift in awareness of the range-of-change

possible, in order to feel what it is like for students and for colleagues not to be
aware of the same scope of generality that you experience in other situations or
tasks. The notion mentioned in passing of attending to how you ‘do the
particular’ makes a vital contribution to experiencing and expressing generality
(Mason et al, 1985).

Arithmogons
Arithmogons (McIntosh & Quadling, 1975) is the name given to a collection of
tasks which have re-surfaced periodically in the UK, the most recent being the
new National Numeracy Strategy in the UK (DfEE, 1999, p. 79); see also Mason
and Houssart (2000) for some history and some extensions. It is an excellent
example of a task structure which has enormous mathematical potential, but this
potential can only be actualised if the teacher is aware of possibilities and of
ways of activating them.

Colleagues from the UK will recognise the title, if not this particular variant.
I have chosen to offer a more sophisticated version first, in order to challenge
those who are unimpressed with pupil-level tasks, whereas in the previous
domain I built up to the more sophisticated from the simpler.

Arithmogons Variant 
The numbers in the squares on the edges of the triangle are
calculated as the product of the vertex numbers on that edge
minus their sum.

Now can you go backwards? For example, if the edge-
numbers are 5, 35, and 59, what choices are there for the
vertex numbers? 

It is important that you work on this for a bit, in order to see what you
notice about how you go about the task. One approach is to resort to algebra,
which exploits and expresses structure and enables you to isolate and re-specify
a more tractable problem (e.g. one equation in one unknown, or to recognise the
structure of the edge numbers being 1 less than the product of 1 less than the
vertex numbers). Another approach is to make up your own examples of vertex
numbers and then fill in the edge numbers, in order to try to detect structure or
pattern through your familiarity with numbers.

Traditional Arithmogons

In the traditional presentation of arithmogons, the initial task
can be to insert, for each edge, the sum of the vertex numbers
at the ends of that edge. This is perfectly straightforward, and
typical of tasks which embed repetitive arithmetic operations
in some structure. Whole numbers, fractions, negatives, and
decimals could all be used as appropriate to the pupils.
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Interesting things happen when the ‘doing’ of the calcula-
tion is reversed: when the boxed numbers are given and the
vertex numbers are to be determined.

It is clear that the ‘undoing’ version of arithmogons
can be tackled entirely arithmetically, at first by ‘guess-
check-and-modify’, and later by making use of arithmetical
structure imposed by the arithmogon triangle.

I see it as perched on the boundary between arithmetic and algebra, for
structure can be sensed, conjectured, and used. It can be expressed arithmeti-
cally in particular, verbally or symbolically in general. Symbols can be used to
locate and express structure (here, the sum of the three edge numbers is twice
the sum of the three vertex numbers, and then that this fact enables the vertex
numbers to be reconstructed). This formula or algorithm can be discovered by
creating several examples for oneself (going from vertex-numbers to edge-
numbers), especially by being systematic. It is but a tiny step to move to the
general, for example by doing an example without actually doing the arithmetic,
or by deciding how to check a proposed answer, and then substituting letters
for the proposed numbers to reveal the constraints inherent in the arithmogon
structure.

Consider for a moment the range-of-change possibilities within the arithmo-
gon structure which have come to mind as you have been reading.

Some possibilities that have been considered include re-
placing triangles by quadrilaterals and other polygons
(not all polygons have the same effect!), and more com-
plex diagrams could be used such as the one indicated.

Some edges could have one computation while
others have another (e.g. sum and product, or GCD and
LCM).  Entries on the edges (or vertices) could be whole
numbers, integers, rationals, reals, or algebraic expressions
such as polynomials or rational polynomials.  Students
could be asked to characterise constraints to be imposed
on  entries on edges in order to enable a solution to be
found belonging to one of these classes.

The sophisticated version I gave at first was intended to prompt you to want to
construct some examples for yourself (deciding on vertex-numbers from which
to deduce edge numbers) in order to locate some structure or pattern. Notice
that if this happens, you are also rehearsing the arithmogon operation (in the
sophisticated version, product minus sum), but on your own examples, with your
attention directed to structure rather than to ‘getting the answer’ as would be
the case in ordinary exercises. This principle, studied by Dave Hewitt (1994) has
multiple applications: if you want students to automate some procedure, give
them a task in which they wish to construct and do examples that use that
procedure, rather than just giving them multiple questions in which to use that
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procedure. The idea is to attract their attention away from the doing of the pro-
cedure in order to automate it.

To have the requisite awareness of this principle in order to invoke it in
different contexts requires an appreciation of the mathematical process of
‘Doing and Undoing’, as well as adopting a compatible didactical perspective
concerning the role and purpose of rehearsing procedures.

Reflection
The reason for mentioning arithmogons is that its full potential is rarely
actualised. Schemes and texts which include it exploit only a small part of the
potential explicitly, but many teachers are not sufficiently mathematically aware
to recognise the wider potential. What you are aware of as potential in a task is
limited partly by your domain of confidence within mathematics, partly by your
conception of mathematics, and partly by the pressures under which you are
operating. Where teachers have time and support for engaging in mathematical
thinking together, there is more chance of the mathematical potential of tasks
being actualised.

I am suggesting that these remarks apply not just to arithmogons but to
tasks used in classrooms generally: awareness of mathematical themes such as
doing & undoing, invariance amidst change, and freedom & constraint can
suggest ways of modifying and extending tasks, in order to convert them from
routine exercises into vehicles for developing and consolidating mathematical
thinking.

Word problems
The use and abuse of word problems as pedagogical instruments over the
centuries is a long and complicated tale. I can do no more here than suggest that
word-problems have been used in mathematics education (and for entertain-
ment) since the earliest of written records. Most word problems can be solved
using arithmetic, which is perhaps why traditionally they have drifted out of
algebra texts and into arithmetic texts. But they actually lie on the boundary
between arithmetic and algebra, for they offer spendid opportunities for expe-
riencing and expressing generalities, achieving a sense of power by obtaining a
formula for doing ‘all questions of this type’ or at least an algorithm or method.
Thus they offer opportunities for creativity, rather than an extra and hateful
burden on students.

Consider as an example these problems taken from William Thompson's
Chambers’ Algebra for Schools (1898):

Divide 48 into two parts, such that one-half of the greater added to one-
fifth of the less shall be 18. (p. 189)

Pause for a moment and consider the potential range-of-change that you are
aware of in this task.
Later in the book we find a collection of exercises stated in the general (an
unusual feature to be found in only a few books in different generations). 
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Divide n into two parts, so that p times the greater may exceed q times
the less by r. (p. 216)

A few pages later we find:

It is required to divide a into four parts, such that if the first be diminished
by m, the second increased by n, b times the third increased by p, and c
times the fourth diminished by q, the results shall all be equal. (p. 218)

Now consider the potential range-of-change of these tasks. It may be that these
further examples suggest more dimensions of variability than had occurred to
you just a moment previously. If so, then you have specific and direct expe-
rience of transition from being unaware, to being aware of pedagogic possibili-
ties. But in general it is not sufficient to ‘tell’ people of an added dimension of
variability. Somehow they have to integrate it into their scope of possibilties.
This depends on their awareness of mathematical themes, their awareness of
pedagogical devices, as well as the local conditions, intentions, constraints, etc.

In his book on algebra, Arithmetica Universalis, Isaac Newton (1683; see
Whitehead, 1972) posed and solved most problems in general, then in particular,
sometimes using the general as a formula, and sometimes using the same method
to do the particular. A few authors in each generation since have posed both
particular and general versions, but most have been content to pose only the
particular. I have always seen word problems as opportunities to generalise, to
create my own method, even my own formula, and I have been mystified by the
number of authors who provide multiple minor variants of the same problem
without any indications that the questions they pose are but representatives
from a general class of problems. Indeed many authors go so far as to ‘mix up’
the question types, presumably so that students gain experience of thinking
carefully about each problem (Mason, 1999).

Reflection
Recognising range-of-change, the dimensions of percieved variability connec-
ted with a task, is the first step in actualising those possibilities pedagogically.
But without those awarenesses, little is possible, and little mathematical thinking
is likely. The whole purpose of setting tasks for children is that they use their
powers of mathematical thinking, becoming aware of them and developing
them. Through this exercise of powers they encounter mathematical concepts
and techniques, as well as mathematical themes and heuristics. They even en-
counter ‘themselves’ in the form of their propensities and habits, and thereby
have the opportunity to develop new ones.

Theoretical reflections
With a limited conception of mathematics, of the possibilities afforded by a
mathematical task, the tranposition didactique (Chevellard, 1985) is likely to
lead a teacher to teach students procedures to ‘do the task’, such as solving
equations, arithmogons, or particular forms of word problems. At its most basic,
this means lots of practice, for example, in specific one-operation equations, in
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forward arithmogons’, and in simple word problems, perhaps seen as a context
in which to get students to practice arithmetic operations. But the teacher has to
provide lots of examples for students ‘to do’. Alternatively, and more power-
fully, informed by the theme of ‘doing and undoing’, much more interesting
tasks can be generated.

Teacher needs to provide
plenty of worksheets of
examples for children

Forward
Arithmetical,
synthetical Children have to work their

way through lots of
examples
Teacher needs only to
initiate the backward
activity

To rehearse addition
or some other
operation

Backward
Empirical,
abductive or
inductive

Children make up own
examples on which to try to
solve the backwards
problem in particular

To move from
rehearsal of
operation and
empirical to
structural

Backward
Structural,
algebraical,
analytical

Teacher needs to initiate
backward activity and shift
attention to structural or
general

Two or three contrasting examples can highlight differences (dimensions of
variation), which in turn offer either a disturbance to be accounted for and
generalised, or indication of what might be permitted to change and hence what
might be invariant. Thus several different contexts may highlight what is essen-
tial and common to all members of a class or type of problem.

Seeing potential
As suggested in the case-studies of specific tasks, assuming that a task, no matter
how well designed, will inevitably force students to encounter something, or to
learn something, is to depend very strongly on a cause-and-effect mechanism
whereby students undertake tasks and learn from doing (some construed
version of) them. A more appropriate conjecture is that while a task may lead to
insight, to encounters with important mathematical themes and heuristics, and to
students becoming aware of their own powers in ways which enable them to
develop those powers, this developmental aspect is much more likely when the
teachers are themselves aware of such possibilities. I do not mean that the
teacher has to be aware of them in advance, because making a list of possibilities
in advance is likely to result in student attention being directed according to
teacher desires, without the benefits arising from teachers connecting directly



�  ! " # $ %  "

- &

with student experience. I do mean that the teacher becomes aware of possibi-
lities as the activity generated by the task unfolds. This awareness is resonated
from past experience with rich themes such as doing-and-undoing, invariance-
amidst-change, and freedom-and-constraint. The teacher can only intervene,
prompt, probe, or guide to the extent that they are aware of possibilities
themselves, in the moment. What matters most is what comes to mind in the
moment-by-moment unfolding of the activity.

The possibilities which come to mind for a given teacher depend very
strongly on features of the particular situation: the preparation, the mood, the
class, the room, the time, the specific mathematical topic, how it is taught in texts,
etc. They will be attenuated, delimited and defined by the teacher’s awareness,
which may be articulated in the form of beliefs, conceptions of mathematics, and
pedagogical strategies, but none of these drive the others. Rather, they all co-
emerge (Varela, Rosch & Thompson, 1991).

I have concentrated here on tasks at the boundary of arithmetic and algebra,
because algebra forms a mathematical watershed for a majority of the popula-
tion. Yet I am confident that many more people could experience the power and
pleasure of the use of their undoubted powers to experience and express
generality. Indeed I take the view that a lesson without the opportunity to
generalise is not a mathematics lesson.
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Ulla Runesson
Göteborgs Universitet

How is it possible to make sense of and to understand how the classroom, I as a
teacher manage and have responsibility for, affects students’ learning?

In this presentation I propose a framework for analysing the classroom from
the point of view of possibilities and constraints for learning (Marton & Booth,
1997; Bowden & Marton, 1998). I will describe some of the underpinning ideas
of this framework but also demonstrate how this has a potential for revealing
features of classrooms that are critical for what the learners have possibilities to
learn.

When I started my research some ten years ago I had been a teacher for more
than 15 years and I had met hundreds of teachers in in-service training and
teacher education. I was puzzeled by the fact that, although there seemed to be a
consensus about what was meant by good mathematics classrooms, mathematics
classrooms were very different. For instance, there seemed to be consensus that a
problem solving approach, taking students' knowledge into consideration in
mathematics classroom, using small group learning, discussing mathematics,
using manipulates, were features of good mathematics teaching. However, from a
lot of school visits, I had experienced that classrooms in some respect could be
very similar, but yet very different. For instance the same manipulatives could be
used, the students could work with the same problem in an interactive discussion
in two different classrooms - but yet – and this was an intuitive feeling I had –
their classrooms were different in some respect. And, I realised, when examining
how good mathematics classrooms were described, that descriptions like "small
group work”, “problem solving approach" and so on, were merely descriptions of
how the classroom was organised and of teaching methods in general.

In the same way, there are descriptions of the role of the "good" teacher. The
teacher as a facilitator who proactively supports student learning or the teacher as
a coach, are teacher characteristics and actions that are considered as desirable.
So, I asked myself: if two classrooms are organised in the same way, if the
students are taught with the same teaching methods, solving the same problem
etc. and the teacher acts as a coach, can you still say that the students have the
same learning opportunities? Or are there other things that matter? Are there
other aspects of the mathematics classroom that the learners encounter that
matters for learning than organisation, and teaching methods also? And what
does the teacher do when she is coaching or facilitating students' learning?
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Studying “what matters” in mathematics classrooms –
a matter of perspective
Before I continue and try to answer the question “what matters?” I will start with
a very brief overview of how effects of mathematics teaching have been studied.
It is not bold to claim, and perhaps it is known to everybody in the audience, that
there has been a radical reconceptualization of understanding of classroom
learning and teaching during the two last decades. Koehler and Grouws (1992)
give a solid and close exposition of research of the effects of teaching practise in
the ‘Handbook of research on mathematics teaching and learning’ (Grouws,
1992) just as Graham Nuthall (1997) in his article in The International Handbook
on Teachers and Teaching from 1997 does. It can be concluded that the teaching
– learning process has been studied from various perspectives, with various
underlying philosophies and with a range of methodologies. The introduction of
new methodologies and disciplines into the study of classroom experience
implied a paradigm shift and has resulted in the acknowledgement of the multi-
dimensions and multi-layered nature of classroom processes.

This paradigm shift was a reaction to the previously dominated correlational
and experimental research paradigm, often characterised as process-product
research. In a "typical" process-product study the frequency of particular teacher
and student behaviour, such as types of questions asked, length of responses,
number of and types of examples used, were noted (Koehler & Grouws, 1992).
Student outcomes - in terms of achievement on test scores - were correlated to
the frequency of the observed behaviours to determine what behaviour was
associated with high performance in learning. This research tradition was much
criticised (Brophy & Good, 1986) for not taking the complexity of classrooms
and the teachers' - as well as the students' intentions, beliefs and attitudes - into
consideration. Recently, as research and data analysis techniques have become
more advanced, more aspects of the teaching act have been looked at in detail.
But mostly, there has been a stronger - but also a diverse - theoretical foundation
for this kind of studies (Koehler & Grouws, 1992).

Although the theoretical point of departure for these studies may be different,
one premise is shared; the research on teaching in mathematics should be
combined with research on learning (ibid.). However, when approaching the
issue of what matters in the mathematics classroom the underpinning philosophi-
cal ideas about how students learn have implications for what aspects of the
teaching – learning process that is taken into consideration. For instance, the con-
structivist assumptions about how students learn imply certain desirable teacher
actions and hence those are considered to be of concern for "what matters?"
Cobb and Bauersfeld and their associates (See e.g. Cobb & Bauersfeld, 1995)
have created a framework for approaching the mathematics classroom as an
environment for learning. Teaching and learning have been studied from the
point of view of how meaning is negotiated and how reflective discourse can
promote learning. A cognitivist tradition assuming the importance of linking
existing knowledge to new knowledge, focuses on how the teacher provides
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instruction appropriate for each student (Koehler & Grouws, 1992), whereas,
within the socio-cultural tradition, learning implies participating in a community
of practice. How this happens in the classroom practise is the object of research
(see e.g. Sfard, 1998).

So, it can be concluded that the theoretical perspective on learning is impor-
tant for approaching the issue of “what matters?” In the same way the particular
theoretical framework that I have been using in my studies, has certain assump-
tions about learning and a particular ontological and epistemological foundation
and hence pays attention to particular aspects of the phenomenon.

When I approached my research project with the particular background I
mentioned earlier, I aimed at coming "beyond" such aspects like organisation,
teaching methods etc. and focus on what students had possibilities to learn in the
mathematics classroom. The point of departure taken was that what is most
fundamental for learning is how the learner experiences, understands, or per-
ceives that which is learnt. And, when examining the classroom as a space for
learning, that which is possible to experience or understand must be of concern.
Since learning always has an object - there is always something learned - how
this object of learning is handled in the classroom, was the object of my research.
So, I wanted to study the mathematics classroom from the point of view of what
was possible to learn.

When the teacher and the learners interact around a topic, an object of
learning is constituted. The object of learning is jointly moulded, mostly by
linguistic means, in the interaction between the teacher and the students or by the
students themselves. This object of learning is an “enacted object of learning”
(Marton & Morris, in press); it is the researcher’s description of what students
encounter in the classroom, what they are afforded to learn.

The pedagogy of variation
To illustrate how the enacted object of learning can be studied and it its
significance for learning, I will present two studies of mathematics lessons.

Teaching fractions
The first study is a study of five teachers and their students in grade 6 and 7 in
the Swedish comprehensive school (Runesson, 1999). The classes were followed
during some 8 consecutive lessons. The teachers were all experienced teachers,
with 5 to 25 years of teaching experience, however, with different experience of
in-service training in mathematics education. The lessons were audio-taped and
transcribed verbatim and in addition field notes were taken by an observer in the
classroom. The teachers were interviewed twice, once before the teaching
sessions and once after. All five teachers taught fractions or percentages. So, the
mathematics content was the same in all lessons.

Several similarities between the lessons were found. For instance, the
organisation was very similar in the five classes. These were mixed lessons (i.e.
plenary lessons combined with desk work). The students worked more or less
organised in pairs or groups during the lessons. The teachers all used mani-
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pulatives as teaching aids and there was a "realistic maths" approach in all
classes, in that mathematics was contextualised in everyday situations that were
supposed to be familiar to students. Three of the classes even had the same
textbook. However, there was a clear difference between the classrooms. This
difference concerned how that which was taught was handled.

When the teacher tried to make the students understand something or notice
something, she brought some aspect of the mathematical content to the fore of
the students' attention. I found a difference in what aspects of the content that
were focussed on and what aspects that were not focussed on (i.e. they were left
out or were taken-for granted). For instance, Kate, one of the teachers, used a
piece of elastic, which was partitioned into four equal parts. First it was indicated
that each part was a quarter of the whole, and then she stretched the elastic
alongside the desk, indicating the length of a quarter of the desk. After that, she
stretched it alongside the blackboard and pointed to the quarter of the length of
the blackboard. Finally, she compared the extent of a quarter of the blackboard
with the extent of quarter of the desk. In this way she pointed out that the relative
size of a quarter, is not equal to the absolute size of a quarter. So, this particular
aspect of fraction was focussed on. The students were afforded to experience, or
you can also say, they had possibilities to learn that the size of a fraction is
related to the size of the whole. This aspect was paid attention to only in Kate’s
teaching. It was left out in the other lessons.

If we look closer at what Kate did, we will find that she varied the whole, she
used two different lengths, in this case the length of the blackboard and the
length of the desk, but kept the fraction (i.e. a quarter) constant. So, the whole
was varied, while the fraction was invariant. In this way she opened for a
dimension of variation within the whole. In this case she took two instances, two
different wholes, but she could have taken more of course. This implies that she
opened a dimension of variation of the whole.

I found that variation played an important role when the object of learning
was moulded. All teachers used variation when they tried to draw the students'
attention to various aspects of the content taught, however they did this
differently. In this way different patterns of variation were constituted in the
different classes.

I will just give you an illustration of different kinds of patterns of variation
that I found; an illustration that is very distinctive, but also perhaps familiar to
you. Let us look closer at two lessons. In both lessons a procedure for calculating
a/b of c was the topic. Teacher A started with showing a piece of string of 90 cm.
“How much is 1/3 of this piece of string?” After the first example she changed
the nominator from 1/3 to 2/3. She presented a procedure: “divide 90 by three
and multiply by two”. Then she took a new example 1/5 of 40, followed by
changing the nominator again i.e. 3/5 of 40 and finally 3/5 of 60. The dialogue is
presented alongside our analysis below.
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Teacher A
T: OK. Here I have a piece of string. It’s
90 centimeters (The teacher holds up a
piece of string). Three persons shall
share that equally. How do you go about
with that? Fair share? Tell me, Sylvia.

S1: Well…divide by three.

T: Yeah, each one will get a third. But
let’s say, one of them will have some
more than the others. The string is still
90 centimeters and I want 2/3. How
could we figure that out? 2/3 of a string
that is 90 centimeters? Thomas?

S2: (inaudible)

T: Right. First you figure out the length
of a third and then take another one…
and together that makes…? What did
you say? 60 centimeters? Yes. So, first
you have to figure out the length of 1/3.
Measure that and then take another one.
(The teacher first marking 1/3, then 2/3
of the whole length of the string)

T: OK. Lets take a look at this piece of
string (The teacher is holding up a
shorter piece of string). This is only 40
centimeters. I would like to have one
fifth of 40 centimeters. (Writing on the
blackboard: 1/5 of 40 cm).

S2: 8 centimeters.

T: Yes, each fifth is 8 centimeters. But
let’s say we will have 3/5. How do you
figure that out? Tell me, Lisa.

S3: 3 times 8.

The teacher introduces the problem.
A manipulative aid is used. A
strategy for solving the problem (1/3
of 90) is introduced.

The nominator is changed;1/3 is
changed to 2/3 (2/3 of 90).

The teacher elucidates the strategy
and illustrates with the manipulative
aid.
(1/3 of 90=90/3=30)

A new problem (1/5 of 40) is
introduced. A manipulative aid is
used.
Written representation

3/5 of 40 (the nominator is
changed). The teacher asks for an
appropriate strategy.
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T: OK. At first we must figure out how
much is 1/5, so you divide 40 by 5, and
you’ll get 8. And 3 fifths must be three
times as much. Three such pieces.
That’s 24. But let’s say that the piece of
string is 60 centimeters instead. (Writes
60 cm on the board). One of you should
have 3/5, and another one 2/5. How
much will the person who gets 3/5 have?
---OK. How do we go about with this?
The whole piece of string is 60. I should
have 3/5, then I must figure something
out first, what...? Martin.

S4: 5 divided by 60

T: Well; now you said it the other way
around - 60 divided by 5. What’s that?

S5: 12

T: OK. 12. So now we know that 1/5 is
12. How much is then 3/5?

The whole is changed (3/5 of 60).
Written representation

The teacher asks for the appropriate
strategy

If we analyse this data as regards what aspects that are focused or lifted up, it is
apparent that the strategy for solving the problem (calculating the length of a
fractional part of a piece of string), was the focus. This is what the teacher tried
to draw the students’ attention to. But since only one strategy or procedure was
present and hence, not varied, the strategy itself did not make up a dimension of
variation in this situation. This particular aspect was focused, but it was kept
invariant. On the other hand, the teacher changed the parameters in the problem -
after introducing the problem and presenting an appropriate solving strategy, the
teacher changed the length of the piece of string as well as the size of the
fractional part (1/5 of 40). In the next example, the numerator was changed (3/5
of 40), and finally in the last example, the whole (i.e. the length of the string) was
changed. Thus, the strategy was invariant, while the numbers were varied in a
systematic way. So, in this case the numbers involved in the problem made up a
dimension of variation.

This could be compared to teacher B. The day before, the students had been
working with a particular problem of marking 3/7 of a 7 x 8 squared rectangle.
The rectangle was shown on an OHT. The teacher invited the students to come
up with different solutions and to justify their strategies. Different solutions were
presented and re-described by the teacher.

The teacher elucidates the strategy
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Teacher B
The rectangle is shown on an OHT. To
begin with the teacher asks Lena to tell
the class how this could be done.

S1: If you just take 7 squares from the
whole, and then take three of those…If
you count ‘one, two, three’ and mark
them.

T: Why?

S1: Well it is 3/7 of the small pile. And
then I continue: one, two, three, four,
five, six, seven, go on like that. I always
count to seven and mark three of them.

T: Oh yeah. I understand! You counted
one, two, three, four, five six, seven and
then you mark three of them. And then
one, two, three, four, five, six, seven and
you mark them. In other words, you do
it like this (pointing at the OH) one, two,
three, four, five, six, seven, you can
mark the last ones like that? How do
you go on? In the same way?

S1: Yes.

T: Well did anyone do this differently?
Did you all do like that?

Ss: No.

T: Well what about you…Sophie?

S2: Well, I just divided it into seven parts.

T: OK. You just counted all the squares
and divided them into seven. OK, Maria
what about you?

S3: Well I tried different numbers like
that until I got seven parts.

A manipulative aid is used

In each group of seven squares,
three are marked

The teacher asks for an argument

The pupil is explaining her strategy

The teacher elucidates Lena’s
strategy

A manipulative aid is used

The teacher asks for alternative
strategies.

Another pupil explains her strategy,
which is different from the previous
one.

The teacher asks for alternative
strategies.

Yet another pupil explains her
strategy, which is different from the
previous one.
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Similar to teacher A, in this situation, teacher B focused on the solving strategy.
But, while this did not vary in teacher A’s lesson, teacher B asked the students to
come up with a variation of strategies. During the discussion the parameters of
the problem were the same, and hence this was invariant, whereas the solving
strategy was varied and was presented as a dimension of variation. It is also
worth noticing that the opening of the dimension of variation of solving
strategies is a result of the existing variation in how the students solved the
problem. The variation in students’ solving strategies were made explicit when
the teacher asked for alternative strategies, like: “ Did you all do like that?” “Did
anyone do it differently”? So, by encouraging the students to come up with their
own ways of solving the problem, a dimension of variation in how the students
experience the problem is opened as well.

However, there is also another dimension of variation that could be identified
in this situation. The variation in solving strategies also involves a variation in a
semantic interpretation of the operator aspect of fractions. 3/7 of 56 squares for
instance, could be interpreted as dividing 56 squares into seven groups and then
taking three groups out of the seven groups. (C.f. duplicator/partition-reducer
interpretation Behr, Harel, Post & Lesh, 1993). But 3/7 of 56 squares could also
be interpreted as arranging the 56 squares into groups of seven and then taking
three out of seven in each group (stretcher/shrinker interpretation). Both these
semantic interpretations were held among the students and were made explicit
when the teacher asked for different strategies. Thus, in this situation, there is
also an opening of a variation in semantic interpretation of the concept.

From Table 1 it is possible to compare the two lessons in respect to variation
and in-variation. There is a distinctive difference between the lessons in respect
to the pattern of variation that was constituted in the two classes. So, the pattern
of variation that the students were exposed to, or had possibilities to experience,
was quite different.

Teacher A Teacher B
Solving strategy Invariant Varied
Parameters of
operation

Varied Invariant

Representation Varied Invariant
Pupil’s understanding Invariant Varied
Semantic
interpretation

Invariant Varied

Table 1. The space of variation constituted in lesson A and B respectively.

Whether variation was presented simultaneously or in sequence, was another
difference found.

In two of the lessons the same aspects of fractions were presented to the
class. In one of them, this presentation was done in sequence (i.e. each aspect
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was presented after one another). First, the part/whole aspect was presented, and
then, the division/quotient aspect, and finally the two aspects were brought
together as two aspects of a fractional number; the teacher linked the two aspects
of fractions by concluding that they corresponded to the same number. In
comparison, in the other lesson, the teacher focused on both aspects (the
part/whole aspect and division/quotient aspect) at the same time during three
steps. He first asked the class to mentally work out the solutions of two
problems, each pointing to one of the aspects of fractions and resulting in the
same number (‘4’). Then, he required the students to represent their solutions in
terms of mathematical symbols. Finally, he concluded that the same number
could be arrived at by methods that reflect the different aspects of fractions. In
this way, the relationship between the two aspects was simultaneously brought to
the fore of the learners’ attention (Runesson, 1999, pp. 159, 209).

To summarise: Although the five teachers' were teaching the same topic, the
aspects of the topic that were focussed, what was taken-for-granted, that which
varied and that which was constant, and what varied simultaneously or appeared
in sequence, was different. In this way a pattern of variation and in-variation was
identified. So, the space of learning, the space in which learning can happen, was
a space of variation.

Learning and variation
Initially I stated that what is most fundamental for learning is how the learner
sees, understands or experiences that which is learnt, and that what is learnt could
be seen in one way or another. Some 25 years of research with in the pheno-
menographic tradition (Marton & Booth, 1997; Bowden & Marton, 1998)) have
described how that which appears to be the same thing, is experienced differently
by the learners. To educators this is of importance, since education aims at
developing a certain way of seeing, understanding or experiencing or developing
certain capabilities (Note! not necessarily one way of understanding!)

What do I then mean by "experience"? In every situation – like in this one for
example - it is possible to pay attention an almost unlimited number of aspects.
However, we do not. What happens is that some are paid attention to – others are
not. Some are discerned, they come to the fore of our awareness, whereas others
are left out, they are un-discerned or taken for granted. A certain way of expe-
riencing takes the simultaneous discernment of certain aspects. So a way of
seeing something can be characterized as the aspects that are discerned at a
certain point in time. The aspects discerned that define a particular way of seeing
something are critical features of what is seen in relation to that particular way of
seeing.

What is, for instance, required for experiencing the second pie in Figure 1 as
partitioned into thirds while the first one is not? What are the critical features for
seeing or experiencing something as thirds? To experience the shaded part in the
second pie as 1/3 takes the discernment of certain aspects, namely, the discern-
ment of parts – whole, the discernment of number of parts, and the mutual size of
the parts. And, in addition, all these must be discerned simultaneously.
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Figure 1 . Pies partioned into thirds and three parts respectively

If the mutual size is taken for granted, and thus is un-discerned, the shaded parts
will both be experienced as representing 1/3. So, the discernment of the mutual
size is critical in this case. You can argue that the simultaneous discernment of
these aspects is critical for a certain way of understanding.

However, the discernment of an aspect takes an experienced variation of the
aspect in question. It is easy to realise that the discernment of coldness pre-
supposes the experience of heat, that the discernment of colours presupposes an
experienced variation of colours; of different colours. The discernment of a parti-
cular aspect takes the experience that it could vary. Understanding the many-ness
of e.g. “seven” presupposes an experienced variation of other numbers, nine, six,
two and so on. Understanding what a square is presupposes the experience of
other shapes that are not squares. So, a certain way of seeing implies the expe-
rience of patterns of variation.

From these assumptions, I argue that variation, or more precisely, the pattern
of variation that is possible for the learners to experience in the learning
situation, is of importance for what they have possibilities to learn.

However, it must be noted that it not the variation per se that is important,
for instance, that the more variation – the better. Instead it is that which is
varying that is of interest; that which is varying at the same time, that which is
focussed on and that which is taken-for granted, is critical for learning.

In the previous examples different patterns of variation were identified. From
the assumption taken follows that the students had opportunities to experience
different patterns of variation in the different classes and hence, to discern
aspects of what was taught differently.

But you may ask: Does it matter? Does it affect students’ learning? In this
study I did not study what students had learned. It was only the constraints and
possibilities for learning that were examined. However, other similar studies of
lessons in economics (Rovio-Johansson, 1999) and in language (Marton &
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Morris, in press) where the theoretical framework described previously has been
applied, have shown that what pupils learn reflects to a great extent how the
content was handled during the lesson.

Teaching and learning velocity graphs
That the presence, but also the absence of variation related to the object of
learning is critical for students’ learning is also indicated in an ongoing study
(Runesson, in progress), which I will say a few words about. A mathematics
lesson in grade 8 was videotaped with a particular technique (Clarke, 2001).
Three cameras were present in the classroom, one recording the teacher, another
the whole class and the third focussing a group of students. The tapes were
mixed, so it was possible to see the teacher’s actions and the students’ actions at
the same time. One of the focussed students was interviewed after the lesson.
During the interview the integrated video-tape was watched by the students. The
interviewer stopped at several occasions and posed questions about what had
happened during the lesson.

The topic of the lesson was graphical representation of speed versus time.
One of the tasks was to match five different situations (a-e) each describing a
moving object changing velocity as a rate of time in eight different graphs (see
Figure 2).

Figure 2 . The task presented in the textbook
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It could be noted that two of the situations (a and e) implied a bi-directional
movement. That is, they did not only include a change of velocity but also a
change of direction. Unlike the unidirectional motion of a falling stone for
instance, a bouncing ball is bi-directional (i.e. moves in different directions). A
bouncing ball changes velocity and direction. In that sense this situation is more
complex. To two of the students, Laura and Fiona in this study, A and E were
indeed the most problematic ones. During the peer work and after some
discussion the girls chose graph D as corresponding to “a ball thrown in the air”.
Graph D was once again chosen by one of the girls when she was interviewed
immediately after the lesson. So, neither in the peer interaction nor in the inter-
view, could the girls draw an acceptable v(t) curve, similar to B in Figure 2.

Is it possible to gain understanding about this failure from the point of view
of what was possible to learn during the lesson? Were necessary conditions
given, in terms of how the object of learning was handled during the lesson, for
solving the task? And what was critical in the learning environment for the
students’ learning?

In this study the way the object of learning was handled by the teacher in the
introduction was examined from the point of view of what could possibly be
discerned by the students, and I could identify some features, which seem to be
essential for their possibility to solve the task.

In the whole class instruction graph B was presented to the students.
However it was not chosen as representing a ball thrown into the air, as was the
case in the textbook, but a car slowing down, stopping and then reversing in
opposite direction with increasing speed. This situation was supposed to illustrate
that a graph intersecting the x-axis indicates a change of direction. The following
excerpt from the introduction illustrates the discussion:

1. T: OK can you see that the graph is going down all the time? OK, so
we've got a situation where we actually have a graph going down like
that. Now, the speed, have a look at it here. And have a look at it just a
little bit later. What's the speed, is it higher or lower?

2. Laura and Fiona: Lower.
3. T: So, what's the car doing? Slowing down? OK, now watch this

carefully. At this particular time (points where the line intersects the x-
axis) what's happening?

4. Fiona: It's stopped
5. T: Has it?
6. Fiona (?): Um
7. T: Ok. The car is going down and slowing down and slowing and

slowing. Is it going down nice and evenly?
8. Fiona: Yes
9. Laura: (nods head)
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It is common that the teacher, like in this case, does not take the same example as
in the textbook when introducing the students to a new topic. This could be a
way to challenge the learners, to make them apply knowledge to a new situation,
or to understand the generality of mathematics. But, how can the learner learn to
understand this generality? What is essential for understanding the general nature
of a graph, that one particular graph could represent several different situations?
In this case, it implies understanding that the same graph (B) could represent
both a situation like a car first speeding up, stopping, and then speeding up in the
opposite direction (i.e. the example taken by the teacher) and a ball thrown into
the air, or other situations with change of positive and negative velocity. From a
logical point of view, it is reasonable to assume that the understanding of a
general principle presupposes the experience of (at least) two examples. To be
able to match graph B to the situation with the ball, the learners themselves must
be able to see that the car and the ball are different examples of situations
represented by the same graph. Or, put differently, they must experience the
example as a dimension of variation.

To experience this as a dimension of variation, a variation in that respect
must be opened, either by the teacher or by the learners themselves. As was
shown above, in the introduction this did not happen. The teacher used one
example only.

When the girls were working with the problem on their own, this did not
happen either. Laura and Fiona were considering the task with the bouncing ball
(e). It was suggested that it could be either graph D or E. Laura, who suggested
D, argued:

L: Wouldn’t be like E, it’s not, a ball’s not gonna like –

And Fiona filled in:

F: Go backwards. It’s going to go woo-woo (moving hand back and forth
once fast two and half times horizontally). It’s not going to do that.

In my interpretation, the girls must have experienced that alternative E, with the
graph intersecting the x-axis, represented a change in direction. Thus, they have
discerned one critical feature of that kind of graph; that the curve indicated
positive and negative velocity. However, they took the direction of the movement
for-granted – that this kind of graph represents a horizontal change of the
direction, only. The girls explicitly stated that the change of the movement of the
ball is vertical. It does not “go backwards”. My interpretation is that they were
referring to the example with the reversing car. Since, the ball does not go back-
wards, alternative E, must be rejected.

It seems as that the possibility of that the graph could represent both a
horizontal and a vertical movement, did not appear to the girls. They did not
open up for this variation (i.e. that the change of speed could imply a vertical or a
horizontal movement). The fact that they omitted the possibility that a graph
intersecting the x-axis could indicate a vertical as well as a horizontal change of
direction, was critical for their solving of the problem, and thus for their learning.
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It can be concluded that in this case the absence of variation made constraints
and possibilities for learning a certain kind of graphs. Since in the introduction,
only one example was taken by the teacher, it was not possible for the students to
experience that this particular graph could represent change of positive and
negative velocity regardless of whether the movement is horizontal or vertical.
That this aspect was left out; or it was not highlighted, neither in the whole class
interaction nor in the peer work, seemed to be critical for learning

Concluding remarks
Finally, I have been trying to demonstrate how teachers’ pedagogical actions can
be described in a way that reveals dimensions of the learning environment that
are critical for learning. In practise, of course, there are a lot of things that I as a
teacher must take into consideration when planning my teaching. I do not claim
that the theoretical framework I have presented here captures the full complexity
of the issue “what matters?” What I have been trying to argue for here is that the
object of learning must be taken into consideration. If teaching aims at develo-
ping certain ways of understanding or certain ways of experiencing, the learning
environment must afford the learners to discern aspects, parts, wholes and the
relations between them in a certain way; in a way that corresponds to the kind of
understanding, experiencing etc. you want to achieve. Aspects are likely to be
discerned if they are present to the learner as dimensions of variation. That which
is varying is likely to be discerned. So, from the point of view of “what matters”
features like presence and absence of variation are of significant importance.
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Abstract
From an epistemological perspective, every mathematical concept needs
certain sign or symbol systems for coding the mathematical knowledge.
In primary mathematics teaching these are first of all the arithmetical
signs representing the number concept. For endowing these signs with
meaning one is in need of certain reference contexts. During processes of
communication, students and teacher interactively construct relation-
ships between "signs/symbols" and "objects/reference contexts" that can
be analyzed epistemologically. The epistemological analysis of the
interaction in a third grade classroom between students and teacher
about the correct explanation of numbers beyond 1000 shows a change
in the  role of the mathematical signs for numbers: First, numbers are
explained with the help of concrete, empirical objects and properties, but
later one can observe a kind of reversal: Numbers can be constructed
autonomously by combining several ciphers. A student constructs the
cipher combination 10050 and in the interactive discussion about the
meaning of the number behind this cipher combination exemplifies that
mathematical symbols are autonomous means for constructing a mathe-
matical reality.

Mathematical symbols:  Expression of realistic properties or construction of
relations? – The example of numbers in elementary mathematics teaching
There is a widespread belief about the nature of natural numbers in primary
teaching which says that they can be naturally explained as amounts of objects to
be counted that exist in the children’s world of everyday experiences. The
creation of numbers from pre-existing objects in reality is the central foundation
for the mathematical number concept. This empirical fundament – numbers as
names for objects, or numbers as amounts of several objects – can be exemplified
by many number images, real world images with according number sentences in
mathematical textbooks for elementary school; this kind of an empirical
foundation of numbers is mentioned, proposed and also criticized in didactic
literature. Jörg Voigt for instance remarks: “… especially in elementary school,
the meanings of symbols (signs) are related to empirical issues (numerals to ma-
terials, geometrical terms to the physical space, etc.).” (Voigt, 1994, p. 280).

The empirical links between numbers and objects in the real world could be a
helpful start for introducing the number concept; but later, they could also be-
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come severe obstacles for developing rich arithmetical strategies of a manifold
number concept (Steinbring, 1997). In contrast to the empirical understanding of
numbers as numbers for counting objects or as names of sets, such a conception
is fundamentally questioned from a philosophical and epistemological perspec-
tive. Paul Benacerraf (1984; compare also Jahnke, Steinbring, & Vogel, 1975,
pp. 216ff.) demonstrates by means of a philosophical and logical argumentation
that numbers cannot be defined in a universal and definite manner by reduction
to objects given unequivocally. The central consequence of his analysis is that
numbers can neither be objects nor names for objects. “I therefore argue, … that
numbers could not be objects at all; for there is no reason to identify any indi-
vidual number with any one particular object than with any other (not already
known to be a number).” (Benacerraf, 1984, pp. 290/1).

But if numbers are not objects, what else are they?

To be the number 3 is no more and no less than to be preceded by 2, 1,
and possibly 0, and to be followed by 4, 5…… Any object can play the
role of 3; that is any object can be the third element in some progression.
What is peculiar to 3 is that it defines that role - not being a paradigm of
any object which plays it, but by representing the relation that any third
member of a progression bears to the rest of the progression. Arithmetics
is therefore the science that elaborates the abstract structure that all
progressions have in common merely in virtue of being progressions. It
is not a science concerned with particular objects - the numbers.
(Benacerraf, 1984, p. 291).

Are mathematical concepts such as the number concept the result of empirical
qualities which are then described by them, or are they social constructions
which constitute a new reality? Reuben Hersh has developed the following in-
terpretation concerning this matter:

I propose a way of thinking about the reality and existence of mathe-
matics which lets us keep our mathematical objects really existing, really
meaningful, without resort to mysticism. The key observation is that in
our world there are not two but three main kinds of reality. Mind and
matter are familiar. But they do not help with our puzzle, because mathe-
matical objects are not material, and they are not mental, in the sense of
being part of anyone's private subjectivity. (Hersh, 1998, p. 13).

Hersh debates a third, a social existence for mathematical knowledge.

We have not two but three choices. Material and mental are wrong. What
about social? I claim that social is right. … I surely have five fingers on
my left hand, so “five” has a physical meaning. On the other hand, N
includes some very large numbers, ((2 to a very high power) raised to a
very high power) raised to a very high power. It is questionable what
physical meaning this big number has. So the natural numbers as descri-
bing physical objects are not the same as the natural numbers in pure
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mathematics. The fact that I have five fingers on my left hand is an empi-
rical observation. “Five” in that usage is an adjective. There is no con-
ceptual difficulty there, any more than in saying my fingers are long or
short. But five in pure mathematics is less than the big number I just
defined, and is relatively prime to it, and so on. It possesses an endless
list of properties and relationships, not only in N, but also in R, in C , and
beyond. It's part of an abstract theory. As such, it is not a material object,
not a mental object, but a shared concept, existing in the social con-
sciousness of mathematicians and others.” (Hersh, 1998, pp. 13/14).

Can such a philosophical and social interpretation be a solid and useful basis for
elementary arithmetics teaching at the same time? In the course of developmental
processes in history as well as in teaching and learning, changes of perspectives
and transitions from an empiristic and objective to a relational and functional
foundation of the number concept are always necessary. The philosopher Ernst
Cassirer introduces the differentiation between substance concepts, referring to
objects and to properties of objects, and functional concepts which are based on
the idea of relationships between elements of knowledge. The difficulty in the
relation between substance and function concepts are deeply-rooted and there are
often tendencies to hypostatize relational concepts later on.

But perhaps we can best appreciate the meaning and origin of this way of
thinking if we consider that even in scientific knowledge the sharp
distinction between thing on the one hand and attribute, state, and rela-
tion on the other results only gradually from unremitting intellectual
struggles. Here too the boundaries between the 'substantial' and the
'functional' are ever and ever again blurred, so that a semimythical hypo-
stasis of purely functional and relational concepts arises. (Cassirer, 1955,
pp. 58/9)

In the following a short teaching episode from mathematics teaching in an early
third grade class will be analyzed in order to obtain a better insight into the in-
teractive ways of dealing with the difficult relationship between an empirical and
a relational interpretation of the number concept. We shall observe that changes
and re-interpretations of arithmetical conceptions and of justifications become
inevitable and in which way local fundamental changes from a substance concept
to a relational concept are negotiated and performed.

Analysis of an exemplary episode from a primary mathematics classroom
At the beginning of the third grade the number space is extended from one
hundred to one thousand. For this purpose the students of this class will use a
manifold of different means of visualization and structured diagrams, as for in-
stance the number line, or the thousands book and the 1000 dots field. From their
mathematical work in the second grade, the children are already used to cope
with such structured diagrams for interpreting and justifying arithmetical rela-
tionships and operations. During the mathematical lesson observed here, the
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children are first of all expected to become familiar with to thousands book to
some extent.

In the course of the lesson, the teacher wants the students to read off numbers
from the thousands book one after the other in steps of 50 starting with the
number 50. Some of these numbers are written in this book in the familiar way of
decimal ciphers; others are not written down, but have to be concluded structu-
rally. This exercise, just like many others, intends to support the children‘s first
orientation in reading and exploring this new number book.

Summarizing description of the first phase of the episode
The complete episode “And what comes after one thousand?” consists of two
larger phases:

1. Counting in the thousands book in steps of 50, and 2. And what comes
after 1000?

During the first phase the task proposed by the teacher is exercised; one child
after the other names a number in the series of numbers from 50 to 1000 in steps
of 50. The teacher writes every number in mathematical notation at the black-
board. Two major problems arise in the beginning: “What is the next number
after 50?” Is it the 110, on the next page right on the top in the thousands book ,
or is it the 100? One student proposed as following numbers: “One hundred ten,
two hundred.” And the second problem: “Does 700 follow the number 200?”.
Here, Julia goes on in steps of 500. These problems are interactively negotiated
and clarified; for instance, Jana shows on the third page how to reach the number
250 starting at 200 and moving in steps of tens. Subsequently the children are
able to quickly recite the numbers up to 1000.

61 S.: Seven hundred and fifty.
62 S.: Eight hundred.
63 S.: Eight hundred and fifty.
64 S.: Nine hundred.
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65 T.: Nine hundred? And further?
66 S.: Nine hundred and fifty.
67 T.: Phillip!
68 Phillip: Nine hundred and fifty.
69 T.: Fifty, Marc?
70 Marc: One hundred, uhm, one thousand.
71 T.: Yes, and what comes then? After one thousand? Another fifty?

At this point the second phase starts. The emerging problem refers to questions
as, “What comes after 1000?”,  “How is this number called?”, “What is the name
of this number?”, “How is this number written down correctly with ciphers?”.

After the wanted number has been correctly named by one student with the
name “One thousand and fifty”, this number is to be written down with ciphers,
i.e. as a mathematical symbol. Different proposals are made: Kai proposes the
notation “1050”, Marc writes down “1005” and Svenja writes “10050”. When
discussing which of these proposals is correct, the student Felix uses the position
table for interpreting this number - a suggestion strongly supported by the
teacher. A position table is drawn on the blackboard and now the children are
asked to write simple numbers bigger than one thousand according to their posi-
tions into this table; the positions have to be identified: ones, tens, hundreds,
thousands. The numbers written down into this table are the numbers proposed
by the children during the earlier discussion and some further numbers: 1050,
one thousand, one thousand and five hundred, 1005, one thousand and one and
10050. In the course of explaining the numbers with the position table, the
question whether one can represent numbers above one thousand with one or
several thousands books arises. In this way it is clarified that one would need one
and half a thousands books for the number one thousand and five hundred. The
second phase (and in this way the whole episode) closes with the problem of
writing Svenja's number 10050 into the position table and to reflect about how
many thousands books one would need for this number.

Analysis of two important interaction scenes during the second phase of the
episode
The extension of the number space from 100 to 1000 that has been carried out at
the beginning of the episode represents a construction of the new numbers in
which these numbers are given by the concrete positions - and therefore are
based on empirical qualities. The new numbers are for the time being quantities
for positions in the thousands book. Accordingly, the mathematical notations
1050, 1005, and 10050 for the verbally named number “one thousand and fifty”
represent something like abbreviating names for the quantities. Since three dif-
ferent “mathematical names” for the number word “one thousand and fifty” are
proposed, the question arises which mathematical name is the right one. We will
see that the role of the mathematical number symbols begins to change with this
problem.
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In order to be able to decide which of the proposed notations is correct, the
teacher now intends to refer to the position table as a means of providing justifi-
cations; the students are expected to look for the single positions of the new, big
numbers.

111 T.: What hint could you give to Marc, Kai, and Svenja? We already
have names for the different ciphers. Here we have a number with
three ciphers, and here we have a number with two ciphers, here a
number with four ciphers, and there also a number with five ciphers.
Uhm?

112 Teacher points to the numbers at the blackboard: 950, 50, 1050,
1005, 10050.

113 S.: And with five ciphers.

This implicit reference to the positions of the number might be a reason for
Svenja to revise her notation. In this way, she obtains a correct cipher represen-
tation; she says she has to change something and continues:

119 Svenja: Then I put there a one and a zero, and then over there the fifty.
121 T.: You think better this way too? Why now?
122 Teacher points to the 1050.
123 Svenja: Yes, when I look up there.
124 T.: Where did you look at? … Everybody pay attention, please.

What is, how is this number called?
125 Svenja: Two hundred and fifty.
126 T.: Uhm, and, how did this then help you here in this case?
127 Svenja: That I have to wipe off a number, because there, there are also

only two hundred and fifty.

Svenja seems to make a comparison of the syntactic structure of numbers
between the correct symbolic notation “250” for the number two hundred and
fifty, and the imagined symbolic notation “2050” for this number according to
the principle she has used for writing the number one thousand and fifty in
mathematical terms as “10050”. Consequently one thousand and fifty also could
only be symbolically written as “1050”. Svenja wants to wipe off a number
(127).

Then the teacher explicitly introduces the position table after Felix's
interpretation of the single ciphers as “ones”, “tens”, “hundreds”, and
“thousands”.

131

132

134

Felix goes to the blackboard and points  at the
different positions of the number 1050.
Felix: Actually, it's really simple, because this is the
thousand unit, this the hundred unit, the tens, the ones.
The teacher writes the following table down on the
blackboard, above the number 1050:

T H T O

1 0 5 0
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The question whether the notation “10050” for the number a thousand and fifty is
correct cannot be answered on the foundation of the prevailing empirical
understanding of the new numbers as quantities of positions in the thousands
book. Svenja regards the internal structure of the ciphers of the number symbol
compared to the notation of the number two hundred and fifty which is already
familiar to her; and Felix refers to the characterization by the place value desig-
nation of the number ciphers: ones, tens, hundreds, and thousands. With the help
of Svenja's and Felix's explanations, the interpretation of the number symbols is
beginning to change: Number symbols are no longer the direct result of an em-
pirical quality respectively abbreviated names for quantities, but numbers have
their own internal structure and there is a production mechanism for numbers
which makes them independent from the given reality.

In the course of this episode, additional numbers bigger than 1000 are
entered into the position table, and it is tried to find out how many thousands
books one requires for the numbers 1500 and 1050.

The proposal made by Svenja to write the number a thousand and fifty with
the mathematical notation 10050 - that has been corrected by Svenja to 1050 -
shows that one can produce new numbers independently from a substantial con-
ception, only by the combination of a quantity of number ciphers. Thereby the
question which number is hidden behind Svenja's notation 10050 arises. It has to
be a number, but which one? At an earlier point of time, Johann already sup-
posed that it was a matter of millions.

106 Johann (whispering): She has written one million and fifty.

At the end of the episode a discussion about the question which number is con-
cealed behind Svenja's symbolic notation 10050 takes place. This number is to be
noted in the position table.

216 T.:  …… We still have Svenja's number. Can we write it down now?
Who writes it down, Felix?

217 Felix goes to the blackboard and points to the 1 in the number
10050.

218 Felix.: This is one million.
219 T.: It's better to start with the ones, and write them down on the right

position.
220
221
222
224
225

Felix: Zero ones, five tens, …
Felix writes down in the position table:
Felix: …… and then again zero hundreds and thousands
Felix: And then still one million
T.: Is this really one million? … Miriam? Jana? … think
about how many thousands books we need for this
number?

T H T O

1 0 5 0
1 0 0 0

1 5 0 0

1 0 0 5

1 0 0 1

5 0



� � � � � �  � � � ! " � � #

+ +

At this point the question of the correct naming of the new cipher position above
“thousands” comes up; an answer to this question could be supported by the in-
ternal structure of the position table as well as by reflections about the number of
thousands books necessary to represent this new number. Here the teaching epi-
sode closes.

The search for an answer to the question which number is expressed by
Svenja's symbolic notation clearly shows that a justification of this number can
no longer take place on an empirical basis by concrete qualities; this new number
has been produced by the combination of cipher symbols, therefore, this new
symbol constructs a new, mathematical reality, and it is not dependent on a given
reality. The spoken name of such new numbers as a combination of several
ciphers contains conventional aspects - like the name a million for 1000000 - on
the one hand; on the other, the meaning of the new numbers results from the
internal regulations and the connection of the positions of the single ciphers to
each other: An additional position added to the cipher combination represents ten
times as much as the position before. One does not require empirical objects for
the construction of the new numbers any more, and one does actually not need
spoken names for the new numbers constructed in this way: the cipher combi-
nations are sufficient for the symbolization of the numbers, but even this cipher
combination - the semiotic representation system - to be equated with the number
concept.

From an empirical towards a theoretical understanding of symbols:
An epistemological perspective on the interactive construction of numbers
Mathematical concepts are not empirical things, but represent relations.
Raymond Duval explains this position as “the paradoxical character of mathe-
matical knowledge”:

... there is an important gap between mathematical knowledge and
knowledge in other sciences such as astronomy, physics, biology, or
botany. We do not have any perceptive or instrumental access to mathe-
matical objects, even the most elementary, ... . We cannot see them,
study them through a microscope or take a picture of them. The only way
of gaining access to them is using signs, words or symbols, expressions
or drawings. But, at the same time, mathematical objects must not be
confused with the used semiotic representations. This conflicting require-
ment makes the specific core of mathematical knowledge. And it begins
early with numbers which do not have to be identified with digits and the
used numeral systems (binary, decimal). (Duval, 2000, p. 61)

Mathematical knowledge must be represented by signs or symbols which consti-
tute a semiotic system that is of fundamental importance for mathematical activ-
ity. This is where the portrayed paradox originates: In order to treat and under-
stand a mathematical concept which is not directly accessible, one is in need of
an appropriate symbolic representation system; in order not to mistake this sign
system for the mathematical system, and in order to operate meaningfully in this
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system, the knowledge of the respective mathematical concept is necessary. (cf.
Duval, 1993, p. 37f; Steinbring, 1997, 1998a). With regard to this epistemologi-
cal position, mathematical knowledge is not simply a finished product for the
classroom and for learning. The (open) concept-relations make up mathematical
knowledge, and these relations are constructed actively by the student only in the
social process of teaching and learning. “In these conditions, how can a student
learn to distinguish a mathematical object from any particular semiotic represen-
tation? And therefore, how can a student learn to recognize a mathematical
object through its possible different representations?” (Duval, 2000, p.62).

This relationship between the signs for coding the knowledge and the
reference contexts for establishing the meaning of the knowledge can be struc-
tured in the epistemological triangle besides (cf. Steinbring, 1989, 1991, 1999).

Object/refe- 
rence context

Sign/symbol

Concept

In the epistemological triangle, the construction of relations between “sign/
symbol” and “object/ reference context” via “concept” does not lead to a final,
unique definition, but is conceived as a complex mutual interplay. The links
between the corners of the epistemological triangle are not defined explicitly and
invariably, they rather form a mutually supported, balanced system. In the course
of further developing knowledge, the interpretations of sign systems and their
accompanying reference contexts will be modified.

The crucial point here is not to consider the reference context (or the object)
simply as given beforehand in a definite manner, but to be aware of the fact that
this context will change during the process of knowledge development into a
relational connection. “Things become 'objects' only through the activities of a
subject.” (Bauersfeld, 1995, p. 273). According to this fundamental change of the
status of the reference context, the production of mathematical meaning in the
interplay between the sign system and the reference context can be described as a
process in which a relatively familiar situation (the reference context) is put into
a relationship with a still new and unfamiliar sign system, and, in this way, the
sign system may be endowed partially with meaning by interpreting the sign
system analogous to the referential system.

In the following this epistemological triangle shall be used as an instrument
of analysis for the development of the meaning of numbers in this described
episode; in the course of the analysis further conceptual aspects of this triangle
will be clarified.

What are the meanings, representations and notational forms of represen-
tations which are negotiated and used in the course of this teaching episode?
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What are specific elements of the number concept in this episode, which could be
interpreted according to the epistemological triangle as instances for the cate-
gories “Sign / Symbol”, “Object / Reference Context”, and “Concept”?

• Object / reference context: Numbers are represented in the thousands book (at
the beginning of the episode)

The central means of representation is the thousands book, in a way the Object;
in this frame, the numbers do also exist (partially) in their way of writing ciphers,
especially the quantity of the number is represented (steps of tens, fifties, series,
number strips, to jump, to go on, half a thousands book, etc.). The thousands
book on the one hand is as an empirical object, representing the quantity of the
number; on the other hand it can be interpreted as a simple relational structure,
displaying relations between numbers.

• Object / reference context: Cipher structure of the numbers is represented in
the thousands book (later in the episode)

The position table displays the internal, systemic structure of the number-sym-
bols and exceeds the name function and the function of arbitrary (conventiona-
lized) mathematical signs.

• Sign / symbol: Numbers as outspoken names (at the beginning of the episode)

Numbers are named by words of natural language, they have a verbal, outspoken
name: two hundred and fifty, eight hundred  etc..

• Sign / symbol: Numbers as mathematical signs (a little bit later in the episode)

Numbers are written by means of ciphers: 250, 800; also this representation is
conceived first of all as a “mathematical” name, an abbreviation for the “verbal”
name. With the introduction of the cipher writing the name function of the num-
ber name begins to change into a mathematical sign and later into a true symbol!

According to these background considerations it is possible to make different in-
terpretations of the epistemological triangle for the analysis of this teaching
episode.

In the beginning of the episode, numbers are understood as “existing”
empirical properties in the thousands book and in this way the children count in
steps of fifties up to one thousand; one could describe this with the help of the
above epistemological triangle: Numbers are names for empirical objects, for
quantities, etc.; these names are verbal or mathematical. The numbers are ver-
bally outspoken, written in their cipher representation and pointed at in the
thousands book.
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Object / reference
context

Sign /
symbol

Number as a verbal
and as a

mathematical name

Number -
Concept

� � � � � � � � � � �� � � � � � � � � � � �� � � � � � �   � ¡ ¢ �£ � £ � ¤ � ¥ �¦ � ¦ � ¦ ¡ � § � �¨ � ¨ © ª �« £ � � ¬ � � ¡ �® � ¯ �° ± ±

T

By stating the question: “Yes, and what comes then? After one thousand?” (71),
the old context is exceeded and broken up. The name “One thousand and fifty”
now is to be written down in mathematical notation; the contributions and the
critiques of the students clearly show how the verbal name and the mathematical
name (the mathematical sign code) differ, and that they are no longer - in princi-
ple - identical. The cipher name and the verbal name of the number are definitely
different from each other!

On this basis there are now two different proposals made by the children of
how to decide which proposal is correct:

1) Svenja corrects her number and justifies this by a comparison with the
number 250; this comparison seems to be based on the syntactical
structure of the ciphers; but it is not possible to succinctly follow
Svenja's justification. In this way, the interpretation in the epistemo-
logical triangle shifts again; now the object is no longer the thousands
book but the syntactical structure of the cipher representation.

250
Structure of 
the ciphers 

Number name
spoken out 
and as ciphers

Number concept

Object / reference 
context

Sign /
symbol
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2) Felix remembers the interpretation of the separate ciphers in the
cipher-name of a number as “Thousands, hundreds, tens and ones”; the
teacher reinforces this by introducing the position table; besides the
syntactical structure of the number, this position table emphasizes the
internal, systemic connections between the ciphers themselves. With this
introduction of the position table (the discrimination between name and
cipher) the numbers obtain a new referential context, and once again, the
reading of the epistemological triangle is changed.

Here, the reference context does no longer consist of the thousands book and
consequently of an empirical, given foundation which the new numbers seem-
ingly can be built up on. The new, changed reference context represents a sym-
bolic, structured system itself. The numbers given by the mathematical symbols,
as for example 1005 or 1050, are developed meaningfully by referring to internal
structures present in the symbol itself - the positions and their relations to each
other.

Number name
spoken out 
and as ciphers

Number concept

Object / reference 
context

Sign /
symbol

T H T O

1 0 5 0
1 0 0 0

Especially, the changed interpretations of the epistemological triangle can be
observed in the phase during which the number 10050 is to be interpreted with
the help of the thousands book and the position table. First, Felix writes down
Svenja's number into the known reference context “position table”, starting from
the right with the single ciphers and he names the positions he knows: “ones”,
“tens”, “hundreds”, and “thousands”. The position following next is still un-
known to him, he assumes it might be “millions”.
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Sign /
symbol

T H T O

1 0 5 0
1 0 0 0

1 5 0 0

?

0 0 5 0?

Object / refe-
rence context

Sign /
symbol

Sign /
symbol

1 0 0 5 0

At this point the rather familiar reference context “position table” partially turns
into an unknown symbol system because of the problem of how to interpret the
number “10050”; for still having a basis for further reflections and argumenta-
tions the teacher offers many thousands books as a new possible familiar refer-
ence context by stating the question:

225 T.: Is this really one million? … Miriam? Jana? … think about how
many  thousands books we need for this number?

One would need 10 thousands books, which could possibly provide a plausible
explanation for the name of the new cipher position as “ten thousands”. And this
could be an exemplary expression for the important internal relation between
different place values that has to be constituted: The »times 10« relation between
one place value and the next “above” it. At this point, the teaching episode ends
with a conflicting situation: On the one hand, the cipher combination mentioned
by Svenja definitely represents a number, but by what means and in what way
can this number be understood substantially? Is a reference to an according
quantity of external objects necessary and connected to the correct explanation
given by the teacher's authority about which quantity of objects this number
represents? Or can the meaning of the number given by the cipher combination
be inferred from the combination itself?
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Concluding remarks: What comes first – mathematical signs or objects?
The interaction during this episode started with an implicit agreement about what
the numbers in the given situation are; they are provided by the thousands book
and the students are all able - after some difficulties at the beginning - to read off
these numbers correctly. The numbers are to be found in the thousands book,
they have a name one can speak out, and the children also can express the name
of the number from the mathematical number signs in the book.

In the course of this episode three forms of structured contexts are used to
explore the relational character of the number “one thousand and fifty”. Svenja
seems to make use of the internal syntactical structure between the ciphers for
determining the correct symbolic notation for “one thousand and fifty” by com-
paring with the cipher notation of 250; she refers here to a rather abstract rela-
tional structure. This procedure then is continued and made more concrete by the
introduction of the position table as an already known material. The interpre-
tation for the single ciphers now is given by the positions: “ones”, “tens”,
“hundreds”, etc. The sign “5” for the number “five” can be differently interpreted
within the structure of the ciphers, according to its position; consequently the
internal relational structure of the mathematical sign chain has to be looked at. At
last the thousands book is used as a relational reference context (and as a sign /
symbol system as well) and not only as an empirical object in which one can
directly find the numbers as things, as for instance at the beginning of the epi-
sode. In particular, this new function of the thousands book is constituted by
using further thousands books for interpreting numbers beyond “one thousand”.

At the end, the interactively negotiated and changed interpretation from a
rather empirical to a relational conception of numbers nearly shows a kind of
paradox: Numbers are not names for things, they are not objects and the number
“one thousand and fifty” cannot be identified with the cipher structure “1050”.
The number “one thousand and fifty” is determined by its relationship to other
numbers preceding or following it. In the course of the interactive discovery of
this relational structure, this arithmetical progression, with the help of the
position table and two thousands books the students are faced with the situation
of being neither able to use the position table nor the thousands book as a certain
basis for serious argumentation when trying to interpret Svenja's number
“10050”. Do several thousands books explain the position table, or, vice versa,
does the position table explain the structure and use of the thousands books?

Suddenly, a seemingly secure and familiar, concrete basis for the explanation
and justification of numbers is lost. But a deep epistemological problem of a
mathematical concept comes to the fore. The interactive process more and more
reveals the relational structure of the number concept, an “abstract structure, …”
and the elements of this structure have no other purpose than to put them into
relation with the other elements of the structure (cf. Benacerraf, 1984, p. 291).
The change of a substance concept to a function concept (a relational concept)
makes the number concept (understood as a relationship between numbers, being
an arithmetical progression – in our example in form of the “times 10“ relation
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between neighbored place values) an autonomous entity with regard to the
categories of “Object / reference context” and “Sign / symbol system”. Now it is
the number concept itself together with the constituting relationship, which
allows an exploration of the sign chain “10050” with the help of the symbolic
diagrams “position table” and “thousands books”, but not in a way of simple
reduction to one of these diagrams.

The role of mathematical symbols for the elementary number concept has
radically changed during the interactive discussion in this exemplary teaching
episode out of primary mathematics teaching: While the things of the findable
experience world - objects to count, here the given positions in the thousands
book - were at the beginning the incontestable basis which only made the con-
struction of numbers building up on it possible, namely as symbols to describe
given qualities of reality, at the end of the teaching episode, the number symbols
became autonomous means of constructing an arithmetic reality; Svenja's cipher-
combination 10050 can be regarded as a typical example for the automated
construction of numbers, for which a theoretical number understanding has to be
developed in the classroom discussion with the children.

In a philosophical analysis Brian Rotman (1993) has pointed out, referring to
the historical development of the number zero, by a changing interpretation of
the zero from zero as a sign for nothing into the new interpretation of zero as a
sign for the absence of other numbers, how through this new role of the number
zero the system of cipher combinations gradually became an autonomous
production mechanism for the numbers. According to Rotman, the zero becomes
a metasign (it refers to other, non-present signs in the position notation) which
nevertheless takes part in the production process of the number signs itself, in
fact even starts this process and thus loosens itself from a given reality. “In other
words, the simple picture of an independent reality of objects providing a pre-
existing field of referents for signs conceived after them, in a naming, pointing
ostending, or referring relation to them, cannot be sustained. … The result is a
reversal of the original movement from object to sign. The signs of the system
become creative and autonomous. The things that are ultimately ’real’, that is
numbers, … are precisely what the system allows to be presented as such. The
system becomes both the source of reality, it articulates what is real, and provides
the means of ’describing’ this reality as if it were a domain eternal and prior to
itself…” (Rotman, 1993, pp. 27/28).

In the classroom episode dealt with, the role of the zero is treated partially,
for example in Svenja's first proposal; especially by the utilization of the position
table the role of the zero as a sign for the absence of other number signs is used
implicitly, and this role as a metasign leads already in primary teaching to the
start of an autonomous production of numbers which results in a loosening from
the given existence of concrete objects. This detaching could be demonstrated in
an exemplary and situative way in the observed episode. The sign 10050, con-
structed as a cipher-combination, does not require an explaining object, it
emerges by autonomous construction. One fundamental orientation of elementary
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school mathematics consists in the effort of making the rather abstract mathema-
tical concepts more visual by a foundation in concrete objects and qualities. Our
example shows that the meaning of this new number ultimately cannot be
reasoned satisfactorily on the basis of given objects and qualities (thousands
book or quantities): For an appropriate explanation of the new and big numbers,
it is meaningful and necessary to reveal the construction mechanism of these
cipher combinations - i.e. the structure between the different positions in the
position table - and to make it understood gradually; and with the help of this
construction of numbers these number symbols become means of constructing an
autonomous mathematical reality which can then also be interpreted into
experience reality.
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Introduction
The overall purpose of mathematics education research can be described as
investigating and forming people's relationship with mathematics. The statement
"Mathematics - that's what I can't do." - summarises findings from qualitative and
quantitative studies of adults' relationship with mathematics (Cockcroft, 1981;
Wedege, 1995; Lindenskov, 1996; Wedege, 1999; Coben, 2000; Evans, 2000).
Defeat and selection in school mathematics education may result in this belief in
adults. However, the statement is contrary to the math-containing competences
that many semi-skilled workers demonstrate in their job and everyday practice.

Differences between informal mathematics (street mathematics, folk mathe-
matics) and school mathematics (that people learn and practice in formal
education) have been investigated in a series of studies. This paper argues that
these differences are one of the reasons why adults don't recognize the informal
mathematics in their everyday life as mathematics.

Competence is a readiness for action and thought based on knowledge,
know-how and dispositions learned and incorporated through school and every-
day life. Although there is no 'typical' participant in further education, blocks and
resistance are two central phenomena when adults learn mathematics. This is
connected to how they experience themselves as competent persons without
mathematics and that mathematics is not perceived as relevant to their life
project. If adult numeracy, as a personal math-containing competence, instead of
academic mathematics, is seen as aim in adult training and education programs,
then there are some possible consequences for teaching practice. In the deve-
lopment of the first Danish Adult Numeracy Curriculum, basis has been to make
mathematics visible in people's everyday practices and in the math-containing
competences of adults.

Context and affect
In the 1990's, Diana Coben and Gilian Thumpston conducted a series of research
interviews about adults' experiences of mathematics in their lives, both past and
present, in order to create what they have called "mathematics life histories".
They term the mathematics one can do but which one does not recognise as
mathematics "invisible mathematics", after Mary Harris and the ethno-
mathematician Paulus Gerdes (Coben, 2000). Their work is an important contri-
bution to the understanding of adults' relationship with mathematics, and the
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following terminological clarifications of the two terms 'context' and 'affect'
match their findings.

Researchers in mathematics education use the term 'context' in two meanings
and I propose a terminological distinction. The one is context representing reality
in tasks, word problems, examples, textbooks, teaching materials etc. (e.g.
everyday life situations evoked in a problem-solving task). I call this type task
context. The other fundamental meaning has to do with context for learning, using
and knowing mathematics (e.g. school, everyday life, workplace), or context of
mathematics education (e.g. educational system, educational policies). I call this
type situation context (Wedege, 1999).

I would like to stress that this is just a terminological clarification, not a
theoretical/conceptual definition of ‘context’. My distinction is only meant to
shake things up and I will use a situation from my favourite, the Danish cartoo-
nist Claus Deleuran, to illustrate the terminology. Here the task context is
"digging ditches" but the situation context is a mathematics classroom. When the
situation context is a building site the task is in fact "digging ditches" - not doing
calculations although the worker is doing a lot of calculations.

In a mathematics classroom:

The teacher says,
- "Problem number 123"
- 3 men have to dig a ditch that is 1.20 m wide and .85m deep.  If
together they can dig a 3 X 3m (cubic meter) ditch in 30 minutes, how
long will the ditch be after 8 hours of digging. ”
- Figure that one out!

The pupil thinks,
- Hmm, if we figure a good shovelful is 3 litres, then  3000 times 1
divided by 3  equals 1000 shovelfuls divided among 3 men.  That's 33
1/3 divided by 30 minutes.  That's a little more than 11 shovelfuls per
man per minute.  That's the same as one shovelful per 5 3/4 seconds.  I
wonder if they can keep that tempo all day?

The pupil says,
- Is it on an hourly wage or by contract? And how many breaks do they
get?

The teacher says,
- Søren!!  That's too much!
- Why can't you just do your calculations  like  everyone else?
- Are you just being a smart alec or what?

(Søren is thrown out the door.)
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My second terminological clarification concerns "affect". According to McLeod's
review (1992), beliefs, attitudes, and emotions are used to describe a wide range
of affective responses to mathematics. These three terms are not easy to
distinguish but they vary in the stability: beliefs and attitudes are generally stable,
but emotions may change rapidly. They also vary in level of intensity of the
affects that they describe, increasing in intensity from "cold" beliefs about
mathematics to "cool" attitudes related to liking or disliking mathematics to "hot"
emotional reactions to the frustrations of solving non-routine problems. McLeod
also distinguishes beliefs, attitudes, and emotions in the degree to which
cognition plays a role, and in the time they take to develop. This is not the only
analytical description in different dimensions of the affective area in mathematics
education research (cf. Evans, 2000, pp. 43-45) but I find these three dimensions both
operational and cognitively satisfactory.

Thus I have adopted McLeod's characterisation of the affective and under-
stand affect as comprising three dimensions: beliefs, attitudes and emotions
where beliefs include self-perception(e.g. "Mathematics - that's what I can't do."),
aspects of ‘identity’ (e.g. "We - the semi-skilled workers - not using mathematics
versus "the others" using mathematics), and confidence; and attitudes (e.g. maths
anxiety) are more stable than emotions (e.g. panic).

Invisible mathematics
Coben and Thumpston have used the term "mathematics life histories" to
describe adults' accounts of their mathematical experiences throughout life - both
those that are explicitly mathematical (such as being taught subtraction at school,
or working out a budget as an adult) as well as those in which mathematics is
implicit (such as knitting or judging distances when driving). They used quali-
tative research techniques involving semi-structured interviews which they
recorded on audio tape.

Almost all the interviewees remarked the importance of mathematics and
success in math examinations. On the other hand it appears that once people have
succeeded in applying a piece of mathematics, it becomes 'non-mathematics' or
'common-sense'. Thus they never perceive themselves as successful: mathematics
is always what they cannot do. Some themes emerged from their research, two of
which they designated as follows:

• the door - marked 'Mathematics', locked or unlocked, through which one
has to go to enter or progress within a chosen line of work or study. This
image was often used, reflecting the frequency with which mathematics
tests are used to filter entry into training and employment.

• invisible mathematics - the mathematics one can do, which one does not
think of as mathematics - also known as common sense. (Coben, 2000,
pp. 54-55)
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Coben and Thumpston claim that this invisible mathematics may have limiting
effects on the individuals concerned and perhaps more widely, on conceptions of
mathematics in society in general:

Firstly, for the individuals concerned, 'mathematics' is rendered unattainable.
It becomes by definition, what they cannot do. Secondly, the individuals' nega-
tive self-image as someone who is unable to do mathematics may impact on their
confidence as learners, since mathematical ability is widely considered as index
of general intellectual ability. Thirdly, in society at large, the image of mathema-
tics as difficult, only for the selected few, is maintained rather than challenged.

Eileen is one of their interviewees. She is 39 years old and studying for a
psychology degree. Having come to recognise her own 'invisible mathematics' as
an adult, Eileen puts it:

If somebody says "I can't do maths", I think what they are saying is "I
can't do that part of it", they are not saying "I can't add up or take away, I
can't work out how much my mortgage is going to be, or I can't work out
how much I've got left". What they are saying is "I can't do that part of
it" but that's what they call maths and I realise that was what I was
doing. (Coben, 2000, p. 55 - my italics)

Some people do not recognise what they can do as mathematics unless it is in the
form of a standard algorithm or formula. For most of the interviewees, 'proper
mathematics' seemed to consist mainly of standard algorithms in arithmetic. This
narrow conception of mathematics is compounded by the widely-held view that
there is only one standard algorithm for each operation - usually the one the
person was taught in school (p. 56). In everyday life people use their own
methods, developed by the individual or handed down through a community.
From the English Cockcroft Report we know that adults often get a guilty
conscience because their methods are different from the 'correct methods' they
learned at school (Cockcroft, 1982). Coben and Thumpston have this example:
one of the male interviewees talked about a problem he had of marking out an
athletics field for young children, reducing the standard adult track and throwing
pitch markings:

He had converted the running track but was having difficulty with the
curved markings for the throwing events. How could he find the correct
formula that would allow him to mark the pitch? He knew he could do it
by using a rope and pegs - but as he would not be able to write down the
calculation in a suitably 'mathematical' form he felt that this was not
'doing mathematics'. (Coben, 2000, pp. 56 - my italics)

Another of their interviewees, May, a woman of 79, expressed it like this when
talking about doing do-it-yourself jobs around the house:

You measure, put up shelves, you measure distance, size, and the
backets, where they go - that all involves general maths. To me, though,
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that's just common sense. […] You don't think of [it] as being maths.
(Coben, 2000, p. 57, - my italics)

From my own research, I have similar examples. In order to identify and describe
mathematics in semi-skilled job functions and to analyse how mathematics
knowledge at work is interwoven with vocational qualifications, I have investi-
gated selected firms within four lines of industry: building and construction, the
commercial and clerical area, the metal industry, and transport (Wedege, 2000).
At a large electronics factory, I observed a semi-skilled worker with many years
of experience in production. She is now working in the quality control. When I
interviewed her after the observation asking questions about the mathematics that
I found in her work, she said: " … that's just the logic of battery hens." In this
situation context, I think that common sense is seen as instinct or intuition as
opposed to that which has to be learned or as self-evident as opposed to serious
knowledge.

We may find another example of this belief in a 'mathematics life history'
interview that I made with my mother, Ruth, five years ago. It was a narrative
interview, not a structured interview. Although she knew that I was interested in
the mathematics in her life she didn't speak of herself as someone doing
mathematics. Only once during the whole interview, she linked 'mathematics'
with her everyday competence. Ruth is an active woman of 75. Bridge is her
main interest and every summer she organises tournaments.

T: How do you plan a tournament, for example with 9 tables?
R: Oh, that's quite difficult. 5 tables are a minimum. You have to make

a table plan and plan how you are going to move around. 5 tables,
that's 10 pairs, and they have to play 9 rounds if everyone is to play
against everyone. 3 games at each table, that is 27 games, and that's
enough for one evening. But if there are 6 tables, that's an even
number, then the cards have to be put over to tables 3 and 4. They
are not played. That's called a relay - in order to make everything
work out. Tables 1 and 6 share cards.

T: What does that mean?
R: If we play 3, maybe 4, rounds, then table 1 plays first. ... A

tournament with 6 tables is called a Howell tournament. 7 tables and
it's a Mitchell. (...) At the tables you sit east-west and north-south.
The tables are numbered. When the guests arrive each pair gets a
number: table 2, north-south, or table 4, east-west. North-south
remains at the tables. East-west go to a table with a higher number.
The cards go to a table with a lower number. It's all calculated very
mathematically, so that everyone plays with everyone else and
nobody plays the same cards.

(Wedege, 1999, p. 221 - my italics)

Earlier in the interview, when Ruth talked about leading a bridge tournament she
said, "It's also a question about arithmetic". It was only later when I asked her to
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explain the principles for planning a tournament, she said, "It's all calculated very
mathematically".

This was the first and only time during the whole interview that Ruth linked
her own competence in everyday life with mathematics. But her first reaction to
the question was that this was difficult. The way she explained to an ignorant
person like me the way a tournament leader plans is evidence of classical mathe-
matical thinking when solving problems: she starts with a simple example in
order to explain what is more complicated.

The belief in adults ("Mathematics that's what I can't do") is contrary to the
math-containing competences that many adults demonstrate in their job and
everyday practice, and the statement must be analysed from three inter-related
perspectives: (1) the adult's mathematical skills, (2) the adult's conception of
mathematics, and (3) the adult's self-perception in relation to mathematics
(belief).

Competence as a readiness for action and thought – Numeracy
In English-speaking countries, ‘numeracy’ is constructed as an analytical concept
for certain basic skills and understandings in mathematics, which people need in
various situations in their daily life. The term ‘numeracy’ is often used as a
parallel to the concept of ‘literacy’. Danish does not yet have a single expression
corresponding to the term 'numeracy'. Nevertheless, Lena Lindenskov and I have
chosen to use the noun numeralitet. A term now adopted by the Ministry of
Education.

'Numeralitet' (numeracy) describes a math-containing everyday competence
that everyone, in principle, needs in any given society at any given time:

• Numeracy consists of functional mathematical skills and understanding
that in principle all people need to have.

• Numeracy changes in time and space along with social change and
technological development (Lindenskov & Wedege, 2001, p. 5)

It is this “in principle” that makes possible a general evaluation (as in the big
international surveys) and the developing of general courses in numeracy. All
adults who participate in a numeracy course will, in fact, have their own per-
spectives (why am I here?), their own backgrounds and needs (what am I going
to learn?) and their own strategies (what am I learning?).

We have developed an operative model for the study of adult numeracy. It has
four dimensions, which are

• Media (a) written information and communication (b) oral information
and communication, c) concrete materials, d) time and e) processes.

• Context - in the meaning of situation context - (a) working life, (b) family
life, (c) educational context, (d) social life, and (e) leisure.

• Personal intention (a) to inform/be informed, (b) to construe, (c) to
evaluate, (d) to understand, (e) to practice, etc.



% &  � ' ( ) ' " " (  * *  *

+ .

• Skills & Understanding  - Dealing with and sense of (a) quantity and
numbers, (b) dimension and form, (c) patterns and relations, (d) data and
chance, (e) change, (f) models.

Figure 1. Four dimensions of numeracy

So far the operative model has been productive. Concurrently with the use of the
working model for numeracy in empirical studies and in educational planning,
we have clarified and developed the division and exemplification of the four
dimensions (Lindenskov & Wedege, 2001).

From the beginning of 2000, Lena Lindenskovs and my own educational
engagement has been focussed on basic adult mathematics education. We were
asked by the Ministry of Education to develop an adult numeracy curriculum and
a new teacher education.

The aim of the education is that adults develop their numeracy, as described
above. The content is described as a dynamic interplay between a series of
activities, various types of data and media, as well as selected mathematical con-
cepts and operations. We found the inspiration to these activities (counting,
localising, measuring, designing, playing, explaining) in Alan Bishop's cross-
cultural studies of mathematical components in everyday activity (Bishop, 1988).

Mathematics in workplace vs Mathematics in school
"Do you use mathematics in your work?" Although many adults use numbers and
formulas in their daily life, "No" is the most common answer to this question
(Harris, 1991; Wedege, 1999, 2000). Mathematics is interwoven in technology -
in technique, work organization and qualifications. However, modern computer
technique hides the use of mathematics in the software, and mathematics as a
visible tool disappears in many workplace routines. But that isn't the only reason
for the negative answer. The adults just don't connect the every day activity with
mathematics which most of them associate to the school subject or the discipline.

Differences between informal mathematics (street mathematics, folk
mathematics) and school mathematics (that people learn and practice in formal
education) have been investigated in a series of studies. A working hypothesis in
my investigations has been that there are systematic differences between mathe-
matics at the workplace (or numeracy) and in traditional mathematics instruction.
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This statement is developed and documented on the basis of my own and others
research (e.g. Harris, 1991; Hoyles, 1991; FitzSimons, 2000; Wedege 2000ab).
The well known activity 'solving tasks' serves as an example:

In traditional mathematics instruction, reality is a pretext to use mathematical
ideas and techniques. The task constitutes a central element and structures the
teaching. The task is primarily used to practice skills (use of algorithms and con-
cepts) and to test skills and understandings. Thus, the task is often solved by the
individual student and it might be conceived as cheating to hand in a joint
solution. The task is formulated by the teacher, the textbook or the program. The
task has one correct solution and many wrong solutions. (Accuracy in the school
and tolerance at the workplace are two different things.) Solving tasks has no
practical meaning: the results are not used for anything except, maybe, solving
more tasks. In the so-called 'problems' the task context is often practical
problems, but the aim is to find the correct result by using the correct algorithm
not to solve the practical problem.

At the workplace, reality requires the use of mathematical ideas and tech-
niques. The 'tasks' result from solving a working task where the numbers are to
be found or constructed with the relevant units of measurement (hours; kg; mm).
It is the working tasks and functions in a given technological context which
controls and structures the process, not the 'task'. Some of these tasks look like
school tasks (the procedure is given in the work instruction) but the experienced
worker has his/her own routines, methods of measurement and calculation.
Circumstances in the production might cause deviations from the instruction or
that the number of random samples in the quality control is raised or reduced. It
is characteristic that tasks are solved in different ways and that different
procedures and solutions might be OK. At the workplace solving tasks is a joint
matter: you have to collaborate, not compete. Solving tasks has always practical
consequences: a product, a working plan, distribution of products, a price etc.
(Wedege, 2000a).

Personal dispositions
Blocks and resistance are two central phenomena when adults learn mathematics.
Although one cannot say that there is 'typical' participant in further education, a
significant number of the participants have negative perceptions of themselves,
the institutions and mathematics. Many adults who start on vocational education
are surprised that the programme includes teaching in mathematics. One of their
reactions may be resistance in the learning situation which has to do with the fact
that they have experienced themselves as competent persons without mathema-
tics and that mathematics has not been perceived as relevant to their life project
(Wedege, 1995, Lindenskov, 1996). This belief stems from their experience in
various communities of practice (work, family, leisure), where basic arithmetical
skills have perhaps been sufficient to cope with the challenges, or where
mathematics has been hidden in techniques and technologies. Or, in other words,
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in communities with different practices - as contexts for knowing and learning
mathematics.

We know that some adults change their attitude to mathematics during a
training course while others fail to do so. For some people, this means something
for their image of themselves and their life project, for others not. I would claim
that these differences cannot be explained solely within a situation context that
consists of the teaching and the participants' current situation and their perspec-
tives for learning or not learning. In our analyses of the level of identity in the
adults' experience with mathematics we find personal dispositions which
generate actions and attitudes in interaction with personal understanding and
skills. With inspiration from a search model for subjectivity viewed in the
perspective of qualification (Andersen et al., 1996), we can describe participants'
experience on three analytical levels:

The level of skills Specific skills in arithmetic and mathe-
matics.

The level of understanding General mathematical knowledge, e.g.
understanding and dealing with the theory-
practice relation, and conception of
mathematics.

The level of identity A mixture of incorporated skills and under-
standing (mathematical thinking, tacit
knowledge) and self-concept, attitudes,
emotions and motives.

The basic level of experience can be summed up in adults' relationship to
mathematics, mathematics in the world surrounding us and ourselves; one could
say, subjective dispositions to mathematics which generate actions and attitudes
in interaction with personal understanding and skills. These observations have
lead me to 'habitus', the sociological concept defined and employed by Pierre
Bourdieu as systems of durable, transposable dispositions as principles of the ge-
nerating and structuring of practices and representations (Wedege, 1999, 2000a).
People's habitus is incorporated in the life they have lived up to the present.
Habitus (as a system of dispositions) contributes to the social world being
recreated or changed from time to time when there is disagreement between the
people's habitus and the social world. The dispositions which constitute habitus
are durable. This means that although they are tenacious, they are not permanent
(Bourdieu, 1980).

Jean Lave's theory of situated learning offers a theoretical framework to
describe and analyse adults learning mathematics through teaching and everyday
practice. But in her theory where communities of practice function as situation
context for learning, a concept is missing which makes it possible at once to
understand the subjective and objective conditions of the learners' dispositions
for learning, or in other words, the objectively determined subjective conditions
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for learning. Lave is "taking learning to be a matter of changing participation in
ongoing, changing social practice."  (Lave, 1997). Her theory fits perfectly with
the idea of lifelong learning, but within her theoretical framework the situation
context is limited and it isn't possible to take account for the adult's mathematics
life history in the analysis.

Social relationship with mathematics
In the introduction, I stated that the overall purpose of mathematics education
research might be described as investigating and forming people's relationship
with mathematics. The inspiration to this formulation is found in Roland
Fischer's article concerning Mathematics as a mean and a system (1993). I claim
that the core issue in mathematics education research is people's learning - or not
learning - mathematics. And that the learning process has three analytical
dimensions: a cognitive, an affective and a social dimension. In the research
field, we are interested in "people's cognitive, affective and social relationship
with mathematics."

But what is people's social relationship with mathematics? The following
statement by a former graphic designer illustrates at one and the same time a feeling
of impotence in the face of technological progress, and a belief of mathematics as
power: "Mathematics is not democratic. Mathematics is evil. It has caused
unemployment in my trade." The development of technology and the pace at which
it takes place are experienced as being unavoidable, as something we are helplessly
confronting. In this situation context, mathematics may become personified and
perceived as power (Wedege, 1995). Another example of what I would call
"people's social relationship with mathematics" may be found in an interview
survey with 45 participants in Adult Vocational Training conducted by Lena
Lindenskov. Here many of the interviewees have a perception of mathematics as
"We" - the semi-skilled workers not using mathematics versus "the others" - the
engineers, the foremen etc. using mathematics. (Lindenskov, 1996)

While people's social relationship with mathematics has not been on
Bourdieu's agenda in any of his empirical work, there are several reasons why it
seems fruitful to attempt to combine habitus as an analytical concept with the
theory of situated learning when working with adults and mathematics (Wedege,
1999, 2000a). The dialectic between cognitive, social and affective dimensions in
the learning process makes inter-disciplinarity a must in research and practice of
adults knowing and learning mathematics.
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Abstract
In this paper we account for the ways in which teachers assess and
describe pupils’ work. We also consider what concepts pupils display of
numbers in fraction and decimal form. In our work with The National
Test for school year 5 we continuously collect data from pupils and
teachers in all of Sweden and we use these for our analyses.

Background
We work in the PRIM-group, a research group at the Stockholm Institute of
Education, which has been commissioned by the National Agency for Education
to produce national tests in mathematics.

A new Swedish national curriculum for compulsory basic school and for the
upper secondary school went into effect in 1994. In addition, there is a nationally
defined syllabus for each subject. The compulsory basic school syllabi indicate
the purposes, contents and goals for teaching in each subject. The goals are of
two kinds: goals to aim for and goals to be attained.

At the end of school year 5, national tests are held in Swedish, English and
Mathematics. These tests are not compulsory. The main purpose of the tests is to
help the teachers in assessing whether the pupils have reached the demands of the
curriculum and syllabi. The tests also have a diagnostic purpose. The teachers are
supposed to assess the test holistically and use no points. It is important to ana-
lyse how the pupils solve the problems and examine the quality of their work to
find their strengths and weaknesses in mathematics. The teachers are then
supposed to consider both the assessment of the pupils’ work in the subject test
as well as the overall assessment of the pupils’ mathematical knowledge. To
describe each pupil’s mathematical knowledge the teachers can use the Compe-
tency Profile. Our hope is that teachers, with the help of the profile, can gain a
more balanced picture of the pupils’ knowledge in mathematics.

Teachers’ assessment
In this section of the paper we describe how teachers perform assessment in
mathematics and what conceptions they have about assessment in mathematics.

Our questions are:

In what way and with what quality do teachers assess and describe pupils’ work?
What conceptions do teachers have about assessment in mathematics?
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We have analysed 200 competency profiles and the teachers’ assessment of some
tasks in 200 pupils’ works. These data has been examined both qualitatively and
quantitatively. We have analysed the teachers’ answers to a questionnaire as
well. These inquiries then form a picture of the conceptions of teachers’ assess-
ment of younger pupils’ knowledge in mathematics.

Competency profile
The competency profile is divided into 8 competency areas corresponding to the
goals, which the pupils are to have attained by the end of the fifth school year.
The teachers are supposed to show their assessment by placing crosses on lines.
There is one line for each competency area. They can also verbalise the
assessment by writing in spaces beside the lines.

• In 66 % of the profiles the teachers do not use or use to a very little
extent the spaces beside the lines to comment their assessment of the
pupils’ knowledge in words.

• In 88 % of the profiles the teachers show their assessment by putting
crosses on 6 or more lines.

The profiles in which the teachers have used the spaces to comment are analysed.

• In 31 % of the profiles, the teachers have only written about the
pupil’s weaknesses, for example, what knowledge the pupil does not
have.

• In 17 % the teachers have only written about the pupil’s strengths.

According to the teachers, most of the pupils attain all goals. When we compare
this with the two statements above, we find that teachers, when writing com-
ments, tend to focus on negative opinions.

The test contains only some of the goals to be attained. The teachers can use
their own diagnosis or tests from earlier years to assess the areas missing in the
test. Our research group analyse pupils’ work and also assess the pupils’ know-
ledge in competency areas.

• The teachers’ assessments of the goals that are tested correspond with our
assessment of the same goals.

• The teachers overestimate the pupils’ competencies in the mathematical
areas, which are missing in the test.

Teachers’ assessments of pupils’ work
The test provides assessment instructions for the teachers. These instructions
focus on each goal to be attained and those areas of the competency profile to
which the sub-tests correspond. The instructions include examples of acceptable
answers, assessment comments and authentic pupil solutions. The teachers’
assessments of one sub-test are analysed. This part contains different kinds of
tasks.
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• In 67 % of the pupils’ work, the teachers have followed the assess-
ment instructions for all tasks.

• In 23 % the teachers have followed the assessment instructions for all
but one task.

• In 11 % the teachers have not followed the assessment instructions for
two or more tasks.

When it comes to mistakes made by the teachers, we find that the teachers are
not accurate enough and that they fail to see that a solution can be considered
correct even if the answer is incorrect. Furthermore, some teachers make an
assessment that is difficult to understand.

Teachers’ answers to the questionnaire
The test includes a questionnaire to which more than 2000 teachers sent in their
answers. We have analysed all teachers’ answers to some of the questions.

• Most teachers have an overall positive opinion about the test. They
like the tasks, the structure of the test and the competency profile.
Some teachers dislike that the test, especially the group tasks, takes a
lot of time to carry out and to assess.

• Most teachers think that they get enough help from the assessment
instructions.

• When using the test many teachers change their opinion about a few
pupils’ performances. (Alm & Björklund, 2000)

Conclusions
We find that most teachers have an acceptable competence in correcting pupils’
work and assessing pupils’ knowledge in competency areas when they get help
from an assessment tool such as a National Test. Most teachers do not, however,
verbalise their assessment. When they do, they tend to focus on weaknesses.

There are some teachers who make mistakes in the assessment that can
become a disadvantage for some pupils. One group is pupils who have serious
misconceptions without the teacher noticing. Another group is pupils who make
errors that are not serious but to which the teacher attaches too great an impor-
tance.

Analysis of pupils’ work
In this section we describe what we can learn by the analysis of pupils’ work
with the Subject Test in Mathematics for year 5.

An important element in qualitatively assessing pupils’ knowledge is to
analyse, through various tasks and situations, how the pupils work with and
master an area of mathematics. We examine whether the pupils have tried to find
a solution to the task, how they have understood the task, which concepts they
have displayed and in which way the pupils have dealt with the task. The pupils
can work on tasks in many different ways. We have seen that those who arrive at
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correct results may have used different strategies, such as ones that are dependent
on the context, or that are more general. The pupils who arrive at incorrect results
may display errors, which are more temporary, that is, they are not to be found
systematically but are of a more random character. There are also errors, which
are systematic, that is, they occur consistently. This often indicates deficiencies
in grasping concepts.  The reasons for giving an incorrect result are many. The
pupils can also have misunderstood the task, have understood the task but have
used a wrong method or have understood the task and have used an adequate
method but have made a miscalculation (Pettersson, 1990).

Concepts and misconceptions
There are different components to be assessed in mathematics. We look at
knowledge of facts, knowledge of skills, knowledge of concepts, “higher order
skills” and the pupils’ conceptions about mathematics and of their own learning.
One of our questions is:

What concepts of numbers in fraction and decimal form do pupils display and
how do they explain their thoughts?

We have found that some pupils have difficulties with numbers in fraction and
decimal form and can’t reach the goal which the pupils are to have attained by
the end of the fifth school year: “Pupils should have a basic understanding of
numbers, covering natural numbers and simple numbers in fraction and decimal
form.” (Skolverket, 2000)

Numbers in fraction form, “part/whole”
In the test of year 2000 (Skolverket, 2000) there are two tasks about fractions.
The first is: “Amir is in school for a quarter of a day and Linda for a third of a
day. Who has the longest school day? Write down how you worked out your
answer.” Seventy-five percent of the children solve this task correctly. The most
common way they use to show their understanding is by pictures (38 %), then by
calculations (29 %) and also by explanations with words (6 %). The most
common misconception, by 8 % of the pupils, is that 1/4 is greater than 1/3
because “ 4 is greater than 3” or “4 is more than 3”. The pupils look at the
denominator as a whole number. (Alm & Björklund, 2000)

The other task is: “On a plate in the classroom there are apples, bananas and
oranges. Half of the fruits consist of apples, a quarter of the fruits consists of
bananas and the rest of the fruits consists of oranges. Make a decision of how
many apples, bananas and oranges there might be on the plate. Feel free to draw
a picture. Feel free to write more suggestions”.

An acceptable solution is given by 58 % of the pupils. Perhaps it depends on
that the task is open-ended, and that the pupils have to “mathematise” and use
several thoughts. The pupils try, however, to solve it to a higher extent than the
other task.

The analyses show that for almost all pupils the concept “half of” is known.
The most common error made by 15 % of the pupils, is that the pupils draw a
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picture divided into three parts, one half and two quarters. They understand what
a half and a quarter is, as “part of a whole”, but they do not understand what “a
part of an amount” is. A common misconception is that they think that a quarter
is the same as the number of four. They draw four bananas (5 %). Perhaps the
pupils sometimes may understand what a quarter is, when they suggest the bana-
nas to be a quarter of the numbers of apples, not of all fruits.

Numbers in decimal form
Sometimes one diagnostic task can reveal a lot about the pupil’s understanding,
especially if the task is followed by a question where the pupil is asked to explain
why he/she answers in the way he/she does. There are some tasks of that kind in
the tests. In one task pupils are asked to write results from a 60 m dash in class 5
in the right order and begin with the time for the pupil who won. Only 40 % of
the pupils give an acceptable answer.

The most common misconception about decimals is that the pupils think, for
example, that 10.12 is greater than 10.2 because “12 is more than 2”. They
(58 %) look at the numbers after the point as whole numbers. It probably depends
on that they have experience with money and length before teaching about
numbers in decimal form and have made the interpretation that the decimals in
2.50 SEK and in 1.35 m, are whole numbers but followed by another unit than
SEK and metres (Brekke, 1995).

Connections between pupils’ understanding of numbers in fraction and
decimal form and division
Our next question is:

What connections can be found between pupils’ understanding of numbers in
fraction and decimal form and division?

An investigation of the results to the test for year 2000, shows that only 4.5 % of
the 200 children have an acceptable answer to the task with numbers in decimal
form but no acceptable answer to the tasks with numbers in fraction form. It is,
accordingly, very unusual that someone has an understanding of numbers in
decimal form but not of numbers in fraction form. Pupils more often solve both
of the tasks of fractions than only one and those who manage to solve the task
with numbers in decimal form, also manage to solve one or two tasks with
numbers in fraction form (89 %). In addition, 25 % of the pupils neither manage
to solve numbers in decimal form nor numbers in fraction form.

An investigation has also been done in four classes at the same school. The
pupils worked with the tasks that we have discussed and also with four tasks of
division from earlier National tests. Our findings are:

The pupils manage best with division (76 %), then with numbers in fraction
form (72 %) and do least well with numbers in decimal form (31 %). This corre-
sponds with the thoughts of researchers, such as Sfard, who discusses concepts to
be understood as an operation and as a structure. She maintains that pupils have
operational understanding before structural understanding (Sfard, 1991).



 � ! � " # $ %  & � � ' ( ) � * # + ! ,

- 0

Conclusions
Our investigations show that pupils must have a good understanding of the
concept “part/whole” to manage very well with numbers in decimal form.
Teachers may consider this when planning the teaching. It is important to have
good concepts of numbers in decimal form because of their use in everyday life.
An idea is to work with numbers in fraction and decimal form at the same time
after an initial period of basic learning of the concept “part of”, starting from the
understanding that the pupils already have (Engström, 1997). In our analyses we
can see the growth of mathematical understanding of a concept. The pupils are
on their way from a more primitive to a deeper understanding.

In the teachers’ guide to the National Test, we give examples of pupils’
understanding. We hope that when teachers discover what kind of strategies,
concepts and misconceptions pupils have, they change their teaching to be of a
more diagnostic nature. The teachers must create cognitive conflicts, that is,
teaching in a way that misconceptions and unclear concepts are to be revealed.
Cognitive conflicts must be solved by discussions and reflections and the con-
cepts must be put in new situations (Brekke, 1995). We want to see assessment
and teaching deeply connected and we hope that the National Test will contribute
to better teaching and learning with focus on concepts, number sense and struc-
tural understanding.
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Abstract
The wide gap between researchers and practitioners in mathematics
education is a big problem in Hungary as in many other countries. In a
developing democracy it is interesting to investigate how to reach the
mathematics teachers, how to convince them about the necessity of the
change of their point of view on teaching problem solving. Some expe-
riences will be presented taken from our pre-service and in-service
teacher training courses: the one-sided preference of the use of symbolic
representations leads to shortcomings in students.

Introductory remarks
Mogens Niss emphasized in his plenary lecture at the ICME-9 congress in 2000,
the widening gap between theory and practice, between researchers and teachers
in mathematics education:

The course for concern lies in the fact that it is widening. There are very
good explanations for this fact, but for the health and welfare of our
field, we have to do our utmost to find ways to reduce the gap as much
as possible. (Niss, 2000)

But how to solve this problem, how to reach the mathematics teachers in the
schools, is still an open question, and surely without an easy answer. We try to
analyse the problem in the Hungarian context.

Think globally, act locally

The role of teachers in mathematics education – The international perspective
Jeremy Kilpatrick emphasizes the importance of the teachers’ role:

…we have often overlooked the symmetry of roles between teacher and
student. We tend to think of the teacher as causing learning and the
student being the one whose role it is to produce and manage mathe-
matical knowledge. The teacher, however, is also doing mathematics and
has an equally important role in the production and management of that
knowledge. We need to begin examining more closely the teacher’s role
in doing mathematics in the classroom. (Kilpatrick, 1999, p. 57)

John Mason states:
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My guiding principle is that I cannot change others. But what I can do is
worth at changing myself, and in that way, I have found that others may
begin to work at changing themselves. For example, trying to “tell”
teachers what they “should do” on the basis of research never works
unless the teachers understand and appreciate the basis of the alternative
practice and unless it fits with their own experience and appears to them
as an attractive alternative. (Mason, 1998)

Another important opinion, in our view, belongs to Shlomo Vinner:

… for many people doing mathematics is activated by the ritual schema.
In other words, consciously or unconsciously, many people behave in
mathematical contexts (mathematics classes, homework assignments and
examinations) as if they take part in a ritual the elements of which they do
not understand. /…/ …there are two essential conflicting elements in the
human psychology which are active in the domain of teaching and
learning mathematics: the need for meaning and the ritual schema.
(Vinner, 2000)

The local context – some characteristics of Hungarian mathematics education
Jeremy Kilpatrick states the following:

The mathematics content may look much the same around the globe, but
how that content is taught and what role it plays in the society’s educa-
tional agenda, are set locally. (Kilpatrick, 1999, p. 61)

Problems that researchers may have some trouble communicating about
within a country become magnified when they are communicating across
national borders. (Kilpatrick, 1999, p. 62)

Before I am going to speak about Hungarian experiences, it is necessary to
introduce some main characteristics of our mathematics education. For a long
time Hungary was a strongly centralised, authorised society. The teachers were
used to fulfil the prescriptions and norms (one curriculum for all, one textbook
series, etc.). Since 1990 we try to build a democracy, and the teachers have great
autonomy (local curriculum, several textbook series, there are no school inspec-
tors, it is not compulsory to participate in in-service teacher training courses).
Prescriptions and norms versus great freedom – these are the opposites experien-
ced by most Hungarian teachers. But we now have a new problem, i.e. how to
reach, in this freedom, the teachers.

At an in-service teacher training course I asked the participants, i.e. 60
mathematics teachers, to fill in a questionnaire about the problems of teaching
indirect proofs. Only one teacher sent it back, answering the questions.

I made interviews with teachers on the same topic. One teacher said:

We have very little time for such things, because we must prepare our
students for the different exams and competitions. Our work will be eva-
luated by the school direction according to the achievements of our
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students on these exams and competitions. Every student needs to solve
tasks, problems taken from certain task collections, as much as possible.
The indirect proofs hardly have any importance. Maybe it is a good
research topic for a mathematics didactician, who needs to write a disser-
tation, to get a PhD degree.

To understand the text above, I shall describe the Hungarian final exam-system
for mathematics at the end of secondary school. The Ministry of Education
chooses the exam problems from a book containing about 4000 tasks, problems
covering the teaching material in secondary school. This book is at the hand of
the secondary school students from grade 9. The teachers are training their
students to solve the problems taken from this book.

Two examples illustrate the Hungarian situation:
Analysing the reasons for the rejection of the use of concrete, visual

representations in Hungarian mathematics education, a PhD student of mine – an
experienced mathematics teacher – expressed the general opinion like this: the
officials responsible for mathematics education should call the attention of the
teachers for the importance of the use of concrete representations.

At an in-service teacher training course meeting, we discussed the role and
use of open problems and problem fields in mathematics education. A participant
teacher asked me: Please, publish a task collection containing such problems for
each topic.

Although I have emphasised many times that the teachers should construct
open problems and problem fields from the closed problems taken from the task
collections, my participants remained at the TSG model:

T – Tell me, how…
S – Show me, how…
G – Give me concrete examples for each topic!

“There is only one way to communicate mathematics” –
The dominant role of the use of symbolic representations
In the remaining part of my paper, I will restrict myself to one problem, i.e. the
dominant role of the use of symbolic representations in mathematics education in
Hungary. Csíkos (2000) investigated the opinions of approximately 4500
students (grades 5, 7, 9, and 11) and their teachers about arguments and proofs
given on a questionnaire (the examples were taken according to the Harel-
Sowder system). Without going into the details, from our point of view it is
interesting that the senseless symbol manipulations were overestimated by the
students and their teachers. On the other hand, the underestimation of empirical
proofs (investigating concrete examples) was typical. In Hungarian mathematics
education there is a tendency to use symbolic representations as early as possible
and as much as possible. As an example, introducing the balance method for
solving equations very often happens in grade 5. The strong belief in the sym-
bolic representations among mathematics teachers is typical in Hungary. At the
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upper secondary level the principle “There is only one way to communicate
mathematics” is characteristic.

In the pre-service and in-service teacher training courses, I often give the
following problem:

Solve the following equation in the set of real numbers:  

€ 

x x− + + =1 2 7

Most of the Hungarian mathematics teachers and university mathematics student
teachers prefer the symbolic solution, the so called “interval method”, using the
formal definition of the absolute value.

If  

€ 

x ≤ −2  then  

€ 

x x− = − +1 1  and  

€ 

x x+ = − −2 2

If  

€ 

− ≤ <2 1x   then …

If  

€ 

x ≥1  then …

Only very rarely we meet graphical solutions. Drawing the graphs of the
functions 

€ 

y x= −1   and  

€ 

y x= − +7 2   in a common Cartesian coordinate
system, and projecting the intersection points on the x-axis, we get the solutions.

The first definition for the absolute value of a number is in grade 5 the
following: The absolute value of a number is the distance on the number line of
the number from the zero. Nobody uses it for solving the equation above. Using
this definition, 

€ 

x −1 means the distance of the number x from 1 on the number
line, and 

€ 

x + 2  means the distance of the number x from  – 2 on the number line.
Our task is to find the number x so that the sums of the two distances above will
be 7. It is not difficult to find those points on the number line. The number line is
well known for the pupils, and the work with it easy because of concrete actions
on it.

An example where the exclusive use of symbolic representations leads to an
incomplete solution
Consider the following problem.

How many solutions does the system of equations have depending on the

value of the parameter a?   

€ 

x y

x a y

2 2

2 2

0

1

− =

− + =





( )

Algebraic solution
Expressing ��

� =  from the first equation and substituting into the second equa-

tion, we get 

€ 

( )x a x− + =2 2 1  and then  

€ 

2 2 1 02 2x ax a− + − =  . Depending on the
value of the discriminant of this equation, it may have 0, 1, or 2 solutions. Here
the discriminant is 

€ 

D a= −2 2, leading to the following cases:

If 

€ 

D < 0 , i.e. 

€ 

a 2 2>   (

€ 

a a> < −2 2  or   ), then the equation has no
solution.
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If 

€ 

D = 0 , i.e. 

€ 

a2 2=   (

€ 

a a= = −2 2  or   ), then the equation has one
solution for x. Substituting this into the first equation we get two solutions for
y, giving two solutions for the system of equations.

If 

€ 

D > 0 , i.e. 

€ 

a2 2<   (

€ 

− < < −2 2 a  ), then the equation has two solutions
for x, giving four solutions for the system of equations. But there is a special
case: if the numerator in the formula for solving quadratic equations takes the
value zero, i.e. one of the solutions for x is zero, and the corresponding value
for y is also zero. In this case our system has three solutions:

€ 

a a a a± − = ⇒ = ⇒ = ±2 0 2 2 12 2  .

Geometrical solution
Let us consider the equations as equations of curves in a Cartesian coordinate
system. The first equation then represents a pair of straight lines, i.e.

€ 

y x y x= = −  and  , and the second equation a unit circle with centre at 

€ 

( , )a  0 .

Moving the circle horizontally we may see the possible cases. Far away form the
origin, the circle does not touch the lines and there are no solutions. There are
two cases when the circle touches the lines, giving two solutions. When the circle
is intersecting the lines but not passing the origin, there are four solutions, when
also passing the origin three solutions. The values of a corresponding to the
different cases we can determine with simple geometrical considerations, using
the fact that the lines 

€ 

y x= ±  make an angle of 

€ 

45°with the x-axis.
Important here is that the pupils may “see” the whole solution process.

Experiences with the problem
At my university courses I usually give this problem to my mathematics student
teachers (years 3 and 4). Until now every student solved the problem
algebraically. From our point of view, what is interesting is that nobody has
found the case with three solutions. The ritual schema in the sense of Vinner is:
If you have a quadratic equation, at 

€ 

D < 0 there is no solution, at 

€ 

D = 0 there is
one solution, and at 

€ 

D > 0 there are two solutions. In our problem, because of

'' () = , the system of equations has 0, 2, or 4 solutions. The case  x = 0 (y = 0)
is out of this ritual schema and needs special investigations of the numerator. The
schema must be expanded in this case.
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A secondary school mathematics teacher, who attended one of my in-service
teacher training courses, said to me that “I have a very good mathematics group
in grade 11. They are perfect in solving algebraic problems. I am very curious
how my students will solve this problem.” No surprise, her students tried to solve
the system of equations algebraically, and nobody noticed the case with 3
solutions. The teacher was surprised of this result, but she and her students were
ready to accept the necessity of the use of visual representations also for
algebraic problems. A similar positive effect I could observe at other in-service
courses.

But we are far from the full success. Although my university students agree
on the importance of the use of visual representations, most of them do not use
them in their work. I have met a mathematics student teacher who expressed her
opinion clearly: “I hate graphical solutions!”

In the Hungarian mathematical periodical for secondary school students
(KÖMAL), the following problem was posed as a competition problem.

For what value of the parameter p does the equation 

€ 

x px+ =1  have exactly
one solution?

The competition is meant for the talented pupils in secondary school mathe-
matics. Out of the 481 solutions that came to the editors of the periodical, only 57
were correct (algebraic solutions). In the journal the correct solution presented
was an algebraic solution. Only in small letters the following remark was
enclosed: “The solution of the problem will be clear, and we may avoid the
pitfalls, if we apply the unworthily neglected graphical method” (the graphs were
enclosed).

A direct consequence is that teachers train their students for the algebraic
methods, because these are the officially accepted ones. But they may often fail!

Concluding remarks
To overcome the exclusive use of the symbolic representations of an algebraic
ritual scheme, it is necessary to confront the teachers with the shortcomings of
their students. Parallel to it, it is desirable to show geometrical solutions, with the
aim that the students will also use this method when appropriate.

If we modify our problem above so that we are interested also in finding the
roots, both visual and algebraic methods are desirable. To determine the four
roots is easier using algebraic considerations. Eisenberg (1994) states that
“…whenever and wherever possible, both visual and analytical modes of
representations must be used in the mathematical classroom.”

For those who know the school reality it is clear how difficult a task it is to
educate the students for a flexible use of these two methods.
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Development of Social Skills during the Lessons of 
Mathematics in Compulsory School 

Rudite Andersone 
University of Latvia 

Abstract 
This paper will describe the content of the social skills of the students, a 
model of development of social skills and criteria that are used in the 
lessons of mathematics in compulsory school.  

 
Latvia as a candidate state for European Union pays special attention to edu-
cation to prepare its citizens to live in the European Union. It means they have to 
be ready to work in a team, to communicate with different people, to work with 
different technologies, to know foreign languages. They have to be able psycho-
logically and practically to compete in the labour market – as well as to enrich 
their knowledge and to develop their skills during their entire lives. 

For this reason, in the National standards of compulsory Education (1998) 
the formation of social skills is pointed out as one of the main factors in the 
whole study process. It concerns mathematics as well. 

In Latvia the knowledge of the subjects were of great importance during the 
Soviet times, when the teaching was dominating in the whole study process. 
Now, when we have started the way to pupil’s orientated approach, the formation 
and the development of social skills have become of great importance. The 
teachers and students gradually are moving to a learning society. 

Social skills and abilities are necessary for everybody in the process of social 
interaction. Social skills are acquired just in the communication process – pupil 
with a pupil, pupil with the adults and environment, where the pupil lives. 

Usually it is possible to point out communicative and organisational skills. It 
is said in the White Paper (1996) of the Commission of European Union that 
social skills include the skills of mutual communication, as well as corresponding 
skills allowing to take up responsibility, skills to work and co-operate in the 
team, creative attitude towards the work and striving for quality. 

The acquisition of social skills is of great importance at the age of teenager, 
when the assessment of his/her activities by the surrounding people and fellows 
is so significant in the building process of the self-assessment and personality.  

The research was carried out during four years. The gained results allowed us 
to define the content, the model of the acquisition and the criteria of the social 
skills of the teenagers. The model is depicted in the table 1 (see Appendix). 
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In this table in the file content the certain parts of skills and features are pointed 
out, that form the content of social skills. The author has tried to choose the most 
essential skills that are necessary to acquire at this age. 

The study forms that are used in the process of the acquisition of the content 
of the concrete social skills are marked in the second file organisational forms of 
the studies. 

It is seen, that it is difficult, to point out one study form, that could form only 
one certain skill. 

Skilful use of any organisational study form during the mathematics lessons 
permits to develop a chain of social skills. Skills do not exist separately, 
acquiring one skill, the other skill is being promoted or developed. 

The active study process favours the acquisition of social skills, because the 
organised studies form different models of co-operation and possibilities of 
communication. In this aspect the choice of interactive study forms during the 
lessons are of great importance. 

The social skills of the teenager are developing also according to his/her 
study aims, values, needs. They are in mutual interaction with the use of 
interactive study forms and methods. All the factors mentioned above influence 
the acquisition of the social skills. 

It is stressed by the Norwegian colleague Sven Eric Fjed that the pupils in 
good schools have stable contacts with class and school mates, that commu-
nication serves as a precondition of a good school as organisation. 

Per Dalin and Hans Ginter Rolf stress that the existence of new and active, 
more responsible pupils in school is of great importance if we wish to use the 
maximum resources that are available in education. 

The activity of the pupil must be discussed as a pedagogical phenomenon. 
The scientist M. Skatkin points out that the development of the child’s 
personality takes place in the study process. The child is involved in many-sided 
relations with fellow teenagers, group or school mates, adults and the environ-
ment. These relations are closely connected with ethical feeling, that influences 
the formation of motives, feelings, habits. They, in return, determine the content 
and dimension of social skills. 

The content of social skills include the following skills: 
- to listen  to another person, 
- to observe certain regulations, 
- to work in team, 
- to organise personal time,  
- to assess oneself and others, 
- mutual respect, 
- common understanding and tolerance. 
Different authors have focussed differently on certain social skills. For 

example: 
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R.Bergen and R.V.Henderson – social skills link with the biological stage of 
the children. 

P. Kutnick – as cognitive styles, self-concepts. 
K.J. Tillman – as models of relations of subject and society. 
Gofman and Blumer – as common interaction of individualisation and 

socialisation. 
L. Kolberg – as child’s moral and ethical development. 
D. Liegeniece – as mutual communication. 

During the research in Latvia the pupils considered that the skills to co-operate 
and mutual understanding were very essential in the everyday life. Therefore 
they stressed that greater attention should be paid to obtaining these skills in the 
study process. The author gave students the possibility to choose the study forms 
and different activities during the lessons. They took part in the planning of the 
lesson and in the analysis of the achieved results.  

The research results, different views of theoreticians (Kutnicky, Davidov, 
Liegeniece, Nelsen, Bozovicha, Bukov, Shpona, Maslo, Kolb, Rodger, 
Vygotsky, Piaget, Skinner etc.) and the results of the international comparative 
research (TIMSS, 1999) about the motivation of the learning and the importance 
of formation of social skills, promoted the author to work out the model of 
obtaining social skills during the lessons of mathematics (figure 1). 

 
 

 
 
 
 

 
 

 

 
 

 
 

 

 
 

 

Figure 1. The model of obtaining social skills during the study process. 
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Aims, needs, values and ways of co-operation determine the quality of the 
obtaining of social skills. It is necessary to underline that the model will be a 
success only, if there will be mutual understanding and co-operation of pupils 
and teachers, pupils and pupils.  

Criteria of evaluation of obtaining social skills are characterised in table 2. 
Each of the criteria can be valued in the three levels: high, medium and low. 
 
 

 
Criteria  

 
consciously forwarded  +1 
adopted  0 

Aims  

pressed  -1 
consciously forwarded +1 
adopted 0 

Needs  

pressed  -1 
positive +1 
neutral 0 

Self value (“I”) 

negative -1 
positive +1 
neutral 0 

Society (others around me) 

negative -1 
positive +1 
neutral 0 

Knowledge 

negative -1 
positive +1 
neutral 0 

State   

negative -1 
positive +1 
neutral 0 

Values  

Nature  

negative -1 
yes +1 
partly 0 

Skills to work individually  

no -1 
yes  +1 
partly 0 

Skills to work in a small group  

no -1 
yes +1 
partly 0 

 
 
Obtaining 
social 
skills  

Co-operation 
skills  

Skills to work in a big group  

no -1 
    

Table 2. Criteria for evaluation of the obtaining of social skills. 
 
Questioning the teenagers (81 pupils, form7) the author got the evaluation of the 
acquisition of social skills (figure 2).  
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Figure 2. 1-aims; 2-needs; 3-values: self value; 4-values: society; 5-values: 
knowledge; 6-values: state; 7-values: nature; 8-co-operation skills: 
skills to work individually; 9-co-operation skills: skills to work in a 
small group; 10-co-operation skills: skills to work in a big group  

 
The level of the obtaining of social skills according to self-assessment results is 
rather high. The aims are conscious not only accepted, the needs are under-
standable, the level of the acquisition of the co-operative skills is different: 

- the acquired skills in the bigger dimension refer to work individually or in 
the small group, 

- the skill to work in the big group is more partial. 
Knowledge is recognised as positive values, especially attitude to the state – 
more neutral than positive. Questioning the teachers (46 respondents) the author 
got the evaluation of social skills that differs only a bit from the pupils self-
assessment results (figure 3, axes as in figure 2). 

Figure 3 

According to the results of the evaluation of pupils’ skills by teachers, the level 
of the acquisition of the skills is sufficiently higher. According to teachers’ 
answers the aims and needs are more accepted than put forward personally. 
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The attitude towards the values is different: 
- towards state and society – more neutral than positive, 
- towards nature, knowledge, self- value more positive than neutral. 

According to co-operative skills: 
- pupils have skills to work individually and in small groups, 

pupils have partially skills to work in a big group. 
As a result of the research, it is possible to draw the following conclusions: 

The teachers have to give pupils the possibilities to be active during the study 
process to help the pupils to reach their aims, needs, to develop values and social 
skills, it means, that the pupil must become the active user of the offered 
possibilities. 

Skills to work in a big group are possible to form in longer period, therefore 
the low level of the acquisition of these skills require more active work with the 
pupils and more time as well. 

Sometimes teachers do not understand pupils fully, they do not understand 
their aims, needs and values. It means, that mutual understanding is partial and 
imperfect (incomplete) and this is one obstacle in the way to obtaining social 
skills. 
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Abstract
This paper presents two opposing conceptions of mathematics and its
development. The first is the taken-for-granted idea that mathematics
has a universal quality underpinning a variety of expressions and
applications. The second is that mathematics began in diversity, and
retains the potential to be diverse, although strong forces make its
development convergent. Evidence for the second conception can be
found in the history of the subject, within mathematics itself, within
linguistics, and within the emerging field of ethnomathematics. Some
examples of the resulting limitations are given. These conceptions are
linked to wider philosophical issues and are applied to the field of
mathematics education.

Introduction
In New Zealand in the 1980s there was a renewed call for all subjects, including
mathematics, to be taught in the indigenous Maori language. I was lucky
enough to be involved over a 12-year period as a Maori mathematical discourse
was consciously developed. Eventually Maori vocabulary and grammar was
developed so that mathematics could be taught in this language up to the end of
secondary school. This vocabulary development is written up elsewhere
(Barton, Fairhall & Trinick, 1995a, 1995b, 1998) as a successful project, and yet
several of us who were closely involved were left feeling uncomfortable. It felt
as though we had created a Trojan Horse which allowed English conceptions to
infiltrate the Maori language – but we could not see how this had happened.

Eventually we came across our first piece of evidence for the Trojan Horse
hypothesis: linguistic analysis shows that pre-European Maori treated numbers
as verbs –– not as adjectives as we do in English, nor as nouns as we do in
mathematics (Barton, 1999a). I now know that most Polynesian languages are
like this, and so also are some North American First Nation languages (Denny,
1986), and some African languages (Watson, 1990). The Maori language has
become like English over time: with new vocabulary, with changes to syntax,
and there have been changes in concepts and the ethos of the language. Further
aspects of change in Maori mathematical language have been uncovered by
Trinick (1999).
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The diverse expression belief
What happened in Maori mathematical discourse is a reflection of what has been
happening throughout the history of mathematics. As mathematics has become
an academic discipline, one way of talking mathematically has developed. This is
the result of the Diverse Expression/Convergent Assumption belief: the idea
that, although we may describe quantity, space or relationships differently,
although we may use them in different ways, write them using different symbols,
what we are ultimately talking about is one and the same thing. In the end,
mathematics is universal. The implication is that it makes no difference which
language we use to express mathematics.

Many people may resist the use of the word “converging”. They might
point out that, far from converging, mathematics is growing: more is being
written, new areas of mathematics are emerging, more and more aspects of our
world are being explained in mathematical terms. However this is a tree-like
growth. The roots converge into one trunk that sprouts more branches of the
same wood. Mathematical ideas sprout more ideas of the same kind. Establishing
the wider generality of existing mathematical ideas does not imply that these
ideas are the only ones which can be used to explain our world, nor even that
they are the best ideas. Indeed their very applicability and utility may reduce the
impetus to consider other possible ideas.

The Diverse Expression/Convergent Assumption belief is not Platonism,
although Platonism is a form of this belief. In Platonism the convergence has
already occurred – it has occurred in some “ideal” world. But the Diverse
Expression/Convergent Assumption belief is also a component of most modern
philosophies of mathematics: neo-Platonism, empiricism, quasi-empiricism –
Maddy (1990), Lakatos (1976), Tymoczko (1986). All these involve the conver-
gence of mathematics. The recent cognitivist theories (Dehaene, 1997; Lakoff &
Nuñez, 1997) are even more strongly convergent with ideas of our brains being
“hard-wired” for number.

Am I challenging all mathematical philosophers? There is a difference bet-
ween what is happening in mathematics, and mathematics itself. Mathematics is
converging, this is happening. The changes in Maori language demonstrate the
power of social forces to universalise and stamp out diversity. The history of
mathematics involves merging a wide diversity of ideas, illustrated clearly in
Joseph’s writing. Not only are mathematical ideas subsumed into one grand
mathematics (Joseph, 1992), but the fundamentally different ways of doing
mathematics are conventionally seen to be the same in essence (Joseph, 1994).
Because mathematics is, historically, convergent, does not mean that it must be
this way, that mathematics is universal. Can we conceive of mathematical deve-
lopment otherwise? What happens if we reject the belief that mathematics
should converge?

The diverse assumption
The identification of a deep-seated difference in the expression of quantity in
pre-European Maori, and in other languages, has made me look more carefully at
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the way different languages, especially indigenous ones, express ideas of
quantity, space and relationships (Barton, 1999b). As this quest turns up more
and more conceptions which are familiar, and as I read about the new, exciting
discoveries of other ethnomathematicians, I have come to feel that, for mathe-
matics, the appropriate stance is a Diverse Assumption/Convergent Expression
belief. This is the belief that mathematics has a diversity of origins, and retains
multiple potentialities, but that communicative, socialising, political and historical
forces make both its development and its expression convergent. Let us look at
some of the evidence.

The ethnomathematical evidence includes: different structures and logics
amongst kinship relations of different people (Cooke, 1990); alternative spatial
systems of weaving and indigenous design, some of which are incommensurable
with conventional mathematical systems (Barton, 1995); the systems of
Polynesian navigation (Turnbull, 1991); Inca quipu (Ascher & Ascher, 1981); the
symbolisations of Lusona drawings (Gerdes, 1991); Mayan mathematics; and the
Japanese Wasan. The contributions of these to mathematics have been lost, or
dismissed, or changed. Mathematically significant parts have been co-opted into
the large programme mathematics, under the rubric of one great universal
language and truth. In this process they have been stripped of culturally
distinguishing characteristics, rendering their divergent potential sterile. The
mechanism of the stripping process has parallels with what happens when
languages meet (Brenzinger, 2001).

Further evidence for divergence in mathematics can be found in the history
of mathematics. Conventional historiography purports to show a single conver-
ging stream of development, but little emphasis is ever placed on unresolved
divergent branches: standard and non-standard analysis; Bayesian and frequen-
tist probability; set theoretic and category theory foundations; not to mention
the alternative basic axioms proposed within set theory.

Mathematics is now widely recognised as fundamentally a human social
activity. Hermann Weyl has said:

The question of the ultimate foundations and the ultimate meaning of
mathematics remains open: we do not know in what direction it will find
its final solution or even whether a final objective answer can be
expected at all. ‘Mathematizing’ may well be a creative activity of man,
like language or music, of primary originality, whose historical decisions
defy complete objective rationalisation.

Consider some other aspects of human endeavour by which we make sense of
our world: language, music, art. The attempt to show the existence of a universal
human grammar is foundering, as did the search for a universal language before
it. And no-one has suggested that all music or all art is of the one kind, or from
the same source. Therefore why should we think that mathematics is the single
universal created from human experience?
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The implication of all this evidence is the diverse assumption, in other words
mathematics can diverge in many directions, but only one potentiality of
mathematics is being developed.

The influence of language
One of the mechanisms by which we are losing the other potentialities of
mathematics is through increasing reliance on only two or three languages to do
mathematics. English is increasingly becoming the language of research mathe-
matics. The pressure for international communication is the raison d’etre for
official languages at conferences, and has, de facto, made English into a lingua
franca for mathematicians. Many mathematicians shrug their shoulders at these
developments: Que sera, sera.. However, as has been demonstrated above with
four different languages, we often use foreign expressions to convey accurately
ideas which cannot be expressed in English. This implies the existence of gene-
ral concepts which are language specific: do mathematical concepts also get lost
or changed when expressed in a language of international communication?

Another linguistic limitation to mathematics has emerged from the IT
revolution. Some people are currently working on the basic mathematical units
by which ALL web-based mathematics will be done. The reason is that it is not
easy to transfer mathematical expressions between various mathematical envi-
ronments (e.g. Matlab, Mathematica), so providing a common base in which all
these environments will run provides for intercommunication. This is no doubt
useful, however mathematicians do not seem to realise that they are limiting
mathematics by this process, cutting off potentially different ways of concep-
tualising mathematics. When we realise that more and more research mathe-
matics is done using computers, the dangers become increasingly more acute.

In areas where there is a recognition of the need to use and preserve mino-
rity languages, mathematics is often the one subject to be taught in English. The
common perception of mathematics as that subject which is beyond culture
leads to an assumption that it does not matter in which language it is taught.
However  there is good linguistic evidence that this is not the case. Recent work
has shown that different languages carry different ways of conceiving even
those very basic aspects of the mathematical world: number and space.
Australian aborigines dominant formatting of local space is by use of global
north, south, east, west directions (Harris, 1991); Navajo languages speak of
geometric ‘objects’ as actions (Pinxten, van Dooren & Soberon, 1987); and, as
has been noted above, Polynesian and some Inuit languages express numbers as
verbs (Barton, 1999b). The tendency of Indo-European languages to nominalise
concepts reinforces the tendency in Western philosophy towards an object
ontology. It is by no means a universal philosophical or linguistic habit, for
example in the Basque language Euskera what we might consider objects are
perhaps better understood as states (Barton & Frank, 2001). What would have
happened if mathematics had developed through these conceptions? We will
never know, of course, but it is interesting to play thought experiments. Mathe-
matical representation of space tends to use single origins – in line with Western
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philosophy’s Ego-Other orientation: What sort of geometric system would have
evolved from describing space with multiple origins? Much scientific effort went
into the development of timekeepers so that navigation could be based on a
latitude/longitude system: What would have happened if this effort was put into
developing Polynesian path navigation concepts such as analysing wave-swell
patterns? What sort of systems would have evolved from thinking of numbers
and shapes as actions instead of objects?

Metaphors for mathematics
One of the effects of cultural investigations in mathematics is to widen the ambit
of what is meant by the term mathematics. Rather than thinking of the mathema-
tics which is known world over through formal education, we need to expand
our vision to include any form of quantitative, relational or spatial systems.
Bishop (1988) makes a distinction between Mathematics and mathematics that
has some of these characteristics.

How are we to understand this wider vision? Above it is suggested that the
growth in mathematics is a tree-like growth. Roots converge to one trunk that
then sprouts, but only more branches of the same wood. The ideas in this paper
suggest it is more appropriate to think of mathematics as a forest in which
different trees might grow. Different trees have many similarities, and, as mathe-
maticians, we tend to focus on their likenesses. As the forest evolves a particular
type of tree (the English-language one) has dominated to the exclusion of the
others, or, possibly, in a strange type of cross-pollination, these trees take on a
few minor characteristics of other trees.

I find a more useful metaphor for mathematics in its wider meaning is
provided by thinking of boats on a harbour. Each type of boat (each mathema-
tics) gives the sailor a different type of experience of the world of the harbour. A
fisherman in a fishing boat comes to see the harbour as a network of positions,
places where it is good to catch certain types of fish. A passenger on a ferry
comes to see the harbour as a network of possible paths, trips that might be
taken. Speed boats, yachts, large passenger or cargo ships, windsurfers, kayakers
all have their own reality. The ferry can travel on the harbour under conditions
too rough for the fishing boat. The fishing boat can go to rocky places where
the ferry cannot navigate. It is the same world, but it is a different under-
standing. Neither is the truth.

One more metaphor for the Diverse Assumption/Convergent Expression
belief is a lithograph by M C Escher. In this image, sets of two different coloured
birds are each defined by the spaces between the birds of the other set, although
in some parts of the picture only one type of bird is recognisable. The birds can
represent two different mathematical “spaces”. In most areas the two birds
define each other: it is clear that the same “space” is being described, but it is
being done in two different ways. But there are some parts of the world which
are only definable using the white bird, and other parts which are only definable
using the dark bird.
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It does not matter whether one of the birds is more detailed than the other. The
advances in academic mathematics can be seen as putting more and more detail
into one type of bird. No matter how much we do that, we will never make sense
of the space defined by the other type of bird. I am worried that, if we lose the
ability to understand the conceptions behind indigenous languages, then we
will lose forever the possibility of understanding those other aspects of our
world.

Educational implications
The import of this paper is predominantly aimed at mathematics. What mathema-
tical developments have been missed because the history of mathematics has
gone down one track and not the other? Can these other lines of possible
development be recovered? What mathematical developments have been missed
because particular cultural conceptions of quantity, relationships and space
have come to dominate? Can other cultural conceptions lead to previously un-
thought-of mathematics?

However the different view presented here does have implications for
mathematics education. The obvious first implication is that bi- or multi-lingua-
lism in mathematics should be encouraged. This applies both at the level of
children learning mathematics at school, but also at the level of research mathe-
matics. It is hypothesised that doing mathematics in one language may lead to
directions in research different from those if it is done in another language. The
practicality of international communication notwithstanding, opportunities to
follow mathematical thought in all possible modes should be taken.

Another implication which is not so obvious is that “raw” mathematisation
should be encouraged. Young children first coming to mathematics are likely to
be less bound by the predetermined conventions of the subject. Encouraging
students to mathematise their familiar conceptions of quantity, relationships and
space will promote diverse and creative thinking. It is exactly this attitude to
mathematics which needs to be fostered for the health of the subject. The view
of mathematics proposed in this paper implies that there are many unrealised
opportunities for mathematics in the very basic formulations of the subject.

In the pedagogical arena, the implications are both political and curricular.
This paper presents a case for increased sensitivity to the difficulties of particular
groups, especially those whose natural language is widely different from Indo-
European languages. It has implications for the way in which the mathematical
gate-keeping in our society is cultural biased. With increasing technology the
consequences of such a bias are increasingly drastic in social terms.

With respect to curriculum, there is an important consideration for people
from those cultures which experience cultural estrangement when studying
mathematics which has been developed through a different world view. Over-
coming this estrangement is no easy task, but acknowledging the problem is
essential. Such acknowledgment must be given by teachers, but also in the
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curriculum. One attempt at this is described by Lipka (1994) talking of an
Alaskan programme:

The pressure behind developing a Yup’ik mathematics is three-fold:

1) to show students that mathematics is socially constructed;
2) to engage students in a process of constructing a system of

mathematics based on their cultural knowledge;
3) to connect students’ knowledge of “their mathematics” through

comparisons and bridges to other aboriginal and Western system.

In other words, access to the conventional, widespread field known as ‘mathe-
matics’ must come through the world-view in which it is expressed. If your
world-view is different from this, then it is first necessary to understand the role
of your own world-view in making sense of quantity, relationships and space, so
that you can appreciate another one.

Such an educational task seems to place an added burden on anyone who is
starting from a different world-view than that of conventional mathematics. This
is true, but there are two important points to be made. Cummins (1986) has
produced evidence that bilingual learners, provided they are fluent in both
languages, have a cognitive advantage in any educational task. I interpret this
to mean that the sort of knowing which results from having two (or more)
world-views is a deeper, more aware, sort of knowing than that which results
from having only one. Hence people learning mathematics from a different
world-view have to do more, but they reach a different, deeper understanding.

The second point is that mathematics learners from the same the world-view
as that of conventional mathematics also have an added task if they wish to
reach this deeper level of understanding. It is a feature of many education
systems, especially mono-lingual English-speaking ones, that such a different
level of understanding is not even recognised. It behoves us as mathematics
teachers to create this awareness in our students. I think of this as putting more
emphasis on mathematics as a humanity than on mathematics as a science - and
particularly to avoid teaching mathematics as an unquestioned series of results
and techniques. At the very least it means that we have a duty as mathematics
educators to teach something about mathematics, not just to focus on mathe-
matical methods and results.

Conclusion
So, mathematics has diverse origins, and it is converging even though there are
new research fields, more PhD’s, more books, more applications. Mathematics
may be growing, but this is a tree-like growth. The roots converge into one
trunk that sprouts only more branches of the same wood. Mathematics has had
(and continues to have) a diversity of origins based in different cultural
environments, but communicative, socialising, political and historical forces make
both its development and its expression convergent. D'Ambrosio, of course, has
been calling for recognition of diverse epistemology for a long time (1987, p74):
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... we face a need for alternative epistemologies if we want to explain
alternative forms of knowledge. Although derived from the same natural
reality, these knowledges are structured differently.

Simply because one knowledge system has been subsuming parts of others and
has had enormous amounts of time and energy put into its development, this
does not make it the only, nor the correctly structured, knowledge. We can
acknowledge its power, its beauty, and its apparent generality, but we must also
acknowledge its destructiveness (both of our world and of other knowledges),
its inconsistencies, and the gaps in its pervasiveness. Other ways of doing
mathematics were – possibly still are – available.
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Summary
The paper is based on students’ written responses to selected items in a large-
scale assessment project in Norway. Findings related to students’ knowledge of
the symbolic notations in algebra are discussed. The findings are related to the
Norwegian tradition to focus extensively on executing rules for symbolic
manipulations.

The paper is based on a large-scale assessment project from grade 5 to 11,
where assessment is used as a basis to aid conceptual development. Two of the
objectives of the project are to develop:

• integrated test- and in-service training packages that can be used by
teachers as part of their assessment practice

• a collection of test-instruments of diagnostic character, which can be used
as a starting point for teaching practice within various parts of the subject
matter.

Sets of diagnostic test items for various parts of the mathematics curriculum,
with the intention to cover most of the key concepts of school mathematics are
developed. Materials for teachers are produced for each set of test items. The
main focus of the materials is to report and discuss the extent of conceptual
obstacles identified by these items. The items are developed to enquire into
different aspects of the particular concept in question.

 In selecting items for the project the main intention was to inform teachers
about several well-known conceptual obstacles in students’ algebra learning. The
research perspective had a second priority. Data reported in this paper are based
on written responses to items from 1805 grade 6 students from 100 classrooms.
The corresponding figures were 1953 students, 91 classrooms (g8) and 1957
students, 90 classrooms (g10). Average ages were: 11.5, 13.5 and 15.5.

Introduction
There is a large body of research literature about the teaching and learning of
algebra. It documents students’ difficulties in grasping fundamental aspects of
the notations used. This involves how to write simple expressions and equations
containing variables, numerals, operation signs and brackets. (e.g. Booth, 1984;
Herscovics, & Linchevski, 1996; Janvier, 1996;  Kieran, 1981; Küchemann,
1981; MacGregor & Stacey, 1996; Stacey & MacGregor, 1996 and 1999.). One
aim of the KIM project was to make teachers aware of learning outcomes of an
extensive emphasis on symbolic manipulation in the teaching of algebra. A
national survey of Norwegian students’ understanding of different aspects of
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algebra was needed to promote a change in teaching. The teaching activities
linked to the national survey are designed to help students to close the cognitive
gap between arithmetic and algebra (Herscovics, & Linchevski, 1996).

Issues in the transition from arithmetic to algebra

The priority of multiplication and division
The intention of the items of problem 1: Write the correct number to go in each
of the boxes: 1b:  · 2 + 4 = 12, 1c: 3 + 2 ·  = 15, and 1d: 25 – 2 ·  = 17 is
to focus on students awareness of the priority of multiplication compared to
addition or subtraction. Respectively 61, 77 and 88 percent of the students
answered item 1b correctly. The most common wrong answer was 2. These
answers are probably a result of first adding 2 and 4, and next multiply 6 by 2.
Table 1 illustrates this strategy is much more prevailing in 1c. One additional
reason for the large increase of incorrect answers could be the tendency to
perform calculations from left to right. The answer 5 indicates that these students
add 3 and 2 and write the result in the empty box.

Item 1c Grade 6Grade 8Grade 10
6 correct 13 17 33
3 67 73 63
5   8   3   1

Table 1. Percentages of correct, and most common incorrect responses. Item 1c.

The idea of priority amongst operations is even less transparent in an algebraic
setting. It is my opinion that this has to be specifically dealt with in arithmetic to
be applied in an algebraic setting. That students do not manage this convention
for numerical operation is presumably because it is difficult to understand, but
rather that this is usually not specifically dealt with in arithmetic teaching.

Students’ use of symbols

Lack of closure and evaluate a specific unknown
Item 4b is taken from Küchemann (1981): If e+f = 8 then e+f+g = ___.
Matching the two expressions can solve this item. Table 2 demonstrates that to
operate with g as a specific unknown caused problems for the majority of our
students. Basically the students tried to solve this problem of symbolizing in two
different ways. One was to join the number 8 and the specific unknown g and the
other were to evaluate g in different ways.
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Item 4b Grade 6 Grade 8Grade 10CSMS
8 + g or g + 8 (correct)   4   8 38 41
8g, 8xg or similar (joining)  4   1 27   3
9 21 16   3   6
12 18 16   7 26
Other numbers evaluated 21 22   8 -

Table 2. Percentages of correct and most common incorrect responses. Item 4b.

The CSMS study involved fourteen year olds, and would on average be half a
year older than our eight grade students. It should also be noticed that the
formalistic teaching of algebra starts in grade 8. Note that CSMS students
performed better than our grade 10 students. In our sample there is a large, and
increasing, proportion of “joiners” as student grow older. We also notice that
there are different “popular” ways of evaluating g between the two samples.
Apparently, near the end of compulsory school, grade 10, students stop evalua-
ting variables, but the part of students who have problem with the lack of closure
of algebraic expressions are growing. This is an opposite change by age
compared to CSMS results shown in table 2.  Similar lines of thinking illustrated
by the responses to item 4b are also observed for other items used in of the KIM
project, for example items 3b: “Add 2 and n+5” and 3c: “Add 4 and 3n”.
Respectively 4, 9 and 37 percent of the students answered item 3b correctly. The
corresponding figures for item 3c were 4, 7 and 46. Two types of joining,
avoiding lack of closure, were observed in item 3b: 2n + 5, joining 2 to n, and 7n
or n7, adding the numbers and join the variable. The percentages of joiners on
item 3c were respectively 63, 69 and 39, compared to 31% in the CSMS study.

Simplifying expressions
The test contained eleven expressions to be simplified for grade 8 and 10. We
will first consider the following items, 8b: a + 4 + a − 4; 8c: x + y − x + y and
8d: (a + b) + (a − b). The facility level of these items was respectively 33, 12,
and 8 % for grade 8, raising till respectively 79, 57, and 40 % for grade 10. A
relatively small numbers of “joiners” were observed for all of these items, just
below 10 % for grade 8 and around 4 % for grade 10. Notice that the careful
professional progression from item 8b to item 8d has a large effect on the
responses. The most common incorrect answers to item c was 0, 0x +0y, 0xy or
similar, respectively 21 % and 16 %. They probably treat x + y as one object. It is
more difficult to explain the reason for the response 0 or 0a (12 and 5 %).

The power notation is also brought into play in grade 10 students’ responses
to the items above as well as to item 8e: 3a − (b + a), presumably because this
content is currently taught at this grade level. In addition the conjugate equality
pops up in many students’ responses to item 8d, as illustrated in figure 1 below.
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Figure 1. Example of wrong application of the conjugate equality.

The power notation is employed by between 6 and 9% of the grade 10 students
on items 8b to 8e. The conjugate equality is employed by 15% on item 8d.

The most difficult item to simplify was item 8j:

€ 

4 2
8
x
x
+ . We found more than 40

structurally different responses to this item, for example the difference between
numerator and denominator, or only between the parts of the numerator that
contained the unknown. Only 2% in grade 10 gave a correct response. Some
answered 0.75 (or equivalent), dropping x and cancel, others 0.75x, dropping x,
cancel and then introducing x again. Others operated as illustrated in figure 2:

Figure 2. Example of simplifying of expressions.

Other students cancel 4x by 8x to get 0.5 and then add 2 to give the solution 2.5,
while others again introduce the x again and write 2.5x. Another alternative is:

Figure 3. Example of simplifying of expressions.

4x + 2, −4 x + 2 and )*
+  are all examples of subtractions between nominator and

denominator. Two per cent of the students managed to cancel “everything” and
answered 0, and seven per cent, nearly four times as many, managed to find an
incorrect solution, cancelled as illustrated in figure 4.

Figure 4. Example of simplifying of expressions.

Letter used as a generalised number
Problem 13 below is used to discuss students’ comprehension of how letters are
used to represent a generalised number. The format is probably unfamiliar to
many students, but still gives valuable information of typical interpretations.
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Item 13: Tick the box for the correct answer:
a. a + b + c = c + a + b

It is always true       It is never true It is sometimes true
Explain the reason for your answer.
The same questions were asked to the following identities:

b. 4 + x = 4 + y
c. 2a + 3 = 2a − 3
d. l + m + n = l + p + n

Table 3 shows the distributions of the ticks (correct ticks are indicated by *).

Non responseAlways true Never true Sometimes true
a. Grade 8 12 *39 12 33
a. Grade 10  7 *65   9 18
b. Grade 8 14 11 23 *31
b. Grade 10  7   4 54 *34
c. Grade 8 15   9 *60 14
c. Grade 10   9   4 *72 14
d. Grade 1012   5 49 *33

Table 3. Percentage distribution of students’ responses to problem 13.

Students who ticked but did not explain were also registered in table 3. Grade 8
students gave fewer explanations than the older students. Among those who
ticked for the correct alternative it was respectively 31 %, 58 % and 43 % who
gave no reason for their choice for the three items in grade 8. The corresponding
percentages for the four items in grade 10 were 18 %, 23 %, 29 % and 25 %. The
percentages of no explanations amongst those students who ticked for a wrong
alternative are much higher than those above. We notice also that the two items
(b and d) where the identity could be correct under certain conditions are more
difficult. It is conspicuous that the alternative never true is more attractive than
the correct alternative in these cases. One reasonable explanation is that students
have much less experience with the equality sign as a symbol of equivalence than
as a symbol separating a calculation task from its solution. A further discussion
of this will follow below when analysing types of student explanations.

The most common correct explanation to item 13 a was that the order of
addition is indifferent. Two thirds of the students who made a correct tick gave
such reasons. But there were also explanations that indicate diffuse ideas. For
example: “It is the same, but usually they comes in alphabetical order. When we
add it is the same which factor comes first”. (Direct translations) Some used one
or two numerical examples, implying that these are general, such as: “The
answer is always the same because if you add 1 + 2 + 3 = 6, and turn it around
you get 3 + 2 + 1 = 6.” Others refer to that the letters are the same, which could
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indicate that they interpret the letters as objects.
The most common incorrect explanations are based on that the order of the

variables is changed, for example: It is always true because “It is correct that the
letters should be separated, but they have to come in alphabetical order a + b +
c”.  Other students made connections between variables and reading, it is never
true because “a + b + c is not the same as. Example: bil(car) is not the same as
hus(house).” Others again conceive letters as objects. Figure 5 shows an example
(in Norwegian). It is never true: “because a+b+c = abc and c+b+a = cba these
are totally different things.”

Figure 5. Example of student’s response to item 13a. (In Norwegian)

For all the items of problem 13 we find that many students conceive the equal
sign as an operator, a signal for a numerical operation or to perform a procedure.
The “task” is to the left of the equal sign, and the solution to the right. It is never
true because “When it says  a + b + c the answer is abc. Amongst the students
who ticked for sometimes true, more than two third gave no reason for their
choices. Those who gave reasons refer to the order of the letters involved.

Item b was more difficult. A considerably larger part of the grade 10 students
believe that this equivalence can never be true, than those who understand that it
can be fulfilled under certain conditions. The most common correct type of
explanations refer to x and y as general expressions for numbers that may have
the same value. Explanations such as “It depends of the values of x and y”, “If
they have the same value it is true, if not it is never true.” are typical correct
explanations. One student wrote: “x and y have usually different values, but they
may also be the same by chance in an equation”. It was respectively 9 and 19 %
of the students who gave these types of explanations. Around 70 % of those who
ticked the correct box and wrote an explanation applied this type of reasoning.

The most common reasons among those who ticked for never true are related
to the idea that x and y have to represent different numerical values because they
are symbolised by different letters. Answers such as “x and y are different in any
case”, “4 + x and 4 + y cannot be the same because x and y never stand for the
same number” and the values of x and y are not equal in the same task”.
Students’ who believe variables to represent objects arrive at the same
conclusion, for example “x is one word/thing and y is another word/thing”.

As for item a, we find several examples of explanations that reflect the
interpretation that the identity represents a calculation task to the left and it’s
solution to the right of the equal sign. For example: “The solution to the task
cannot be true because 4 + x becomes 4x and not 4 + y”, “Because one has to
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have a y in the task to get a y in the solution” and “Where does this y come
from? One cannot suddenly bring it in when it wasn’t mentioned in the task”. On
the other hand, the explanation “Because it is an equation, and equations are
always equal on both sides,” indicates a correct interpretation of the equal sign,
but the reasoning is associated with the symbolisation rather than with numerical
values of these symbols. 11 % and 4 % ticked for Always true. Around half of
these students explained their reasoning. Most of them argue: since it is
indifferent which letter one chose to represent the variable, the identity will
always be valid.

It is easier to establish a correct content knowledge to item c than to the other
items. For grade eight, the differences between c and the other items are espe-
cially large. One reason could be that it is possible to apply other strategies that
are not applicable in the previous items since these involved more than one
variable. It is a large proportion of the students that tick one of the alternatives.
Respectively 43 and 29 % of those who ticked for never true did not explain their
reasons. The following line of reasoning is linked to the outcomes of an addition
and a subtraction “2a is the same number on both sides and cannot add
something on one side and subtract on the other side to keep it the same”.  Some
students, 26 and 41 % of all students who wrote an explanation, focused only on
the signs of the equality for example, “+ and  −  are not the same”. In a few
cases, 1 % and 4 %, based their argumentation on one or more examples. Few
students who ticked a wrong box explained their choice. The only error type that
could be traced to a systematic line of reasoning can be illustrated by the
following response: “When carry the numbers across = you have to change
sign”, referring to a procedure for solving equations. This line of reasoning was
used both by those who ticked always true and those who ticked sometimes true.
Item d was given only to tenth graders. It has the same structure as item b. Even
though it is possible to use the same argumentation as in item b, one would
expect that this item should be more complicated, both because of the number of
variables and that the identity does not contain an explicit number. Table 3 shows
that roughly the same number of students ticks for the correct option. Likewise it
is about same number of students who tick for never true. An analysis of students
individual responses to these items showed 83 % of those who ticked never true
for item d did the same for item b. Similar, 77 % of those who ticked sometimes
true, did the same for item b. It should be noted that many of these students do
not explain their choices, but respectively 85 % and 86 % of those students who
explained their ticks for either never true and sometimes true used similar
reasoning on both items, which indicates consequent thinking.

Conclusion
 A general conclusion from the analysis of our data is that the majority of
students apply arbitrary, but to some degree consequent, procedures in transfor-
ming algebraic expressions. These are usually linked to bits of partial under-
standing of arithmetic, but also procedures in other fields of mathematics. Their



� � � �  !

� � -

procedures become in this way isolated and therefore difficult to apply in un-
familiar situations. It is my opinion that the best way to overcome this is to
strengthen the links between arithmetic and algebra.
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Abstract
The recognition of problem solving in geometry has provided a wide
analysis by considering various approaches. Some of them concern clari-
fying in a general way its meaning as an activity, as a study of solving
strategies and others in relation to their classification. A learning-
teaching proposal based on problem solving through the building of a
didactic model called Mathematical Didactics Varieties (VDM) is presen-
ted in this study. Our classification is inserted in the Chilean Educational
reform framework1 in terms of applying didactic varieties in geometry,
differentiating types of problems, registers and evaluating its solving at
secondary level. To that effect, a learning experience on the subject
“similarities of plane figures” based on the incorporation of the model
proposed was devised. This qualitative research in geometry related a
didactic view of mathematics in the teaching of geometry concepts and
problem resolution, specifically that concerning the area of similarities in
the development of the ability of problem solving.

Background
The importance of problem solving as one of the main aspects in the learning
process in the field of mathematics is widely recognised and is still a main
concern for educators and researchers in the field of mathematics education. The
importance now given to problem solving and evaluation in the field of mathe-
matics has originated several proposals for the teaching of this area. For this
reason, the work of Schoenfeld (1988) plays an important role in implementing
strategies for the problem-solving process.

Besides this, there are other interpretations regarding problem solving itself,
which consider it a goal, a process, and a basic skill. When considering problem
solving as a goal, the need to learn how to solve problems becomes essential,
since it is assumed that this ability will help the students to cope with various
types of problems. In the second case, what really matters is the method, the
process, and the strategy, the last of which should be the focus of the curriculum
in mathematics. As for the third interpretation, problem solving can be presented
as a basic skill together with other skills; this would make it necessary to
distinguish content from problems, to highlight possible classifications that could
be made, or to identify the different methods needed to solve the problem.

1 Project Fondecyt – Chile, N° 1990558, 1999-2001, of which this article is a partial result.
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In an attempt to modify the mathematical contents so as to consider the needs of
a society immersed in the twenty-first century, problem solving must be
recognised as the main reason to study mathematics. Thus, it should be regarded
as the process of applying previously acquired knowledge to new and unknown
situations. The question that immediately arises than is: Do the student’s acqui-
red skills enable him/her to solve mathematical problems? If problem solving is
to become the main focus in the teaching of mathematics, it should also become
the main focus of its evaluation.

One didactic variety of mathematics is a situation of learning associated to
mathematics that is built with problems situations, type of problems and registers
of expression. This model centres on a problem situation which acts as
distinguished variable and establishes other variables which support it. The
distinguished variable is the mathematics framework and the associated variables
are the context and registers of expressions. There are several mathematics
frameworks and several contents and registers of expressions for only one
mathematical concept. The registers are expression forms and can be graphic,
symbolic, algebraic, tabulations, and natural language.

This model relates registers of expressions as representation forms and types
of mathematical problems. The types of problems have been considered accor-
ding to their nature as routine and non-routine, and according to their context as
real, realistic, fantasy and purely mathematical.

Non-routine problems refer to those whose answer and a previously estab-
lished procedure is not known by the student. Example: Explain why two
triangles with two proportional sides and the same angles are similar.

Real context problems: A context is real if it is effectually produced in the
reality and the student is involved in this. Example: Get the measure of a window
in your classroom and determine what length and width should be right to be
similar to others whose sides are the double.

Realistic context problems: A context is realistic if it is able to be really
produced. It deals with a simulation of the reality or of a part of reality. Example:
A pine tree at eleven in the morning of a certain day casts a shadow of 6.5 m.
Next to it there is a booth 2.8 m high which projects a 0.70 m shadow. What is
the height of the pine tree?

Fantasy context problems: A context is fantasy if it is the product of imagi-
nation not founded in reality. Example: At Osorno airport an Unidentified Flying
Object (UFO) is seen. Its characteristics are similar to a triangle whose sides are
0.6 cm, 0.8 cm, and 1.0 cm. For investigation purposes another similar object is
built on earth whose smallest side is 3 m. What is the ratio of similarity?

Purely mathematics context problems: A context is purely mathematics if it
refers exclusively to mathematical objects such as numbers, relations and arith-
metical operations, diagrams, etc. Example: The sides of a triangle are 0.3 dm,
0.4 dm, and 0.5 dm. The shortest side of another similar triangle is 0.15 dm. Find
the other sides of this triangle.
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In general the solving of a problem of a real, realistic or fantasy context needs the
mathematization of the given situation, that is, its translation into a mathematical
language. Since this deals with a problem, the process of mathematization should
demand a certain searching from part of the student who is working with the
problem. If he can mathematize the situation in an almost automatic way and
without any effort, then it does not have to do with a problem of context, but
rather with an exercise of mathematization.

Methodology of research
A didactic experience to articulate the mathematical concepts regarding a specific
teaching unit and the solving of types of problems for secondary school (i.e.
grades 9-12 in Chile) was devised applying mathematical didactic varieties. The
tasks were geometry problems and the unit dealt with similarities of plane
figures. The contents were structures as indicated by the Chilean Educational
Reform for secondary school, specifically a middle second grade school from a
scientific-humanist class whose ages ranged from 15 to 18 years.

The study of participating observation was carried out in 2001 during 4 weeks
of through 3 weekly meetings of 90 minutes each, and four pairs of students to be
observed during the course of the teaching-learning experience.

The teaching strategies in the classroom were active, being focused on the
students’ actions. The students worked in groups with teaching materials made
by the researchers, and structured according to the classifying of non-routine
problem context, and differentiating registers of expressions. The teaching
material consisted of problems, situations and questions in relation to the simila-
rity of plane figures, criteria of similarity, scale drawings in various contexts,
Thales’ theorem on proportional lines, and aureus ratio.

Data collection was made by observations in classes, individual interviews in
meetings, and an attitude questionnaire with open answers. All the meetings were
recorded and 8 protocols were produced.

Development of the experience
The application of the test based on the solving of types of problems was
followed by application of an attitude questionnaire to the four pairs of students
under observation. Students start interacting. They do not know how to convert
certain measurement units and make comments about not remembering how to
calculate the area of a rectangle:

Fransisca: Does anybody remember how to calculate the area?

They make comparisons between them but differ in the measurements. They
attempt the required conversions with a certain difficulty. Andres and Miguel
stand out concerning the precision of the reproduction but in general they take
more time to reach the increment, only one of them makes a mistake when using
the scale. The presence of the tape recorder distracts them and inhibit to some
extent their mutual relationship and with the teacher.
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They wonder how long the maquette front is, and how high it is, how many times
the building size has been reduced. They make the comment: can we draw the
height considering the other front? I do not understand the last question, maybe
we must convert it to meter. Miguel explains the existing relation between the
drawing measurements and the measurements in reality to the rest of the students
being observed.

An activity in a fantasy context refers to a fictitious character from the book
Gulliver’s travels, where the Lilliput  country is described as a world in miniature
made at scale. During its solving they talk to each other:

Pamela: The Lilliput is the little one.
Miguel: It is made at scale.
Karmi: I have got the measures, it is 1.3, that is, the giant is 11 times

bigger than the king.
Andres: I counted the Lilliputs, they are 9.
Carlos: The giant eats 11 times more than the king.
Karmi: This exercise is easy.
Francisca: I need to have an idea of how much this would measure.
Pamela: When we measure the map, do we have to do it in a straight line?
Miguel: We have to pass from km into cm.

They show difficulties in establishing the ratio of the similarity between the
figures, and in solving the problems of a real context. They comment: this is very
difficult and I will never finish it, it would be better to have only one drawing.
Even when they show their dislike for so many problems about the same thing,
we see the extent of appropriation of concepts as a reason of similarity and simi-
larity of figures. For the Thales’ theorem problems of purely mathematical con-
text are proposed for their solving, this leading to an evident advanced degree.

There is a significant mastering in solving routine problems, and they show
they are motivated to answer them. But most of the students have difficulties to
solve non-routine problems. To the problem “Two triangles have two propor-
tional sides and the same angle, is this enough to assert that they are similar?
Justify your answer.”, four of them answer affirmatively but they do not justify
their answer.

Finally, the test with which the research started was given to the whole class.

Results

Categorization of the results
Based on the data obtained, the class observations, literally transcribed at the end
of each working session, and the pre- and post attitude questionnaire, all the
information was classified in order to find the convergence. The idea was to
obtain a corpus of data that allowed a more systematic analysis of each situation,
leading to the formation of categories from the similarities in order to maintain
internal homogeneity, or the differences related to external heterogeneity, trying
to establish clear and coherent criteria for the classification and ordering of the
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information obtained. Similarities found for the three pairs of students observed
are detailed below.

- The solving
Regarding the solving development
The main types of problems undertaken and really solved by the students were
those routine ones of realistic, fantasy and purely mathematical types, excepting
some real problems. The types of problems considered as non-routine ones did
not reach an adequate development of solving, although they were tackled.
Regarding the degree of difficulty of the problems
At the beginning, the students showed a high degree of difficulty in determined
routine and non-routine problems. The degree of difficulty in the non-routine
ones is shown through all the application of the experience.
Regarding the knowledge used
The geometry knowledge applied by the students at the beginning was not
enough to answer the situations and problems set up during the experience.
Subsequently, with the application of the teaching material, the knowledge
became sufficient to solve the situations and problems proposed. Even when the
students show a concern about so may problems about the same thing, we may
confirm the degree of appropriation of concepts in relation to a similarity of
plane figures.
Regarding the algorithmic processes
This is an outstanding situation during the development of the experience, since
the students show a greater management in the comprehension of concept aspects
in mathematics than in the application of algorithmic processes of solving.

- Of teaching
Regarding the work methodology
The students establish a significant difference between the lectures considered as
traditional by them and this form of teaching through problems, this resulting in
something interesting to them because it is entertaining and didactic, and partici-
pate since they have the possibility of making group work.
Regarding the material
From the beginning of the experience the students valued the teaching material
being used in a positive way, since it was made taking into account a sequence of
activities, most of them with additional graphic representations designed accor-
ding to learning situations, setting out types of problems and geometry concepts
being involved.

- Of the mathematical concepts
Regarding the meaning of similarity of plane figures
From the analysis of the answers given by the students during the interviews and
through the development of the 48 proposed activities, we proved similitude in
the meaning they give to the concept of similarity, since they are able to show
their comprehension through examples of types of specific problems made by
themselves.
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- Of the achievement being reached
The application of the tests at the beginning and at the end of the experience
showed that the students got percentages of learning achievement which ranged
between 0% and 15.6% at the beginning and between 31.2% and 93.7% at the
end. We should underline that out of the four pairs of students under observation,
7 students recorded an achievement percentage over 62%.

Conclusions
Based on the analysis of the application of this didactic strategy, we can identify
a substantive increase in the development of the ability of problem solving. This
could be verified in the level of achievement of the students during class work
with solving types of mathematical problems in geometry.

In order to reach specifically the concept of similarity of plane figures, this
research in the area of geometry considered a conception of mathematics
teaching that established a relationship between the teaching of general geomet-
ric concepts and the solving of problems, with the support of teaching material
fundamentally based on types of problems categorised according to their nature
and their context.

Based on the scores obtained by the students in the tests, interview interpre-
tations and attitude questionnaires, we may conclude that there is a significant
increase of the development of the ability for solving types of geometry
problems, particularly those of routine problems of fantasy, purely mathematical
and realistic context. They showed a moderate ability in the area of real and non-
routine problems, that is, those in which their action is required and those whose
solving procedure is unknown.
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Abstract
Students who participate in snowboard and skateboard activities,
perform better than other students at some mathematics items. This could
be due to their experience from spare time activities. They perform lower
than other students at a mathematics test with items from TIMSS and
TIMSS-Repeat. Their mathematics marks are also below those of other
students.

Geometry is grasping space…that space in which the child lives,
breathes and moves. The space that the child must learn to know,
explore, conquer, in order to live, breathe, and move better in it.
(Freudenthal, quoted in Clements & Battista, 1992, p. 420)

Do skaters perform better than other students at some mathematics?
By the term “skaters” I mean students from 10th grade who participate weekly or
more often in snowboard or skateboard activities. These students have some
specific experience from participating in snowboard and skateboard activities in
their spare time. I presume they have some specific experience from navigating
"through space and through constructions of shapes" (OECD, 1999, p. 49).
Further, according to OECD/PISA, our learning about space and shape include
“We must be aware of how we see things and why we see them as we do". The
American scientist and philosopher Norwood Russel Hanson claims “Seeing is
not only the having of a visual experience; it is also the way in which the visual
experience is had” (Hanson, 1958, p. 15). Inspired by the late Wittgenstein,
Russel Hanson carefully chose a similar language. I have chosen to use Hanson’s
theories about observation and his language as well, as a tool for a possible
explanation of why the skaters performed better than other students in some
mathematical items. My study (Fyhn, 2000) focused on possible connections bet-
ween participating in activities outside school and performance in mathematics.

“ There is more to seeing than meets the eyeball” (Norwood Russel Hanson)
Russel Hanson imagined Tycho Brahe and Johannes Kepler watching the sunrise
together. Most likely they would make the same observation, but their inter-
pretations would differ: Kepler would regard the sun as fixed, it was the earth
that moved. According to Brahe the earth would be fixed and all other celestial
bodies moved around it. Russel Hanson asked: “Do Kepler and Tycho see the
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same thing in the east at dawn?” They watched the same visual object. They
could make identical drawings but different interpretations. “To interpret is to
think, to do something; seeing is an experiential state.”  (Hanson, 1958, p. 11)

See as and see that – Russel Hanson's terminology
At first our observations are registered. Then the brain finds what knowledge we
have about them. In this way brain and eye cooperate. An s-shaped mark in a
steep white winter mountain can be seen as a snowboard track, even if there is no
snowboarder present.

We can see a winter mountain as an attractive snowboard arena, as a cold
and frightening place or as a lot of unstructured snow and rocks. A Dane, who
has never been outside Denmark, will probably not have the necessary know-
ledge to see such a mountain as an attractive snowboard arena. When you shift
from seeing something as “something” to “something else”, organizing of what
is seen, changes. Seeing is a state of experience: If a skater and a teacher watch
the same skateboarder performing a trick, they will not necessarily see the same
thing. They will organize what they see in different ways.

Seeing that threads knowledge into our seeing; it saves us from re-identifying
everything that meets our eye. The gap between pictures and language locates the
logical function of seeing that. A sentence does not show that the mountain is
covered with snow, but a sentence can state that the mountain is covered with
snow. “Only by showing how picturing and speaking are different can one
suggest how “seeing that” may bring them together; and brought together they
must be if observations are to be significant and noteworthy.“ (Hanson, 1958, p.
25)

From 360 to 900
In the skaters' terminology ordinary jumps are named such as three-sixty, five-
forty, seven-twenty and nine-hundred. The code is: three-sixty is a jump where
the board is rotated 360° horizontally. The skaters are familiar with using these
numbers as names for the jumps.

In Extreme-games in San Diego the summer of 1997, snowboard was one of
the disciplines. Peter Line won the competition by performing a jump described
as "a perfect nine hundred" by the Eurosport commentator. I have watched this
video tape several times, but still I have a problem in seeing Line rotating two
and a half times, and neither have I automated that 900 is 2,5 times 360. A
trained eye will immediately see if a skater performs seven-twenty or nine-
hundred.

Many skaters do not know there is 360° round a circle. They have been told
that the name of this jump is three-sixty, and they exercise in performing the
jump.
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An example from mesospace activity
According to Berthelot and Salin, (1998, p. 72), the students’ daily life interactions
take place in three different spaces: “ Students’  natural knowledge of space is strongly
structured into three main representations: microspace (corresponding to the usual
prehension relations), mesospace (corresponding to the usual domestic spatial
interactions) and macrospace (corresponding to unknown city, maritime or rural
spaces…)”

In these terms, the skaters’ daily activities on their boards usually take place
in mesospace. When they work with geometry problems at school, they use their
microspace representation instead of geometrical knowledge from their own
experiences in mesospace. Berthelot and Salin (1998, p. 73), claim that “..we have
good reasons to expect that one of the main sources of learning difficulties in
geometry is the previous treatment of geometrical figures on paper during
elementary school”.

One afternoon I asked one of the skaters at my school: "How do you see the
difference between a seven-twenty and a nine-hundred?" The cool sixteen year
old that did not care much about school, answered: "It's easy. You just count
inside yourself how many times he does three-sixty". I was expected to
understand that it was easy (!) to count that 2,5 times 360 would be 900 at the
same time as my eyes should watch an object rotating with great speed. "But how
can you see the difference between one-hundred-and-eighty and three-sixty?" I
asked. "You just see it", he could not give any further explanation. His friend,
who was nearby, continued: "You see how he is landing. If it is one-hundred-
and-eighty, then his back is this way in the landing. If it is three-sixty then his
back is the other way when he is landing." The boys showed me, but they were
not convinced if the mathematics teacher did understand.

Do the skaters and the teacher see the same thing?
These skaters have learned to interpret what they see. They watch a jump and see
that the skater does a seven-twenty or that he does a nine-hundred. I can only see
that he is jumping and rotating with a snowboard (or skateboard). These boys
and I can watch the same thing, but we do have different interpretations of what
we see. I assume the boys’ interpretation to be that the jumper rotates twice, then
begins the third rotation and lands with his back "the wrong way". That is what
they call nine-hundred. I am an inexperienced watcher of snowboard jumps, thus
my organizing of what I see is not good, and I interpret what I see as a rotating
jump. My formal geometrical concepts are more developed than those of the
boys (I hope), but I am not able to connect these concepts to what I see. The boys
have a weak understanding of the angle concept and are not sure what kind of
angle 360° is. But they know exactly what they see.

We, who are teachers of mathematics, are here challenged to make the
youths find connection between their knowledge from their spare time and what
goes on in the mathematics lessons.
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The skater, who characterizes the difference between the two jumps seven-
twenty and nine-hundred, is able to separate representing and referring, arranging
and characterizing (Hansson, 1958). He is able to separate picturing and
language-using. This skater will probably not be able to tell by himself that he
does so, but unlike me he is able to characterize what he sees. This characterizing
can shorten his way to deeper understanding of the angle concept.

The test and the results
I set up a mathematics test with items from TIMSS and TIMSS-Repeat. 638
Norwegian students at 10th grade performed the test the autumn of 1998. In
addition to the test, the students answered questions on gender and on their
participating in activities in their spare time. Close to nine percent of the students
showed to be skaters.

Marks* Test score
Skater/
nonskater

Mean N Deviation Mean N Deviation Percent of test
correctly answered

nonskater 3,18 490 0,81 17,5 507 5,25 58
skater 2,89 127 0,77 16,1 131 5,25 54
Total 3,12 617 0,81 17,2 638 5,27 57

Table 1. Mean values of marks and test scores for nonskaters and skaters.
 * Norwegian marks; S=5, M=4, G=3, Ng=2, Lg=1

Recognizing a rotated object
Two of the items primarily tested the students’ understanding of rotation in a
plane as shown i figure 1. The item text said that a half-turn about a given point
in the plane should be applied to a given figure. The students had to tell which
one out of five alternatives that showed the result of a half-turn.
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In a quite similar item the rotated figure was a triangle, as shown in figure 2.

These two items did not test much of the students' formal mathematics
knowledge. The item with the irregular hexagon was the easier one, as shown in
table 2. This can be due to coincidence, but it also can be explained the following
way: Students at the van Hiele visual level will recognize figures as visual
gestalts (Clements & Battista, 1992). They will probably be able to recognize the
rotated hexagon because of its characteristic corner. To them the rotated triangle
will just appear as a horizontal slim object in the five alternative figures.

The triangle issue was one of the skater items in the test. According to Russel
Hanson, I claim that the skaters do not necessarily see the triangle as repre-
senting the class of triangles (Clements & Battista, 1992). Many of them will be
at the visual or descriptive level. By performing physical activity in mesospace
(Berthelot & Salin, 1998), many of the skaters have learned to recognize objects
visually; they are able to see that the correct figure must be the rotated triangle.

The skaters have a lot of experience from rotation in mesospace, and they
have learned to organize what they see. School geometry is primarily taking
place in microspace, and the skaters get limited possibilities to connect their
experiences with school geometry.  From their own physical activities the skaters
have learned to recognize objects visually. We, who are teachers, do not usually
have these experiences. Our interpretations of the items are the result of a
mapping where a figure is rotated round a point.

) * + , - . / 0 1 * 2 3 4 0 , / - 5 * 0 1 * 2

6 7 8 9 7 : ; < = > ? @ ; 7 8 >

@ : A < = : < : > ? @ ; 7 8 >
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Table 2. Percent of skaters and of nonskaters who chose answers D and E
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Some students chose wrong answers
The students could choose between five different solutions to each of these two
items. Students who were familiar with rotation and not familiar with the formal
language: rotation “about a given point in the plane”, could risk choosing alter-
native E in the issues.

A larger amount of skaters than nonskaters chose alternatives D or E in these
items, as shown in table 2. The skaters seem to have understood the half-turn, but
not necessarily the more formal “about a given point”. A half turn is part of the
daily language in their board activities; according to Hanson's terminology they
see that the correct answer must be D or E.

A dropped rubber ball
The number one skater item was about a rubber ball being dropped. In the item
the ball rebounds to one-third the height it drops, and the students are asked to
find the total distance traveled by the time it hits the ground the third time. In
another skater item the rubber ball rebounds to half the height it drops.

My thesis is founded in the following way: The skaters have an inner under-
standing of the ball’s moves, because they are familiar with the moves of a skater
in a half-pipe or in a vert. The halfpipe and the vert have similar u-formed shape,
as shown in figure 3. The halfpipe is made of snow and the vert is wooden. The
skater starts on top of the vert, slides down to the bottom, moves up again and so
on. The rubber ball starts at a certain height, falls to the ground, moves up again
and so on. I presume the skaters can see the ball’s moves as the moves of a skater
in a vert or in a halfpipe. Other youths are familiar with dropping balls, but that is
an outer-understanding. Usually people are not philosophizing on what it is like
being a passenger on a rubber ball.

If you watch a skater doing vert exercises on TV, you can hear the rhythm of the
board’s wheels against the wooden vert. The sound differs when the board is
rolling up and down. If the skater is jumping when he or she reaches the top of
the vert, the sound is rhythmically erupted. The skater must use his or her own
muscles to get the board up to the same height as it came from. If you drop a
rubber ball, you can hear the rhythm of the ball as well. My thesis is that more
skaters than other students seem to be familiar with the pattern of the ball’s move
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because of the skaters’ personal physical experience. They see a moving ball as a
model of a well-known pattern of movements. This pattern they have experien-
ced from their activity in mesospace (Berthelot and Salin, 1998). Thus many
skaters see that the ball will move 2,5 times between top and bottom. Most
teachers lack experience from halfpipes and verts and will probably have trouble
connecting school mathematics to this kind of knowledge.

Footsteps
Skaters can be seen sliding along the street by standing on the skateboard with
one foot, pushing themselves forward by the other foot. Before you go per-
forming tricks on the board, you must be able to do these moves. I claim the
skaters see that a few long steps and a lot of short steps lead to the same result.

One single skater and about ten percent of the nonskaters chose one of the
wrong answers to an item in this context. In the item the lengths of four girls’
footsteps were given. The students were asked to tell who would use most steps
to walk from one end of a doorway to the other. I presume the skaters scored
high at this item is because of their experience from physical activities in
mesospace.

An item with similar mathematical content took place in a different context.
The students were informed that three different cars used accordingly 3, 3.5 and
4 hours to drive a given distance. Then students were asked which one of the cars
was the fastest. 63% of the skaters and 67% of the nonskaters chose the correct
answer. The car context does not seem to be a success in this item.

Which came first
There is one possibility that I cannot exclude. Maybe one important reason why
some students become skaters, is because of some skills that make them able to
see and understand different movements, able to better understand geometry.

Maybe there are different entrances to understanding mathematics. We know
by history that Pythagoras was a musician who focused on numbers and struc-
tures. Plato, on the other hand, was an athlete who focused on geometry. His aca-
demy was founded next to an athletics ground, and physical activity was a regu-
lar part of his students work.

Summary
In my test I found that the skaters chose correct answers to some mathematics
items at a lower frequency than the nonskaters. The skaters performed a mathe-
matics test consisting of items from TIMSS and TIMSS-Repeat. More skaters
than nonskaters answered some items in the test correctly. These results could be
due to coincidence, but they also can be explained by the skaters’ physical
experience in mesospace; in Russel Hanson's terminology seeing is a state of
experience.

My thesis is that the skaters’ high score at some of the items in the test is due
to the fact that they have learned some mathematics from their spare time
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activity- mathematics that they have not learned in the mathematics lessons at
school - mathematics that in “PISA-words” is useful for constructive, concerned,
and reflective skaters.

Maybe the old Norwegian proverb “What you loose in your head, you have
got in your feet” needs to be rewritten into “What you’ve got in your feet, you
can get into your head, too.”
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Concept Maps as a Tool in Research on Student 
Teachers’ Learning in Mathematics 

and Mathematics Education 

Barbro Grevholm 
Kristianstad University and Luleå University of Technology 

Introduction 
Longstanding work with mathematics in-service and pre-service teacher 
education has stimulated my curiosity in how teacher students develop 
concepts in mathematics and mathematics education. In 1996 a new teacher 
education programme started in Kristianstad University for prospective 
teachers in mathematics and science for school years 4-9. I had the oppor-
tunity to lead the work with creating the mathematics courses for this 
programme (Grevholm, 1998). In doing this I built on all my future 
knowledge and experience from teacher education. As a consequence I was 
eager to follow the development of the education and its outcomes. I decided 
to carry out a longitudinal research study and in this try to focus on teacher 
students' conceptual development, as I had noticed how important this is for 
the learning. Many other researchers have studied the conceptual development 
in mathematics (for references see below) and pointed at its importance. In 
Sweden no such study was conducted earlier. 

It is complicated to do research on students' conceptual development as 
the concepts an individual holds are not open to direct observation. They can 
be studied only indirectly through actions, statements or answers given by the 
individual student. Thus I started out to collect all data that could possibly 
help me to observe students' conceptual development. Soon after I had started 
the data collection, Joseph Novak came to visit our department. When he 
heard about my study he tried to convince me that it should be productive to 
use concept maps in the research. At the beginning I hesitated. From the 
examples I saw of biological concepts it was obvious that objects and events 
could be studied and observations formulated in knowledge propositions and 
representted in concept maps. You could for example study a plant and 
describe the development. But I did not find it possible to look at 'objects and 
events', when it came to mathematics. All mathematical concepts are abstract. 
It took me some time to reflect more closely on the differences between 
concepts in science and in mathematics. After a while I came to the conclusion 
that objects in mathematics can mean the mathematical objects like numbers, 
shapes, equations, functions, and expressions and so on. And events can be 
seen as the operations, processes, constructions or actions we take with these 
objects. After this interpretation it became clear to me how useful the concept 
maps could be also in my study. Based on experiences from the study, the use 
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of concept maps as a tool for research on development of concepts is explored 
and discussed in this paper. 
 
The aim of this paper 
In this paper I want to explore the use of concept maps in research. I will try to 
answer the questions: 

• Can concept maps as a tool in research contribute to our understanding of 
students' conceptual development in mathematics? 

• In what ways can concept maps be useful? 
 

Theoretical background 
Theories in mathematics education deal with phenomena such as meaningful 
learning versus rote learning, conceptual knowledge or procedural knowledge, 
mathematical phenomena seen as procedures or objects, and conceptual 
change and development as an important part of learning (Ausubel, 1963, 
2001; Hiebert and Lefevre, 1986; Sfard, 1991; Tall, 1994; Tall & Vinner, 
1981). In several of these theories mathematical concepts and the development 
of concepts are crucial. Both my own experience as a teacher educator and the 
reading about studies on concept development convinced me of the impor-
tance of focussing on this phenomenon. 

Knowledge construction is a complex product of the human capacity to 
build meaning, cultural context, and evolutionary changes in relevant know-
ledge structures and tools for acquiring new knowledge according to Novak 
(1993). Novak claims that concepts play a central role in both psychology of 
learning and in epistemology. In his Human constructivism Novak (1993) 
builds on Ausubel's assimilation theory of learning to describe the process by 
which humans engage in meaningful learning. Two key ideas in assimilation 
theory are progressive differentiation and integrative reconciliation. Novak 
explains that as new concepts are linked nonarbitrarily to an individual's 
cognitive structure progressive differentiation occurs. The integrative reconci-
liation occurs when groups of concepts are seen in new relationships. 

Hiebert and Lefevre (1986) devoted much interest to the discussion of 
conceptual and procedural knowledge. Conceptual knowledge is equated with 
connected networks. Conceptual knowledge is knowledge that is rich in rela-
tionships. Procedural knowledge is a sequence of actions. Sfard’s reification 
theory (1991) concerns mathematical phenomena seen as processes or as 
objects. Tall (1994) discussed process and concept in mathematics and also 
introduced the term procept as a combination of the two. In an often quoted 
paper Tall and Vinner (1981) discussed concept image and concept definition. 
They note that many concepts are not formally defined at all but we learn to 
recognise them by experience and usage in appropriate contexts. After some 
time the concept may be refined in its meaning and interpreted with increasing 
subtlety. They continue: 
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Usually in this process the concept is given a symbol or name which 
enables it to be communicated and aids in its mental manipulation. But 
the total cognitive structure which colours the meaning of the concept is 
far greater than the evocation of a single symbol. It is more than any 
mental picture, be it pictorial, symbolic or otherwise. During the mental 
processes of recalling and manipulating a concept, many associated 
processes are brought into play consciously and unconsciously affecting 
usage and meaning (p. 152). 

At this stage they introduce the term concept image to describe the total cognitive 
structure that is associated with the concept. The concept image is personal and 
changes when the person meets new stimuli and matures. Tall and Vinner (1981) 
also make a difference between the formal concept definition (accepted by the 
mathematical community) and the personal concept definition (the words the 
student uses for his own explanation). 

Other researchers have discussed the meaning and development of concepts. 
Vollrath (1994) claimed that didactical discussions sooner or later end up in the 
problem of what understanding a concept means. He claimed that the student 
reaches stages of understanding and that there is no final understanding. Ausubel 
(1963) contrasts meaningful learning to rote learning, where meaningful learning 
results in the creation and assimilation of new knowledge structures. In many of 
the theories there seems to be a continuum from lower quality learning to higher 
quality learning, where higher quality often includes concept development. The 
theories can be seen as different ways to model the quality of learning and how it 
evolves. 

What is a concept map? 
Joseph Novak (Novak & Gowin, 1984) has introduced concept maps as a 
cognitive tool and as a research tool. He first used concept maps as a tool for 
researchers to catch the main content of answers in interviews. In his case the 
researcher drew the maps in order to give a concentrated representation of what 
the interviewee answered (Novak, 1998). The map is used for data reduction and 
concentration of content. From his map below (Novak, 1998) can be seen how he 
defines a concept and what he means by a concept map. In Novak’s maps it is 
important that the map is built of knowledge propositions. The nodes that contain 
concepts should be connected by linking words to form propositions, which 
represent knowledge sentences. Normally the map is also hierarchical. The map 
can be seen as a picture or image that the learner chooses to draw from what he 
experiences as the mental representation of his knowledge. 

In research literature many different sorts of concept maps have been 
introduced (see for example Williams, 1998). A concept map differs from for 
example a mind map, which is a looser construction and does not necessarily 
show how the learner wants to draw his knowledge representation. A spider web 
map has no hierarchical character. In this paper I use Novak’s definition of 
concept and concept map. 
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Novak (1998) describes a concept map in this drawing of a concept map: 

 
Research using concept maps as a tool 
Williams (1998) used concept maps to assess the conceptual knowledge of func-
tion. She studied concept maps drawn by students and professors of mathematics 
and compared them. Her dissertation was based on that work and she claims that 
"Concept maps are a direct method of looking at the organization and structure of 
an individual's knowledge..." (p. 414). This strong claim can be questioned and 
she modifies herself in the conclusions. There she states (p. 420): "The degree to 
which concept maps describe a person's mental representations is, of course, 
impossible to know." But her final conclusions are important: 

The analysis also provided information about students' understanding that 
is not readily gained from traditional paper-and-pen tests. Concept maps 
therefore, provide important information about conceptual understanding 
and can play a useful role in the mathematics researcher's repertoire of 
tools. (p. 420) 

Novak and his colleagues used concept maps in many studies and argue strongly 
for their potential in research and in learning (Novak, 1985, 1993, 1998). 

In her master's research, conducted at Samoa University, Afamasaga-Fuatai 
(1998) used concept maps. Her research shows that students found concept maps 
useful in their learning and understanding of mathematics. It helped in systematic 
analysis of a topic for the interconnections between relevant concepts and proce-
dures, and facilitated problem solving. 

C ON CE PT
M APS

KN OW LED GE

REPR ESEN T

C ON CEP TS

IS

PERC EIVED
R EGU LAR IT IES

AR E

O BJEC TS

PROP OSIT ION S

IS

CO MB IN E
TO  FO RM

H IER ARC H IAL LY
STR UC TU RED

LAB ELED

WO RD S

SYM BO LS

C ON TEXT  D EPEND EN T

TEA CH IN G

LEA RN IN G

CR OSSLINK S

CR EAT IVITY

IN TER R ELAT ION SH IPS

DIFFER EN T
MAP SEGM EN TS

IS

T O AID

IN

AR E

AID S
IS A  B ASIS FOR

M AY B E

TO SHO W

IN

NEED ED TO  SEE

W ITH

AR E

EVEN TS



Barbro Grevholm 

 131

Peuckert and Fischler (1999) used concept maps constructed by students to elicit 
their conceptions and maps constructed by researchers to summarize all state-
ments made within each interview including students' maps. 

There are many other studies available using concept maps in research, but 
space restrictions for this paper prevents me from saying more about them here. 
For references see Williams (1998), who found many studies using concept 
maps, mainly in science didactics but also in mathematics didactics. Also 
McGowen and Tall (1999) refer to a number of such studies.  

The use of concept maps in my research study 
There are many ways to use concept maps and Novak has written about the use 
of maps as a tool for learning and research (1985, 1998). As a tool in research I 
first used it in an a priori analysis (Artigue, 2002) of the expected learning of 
students in their course. For example I drew a map of the concept fractions, 
where I tried to include all the important features about fractions that I consider 
crucial in the course the student teachers were going to take. The map has 25 
nodes and 30 links and it is not possible to show it here for space reasons. Later, 
after the students had answered a questionnaire about the course in number 
theory, I used a concept map in the analysis for data reduction on the answers 
about fractions. In the map I drew all alternative answers given by the students 
and the links they proposed. In comparing my a priori map with the map 
constructed by the students' answers I could see what parts of the expected 
exposed learning that had taken place and not. 

Another way I used the maps was to let students express their view of a 
concept. I used this repeatedly over time to follow the conceptual development. 
Below I will show some examples of the data it produced and discuss what 
results one can get from it. In order to do that I need to say something short about 
the study in which the maps were used. 

The study in Kristianstad 
The method used in the study drawn upon here is mainly qualitative investigation 
of data from different types of documentation of students’ cognitive development 
during a teacher preparation program. Concept maps are used as a tool both for 
analysing the content of the teacher education to find the fundamental concepts, 
to investigate students’ answers in questionnaires and interviews, and for the stu-
dents to express a picture of their current concept structure.  

The overarching questions posed are phrased like this: How are the studies of 
mathematics and mathematics education influencing student teachers’ develop-
ment of concepts in these areas? How do student teachers’ perceptions of and 
attitudes to mathematics change during the education? What impact does the 
development of concepts have for the learning outcome and for the students’ 
perception of their own learning?   
The studied group consisted of 48 student teachers studying to become compul-
sory school teachers in mathematics and science for school years 4-9. I have 
reported on this study elsewhere (Grevholm, 1999, 2000ab, in press, 2002, 
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2003ab, 2004) and here I am only going to discuss the use of concept maps as a 
tool in research. 
 
The problem in focus in this paper 
Students’ concepts are not open to direct study by the researcher. They have to 
be observed in an indirect way and often only in fragments. Some researchers 
argue that concepts should be studied through their appearance in students' 
actions. This is however time-consuming and a difficult process. Here question-
naires were the first attempt to get an image of students’ conceptions, followed 
by interviews based on the answers given. The impression was that far too little 
of what students carry in their heads about the concept was revealed in this way. 
I was convinced that students could reveal more to me about their concept image. 
At this stage concept maps were introduced as the answer form for students. As 
will be shown below a much richer material was retrieved in this way and 
substantial knowledge about how students express their mental structures 
through maps became available. By having students draw maps at several times 
with long intervals the development over time of the structures could be studied.  

With the examples below I want to illustrate that if concept maps are used as 
a tool for research, the findings differ in a positive way from results from 
questionnaires and interviews. 

Examples of collected data 
In the investigation an example of the outcome of the questionnaires could look 
like this. To the question ‘What do you mean by a function?’ Lina, one of the 
students, answered before and after the course in function theory (calculus): 

1) – y is depending on how big x is. There is an infinite number of answers as 
you can vary x. 

2) – for example y=kx+m. y is here a function of x. So y is depending on the 
x-value. You can illustrate a function graphically. 

At both occasions Lina holds on to the idea that y is depending on x. In the first 
answer she talks about answers to the function, which may indicate that she 
perceives each calculation of the y-value as an answer to a problem. She cannot 
see a function as an object (Sfard, 1991). In the second answer she gives an 
example, the simplest possible function she has worked with, the linear function, 
although in a general form. She also adds the information that one can illustrate a 
function graphically. In the second answer she actually reveals more than in the 
first answer. 

Still both these answers give very little information about the mental repre-
sentation or concept image (Tall & Vinner, 1981) she has of the concept 
function. I was convinced that the student could show me more of her knowledge 
structures than these short sentences. At this stage of the research study I decided 
to use concept maps as a form for students’ answers. The drawing of concept 
maps was already familiar to the students from other subjects in their education. 
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Still I was aware of the fact that it is very demanding to try to draw a concept 
map of your own knowledge. 

At the end of the course in calculus (five weeks in the sixth term of the 4.5 
years long education programme) Lina together with one fellow student drew 
this map of the concept function. The task given was to individually draw one 
map of function and one of equation. As can be seen the students did not follow 
the instructions. It is not an individual map and it is a map of both equation and 
function in the same picture. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This map is consistent with Lina's answers in the questionnaires but contains 
more. She mentions proportionality and rule or instruction for the calculation. 

Nine months after the first map was drawn I met Lina again for an interview 
and she had been asked to draw a second map without looking at the first one 
(which resided with me). In the meantime Lina had studied other subjects than 
mathematics and she had not worked with her mathematics in organised studies 
at all. In spite of this it is obvious that her second map is richer than the first one. 
It contains more concepts and more propositions. 

She has removed the concepts straight line and proportionality and has added 
on domain, range, the properties even or odd, graph, primitive function and 
integral. In adding the properties she shows that progressive differentiation in her 
concept picture has taken place (Novak, 1993). She removes variables and co-
ordinates and writes x and y instead. In the first map she talks about a rule of 
instruction for calculation. In the second map she gives a definition instead. She 
also explains that the same y-value can be related to different x-values. Still there 
are several unclear links in her map. Why does she connect domain and range in 
different ways? Why are x and y not connected to the box ‘a coordinate system’? 

Although she did not study mathematics from March 99 to December 99, 
changes in her concept map have taken place. What the map shows is probably 
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knowledge that has been learnt in a meaningful way (Ausubel, 1963). Otherwise 
it would have been forgotten and not retrievable after such a long time. Below 
are the second and third maps drawn by Lina. 
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The third map was drawn six months after the second one, again without access 
to the first and second ones and without Lina having had any mathematics 
studies in the meantime. Again the third map is still richer than the two earlier 
ones. 

In the third map she has linked range and domain to the definition of 
function in a better structured way than before. This is an example of integrative 
reconciliation in the concept structure (Novak, 1993). Instead of talking about 
graphs she now mentions curves and gives a number of possible properties for 
them. She adds table of values and links it to coordinate system and to this node 
she also adds a third axis, the z-axis. She returns to linear function, which she had 
in the first map (and excluded in the second) as straight line and explains how it 
can be written as y=kx+m. She also explains the meaning of k and m. Another 
example of progressive differentiation is that she in addition to linear function 
also mentions other function classes as polynomial, rational, power, exponential 
and trigonometric functions, and so on. Williams (1998) noted that the experts in 
her study used a grouping that referred to classes of common types of functions, 
mentioning terms as exponential, polynomial, trigonometric and logarithmic. 
Thus here Lina's map has a feature that is typical for experts' maps.  

Lina holds on to the nodes primitive function and integration and adds 
differentiated. One link seems to be not so well expressed: 'Functions can be 
solved graphically or....' It is not clear what she means here. It can be a mix up 
with solutions of equations but it can also be that she is thinking of problem 
solving with the aid of the graph of the function. This last proposition is an 
example of the student's lack of professional language, which many of the maps 
illustrate (Grevholm, 2004). While her second map has twelve nodes the third 
one has 25, more than twice as many. It strongly illustrates the progressive 
differentiation her function concept has undergone. 

The maps were drawn over a period of 15 months where the student had no 
teaching of mathematics. But the maps show that great changes happen never-
theless. It seems as if the conceptual structure, the concept image, that the student 
is able to recall is getting richer as time goes by. One can of course argue that she 
is learning through repeated drawing of maps. This argument does not hold as 
can be seen by giving students the same mathematical problem again. There is 
normally no or little improvement in results even if the student has solved the 
problem once before. And the students did not keep the map that was once drawn 
and so could not rehearse it before drawing a new one. Peuckert and Fischler 
(1999) conclude that students' concept maps to a great extent contain coherently 
used propositions and stand for those conceptions that are stable in different 
contexts. They continue: "The way concept maps are used for investigation 
within a set of other methods and as a tool for reconstruction and analysis of 
conceptions seems to be applicable to other contexts of research." 

The example I show here is a typical one. The kind of development over time 
shown in the example of Lina is not special in any way. The maps are very 
individual, each student has her way of drawing and is true to the model and 
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design. The language in the maps reveals much about the student's ability to use 
the concepts involved in discussions (Grevholm, 2004). Lina's three concept 
maps illustrates Vollrath's claim (1994) that "the student reaches stages of under-
standing and that there is no final understanding". The conceptual structure 
undergoes changes over time and is dynamical and time-dependent. The maps 
indicate that we are dealing with a slow development and maybe as researchers 
we are sometimes to eager and do not wait for the concept development to take 
place and for the student to reach different stages? 
 
Why are concepts maps rewarding as research tools? 
What the researcher can learn about students’ concept development from answers 
in a questionnaire and from the drawing of concept maps seems to be different. 
The verbal answers give short, often one-dimensional answers while the concept 
maps tends to give richer answers with more content and several dimensions of 
the concept. Students are vague and not enough specific when they try to explain 
verbally how they understand a concept.  

The concept maps seem to reveal some properties of the concept develop-
ment that are of interest. What are the advantages of using concept maps as 
answer form for students? From the example it is clear that the maps give the 
student better opportunities to express her concept image. It obviously invites to 
more multidimensional answers than a sentence which in its form is linear. The 
written answer does not open for hierarchy or additional lines of thought in the 
same way as the map. Knowledge that students express through a concept map 
seems to be lasting.  

The way I used maps to make an a priory analysis of intended learning and 
then use another map to express students’ answers in propositions and compare 
them has not been found in any other research report. To study concept develop-
ment over time maps have been used by several researchers. McGowen and Tall 
(1999) traced students cognitive development throughout a mathematics course 
by the use of concept maps at intervals during the course. They drew schematic 
diagrams of the maps of each student in order to see how students build maps by 
keeping some old elements, reorganising and introducing new elements. The 
results show that high achieving students "can show a level of flexible thinking 
building rich collages on anchoring concepts that develop in sophistication and 
power. The low achievers however reveal few stable concepts with cognitive 
collages that have few stable elements and leave the student with increasingly 
desperate efforts to use learned routines in inflexible and often inappropriate 
ways” (p. 287). Their findings are consistent with what I have shown. Also 
Peuckert & Fischler (1999) used maps over time to follow conceptual develop-
ment and point to the value of the method. Thus it is obvious that concept maps 
can be used as a tool in research and in different ways as has been described here. 
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Concluding remarks 
Obviously the problems that drive the research on student teachers' conceptual 
development derive from my experience as a mathematics teacher educator and 
originate from a desire to better understand the process during teacher education 
and to improve teacher education in mathematics. Can this be achieved if we 
know more about concept development? Can students experience more meaning-
ful learning if we use new knowledge on concept development? Novak (1993) 
writes: "What remains to be demonstrated are the positive results that will occur 
in schools or other educational settings when the best that we know about human 
constructivism is applied widely. To my knowledge no school comes close to 
wide-scale use of such practices, even though there are no financial or human 
constraints that preclude this." 

Can teacher educators design better learning situations for students when 
they know more about the cognitive development of students? Improvement of 
our knowledge on student teachers’ development of concepts during the educa-
tion might contribute in a constructive way to the redesign of teacher education. 
At least in Kristianstad University the learning of the teacher educators from my 
research study resulted in a development project which was highly appreciated 
by the students and the teacher educators (Grevholm, 2003b; Grevholm & 
Holmberg, 2004). 
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Abstract
This paper elaborates on goal systems and belief systems and aims at
providing an analytical tool for understanding change in beliefs and
attitudes. The theoretical framework is applied and tested in a case study
of two students who reacted differently in a situation when teaching was
not conducted in the way they had been used to. Conditions for change
will be discussed.

Introduction
Motive for many education researchers is change. How should we develop our
educational system? How can we change teaching in schools? How can we help
students learn more? And how can we change students’ beliefs? Beliefs as
obstacles for change have been discussed in (Pehkonen, 1999). Since 1996 I have
been trying to understand how students' attitudes and beliefs change, and how
their teacher can initiate and direct such changes. My approach has been to focus
on a small group of students, and to try to understand, in depth, their beliefs and
attitudes and the changes that take place (e.g. Hannula, 1997; 1998a, 1998b,
2000). Through those case-studies it became evident that emotions have a central
role in the process of change. Furthermore, as emotions relate to goal-directed
behaviour, motivation became an issue of importance. In a nutshell: what stu-
dents want, has a strong influence on their experiences - and what they expe-
rience influences their beliefs. In this paper I shall analyse two students' beliefs
and behaviour in a classroom and try to understand why they experienced the
same classroom differently and why their reactions to teaching were different.

The theoretical background will combine belief systems with motivation and
goal structures. Connections between these two systems will be explored. After
this theoretical background the case studies of Anna and Eva will be analysed.

Belief systems
There is no general agreement on how to define or characterize beliefs or beliefs
systems (Furinghetti & Pehkonen, 1999). Therefore it is necessary to define how
beliefs are understood in this paper. The reader should be aware, that other
researchers might use same terminology with other meanings behind words. In
present view belief systems are divided into three kinds of elements: beliefs,
values, and emotions. Beliefs are purely cognitive, the personal knowledge con-
cerning objects (e.g. mathematics), agents (e.g. self), and events (e.g. failure). An
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important aspect of beliefs are expectations that one has in different situations.
Values are also a cognitive element, but of different kind. Values are the
subjective evaluations of different objects, agents, and events. Whereas beliefs
have a truth value, values are essentially normative and can not be true or false.
Emotions are the 'affective colouring' of different objects, agents, and events.
Objects, agents, and events always associate to emotions, which, however, can be
of low intensity or completely neutral. Note, however, that there are also
situational emotions that do not relate to belief systems directly. Instead, they
regulate goal-directed behaviour. Associated emotions are automations of situa-
tional emotions; they are faster but less adaptable to situational variation. The
complex issue of emotions is elaborated more deeply elsewhere (Hannula,
submitted).

Goal systems
Motivation is the answer to the question why people do what they do. In the
literature (e.g. Ryan & Deci, 2000) one important approach to motivation has
been to distinguish between intrinsic and extrinsic motivation. Another approach
to motivation has been to distinguish three motivational orientations in educa-
tional settings: mastery orientation, performance orientation, and avoidance
orientation (e.g. Linnenbrink & Pintrich, 2000).

In this paper motivation is conceptualised through a structure of needs, goals
and means (Shah & Kruglanski, 2000). Needs are seen as stable psychological
constructs, such as autonomy (a need to self-determine own actions) and social
needs. Actions can be seen as means to fulfil needs. As part of child's develop-
ment a complex network of goals and sub-goals evolves between needs and
means. Goals may serve multiple needs, and the same goal may serve multiple
needs. Furthermore, goals may be in a conflict, i.e. reaching one goal could
prevent one from reaching another goal. The relationship between goals and sub-
goals is similar to the relationship between needs and goals. There may be
several layers of sub-goals, but, in the end, there are means that one sees as
leading through sub-goals and goals to the fulfilment of needs. In some cases the
connection between needs and means may be quite simple. For example, hunger
(a need) can be fulfilled by eating (a mean).

In the context of mathematics education I will look at two kinds of needs: 1)
student's need for autonomy, and 2) students social needs (Figure 1). The need
for autonomy can be served by mainly two goals: understanding and perfor-
mance. Understanding mathematics gives power to learn mathematics more inde-
pendently. Furthermore, mathematical thinking can be a powerful tool also
outside mathematics class. Performance in mathematics, on the other hand, is
required for many career choices.
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Figure 1. Relationships between goal system and belief system in the 
context of mathematics education 

 
Social needs in mathematics class are served mainly by two goals: performance 
and intimacy. Performance in mathematics is one way to gain status in the class; 
it is a proof of smartness. Hence, low achievers often try to attribute their failures 
to another, more acceptable cause, such as lack of effort. Social needs can be 
served also through intimacy. Intimacy in mathematics classroom means collabo-
ration with teacher or peers in the spirit of empathy and understanding. This 
intimacy may take place around mathematical ideas, but off-task socialising may 
serve the goal equally well.  

Students' different goals in mathematics class lead them to apply different 
means. Goal of performance may lead to more surface strategies for learning than 
the goal of understanding. Social 'power game' may also impair group work, 
while goals of intimacy and understanding may promote productive collabo-
ration. In (Hannula, 2001) there are examples of how students’ different goals 
influence their co-operative problem solving process. 

There are several connections between goal systems and belief systems. The 
most fundamental connection to my understanding is the values one gives for 
different needs. From these values other values are derived. People have personal 
beliefs (expectations) about which goals are accessible, which means will lead to 
which goals, and which goals serve their needs. Situational emotions have an 
important role in regulating human behaviour towards desired goals. However, 
the automatic, associated emotions that are part of the belief system, may prevent 
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flexible development of goal structure. For example, if the use of own methods
was not accepted in primary school, those might have become associated with
negative emotions. Consequently, it would be unpleasant for the student to start
developing own methods later.

Methodology
The present paper part is of a research project focused on the development of
Finnish lower secondary school pupils' beliefs about, and attitudes towards
mathematics (grades 7 to 9) (Pehkonen, 1999). This study is a qualitative one,
done with ethnographic approach. I was a participating observer, working in a
school as a teacher. The setting could be called 'researcher as a teacher'. This is
also action research, because I had a deliberate intention to promote certain
beliefs and attitudes in my class. Mainly two data gathering methods, field notes
and interviews, were used. Quotes from field notes are marked with a date at the
end (14.10.). Eight pupils were interviewed in two groups in December (I1) and
the two focus students of this study again in January (I2).

This article will focus on the stories of Anna and Eva. Anna and Eva did
equally well in tests, but their experiences in the class were different. I have
chosen which parts of the material to exclude and which to include, but I hope
that the voice you hear is of those pupils, not mine. I try to interpret the pupils'
stories with the presented model.  Elsewhere (Hannula, 1998b) I have presented
stories of this situation in more detail from three points of view: my own as a
teacher, Anna’s, and Eva’s. Then the framework used to analyse the episodes
was also different.

Context of events
I began to teach mathematics for this class at seventh grade, which is the first
grade at lower secondary school. I tried to imply a gender inclusive teaching and
guidelines for teaching were group-work and discovery learning. I also wanted to
create a truly democratic classroom climate and restrict the role of the teacher to
facilitating students' work. Thus, the teaching was different from students' expec-
tations.

In the beginning things went fine. Later on, it turned out that pupils had
difficulties, too. There became more and more criticism in the classroom. The
peak of the criticism was probably, when pupils and their parents complained to
the headmaster and we had an open discussion in the class about my teaching
(25.11.). Reflecting my teaching I had to confess, that the implementation of
ideas was not properly done. As a young teacher I had had an idealistic picture of
the pupils' skills and motivation. After some changes in teaching the atmosphere
become better. Some pupils, however, kept a strongly critical approach, which
caused problems for the whole class.

The case of Anna
Anna, the first focus student, describes her experiences as follows:
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At first I was so irritated. Well, I mean, at the very beginning it was
really nice, since from the first mathematics lesson I noticed, that some-
how, at lower grade it was so strict, it was somehow such a relief that I
no longer needed to strain in math class. [ ] And then, after a while, some
couple of weeks, it started to annoy me that we didn't learn anything.
Well, it must have depended from my own attitude most, and I began to
feel pissed off, and I abused you and I abused all the others and I only
used bad language in the class, and I didn't get anything done. [ ] So I
changed my attitude. I thought that it doesn't help anything, that you
shall be our teacher anyway and so on. So then I changed my attitude,
and decided to study more myself. (I2)

Field notes confirm the process. I had at least two notes on Anna and Helena
solving problems in good collaboration (21.8. and 9.9) and one note (13.11.),
where Anna's group didn't do the assigned task. Later, she actually began to
defend me against the criticism in the class. When Eva is complaining that she
doesn't learn, Anna replies to her: “It depends a bit on ones own attitude too”.
(10.1.)

To understand better her behaviour, let’s look at her experiences in the
primary school:

Our teacher was quite demanding, so that she almost all the time had
surprise tests, with awfully difficult tasks, and hardly anyone could solve
those. And otherwise, too, that even if you got a ten {highest} in all tests,
she wouldn't give you more than an eight in school report if you don't
keep your hand up to almost all tasks and be otherwise active, too. [ ] But
it was so dry, somehow, the teaching in primary school [ ]. We always
went exactly according to the book [ ]. First it was taught in theory all
that, and then there wasn't much else, no project works or anything like
that. That left me somehow awful traumas, sort of. The teacher newer
even asked who would like to do some task on the board, she just
commanded. [ ] The lessons caused awful traumas, 'coz one always
strained somehow awfully. (I2)

We can now summarise Anna's story. She believed that the teacher ought to
control learning She expected learning of mathematics to be dry, difficult, and
strenuous. When this was not the case, she felt a relief. Later, she became angry,
because she was not approaching her learning goal. However, she did not expect
change in teaching, and, furthermore, she felt guilt for her misbehaviour in the
class. Thus she decided to change her ‘attitude’ and so she took a more active
role in her own learning.

The case of Eva
Eva was the other focus student. Her experiences were quite different:

[W]hen we began or when we came to school, I did try to participate in
the very beginning, [ ] I asked you some advice and you walked away
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and said, "Ask your group". I didn't know them. For sure I dare ask them.
And I thought that I am the only one not to understand anything. [ ] So it
just stayed that way, and I had to be silent because I was so stupid, 'coz I
don't understand it and all the others do. And so began my attitude. So, if
you had helped me better in the beginning, I could be somewhat more
eager in mathematics.

For Eva, her social context had a strong influence on how she experienced class:

I try to [study well] at the beginning of every lesson, but then I am
disturbed so it annoys me. Well, I don't know, 'coz at the beginning of
every lesson I try. Today I went to sit alone. Then Paula comes next to
me. And then Ursula comes there close and I can't be calm. I just can't
be. (I2)

In that group I haven't got a right to say anything. They think that
whatever I say, I'm wrong. Then in Julia's group I might be right. It
{laughter} isn't necessary right, but I have a chance to say something...
(I2)

That gave me ardour. It was really fun to do the pair work. (I2)

When we take a look at her primary school experiences, we can feel the safeness
she remembered from those days:

And I remember the one lesson, when there were girls from our class,
and we just chatted and told whether we shall marry some rich man.
{Laughter} [ ] We had a teacher [ ], who taught so well, that everyone
got excellent marks. (I1)

However, her view of mathematics learning was narrow:

I want normal mathematics. [] So that first we do the new thing for the
lesson. And then that is asked from everyone in a row. Then you give
pages and everyone counts and asks the teacher if something is wrong.
(I1)

[Better in mathematics are those] who have a good memory. [] They
have followed the lesson more carefully. (I2)

Eva's prior experiences from home were unpleasant:

... I mean my mother doesn't... Mother doesn't... Well, mother doesn't. [ ]
If she starts to help me and I don't understand something, then [she
would say] "Why can't you now understand this! Yak yak yak!" (I2)

Summarising Eva’s story, we can say that her view of learning was to memorise
what the teacher has said. She is uncertain and anxious about peer reactions. She
was ashamed not to understand, and tried to hide it. Later she joined other
students in blaming the teacher.
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Conclusions
When we compare these two students, we see similarities and differences in their
belief systems and goal systems. Originally, they both had similar beliefs about
teacher as the controller of learning. Furthermore, Anna expected learning to be
dry and difficult whereas Eva thought that it would be easy. Hence, their initial
reactions were different. This led to different ‘affective colourings’ of mathema-
tics lessons. Of these two students, Anna had somewhat higher self-confidence
(expectations about self) in mathematics and learning goal was more important
for her. Furthermore, Eva associated lack of understanding with shame.

We must recognize that the presented data and even the full data available
for the researcher will always leave room for multiple interpretations. However,
we shall now try to conclude from the theoretical framework and this case study
some possible conditions for a change in behaviour. First, there must be a goal
(learning mathematics) that is not accessible by old means (listen to the teacher).
Other means (self-directed learning) must be available. One must believe that the
goal is accessible by the new means (self-confidence). One possible obstacle is
emotional associations with the new means (ashamed of need for help). Another
possible obstacle is conflicting goals (behave like friends), which has higher
value for the individual.
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Tünde Kántor
University of Debrecen, Hungary

In our school practice it is very important to work out mathematical problem
fields for secondary school pupils. We have to raise the pupils' interest in the
classroom too. Our main viewpoint is to enrich the teaching of mathematics with
historical aspects. The history of mathematics confirms human values (success,
pleasure, self realisation, social aspects, cultural values). We want to acquaint our
pupils with the Curriculum Vitae of famous mathematical people (Viviani,
Erdös, Mordell) and with their mathematical works and results.

We focused our teaching on heuristic work of the pupils themsleves, we
formulated the posed problems as open problems (What happens, if …? What
can you formulate? What is your conjecture? How can you vary the conditions,
the concepts, the way of the proof?). So pupils can participate in creation of their
own mathematical ideas. We have chosen our topic from the geometry of
triangles: Viviani's theorem and its generalizations.

Viviani's theorem
For a point P inside an equilateral triangle ABC the sum of the lengths of the
perpendiculars d1, d2, d3 from the point P to the sides is equal to the altitude h.
We formulated Viviani's theorem in an open form:

Problem 1
Let be given an equilateral triangle ABC and a point P inside triangle
ABC. What is the sum sp of the distances from the point P to the three
sides? (sp=  d1+d2+d3).

At first we allowed to the pupils to draw, to measure, to construct their conjec-
ture and after that to prove it theoretically. We hoped that the pupils would
recognize:

a) the value of sp (i.e. sp is constant, or sp= h = 1/2 a √3, where h denotes the
length of the altitude of the equilateral triangle ABC, and a is the length of
its side)

b) the sum sp is independent from the position of the interior point P.

Our pupils choose two ways for solving Problem 1.

Way 1
The base of the proof was, that we can write the area of the equilateral triangle
ABC as a sum of the areas of the triangle ABP, triangle ACP, triangle BCP.
Some pupils made a qualitative proof, they showed sp = h, the other pupils made
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a quantitative proof, they showed, that sp = 1/2 a√3. (Figure 1) I found that the
pupils (aged 14-16) prefer the quantitative version of the proof.

Way 2
We draw parallel lines to the sides AC, AB, CB through the point P. We get 3
parallelograms and 3 small triangles. We can give the altitude of the triangle
ABC by the help of the altitudes of the small triangles. (Figure 2)

We started with this wellknown property of the equilateral triangle and we varied

- the placement of the point P (inside, outside, on a side, on the extension of
a side of the equilateral triangle ABC)

- the shape of the triangle (equilateral, isosceles, scalene).

We generalized

- the shape of a regular triangle (regural n-gon)
- the dimension of the equilateral and scalene triangle, we stepped out of the

plane and went over to space (regular tetrahedron, generalized inequality
of Erdös-Mordell)

The scale of the problems was very wide, from simple exercises (aged 13-14)
through contest problems (aged 14-18) to scientific theorems (theorem of Erdös-
Mordell, Barrow's theorem, inequality of Kazarinoff (aged 16-19).

Viviani's theorem is convenient for derivation of a problem field, to built new
concepts, to generalize theorems and to investigate converse problems too. There
are easier questions for investigation in classroom, but there are harder problems
aimed at advanced pupils. Our next question was:

What happens if in the equilateral triangle ABC the point P is not located
inside the triangle? We got different options for the locating of the point P and
formulated new problems.

Problem 2
What happens if in the equilateral triangle ABC the point P is on a side of
the triangle ABC, with the sum of the distances P to the two sides?
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It was obvious, that sp= d1+d2 = h. Both of the two ways are good for proving.

Problem 3
What happens if in the equilateral triangle ABC the point P lies on the
extension of a side of triangle ABC?

Their conjecture was that sp=d2-d1 or sp=d1-d2. The result surprised them, but we
could unify the two values by the help of absolute value (sp=h= |d1-d2|) then we
summarized that h=k1d1+k2 d2, where k1=1 and k2= -1 or k1= -1 and k2=1.

Problem 4
Let be given an equilateral triangle ABC and a point P in the exterior of
the triangle ABC. How can we give the length of the altitude h by the help
of the distances from the point P to the three sidelines?

Solving Problem 4 seemed to be a little bit complicated. They found different
locations of the point P and got different results for the linear combinations
k1d1+k2d2+k3d3=h (k1,k2,k3=±1). (Figure 3, Figure 4)

We made the proof by the help of the Way l, with counting the areas of the
proper triangles. The pupils recognized that the coefficients k1,k2,k3 are equal to
± 1, depending on the location of the point P, but at first they did not know which
of the distances will be positive or negative. Their conjecture was that the
determining factor is whether the foot of the perpendicular intersects a side of a
triangle or whether it intersects the extension of the side. But it was easy to show
that this conjecture is not true.

By looking at the figures and rethinking the various cases they found that the
sign of the distance in the linear combination is based on the relative position of
the side to which its perpendicular is drawn and the vertex opposite that side
(barycentric coordinates).

We could summarize:
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Let triangle A1A2A3 be an equilateral triangle with altitude h. Denote by ai the
side opposite vertex Vi (i = 1,2,3). If P is any point in the plane of the triangle
A1A2A3 with di (i=1,2,3) equal to the perpendicular distance P to a i (i=1,2,3), or
its extension, then k1d1+k2d2+k3d3=h, where ki=1 if P and Ai are on the same side
of the line containing ai, or if P is on ai¸ ki= -1 if P and Ai are on opposite sides of
the line containing ai (i=1,2,3).

If we follow the Way 2 in the proof of Viviani's theorem we get a new result.

Problem 5
Let be given an equilateral triangle ABC and a point P inside of triangle
ABC. If we draw parallels through the point P to the sides, then these
parallels cut out 3 segments from the triangle ABC. Is the sum of these 3
segments constant? (d1+d2+d3=2a).

The segments make an angle of 60o to the proper side of the equilateral triangle.
With the variation of the angle we get the Problem 6.

Problem 6
Let be given an equilateral triangle ABC and a point P inside triangle
ABC. We draw segments through the interior point P. These segments
make the same angle with the proper sides of the triangle. What can we
say about the sum of these segments? (s=constant)

From this point on, we made our investigations in another direction. We genera-
lised the shape of the equilateral triangle, we generalized Problem 2.

Problem 7
What can we say about the sum sp, if the point P is on the base of the
isosceles triangle? (d1+d2=constant = 2 a, where a is the length of the
two equal sides).

Here we raised the question of the converse theorem: Which of the discussed
problems have a true converse theorem? Can we invert Viviani's theorem? The
answer is yes. Viviani's theorem has a converse theorem, and we can prove it
different ways. Problem 7 is also reversible. We continued our investigations in
the direction of the regular n-gons.

Problem 8
Let be given a regular n-gon (n≥4) and a point P inside of it. What can we
say about the sum sp of the distances from the point P to the sides of the
n-gons?

The first step was to change the form of the regular triangle to regular 4-gon
(square), regular 5-gon, regular 6-gon (etc.), regular n-gons (n≥4). For solving
these problems we need the results of the Problems 1-4. We raised the question
of converse theorem, but it was easy to find, e.g. in the case of the convex 4-gon,
a counter-example: If we take a rectangle ABCD (dAB = dBC), we immediately can
see that for arbitrary interior point P of the rectangle ABCD the sum of the
distances from the point P to the sides of the rectangle is constant and it is equal
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to the sum of the lengths of its two different sides. At the normal high school
level we can extend Viviani's theorem to space and we can formulate a similar
theorem for regular tetrahedron.

Problem 9
Let be given a regular tetrahedron ABCD and a point P inside it. Find the
sum sp of the distances from the point P to the four faces. Is the sum sp

independent from the position of the interior point P?

The proof of the Problem 9 is similar to Way 1 in the plane. We use the fact that
the volume of the regular tetrahedron is equal to the sum of the volumes of the
tetrahedra PABC, PABD, PACD, PCDB, and the value sp is constant and equal
to the length of the tetrahedron's altitude (sp=h).

We formulated the converse theorem too. The pupils were convinced that it
will be true. Their concept was false, the converse theorem of Problem 9., is not
true. From the sum d1+d2+d3+d4=h=3V/A2 follows only the equality of the areas
of triangle ABC, triangle ABD, triangle ACD, triangle BCD, i.e. the tetrahedron
ABCD is not regular, only its faces have equal areas. (equifaced tetrahedron).

The other parts of the problem field of Viviani's theorem are difficult. At the
advanced high school level or at the University in courses of elementary
mathematics we can deal with the theorem of Erdös-Mordell, Barrow's theorem
(scalene triangle), with the generalization of Problem 9. to the outside point P
and with the generalized inequality of Erdös-Mordell for the tetrahedron.

Problem 10 (inequality of  Erdös-Mordell)
If P is any point inside or on the boundary of a triangle ABC, and if d1, d2,
d3 are the distances from point P to the sides of the triangle, then
dPA+dPB+dPC≥2(d1+d2+d3), with equality of and only if triangle ABC is
equilateral and the point P is its circumcenter.

The first proof of the Erdös-Mordell inequality was published in the Hungarian
KöMaL (1935) by Professor Mordell. In 1937 The American Monthly published
two proofs by Professor Mordell and by D.R. Barrow, but neither proof was
elementary. More recently D.K. Kazarinoff found an elementary proof, which is
based upon the idea of reflection. Barrow proved a generalized form of the
Erd_s-Mordell inequality, which follows from Barrow's theorem as a special
case.

Problem 11 (Barrow's theorem)
Let the point P be an arbitrary interior point of the triangle ABC. Prove
that dPA+dPB +dPC

 ≥ 2(dPA' +dPB' +dPC'), where A', B', C' are the intersection
point of the bisectors of the angles BPC, CPA, ABC with the sides BC,
CA, AB of the triangle ABC.

The proofs of these problems we find in several Hungarian books. The proofs
require only elementary knowledge, but the methods are very miscellaneous
(principle of reflection, use of the congruent transformations, computation of
areas, trigonometric connections).
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The Erdös - Mordell inequality has also a generalization.

Problem 12
Let the point P be an arbitrary interior point of the tetrahedron ABCD.
Prove that
dPA+dPB+dPC+dPD > 2√2(dPA' +dPB' +dPC' +dPD'), where A', B', C', D' are the
perpendicular projections of the point P to the planes BCD, CDA, DAB,
ABC.

Problem 12 is a generalization of Problem 10. We found that the value of the
coefficient in the plane was 2, so we expect that the value of the coefficient in the
space will be 3. But this is not true. D. K. Kazarinoff constructed an orthogonal
tetrahedron with the coefficient 2√2.

Problem 13
The tetrahedron ABCD is equifaced and the point P is an interior point of
the tetrahedron ABCD . Prove that dPA+dPB+dPC+dPD≥3(d1+d2+d3+d4),
where di (i=1,2,3,4) are the distances of P to the faces of the tetrahedron.
In the case of the equality the tetrahedron ABCD is regular and the point
P is the centre of its circumscribed sphere.

Contests problems
Viviani's theorem and its variants are popular at high school contests. I collected
some of them (aged 13-18). If we prepare our pupils for the contests, we have to
solve these problems with them.

Problem 14
Let be given an equilateral triangle and a point P inside of triangle ABC. We
denote the feet of perpendiculars from the point P to the sides AB, BC, CA by D,

E, F. Prove that the value of the fraction  

€ 

PD PE PF

BC AC AB

+ +
+ +

 is independent of the

situation of the point P. (aged 14)

Problem 15
The length of the sides of an equilateral triangle is 5. Let us draw parallels
through the interior point P to the sides. For which point / points P will
the sum of these parallel segments be maximal? (aged 13)

Problem 16
There is given an equilateral triangle and a point P inside of the triangle.
The feet of the perpendiculars to the sides divide each side into two
segments. Prove that the sum of the non-joint 3 segments is independent
of the location of the point P. (aged 15-16)

Problem 17
The point P is an interior point of the equilateral triangle ABC. The feet
of the perpendiculars from point P to the sides BC, CA, AB are A1, B1, C1.
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Prove that the sum of the areas of the triangles APC1, BPA1, CPB1 is
independent of the location of the interior point P. (aged 16-17)

Problem 18
The point P is an interior point of a regular tetrahedron. From this point P
we draw perpendiculars to the plane of the base-face of the regular
tetrahedron. These perpendiculars intersect the plane of the face-sides at
the point X, Y, Z. Prove that the sum dPX+dPY+dPZ is independent of the
interior point's location. (aged 17-18)

Which are the benefits of using historical problems?

- We can show the continuity of mathematical concepts and processes over
past centuries

- We motivate the learning process in the classroom, because our pupils
deal with problems which centuries ago were objects of investigation.
These problems allow the pupils to touch ancient and recent past.

- Pupils connect mathematics to various cultures and other intellectual
developments in sciences

- We need to bring biographies into the mathematics classroom. The life
story of mathematical people often encourages talented pupils and fill
them with emotions. They think and believe that if they can solve
problems posed by famous mathematicians in their youth - as Paul Erdös
in Hungary - may be later they will become such great mathematicians as
P. Erdös was. It is nice for them to realize that they are part of history.
Some mathematicians have interesting lives (f.e. V. Viviani, G. Galilei, P.
Erdös) and it is good to know interesting things.

- We often can learn from the mathematical mistakes and the unsolved
problems of the past.

I think it is necessary to share my knowledge about the panorama and people of
mathematics with my pupils and students at the university. Besides the mathema-
tical discussion of the selected problem field we can deal with other mathema-
tical results of Viviani (tangent to a cycloid, four windows problem, so called
Florentine problem, trisection of an angle by using an equilateral hyperbola,
Viviani's curve), or we can analyse the history of Galilei's time (physics, philo-
sophy, inquisition).

In connection with the activity of P. Erdös we can investigate other nice
problems posed by Erdös, or problems from the old series of the Hungarian High
School Mathematics and Physics Journal (KöMaL). May be we read some book
about the "travelling ambassador of mathematics" or we look at a videotape
dealing with him.
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Abstract
When you work with assessment in mathematics you find that
mathematic is a subject of many dimensions. Besides the mathematical
content you can look at the matematical process and students’ level of
achievement. In this paper we describe why and how we developed an
Assessment matrix, which focuses on different aspects of knowledge
based on the syllibi in mathematics. The matrix is a part of the
assessment/scoring guide for more extensive items in the national tests
in mathematics.

Background
In Sweden there is no external examination when the students leave secondary
or upper secondary school. The teachers do all the assessing and grading.
Grades are awarded on a three-grade scale from the eighth year of schooling
onwards. The grades are Pass, Pass with distinction and Pass with special
distinction. In the upper secondary school the grade Fail is added and the
students in upper secondary school receive a grade in every course. The grading
is criterion referenced and goal related; i.e. the grades relate students’
knowledge and achievements to the goals set in the syllabus. To support the
teachers’ awarding of grades we have national tests in mathematics at the end
of year 9 and at the end of every course in the upper secondary school. The
purpose of having national tests is also to create grounds for assessment that is
as unified as possible across the country.

The PRIM-group at the Stockholm Institute of Education in Sweden is a
research group that conducts its research within the area of Assessment of
knowledge. The PRIM-group has been commissioned by the National Agency
for Education to construct national tests in Mathematics. Presently we are deve-
loping a series of various assessment and evaluation instruments within the
mathematical area as well as in other areas.

The starting point for the construction of a test is the view of knowledge in
the curriculum, the view of the subject in the syllabus and the criteria of the
different grades. The emphasis should lie on understanding, analysis of the entire
solution process, critical examination of the results, as well as the ability to draw
conclusions, which according to the curriculum are more important than isolated
training of skills.
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The test set is made up of several different parts in order to give the students an
opportunity to show as many sides of their competencies in mathematics as
possible. We try to make our tests as balanced as possible with different kinds of
items in a variety of contexts and a range of response formats. This paper
however only discusses how we assess/mark more extensive items. In all natio-
nal tests there is at least one more extensive item that sometimes is based on an
authentic context.

This item is distinguished by that it assesses, more than other items, the
students’ ability to do independent work, be creative, show the ability to syste-
matise, form mathematical reasoning, create mathematical models, formulate and
test assumptions, as well as draw conclusions. It shall be possible to assess the
students’ complete solution on different qualitative levels. A demand for these
items is to give all students the opportunity to start on a solution, but at the same
time the item shall be so challenging that a solution can show quality on the
highest-grade level. The intention is that the students should use 30–50 minutes
to work with this item.

This kind of items was first used was in the national tests in 1995 and in the
assessment guidelines the teachers were told to make a holistic assessment of the
students’ work. To help the teacher to assess and grade there were descriptions
of students’ work at different achievement level as well as authentic students’
work assessed and graded by researchers and a group of teachers.

On the next page we present an item from the national test for course A in
the upper secondary school. Course A, which is compulsory, is the first mathe-
matics course in upper secondary school. This item was used in May 2000, just a
few weeks before the opening of the Öresund bridge and the information about
the fares was given in many Swedish newspapers.

Text for next page:1

/ Prepare the work by doing calculations and/or diagrams, which can
help you to quickly suggest the cheapest alternative for different car
travellers for example:

• the traveller who for pleasure goes across only occasionally
• the shopping traveller, who regularly goes across for shopping
• the commuter who lives in Malmö but has his/her work on the other side

of Öresund.

/ Explore also how many journeys a month or per six months you have to
do to make the Öresundspendler agreement profitable.

1 ©Skolverket
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 By car across the Öresund bridge

It will cost money to go by car across the Öresund bridge. The traveller may
choose between several different alternatives to pay the toll fee. These have
been created to fit all types of travellers.

Information about car fares across the Öresund bridge

Normal price
The normal price for a one way journey by private car is 275 SEK
(Swedish crowns) but there are two different possibilities to get a lower
price.

Öresundsbonus
With an Öresund bonus agreement it gets cheaper and cheaper after the
first four one way journeys.

P
ric

e 
pe

r 
jo

ur
ne

y

Number of journeys
per 6 months

1–4 
one way 
journeys

5–24 
one way 
journeys

From 25 
one way 
journeys

275 SEK

150 SEK

100 SEK

Price steps

The agreement is valid for an unlimited number of journeys during a
period of six months. At the end of the period one starts again and pays
the normal price for the first four journeys.

Öresundspendlare
The Öresundspendlare may sign a monthly agreement. It costs
4 080 SEK for a private car per month and includes up to 50 one way
journeys.

Nothing extra is charged for signing an agreement. The deposit one
pays for the “Brobizz” (the electronic identity card) is refunded when
the card is returned.

Exercises
Imagine, that you have got a holiday work in an information stall at the Öresund
bridge. There you are to help travellers to interpret the information (see page 2)
and you must also be able to suggest the cheapest payment alternative.
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The development of the assessment matrix
We have a long tradition of teacher-assessed national tests in Sweden and the
teachers are used to detailed assessment/scoring guides. The holistic way of
assessing students’ performance turned out to be difficult for the teachers and
some of them found it subjective and not fair to their students. According to
research, performance-based items are less reliably marked if they are marked
holistically than if they have a structured analytic marking guide (Gipps, 1994).

We started looking for other assessment models than holistic ones and
found among others analytic scoring scales. Analytic scoring is particularly
useful in assessing students’ problem-solving efforts. When you use analytic
scoring you look at the different phases in problem solving such as
understanding the problem, planning the solution and getting an answer. An
analytic scoring scale also includes specific criteria for awarding partial credit for
each phase.

Communication, which is very important in our grading criteria, is not
included in analytic scoring. In the book Mathematics assessment and evalua-
tion edited by Thomas Romberg, we found another way of assessing problem
solving in Vermont’s work with assessing portfolios (Romberg, 1992). In this
assessment they use four different aspects of problem-solving skills and three
aspects of communication skills. The aspects are organised in a matrix with
descriptions of four different quality levels for each aspect. This matrix was the
starting point for the development of our matrix.

We organised the different aspects of the problem-solving process accor-
ding to our syllabi in mathematics and the grading criteria. The problem-solving
skills were divided into comprehension and accomplishment. The communi-
cation skills were divided into mathematical language and clarity of presen-
tation. The quality levels were described in three levels according to the criteria
for different grades. One of the purposes of the assessment matrix (se next page)
was also that it would be possible to use it independently of mathematical
content and in different courses.

Tests must be scored fairly and in a way the students understand (Gipps,
1994). The purpose of the matrix is also to show the students the different
aspects of knowledge that can be assessed as well as to describe the different
qualitative levels within each knowledge aspect. The students as well as their
teachers can find the assessment matrix at our homepage (www.lhs.se/prim/)
along with authentic students’ work assessed with the support of the matrix.
See further Kjellström and Pettersson (1995) and Kjellström (1996, 1999, 2000)
for our developmental work.
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Assessment matrix

Problem solving capability
Comprehension and method
The assessment concerns: To what degree the student shows an understanding
of the problem. What strategy/method the student chooses to solve the
problem? To what extent the student reflects on, and analyses the chosen
strategy and the result. The quality of the student’s conclusions. What concepts
and generalisations does the student use?
Accomplishment
The assessment concerns: How complete and how well the student works
through the chosen method, makes necessary calculations and motivates the
working.
Communication capability
Mathematical language and/or representation
The assessment concerns: How well the student uses mathematical language
and representation (symbolic language, graphs, illustrations, tables and
diagrams).
Clarity of presentation
The assessment concerns: How clear, distinct and complete the work of the
student is. To what extent the solution is possible to follow.

Qualitative levels

Comprehension
and method

Shows some
understanding of
the problem,
chooses a strategy,
which functions
only partially.

Understands the
problem almost
completely,
chooses a strategy
which functions
and shows some
reflective thinking.

Understands the
problem, chooses if
possible a general
strategy and
analyses one’s
own solution.

Accomplishment Works through
only parts of the
problem or shows
weaknesses in
procedures and
methods.

Shows knowledge
about methods but
may make minor
mistakes.

Uses relevant
methods correctly.

Mathematical
language and/or
representation

Poor and
occasionally
wrong.

Acceptable but
with some
shortages.

Correct and
appropriate.

Clarity of
Presentation

Possible to follow
in parts or includes
only parts of the
problem.

Mostly clear and
distinct but might
be meagre.

Well structured,
complete and clear.
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Further development of the assessment matrix
After the first test, in which the Assessment matrix was used, we evaluated the
teachers’ opinion in a teacher questionnaire. Half of the teachers answered that
the matrix facilitates the assessment and that it was fairer to the students than
holistic assessment. Many teachers thought, however, that the assessment was
time-consuming but half of the teachers answered that it was worth the effort.

In the national test 2000 for year 9 we had an oral part where the students
worked in groups. To assess this part we developed a new matrix, which
focused on understanding, language and participation. The oral Assessment
matrix was well accepted among the teachers, but they thought that we ought
to make a special matrix for each item.

During 2000 the syllabuses and the criterion for the different grades were
revised and we changed the matrix according to them. We learned from the oral
part that it was easier with only three aspects and that the teachers wanted
special matrixes for each item.

We always pre-test all items in our national tests. For the tests in 2000/2001
we have developed special matrixes for each more extensive item. The first step
of the process to develop a special matrix for an item involves an in-depth
analysis of the students’ work. We started with the general matrix and with the
help of this analysis we made item-specific descriptions in the matrix. Together
with the matrix we also published authentic student work assessed and graded
by researchers and a group of teachers.

Recently we received the result from the first test with this item-specific
matrix and almost all teachers thought that it was worth the effort and that it
facilitated the assessing/marking.

We have a course for teacher students ‘Assessment of knowledge. How to
do it in mathematics?’ (5 credits) where our students try a variety of assessment
models in different situations and with pupils of different ages. Many of them
used assessment matrixes to assess also small children’s performance in mathe-
matics.

Related assessment of processes and actions in mathematics
In our work looking for different ways of assessing more extensive items we
have found also other projects. OECD/PISA (Programme for International
Student Assessment) is a survey of students’ skills and knowledge as they
approach the end of compulsory education (age 15). In PISA three broad dimen-
sions have been identified. These are processes, mathematical content and
context. The process is divided in different aspects i.e. mathematical thinking,
argumentation, modelling, problem posing and solving, representation, symbols
and formalism and communication. In order to describe levels of mathematical
competency, PISA organises processes into three competency classes.2

2 See web page www.pisa.oecd.org
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Similarly in a project called Balanced Assessment in Mathematics, the Harvard
Group (http://balancedassessment.gse.harvard.edu) presents a model of asses-
sing students’ work in three dimensions; objects, actions and the quality of the
students’ work.
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Eva-Stina Källgården
Mälardalens högskola

Abstract
Is it possible to use the student’s written statements and reflections about
learning from lessons as assessment? Is it possible for a student to
monitor his own learning and express it effectively in written terms? The
students in my three courses of Mathematics and Didactics supply
examples from the area of the questions. The paper is about three levels
of writing and reading problem during half a year.

A traditional way of assessing mathematical knowledge is by written tests. These
tests evaluate a student’s perception of the course, what knowledge has been
taught and ultimately what the student has learnt. The tests are made up of a
number of problems and questions, which the student has to work through to
show knowledge and understanding of the topic.

Another type of evaluation and assessment of mathematical knowledge is
now emerging in the way of a constructivist approach to learning, moving away
from the traditional Swedish curriculum’s behaviourist way of teaching.
Didactics courses, for pre-service as well as in-service teachers, suggest ideas of
trying methods of testing and understanding both conceptual and procedural
knowledge in the classroom.

It is often difficult for both the teacher and the learner to find a model of
effectively communicating the taught concepts. The student can document what
he has learnt in the way of a written test, but this may not be easily understood
when being read by the tutor.

A portfolio model is one example of a “modern” way of teaching, which
includes evaluation and assessment. The student takes his information from
lessons, homework and tests and puts them into a personal folder where he also
stores personal accounts both of lessons and his own learning.

Another example is a “logbook” which offers an ongoing communication
between teacher and student. The student writes his thoughts regularly about
concepts and any personal difficulties from the lesson along with any questions
about mathematical problems. The teacher then gives comments and feedback by
writing in his logbook.

In both cases, many problems are evident for the teacher when they try to
assess the learning and knowledge of the student from his writing.
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• Even if the student has a good perception of what he has learnt and
fully understands the lessons, his communication and written skills
may not effectively convey this to the teacher,

• The student can write in such a way as to influence the teacher,
communicating in such a way that he knows would be appreciated,
so therefore:

• How is it possible for the teacher to more effectively gauge the
knowledge and learning of the student as expressed in his paper?

In summary, how can it be possible for a student to monitor his own learning and
express it effectively in written terms?

Stating the issue
It is difficult for a teacher to understand how and what the students have learnt
from a lesson. So I want to get examples from my student group: Could it be
possible to use the student’s written statements and reflections about learning
from lessons as assessment? How can I interpret the written statements as an
assessment of the course?

In the mathematical courses the skills level for each is to be set to one of
three levels. This paper will strive to discuss criteria for effectively assessing
mathematics skills as well as didactics skills.

Three consecutive studies
The first year of education for school years 4-9 and high school pre-service
teachers in mathematics and physics at the teacher education programme in
Sweden where the present study was conducted, contains five mathematics
courses that are linked to didactics. The work effort for these courses corresponds
to five weeks of full time studies. The courses in Arithmetic & Didactics,
Algebra & Didactics and Geometry & Didactics have been in focus here when
studying how the students express their learning.

The sample group
The group members are aged between 20 and 50, with the average age being 36.
Some of the students have studied one year to complement their mathematical
competence to the level of high school science programme. Others have studied
corresponding courses at municipal adult education before entering teacher
education. Some of the students have not studied for the last 8 years, claiming to
have forgotten a majority of their learning during that time, whereas others have
been teachers themselves and currently have children going to school.

A group of 16 students have been followed for all three courses. During the
study nobody left the course. In the third course, on geometry, 30 students,
including the16-group, gave their notes of learning. In all 16 students have been
followed for the courses, and their comments evaluated. After every second
lesson the students were requested to document what they have learnt in the
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Mathematics and Didactics lessons. This material forms the basis and data of the
study.

An ordinary lesson
An ordinary lesson in the three courses includes following parts with connection
to the literature in the course:

• Problem solving part. The problem is prepared at home or within groups.
Solving the problem with mathematics methods and discussing the
solution and alternative solutions make this situation connected to
mathematics and didactics.

• Every student must be a seminar leader at least once in a course.
Everybody in the whole group must read a chapter of the textbook
“Algebra for all” or “Billstein” in the next lesson. Questions are written
from chapter and given to the seminar leader.

• School in reality. Mathematics methods to learn from books and from
reality. Leader: Student or teacher

• New concepts and problems in mathematics, led by the teacher.

Study 1
The students were asked to fill out a form directly after a lesson. The questions
posed were consistent throughout the study period.

a) What I have learnt / What I have not understood in Mathematics
b) What I have learnt / What I have associated in Didactics

When the student responses were read, their notes from four lessons were
categorised in order to appropriately answer the fundamental questions originally
set.

What about learning from Mathematics and what is Didactics in the lessons?

The notes from every lesson could be divided in one of six categories:

1. M: a mathematical reference from the lesson
2. D: a didactical reference to the lesson
3. R: reflections, e.g. about a working situation
4. P: quite personal reflections (e.g. something difficult)
5. -: No answer
6. 0:absent

You can compare every lesson in a mathematical and a didactical view and see
the result:

• There are more M and D in the mathematical field in the beginning
of the course

• “No answers” are a little more frequent in Didactics
• More “reflection” at the end of the course both in Mathematics and

Didactics
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• To compare student 1 with student 5 and 16 there is a big difference
of the number of M and Ds shown. What do students write regarding
Mathematics and Didactics lessons?

The examples from the notes of some students can explain the four categories
from the four algebra lessons:

M: “I have learnt to solve an equation numerically.
R: “To solve an equation was very hard for many students.”

The same lesson gives connection to Didactics through:

M: “The concept of equality symbol”
D: “To speak, to listen, to write to read. Important! Interpreting.
D: “Different dividing of groups makes different solutions”

From the next three lessons are these M-sentences taken:

M:  “When has the proof come to an end?”
M: “I know the factor theorem = I understand it”
P: “Complex Numbers, so difficult, now it is easier.”

And looking at the lessons, as above, you can read with Didactics focus:

D: “It is important to change between different forms of expressions.”
R: “To have fun is not the same as not hard working.”
P: “I have improved in keeping silent and let others having a chance.”

Study 2
Evaluating notes about learning from the first four lessons formed part of the
fifth lesson. The intention was that after discussing these in “4-groups” the
students could perhaps write more about their own personal learning to be
assessed. The students then documented their responses for the next two lessons.
The question was then raised:

Could any differences be recognised compared to the earlier answers given?

Now the student was required to be conscious of describing what they learn from
the lesson and not describing the lesson itself.

In the next lesson different notes were gathered from the first study and
evaluated further. The aim was to read through the documentation together with
the student and describe which notes represented a concept of learning in
Mathematics or Didactics. The students discussed this topic in various groups
and it was agreed that this process was hard work.

Below are selected notes from this working process:
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I learnt that I must take the square of both sides of the equality sign in an equation
to get the roots.
The concept of the equality sign is difficult to understand for the pupil.
I have learnt there are many way of thinking
False roots
What I thought was evident could I skip
You must have time to think
To fold an A4 and see one side is square root two of the other
Algebraic, Geometric and Numeric solutions are useful to know
I have learnt to take everything in pieces
I feel that I can translate problem and express them better now
To develop an algebraic language from simple to the hard
Begin to handle with + and – when dividing polynomials
I have learnt the factor theorem with understanding
I am not sure of division of polynomials

The examples led to discussion in groups of 4 where everyone was faced with the
following questions:

Which examples can reveal a learning of Mathematics or Didactics?

The aim here was to influence the students into thinking about themselves: IF
they learn, WHAT they learn and perhaps also HOW they learn.

Did the students change the writing of learning?

The answer is no, it is still impossible to separate the lesson from the learning
from lesson. At this point, it is still difficult to understand what the student has
learnt from what they have written.

The next step was to request the students to document a situation where they
actually learnt Mathematics from the course, and the timescale given for this was
one week.

Study 3
In the Geometry course a new model for questioning was suggested: The
students were asked to describe the situation where they learnt something from
the course and also describe what they learnt. The students were asked to
“Describe a moment of clarity from the course and describe the situation in
which it occurred”. The objective here was to establish an understanding of a
student’s learning from a situation connected to a classroom situation during the
whole course, instead of one particular lesson within the course.

At the end of the Geometry course a new model for questioning was
suggested. The students must describe the situation where they learnt something
from the course. They must also describe what they have learnt. The objective
was to be able to understand the student’s learning better from a situation
connected to the classroom during the whole course instead of one lesson of the
course. Therefore the following three points were restructured in the research.
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• time for reflecting (a week instead of directly after lesson)
• period of reflecting (a whole course instead of one lesson
• describing the situation where and what they learnt instead of describing

only the information that was learnt

The question which to give insight into this issue was: “Describe a moment of
clarity from the course and describe the situation in which it occurred”.

Before analysing the reflections of the students, first is shown one report of a
particular student. Her thoughts are exactly related to the issues in question.
Following that, in the table below, is a summary of different categories of
situations of learning. But first the reflections of one student on his own learning
in a situation:

“Here is a small summary in Didactics of things that I have learnt in the
course, situations where they have been learnt and in which way I can
use this knowledge. As time is restricted, I have concentrated specifically
on the latter part of the course.”

What have I learnt? Which was the situation when
I learnt this?

In which way can I use this?

It’s important to take
pupil and the work of
pupil seriously.

When Anna expressed anger
and disappointment about not
getting to summarise chapter
11 in Billstein when she had
worked a whole day with it.

I shall be observant how my
pupils understand my priorities.
What can be important for me
can be unimportant for them
and vice versa

It’s important to give
time to understanding
the pupil solutions.

When I went up to the black-
board to help Johan in proving
without thinking of his way of
thinking

In a “real” situation where I
have the “control” I can take the
time I need to understand the
problem

To be flexible and
adjust the plan to reality

The situation in our hetero-
geneous  group was changed.

I am going to think about this
from the start of planning a
course

A question can be more
effective than accusing
and nagging

When my question ”How do
you treat ‘pigging back’ in a
system without assessment?”,
I got response from both
teacher and student.

I am reflecting alternative ways
to reach my goals. You can al-
ways get better response if you
allow it to come from yourself
than press your opinions to
others.

The goal of teaching
must always be distinct
and the result and asses-
sing too.
Besides I must be ready
to argument for this.

I will plan my work and my
teaching so good that I can be
responsible for it and argument.

What reflections does
Eva-Stina want?

I didn’t care of that and
instead I made a summary of
my own that I can use.

Now I have a system for myself
that I can use in different con-
nections.
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The students’ writing is now more alive than in Study 1 and Study 2 and the
categories where they relate their new knowledge are from real situations in
different lessons. Both mathematical knowledge and didactical knowledge is
evident.

Shown in the table below are different expressions from their learning and
what they have learnt. It is possible, at the same time, to connect the student
writing of learning to a certain subject in a lesson. It is certainly more interesting
to see the variety of expressions than the frequency of them.

The golden ratio Cabri and the Geoboard
1. When Anna showed her model to see
the Golden ratio and solve its
value…In reality you must hang up
your knowledge to something
2. Golden ratio – exactly before I
should go to the blackboard and show
the golden ratio, I was sitting in my
desk sweating as I didn’t know how it
worked. 30 s before my turn it said
“pling” and every piece found its place.
This experience I never shall forget.

1.  When we were working with Cabri-
program you asked me why the triangle
did not change its area. When I
changed the shape at a distinct line then
I got a moment of clarity when I saw
that the altitude and the base didn’t
change in spite of the triangle goes to
infinity.
2. An extra bonus was when I visited
my school and pupils were working
with TI-92. They were sitting there
quite confused both teacher and pupils.
And I could help them. I felt satisfied!
3. I now see fantastic possibilities for
me as a teacher in using geoboard in
school.

Among the situations that are related to a learning situation are “The golden
ratio, Cabri and the geoboard”, being all of fictional characters in mathematical
education. These subjects themselves are constructive in many ways and the
situations invite to co-operation in the classroom for problem solving.

To learn from working with port folio is expressed in the following way:

1. “All the time I’m studying my own learning by using portfolio. But I have
still no knowledge in structuring.  I will work to know is in future because
it interesting for me. Not only for me myself I want this knowledge in my
profession and pass the idea to the children.”

2. “It’s a kind of art to build a portfolio. I have plenty of material but I am
interested in ordering it in a way, which is my way.”
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To see the process of the three studies in a model

A problem situation
giving a conflict for
the student

First study

He gets an
image of the
situation in his
head

He react by
thinking if he
knows the
subject or not

He writes
about himself
through the
conflict

Second study

He compares
his own
writing in a
lesson situation
with the others
in other
situations but
the same
lesson

Discussion
groups

Third study

He must find his
own situation were

he learnt
Mathematics or

Didactics

This he learnt Now he has chosen
a problem
situation of his
own. Therefore
when he solves his
problem he also
knows from where
it comes and how to
express it

External
expression from
what he learnt.

The result of the third study is more about writing about learning than the two
earlier studies. But it is still difficult to see understanding of the concepts of the
courses. And how can I know that the student can use their knowledge? That
question is now more evident in assessment in one of three levels of the student.
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Semiotics in Education 
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Abstract 
On the particular topic, the graph of the function y = kx + b, a conception 
of a proof is concidered. A few Lithuanian textbooks are analyzed. Graphi-
cal representation of a proof and other innovations are suggested. For 
analysis and design of texts Greimas’s approach of semiotics is applied. 

 
Problem description 
Proofs are disappearing in school mathematics. Students must more and more trust the 
truths, which are presented in textbooks without sufficient substantiation. Later on 
when they enter universities they have a lot of problems, especially freshmen. They 
are depressed by the word “proof” only. In this paper I consider the conception of a 
proof. I present the current situation (Bagdoniene et al., 2000) and two historical 
references (Kiseliovas, 1959; Busilas & Balutis, 1934) about the graph of a function     
y = kx + b in Lithuanian textbooks. I would like on this particular topic to revive the 
conception of a proof (Kudzma, in press). For reaching these goals semiotics (Greimas, 
1970, 1979) is applied. A.J. Greimas (1917-1992), Lithuanian by nationality, wrote his 
most important works in Paris and was the maitre of the well-known Paris school 
semiotics. It is very impressive that semiotics laws are universal and can be applied for 
analyzing any text (poem, tale, story, picture, film, lecture, advertising clip, etc.). 
Semiotics is useful for design, too. 
 
The function y = kx 
Let us look at the contemporary Lithuanian textbook for the 9th grade (Bagdoniene et 
al., 2000, p. 22): “Let us draw the graph of a function y = 2x. Choosing a few values of 
an argument make the table of values of the function. Let us put these points (x, y) on 
the coordinate plane. After joining them we see that all these points lie on the straight 
line, which passes the origin of coordinates. In a similar way we can convince 
ourselves that for any value k the graph of a function f(x) = kx is a straight line, which 
passes the origin of the coordinate plane”. 

If we look back to the history we will find that similar texts were reproduced in 
textbooks for almost 40 years. But in Kiseliov (1959, p. 34) we can find the strict 
proof of the statement: “The graph of the direct proportionality (y = kx) is the straight 
line, which passes the origin of the coordinates and the point (1, k).” 
Comparing these two texts we can notice the difference in formulations. The first one 
is not completely correct – a straight line, which passes the origin of coordinates is not 
uniquely determined and not related with the coefficient k. Kudzmiene and Kudzma 
(2001) pointed out that if the proof is omitted then the mistake in the formulation does 
appear. If we take a few points for plotting the graph then all points are equal, except 
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(0, 0), and it is difficult to distinguish the second point (1, k) (why this but not another 
one?). 

A few words about Lithuanian textbooks need to be made. After reestablishing 
independence in 1990 Lithuanian authors started writing textbooks for secondary 
school. This is the first generation of them. The last one is for the 9th grade (Bagdo-
niene et al, 2000). During the period 1940 – 1990 there were textbooks unified for all 
Soviet Union (except Estonia). We had to translate them from Russian only. But there 
were national textbooks in 1918 – 1940. It was very interesting to find that Busilas & 
Balutis (1934, p. 132) proved the assertion about the graph of direct proportionality     
y = kx  and used the correct formulation. 
 
Semiotics – introduction 
According to Greimas’ (1970, 1979) semiotics theory a text is organized and therefore 
can be analyzed in three levels: 

1) discursive, 
2) narrative, 
3) semiotic or logical-semantic. 

The interplay among these levels builds the frame of the theory. The key point of the 
third level is, so called, semiotic square. This square governs the narrative level. 
Theory distinguishes four phases of narrative level: manipulation, competence, perfor-
mance, sanction. Actants, like, addresser, addressee, subject (hero), anti-subject (rival, 
villain), object of value, helper, etc., are the notions of narrative grammar. Narrative 
level has clearly expressed anthropomorphic character. Profound analysis of tales and 
myths stimulated development of semiotics, at least Greimas’ semiotics. From another 
side, tales have very powerful didactical charge. Why not to use this tremendous 
didactical experience in mathematics education? Ernest (1997) considered parallel 
between myths and a mathematical proof, too. 
 
Discourse analysis 
Let’s try to analyze the discourse of the selected page below. 
1) The proof is represented graphically. Visualization is a global tendency today. 

Graphics is attractive for youth. 
2) The proof (path of a hero) is of a circular form. There is a very natural reason for 

that - we start from a function and finish with the same functional relation. To start 
from and to finish with the same condition or relation is quite common in 
mathematics, especially in proving theorems about necessary and sufficient condi-
tions. Ernest (1997) also noticed a circular nature of a proof, but in different sense. 

3) The main result (object of value) is placed in the center. This is logical conse-
quence of a circular representation of the proof. The first glance at the page must 
catch the most important thing. 
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4) The definition of a graph of a function girds up the center. Somebody or something 
(rival) must protect the object of value. This protection is realized as a shield with 
the definition. I want to stress the role of the definition as a shield and to make it 
visible. 

5) Two arrows cross the shield and reach the center – object of value. The proof 
consists of two parts and when a part ends an arrow reaches the center. 

6) Theorems, definitions, which are used in the proof (helpers), are placed in corners. 
There are several arguments for such design: 

i) Corner elements form the frame of construction; 
ii) Auxiliary theorems (helpers) in the corners represent forces which do not 

allow run out of the circle during the proof and press to the center where the 
desirable result is situated; 

iii) Readers must not seek and look at the page No. n for reference; 
iv) Readers visually see how theorems are being used; 
v) Repetition of auxiliary results several times strengthens remembering. 

7) Algebra is separated from geometry by putting algebra in the left side and 
geometry in the right side of the page and by painting corresponding blocs in 
different colors - geometry in green (like earth) and algebra in yellow-brown (like 
sand from Arabic deserts). The separation of algebra from geometry was the first 
serious step in designing of such a page. 

 
Narrative analysis 
Narrative grammar says that the story starts from the manipulation phase: somebody 
(addresser) formulates a problem and finds addressee (subject or hero) who wants and 
is able to solve it. The second phase is competence: subject (hero) is put into the 
situation, which permits him to act. Mostly in textbooks this subject-hero is “we”, but 
it depends on discourse. The first two narrative phases are not so important in this 
paper and I’ll dwell on two last ones. I prefer to use terminology from tales (hero) to 
pure semiotics (subject) in the analysis of performance. 

As usual, the hero must pass three tests for the victory. The first test is to find the 
graph of the function y = ½ x. For the first we (hero) take few values of an argument x, 
find values of the function, then put points on the coordinate plane. One can see and 
guess that all these points lie on the same line. But it should be proved. Hero always 
needs a helper. At this time the theorem about equality of triangles helps to prove what 
is asked. But in general, the first attempt is not successful. The next time hero invites a 
stronger helper – the theorem about similarity of triangles. Now he proves that the 
obtained line is the graph of a function. The second test is to find the graph of a 
function y = kx. Hero has an experience, the reliable helper and passes the test again. 
The third test is the most difficult - to find the graph of the function y = kx + b. The 
hero carries out the task without any problems. 
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Let us compare the stories mentioned above. In Bagdoniene et al. (2000) truthfulness 
of the statement is left to “seeing” and believing. Thinking is excluded. The very first 
sentence in Kiseliov’s (1959) proof - “Let us prove that the graph of a function y = kx 
is a straight line” is not didactically substantiated. Where does a straight line come 
from? Both “experimental” part (getting the line) and the proof that this line is the 
graph of a function do exist in Busilas & Balutis (1934). I follow this approach. 

From the first sight a repetition of three times of very similar proofs could be 
boring. The logical scheme is the same in all three cases but there are slight and 
important differences concerning signs of coefficients and arguments. These differen-
ces have influence into the graphical and textual representation of a page. Studying all 
cases helps to form a complete picture of a problem. The last one, didactical remark – 
Repetition est mater studiorum. 

In the sanction phase the addresser must say very important phrases: 
1) The function y = kx + b is called linear, because its graph is a straight line. 
2) From now the straight line which is the graph of the function y = kx + b will 

be called simply “(straight) line y = kx + b”. 
Such sentences do exist in Kiseliov (1959, p. 40) but I miss them in a great number of 
textbooks. It was interesting (not for the first time!) to find the following text in 
Busilas & Balutis (1934, p. 216): “The function y = kx + b is called the first order 
function because an argument x has the first power. It is called linear too, because its 
graph is the straight line”. People almost a century ago called things with right names! 
Semiotics gives a very simple explanation – sanction follows after performance. If 
there is no sufficient performance (proof) then there is no need for any sanction. 
Omitting proves we loose understanding of right names. At the end of narrative 
analysis I wouldd like to emphasize one thing: A function y = kx + b is not linear until 
it is not related with a line. 
 
Semiotic analysis 
First of all it requires finding the main opposition in the text. It is between algebra and 
geometry and even expressed graphically. Algebra and geometry are two different 
means to investigate nature and two different languages at the same time. The problem 
is to create strict correspondence between objects of algebra and geometry. It is very 
easy to form the semiotic square: 

  algebra  geometry 
  non-geometry non-algebra 

Algebra and geometry are joined by something from intersection of non-algebra and 
non-geometry (general feature in semiotics). Very interesting words (objects) belong 
to this intersection - graph, abscissa, ordinate, coordinate(s), etc. They are functions 
from algebraic objects to geometric or visa versa. If I represent the definition of a 
graph or formulation of a theorem about the graph in a circle then algebra is in the left, 
geometry in the right and words “graph”, “coordinates” find their place in the middle: 
 



Papers 

 176 

 
 
 
 
 
 
 
 
 
 
 
 
 
This phenomenon might depend on the language. Such order of words – “The 
function’s  y = kx  graph is the set of points with coordinates (x, kx)” is a natural order 
in Lithuanian but not in English. It is possible to reformulate the definition in the 
following way: “A function y = kx has its graph as a set of points with coordinates (x, 
kx)”. This form of the sentence can be represented in the circle. 
 
Final remarks 
I think that the topic about the graph of a function y = kx + b is very important. It 
forms the foundation for further studies of Calculus (Mathematical Analysis). 
Descartes gave us very powerful tool, the method of coordinates, to connect algebra 
with geometry and we must use it with corresponding respect. On this particular topic 
I tried to show how semiotics could be applied for analyzing and designing texts and 
developing the conception of a proof. I hope that semiotics is a quite reliable helper. 
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Abstract
Recent studies show that Hong Kong students have a narrow conception
of mathematics. Why are they so? One of the possible causes is that they
have a narrow lived space of mathematics learning. The present research
reviewed the types of problems Grade 7 and Grade 9 students did in
class, at home and in examination. The results indicate that the students
were exposed to a variety of problem types, but the level of con-
textualisation was low, level of open-endedness was low. Most questions
required students to apply rules and routine procedures.

Introduction
Despite the outstanding performance of Asian students in general and Hong
Kong students in particular in international comparisons in mathematics (Beaton
et al., 1996), there had been increasing evidence that these students may not be
exceptionally good in non-routine problems (Cai, 1999). That might be attributed
to students’ conceptions of mathematics. When students conceive mathematics as
an absolute truth or as a set of rules for manipulating symbols, they would tend to
treat doing mathematics as the memorisation of a series of steps of tackling
questions and learning mathematics as a transmission of knowledge from the
teacher to the student (Clay & Kolb, 1983; McLeod, 1992). This was what we
have found in various research studies conducted in Hong Kong (Lam, Wong &
Wong, 1999; Wong, Lam & Wong, 1998).

A study in Hong Kong also indicates that students’ conception of mathe-
matics is shaped by classroom experience (Wong, 2000; Wong, Marton, Wong,
& Lam, in preparation). If most problems given to students lack variations,
possess a unique answer and allows only one way of tackling them, it will not be
surprising that students see mathematics as a set of rules, the task of solving
mathematical problems is to search for these rules and mathematics learning is to
have these rules transmitted from the teacher.

The research reported here focuses on reviewing the current state of the
problem-solving environment in the mathematics classroom, the ‘lived space’ of
mathematics learning. We aim at investigating the variation of mathematical
problems according to the levels and ability of secondary school students by
analysing the problems given to them.
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Sampling and procedure
The focus of the present study was on Grade 7 & 9 students. A topic in algebra
and another topic in geometry were chosen in each of grade levels according to
the current Mathematics syllabus developed by the official curriculum develop-
ment agency in Hong Kong. Algebra and geometry were chosen because number
sense and spatial sense are two corner stones of school mathematics.  The topics
we have chosen are:

Formulae, open sentences and simple equations (Grade 7)

Fifteen teachers were invited to provide the researchers with the homework and
mathematics test papers of these topics they used in their schools.

A total of 1,557 mathematics problems (of which 1,200 were homework and
357 were test items) from 15 schools (5 of high mathematics standards, 4
medium and 6 low) were collected. All the mathematical problems were grouped
and analysed according to different criteria: (a) problem types, (b) the extent of
contextualisation of the problems, (c) openness at the given information, (d)
openness at the goal and solving process and (e) the levels of expected
performance.

Stratified analysis of the above were performed according to the groupings of
(i) academic standards of the school, (ii) occasions at which the problems are
given (homework or test), (iii) grade level and (iv) topic (i.e. algebra or geo-
metry).

Framework for analysis
Problems used in teaching and assessment
With initial analysis, problem types of each topic were identified.  For example,
for the topic “Formulae, open sentences and simple equations”, we have identi-
fied:

(i) Rewrite mathematically
(ii) Substitute into well-known formulae
(iii) Substitute into “home-made” formulae
(iv) Perform algebraic manipulations
(v) Set up equations
(vi) Solve equation involving one to two techniques
(vii) Solve equation involving more than two techniques

The problems were classified according to whether they were: (i) situated in a
rich context, (ii) put in a context but the data can be readily obtained, or (iii)
posted in a purely symbolic setting.  Furthermore, the problems were analysed to
see whether they contained (i) redundant data, (ii) an exact number of necessary
data, or (iii) missing data. Also, they were classified according to these condi-
tions: (i) having a single answer and a single solution, (ii) having a single answer
but with multiple solutions, and (iii) other types of open-endedness.
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The levels of expected performance were analysed using the TIMSS (The Third
International Mathematics and Science Study) framework (Robitaille et al.,
1993). The framework is composed of the following levels:

(a) Knowing
(b) Using routine procedures
(c) Investigating and problem solving
(d) Mathematical reasoning
(e) Communicating

Results

Overall picture
The different problem types in the various topics reveal that we had a variety of
problem types (ranging from 7 to 10) across the four topics. Table 1 is an
example. However, the categories of the skills involved by their problems
revealed that most of them only required students to perform some routine
procedures, similar to what had been taught in the examples of the textbooks.

Problem Type %
Find volume of blocks without given cross-sectional areas 24
Find area of irregular shapes, without supplementary lines 21
Find area of regular shapes 16
Find length/area directly 10
Find length, but need to find the area or volume first 10
Find area of irregular shapes, with supplementary lines 10
Find volume of blocks with given cross-sectional areas 5
Application 4
Find volume of blocks without a uniform cross-section
(one have to divide the blocks into smaller blocks first)

1

100

Table 1. Problem types of Topic # 1.5 and their relative percentages
(in decreasing order of percentages)

Results also reveal that 85% of the problems were posted in a purely symbolic
setting. Although we found some problems (12%) that were put in a contextual
situation, the numerical data could be readily obtained. Only 3% of the problems
were set in a rich context.

As for the openness of the problems, exact information was given in 99% of
the problems and 98% of them does not allow multiple solutions. As regards the
level of expected performance, although considerable variations were found
across the problems, 79% of the problems required students to carry out routine
procedures only (3% involves “knowing”, 10% involves “investigating and prob-
lem solving” whereas 8% involves “mathematical reasoning).
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Variations across schools of different academic standards
When we compared the problem types used in schools with different academic
standards, the situations resembled the overall picture (when the entire problem
pool was considered). However, we noticed that some of these problems types
were absent if we consider the schools separately. In other words, some schools
did not provide certain types of problems that other schools gave. This reflects a
certain extent of curriculum tailoring in schools.

Results also revealed that the problems given in schools of better academic
standards had slightly greater extent of contextualisation than schools with lower
standards. For schools with high academic standard, 86% of the problem was
purely symbolic, for medium standard, we have 89% and for low standard, 78%.

Since the problems given to students across the schools lacked openness in
the given information, it is obvious that the situation would be the same among
schools of different academic standards. The percentages of problems providing
exact information for schools with high, medium and low academic standards
were 99%, 100% and 99% (rounded off) respectively. The case is similar for
openness at the “goal” and “process” stages. There was little openness regardless
of the academic standards of schools (the corresponding percentages were 96%,
99% and 99%).

As for levels of expected performance, slightly more problems of higher
levels of expected performance were provided by schools of better academic
standards. For instance, the percentages of problems that involves “investigating
and problem solving” in schools with high, medium and low academic standards
were 16%, 8% and 5% respectively.

Variations between homework and test
The problem types of homework and tests were compared.  It was found that the
range of problem types given in tests was a bit narrower than that given in home-
work. Also, the emphasis of the types of problems in tests differed quite obvious-
ly with the emphasis in homework. The types of problems in tests were more
evenly spread.

There were much similarity between the problem types given in homework
and tests (symbolic: homework – 83%, test – 86%; exact information: both
homework and test were 99%, unique solution: homework – 98%, test – 97%)
except possibility the expected performance of the problems. For homework,
82% required the use of routine procedures and the percentage was only 71%.  In
tests, 14% of the problems required investigation and problem solving whereas
the percentage for homework was only 8%.

Variations across grade levels
When we compared the problems given to Secondary 1 and Secondary 3, it was
found that the higher the grade level, the more the problems being purely
symbolic (94% for Secondary 3 and 78% for Secondary 1). Although there was
little openness among the problems in general, some problems with redundant
data were found in Secondary 1 (even though the amount was very small, around
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2% of the problems in Secondary 1) compared to the whole sample. Little open-
ness was found at the goal and solving process too. However, we had a small
portion of problems that could be solved with more than one solution. Around
4% of the problems could be solved with multiple solutions in Secondary 1,
while only 1% of such kind of problems was found in Secondary 3.

When we compared the level of expected performance with reference to the
grade level at which the problems were given, we found that problems requiring
mathematical reasoning were found in Secondary 3 (all from the Topic # 3.4.1
and 3.4.2, and most of them involving “prove …”, “show …” and “give
reasons”) but none in Secondary 1. Furthermore, 11% of the Secondary 1 prob-
lems required investigating and problem solving.

Other observations
The analysis also reveals a number of interesting points. First, the textbook was
found to be the main source of mathematics problems given to students. To a
certain extent, it reflects the textbook dependence of classroom teaching. The
lack of variation further worsened since most of the schools picked out mathe-
matical problems from the same textbook(#). While some teachers in the present
study reflected that the choice of mathematics problems was decided during
mathematics subject panel meetings in schools, in many cases, teachers just
followed the convenient way of circling a number of problems in the textbooks
for the class work and assigning the rest as homework. One commonly adopted
practice was also identified: it is to ask students to do odd-numbered problem
during the lesson and leave the even-numbered problems for homework assign-
ments. It was also observed that more exercises were given in the algebraic
topics than the geometrical topics.

A number of “uncommon” practices, which were probably performed to
exercise curriculum tailoring, were also found. For example, while there was a
teacher who gave some challenging problems for more able students, there was
another teacher who broke down problems into smaller parts in order to help
students understand the problems.

Discussion
Though only four topics were involved in the study, the analysis of these one
thousand and five hundred problems provided by the teachers gave a clear
picture of the “lived space” of student learning in mathematics. Obviously, the
lack of variation of the problems, though sort of expected, is disappointing. The
convergence of problems was shown in two dimensions. First, there was little
open-endedness among the individual problems given to students. Second, the
types of problems given to students were quite unified across different schools.
The major reason is that most teachers relied on the same “data bank,” i.e. the

                                                  
(#) Textboks in Hong Kong are developed by commercial publishers. Teachers and schools

choose from the market. At present, a particular textbook is occupying over 90% of the
market.
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most popular textbooks in Hong Kong. The use of other sources like overseas
textbooks, self-created worksheets, articles from periodicals was rare. The expec-
ted performance of the problems given was also low, whether in homework or in
tests. The situation was a bit improved when students moved from Grade 7 to 9.
Moreover, more openness and more problems with higher expectations in the
area of geometry were also found.

In fact, the same phenomenon has been repeatedly found in other studies. In
the most recent TIMSS-V Study (The Third International Mathematics and
Science Video Study), it was found that the teaching styles and problems posed
to students are very much the same across schools with different academic
standards. Catering for individual difference is lacking since teaching is con-
formed to textbooks and to examination formats (Tseng, 2000). This is in fact
echoed in the present study.

Naturally, mathematics problems constitute the major part of students’
experience with mathematics. If we agree that variation is conducive to the
development of mathematical understanding, obviously the scenario depicted in
this study is not encouraging. The lack of variation may attribute to the general
narrow conception of mathematics among the students (Wong, Lam & Wong,
1998). Furthermore, the lack of variation across schools reflects the absence of
curriculum tailoring to cater for individual differences, which is an essential issue
in universal education (Wong et al., 1999). Although the lack of variation could
be a result of standardisation due to an examination orientation (Kong & Wong,
1998), we must be aware that variation of problems can bring about impact
among the students and lead to betterment of learning (Marton, & Booth, 1997).
A teacher taking part in the present study wrote the following remark: “I once
gripped a test from a school of higher band and gave it to my students.  The
students all failed with very low scores and they blamed me. I then went through
the test with my students. Eventually they realized that the problems were not as
difficult as they thought and they had higher efficacy in tackling those prob-
lems.” His'her remark vividly shows how variations can bring about a learning
environment favourable to conceptual understanding.

Students did hundreds of thousands of mathematics problems during their
long course of schooling. These problems should constitute a rich lived space of
experience for them. However, in places like Hong Kong where students are
required to do so many exercises the crux of the matter seems to be quality rather
than quantity. Though one may say that numerical computation and direct
application of formulas are involved in most problems and the domination of
them among the strategies employed by the students is no surprise, we see in the
present study that the involvement of higher order thinking like reasoning is far
from the desirable level. Would it be a waste of energy if students are drilled
with numerical computations repeatedly in their course of study? Practice is
essential in mathematics learning, repetitive learning can bring about transcen-
dence to a higher level of understanding only if systematic variation is introduced
(Richardson, 1999). How ancient Chinese learn could shed light on this (Wong,
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1998). It is hoped that by the introduction of a varied and gradually opened up
lived space, students could arrive at a rich and structured outcome space of
mathematics learning.

Acknowledgement: This research was commissioned by the Education Depart-
ment of Hong Kong.
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Abstract
This report deals with 7th grade pupils’ conceptions of mathematics, its
learning and teaching. The report focuses on the identification and com-
parison of views expressed by pupil groups of different mathematical
ability and achievement. The analysis is based on the results of the abil-
ity tests, subject tests and a questionnaire conducted among the 7th grade
pupils of Estonian schools.

Introduction
Pupils’ conceptions of mathematics and themselves as learners of mathematics
are of fundamental importance in their learning of and performance in mathe-
matics. Previous research has shown that differences in pupils’ conceptions are
much bigger between countries than within one country. This implies that each
country has its own teaching style and teaching culture, which do not change
very easily. The biggest differences in the conceptions of pupils of different
countries are found in the understanding of the role of the teacher. For example,
Estonian pupils are more teacher-centred (Pehkonen, 1996). Compared to their
counterparts in other countries (such as Sweden, Finland, Hungary, and Ger-
many), they prefer a teacher who explains well, helps them immediately and al-
ways tells them exactly what they ought to do to solve a mathematical problem.
Previous research on pupils’ conceptions has also shown no significant differ-
ences between the conceptions of girls and boys. Some mathematics educators
(A. Schoenfeld, E. Silver) have pointed out that pupils’ conceptions of mathe-
matics may prove to be an impediment to the solving of non-routine problems
and to effective learning. However, the solving of such problems is important
with respect to pupils’ ability and creativity.

The purpose of our study was to answer the following question: How is the
student’s conception of mathematics teaching connected with his or her ability
and academic achievement?

We also tried to answer the following subquestions:

• What characterises the ways of mathematics learning of more talented and
less talented pupils?

• In what way do the conceptions differ between students achieving better
results and those achieving poorer results?
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Data gathering and tests
This paper summarises year 1 results of a [three-year] research project aimed at
analysing the progress made by and the changes in the conceptions of mathe-
matics teaching and mathematics learning of a cohort of pupils proceeding from
grade 7 to grade 9.

In year 1 of the project (1998), an ability test (Potential), three achievement
tests (Numbers, Algebra, Shape & Space) and a questionnaire including 33 ques-
tions about the teaching and learning of mathematics were carried out among the
7th grade pupils in 14 schools in Estonia. The ability and achievement tests used
were prepared within the framework of the Kassel-Exeter (Kassex) project
(1994-1998). The general coordinator of the project was Centre for Innovation in
Mathematics Teaching – CIMT of the University of Exeter (Anon. a & b, 1994).
The questionnaire was prepared by E. Pehkonen and B. Zimmermann and, like
the Kassex project tests, has been used in several countries.

The initial test (Potential) consisted of 26 questions and the subject tests of
50 questions each. The answers were graded on a dichotomous scale as follows:
“1” - true, “0” - false. Thus, the highest possible score was 26 points on the initial
test and 50 points on each of the subject tests.

The questionnaire (responses according to the following pattern: “-2” – I
strongly disagree; “-1” – I disagree; "0" - I do not know; “1” – I agree; “2” – I
strongly agree) addresses four different conceptual domains: Conceptions of
mathematics (questions of this type in the questionnaire are below marked with a
C); Conceptions of the way of doing mathematics (D); Conceptions of mathe-
matics learning (L) and Conceptions of mathematics teaching (T).

The number of pupils who completed at least one test or the questionnaire
was 414. Of these, 198 (47.8%) were girls and 216 (52.2%) were boys. The aver-
age age of the respondents was 13.5 years. Those pupils who did not complete all
the tests and the questionnaire were left out of the following analysis.

The average results of the tests are presented in Table 1. Since the Kassex
project required the tests Numbers, Algebra and Shape & Space to be applicable
to the testing of the same pupils for three consecutive school years (ages 13+,
14+ and 15+), the average test results for this age group (13+, Grade7) are, for
natural reasons, relatively low.

Test N Possible
maximum

Mini-
mum

Maxi-
mum

Mean Std. De-
viation

Potential 396 26 2 24,0 12,7 3,6
Numbers 399 50 7 40,0 24,1 6,7
Algebra 396 50 3 24,0 11,2 4,2
Shape and Space 395 50 0 29,0 12,4 5,1

Table 1. Test results
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We assessed the reliability of the tests using two methods: as internal consistency
by Cronbach Alpha, which, due to the dichotomous assessment of the test results,
is here equivalent to the Kuder-Richardson Formula 20 (KR20), and by finding
the Guttman’s lower bound for the true reliability. It appeared that the reliability
of our tests is at least satisfactory, remaining within the range of 0.68 (Potential
and Algebra) to 0.86 (Numbers) for Cronbach α and 0.68 (Shape and Space) to
0.87 (Numbers) for Guttman’s coefficient.

For grouping the pupils by their mathematical ability, we divided them into
three groups on the basis of the results of the ability test (Potential) as follows:
Low ability group (17% of the pupils, total score 2 - 9 points), Medium ability
group (68%, 10 - 16 p) and High ability group (15%, 17 - 24 p).

For grouping the pupils by their mathematical achievement, we used the
arithmetic mean of the results of the three subject (achievement) tests (Numbers,
Algebra, Shape and Space). Since the arithmetic mean ranged from 0.0 … 30.0
points, we divided the pupils into three achievement groups as follows: Low
achievement group (13% of the pupils tested, the mean being 0.0 – 10.0 points;
Medium achievement group (69%, mean 10.1 ... 20.0) and High achievement
group (18%, mean 20.1 ... 30.0). The following presentation of some of the re-
sults of our research on the pupils’ conceptions includes only the high and low
ability and achievement groups, leaving aside the respective medium groups.

The conceptions of the pupils in different ability and achievement groups
It appeared that in most cases (79% of all 33 statements) it was impossible to
prove the existence of differences between the conceptions of the pupils of the
two extreme ability groups and the two extreme achievement groups at the sig-
nificance level of p < 0.05. This is evidenced by the statistically significant cor-
relations (for Pearson’s r and Spearman’s 

€ 

ρ the p<0.000) and by the similarity of
the respective divisions (

€ 

χ 2–test, p<0.999) between the evaluations of pupils of
different groups along the means of points in the questionnaire.

A. Conceptual domain – the content of mathematics
This conceptual domain was measured by the following 9 items:
Good mathematics teaching includes:

C1 doing calculations by heart C6 different topics … taught … sepa-
rately

C2 mechanical calculations C7 problems … have practical appli-
cations

C3 drawing figures (e.g. triangles) C8 calculating areas and volumes
C4 doing word problems C9 constructing concrete objects
C5 using calculators

There are no significant differences (t-test, p<0.05) in the conceptions of the
content of mathematics between the low and high ability groups. Both groups
consider calculating to be of the highest importance. The importance of calcu-
lating with the help of a calculator is significantly lower than calculating by heart
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or in writing both for the high-ability and low-ability pupils. The use of a calcu-
lator is considered necessary or highly necessary by only 50% of the low-ability
and 51% of the high-ability students. In this respect, the conceptions of Estonian
pupils have undergone considerable changes: in 1990, calculating with the help
of a calculator was the most preferred method (Lepmann, 2000). Surprisingly,
there are also no differences of opinion with regard to non-routine tasks: 76% of
the low-ability students and 77% of the high-ability students think that textual
tasks (C4) are an integral part of mathematics teaching.

In the achievement groups, statistically relevant differences are only evi-
denced in the responses to three questions related to calculating skills (C1, C2,
C8). The responses reveal that calculating skills with their different aspects are
considered significantly more important by the pupils in the high achievement
group than those in the low achievement group (Figure 1). Strikingly, the con-
ceptions on this domain of the high ability and the high achievement groups co-
incide fully – of the highest importance is the skill of calculation by heart while
the skills related to the construction of concrete objects are ranked lowest. The
respective opinions on this domain of the low ability and the low achievement
groups, however, are less coincidental (r=0.71, p>0.05 and ρ=0.63, p>0.05).
Nevertheless, in both cases the pupils attribute the lowest importance to the
statements related to geometry. An analysis of the responses to items C3 and C9
given by the low group pupils reveals that in both instances these students are
slightly more in favour of enactive representation than iconic representation.
Among high-ability pupils, it is on the contrary.

Figure 1

B. Conceptual domain – the way of doing mathematics
This conceptual domain was measured by the following 5 items:
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D1 right answer… more impor-
tant than the way

D4 everything … reasoned ex-
actly

D2 everything … expressed …
exactly

D3 there is … procedure … to
exactly follow

D5 there is … more than one
way of solving

In this domain, no significant differences could be observed in the conceptions of
the extreme groups. It is only worth mentioning that both extremes considered
exact reasoning (D4) to be of the highest importance. All groups of pupils liked
solving the same task in different ways. Encouraging from the perspective of
promoting constructivist approach is the fact that all the groups responded nega-
tively to Statement D1: the right answer is more important than the way to get it.
However, the low-ability students were more in favour of the statement that eve-
rything ought to be expressed as exactly as possible (D2). Probably, they under-
stand the material presented in this fashion better.

C. Conceptual domain – mathematics learning
This conceptual domain was measured by the following 8 items:

L1 all pupils understand L5 learning is not always fun
L2 much will be learned by heart L6 it demands much effort
L3 as much repetition as possible L7 as much practice as possible
L4 only … talented pupils can solve itL8 all the material … will be under-

stood

Figure 2

With respect to mathematics learning, both ability groups (Figure 2) consider un-
derstanding the material (L1, L8) to be of the highest importance. Interestingly,
learning by heart is opposed by the low-ability pupils in the same way as by the
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high-ability pupils. A closer analysis (Figure 3) reveals that:

Figure 3

both of the groups include more than 40% of those who are opposed to learning
by heart, and more than 20% of those who consider it necessary. However, there
are significant differences in the attitude of the pupil groups towards the relative
importance of ability. Namely, both the low ability and the low achievement
groups (Figure 4) tend to agree with statement L4 - that only talented pupils can
solve most of the tasks. Nevertheless, the average opinion on this statement stays
fairly close to neutral in both cases, with 38% of the low-achievement pupils and
32% of the low-ability pupils having responded to this questions with the option
"0"- “I do not know”. A tendency can be observed that the pupils of the highest
ability believe more than those of low ability that all the pupils are able to learn
mathematics and that success in learning is possible if effort is made. They have
a somewhat higher degree of self-perceived ability and desire to learn mathe-
matics (L5, L6). The low-ability pupils, however, are more disposed to give up.

Figure 4
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D. Conceptual domain – mathematics teaching

T1 pupils … guess and ponder T7 teachers explain every
stage

T2 right answer quickly T8  pupils solve … independ-
ently

T3 strict discipline T9 working in small groups
T4 pupils put … own questions T10 teachers tell exactly what

to do
T5 teachers help … when in
      difficulty

T11 pupils can work accord-
ing to abilities

T6 learning games

In this domain, the opinions of different ability groups differ the most (Figure 5).
The greatest differences for the entire questionnaire are manifested in the re-
sponses to statement T11: high-ability pupils are considerably more willing to
agree to the view that everyone should be able to work according to his or her
ability. Thus, it is the more able pupils that need a greater differentiation of
teaching. Surprisingly, the views of the two extreme achievement groups on
statement T11 are identical, whereas those of the two extreme ability groups who
differ significantly in this respect. Both the ability and the achievement groups
approve of process-orientated teaching, but their conceptions concerning some
aspects of this process are different. The high-ability and the high-achievement
pupils appreciate significantly more the fact that pupils are allowed to (try to)
solve problems as independently as possible (T8); they want to make their own
guesses at the solution of a problem (T1). At the same time, the low-ability and
the low-achievement pupils are more expectant to receive help from the teacher
(T7, T10).

Figure 5
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Figure 6

Conclusions and Discussion
The findings of the study support the view laid out in the introduction that pupils’
conceptions of mathematics and the learning of mathematics are generally cor-
related with not so much their individual ability and achievements as the general
paradigm of mathematics teaching prevalent in a given country. However, certain
differences based on achievement and ability may still be observed among the
pupil groups examined in our study.  

The study revealed that high-ability pupils have considerably greater faith in
achieving success in mathematics learning than low-ability pupils. Compared to
other pupils, high-ability students are considerably more desirous of each pupil
being able to work according to his or her ability. They want to develop their
ability and are ready to do more work in the name of success. Low-ability pupils,
however, are more disposed to give up than pupils with high ability.

The greatest differences between the students of low and high ability lie in
the determination of a pupil’s independence and activity by the pupil himself.
Low-ability pupils are considerably more disposed to receiving explanations
from the teacher while high-ability students desire to work independently. Nev-
ertheless, several studies indicate that all students must be actively involved in
their learning. Under such organization of the learning process, students are able
to achieve higher grade point averages than under traditional learning methods
(Alper et al., 1997). As students work a task, the teacher must give them freedom
to solve the problem in their way rather than in some predetermined way. How-
ever, the teacher’s duty is to organise independent work in such a fashion that
each pupil (more able and less able alike) receives instructions from the teacher
to the extent necessary for him or her.

 Understanding the subject is considered equally important both by less able
and more able pupils. This finding was also confirmed by an analysis of the part
of the questionnaire where free answers were allowed. Sometimes, however,
teachers do not believe that each pupil is able to understand the material. For in-
stance, C. Römer writes that in the opinion of a pre-service teacher only 50% of
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the students have the chance to learn something in mathematics lessons by un-
derstanding. The rest have to learn by heart only to survive his time at school
(Römer, 1997). Nevertheless, the pupils’ responses demonstrate how important it
is for the teacher to look for a suitable way for less able pupils also to be able to
understand the subject they learn. For instance, one of the low-ability students in
our study claims that mathematics can be very interesting if I understand every-
thing.

The conceptions of the extreme achievement groups broadly coincide with
those of the extreme ability groups. Significant differences were manifested in
two domains: a) mathematics teaching and b) the content of mathematics.

Regarding the ways of mathematics teaching there were no significant differ-
ences in the opinions of the extreme achievement groups whereas the extreme
ability groups evidenced statistically significant differences in four of the eleven
items. All these items were related to the teaching methods encouraging inde-
pendent learning; in this respect, the high-ability students preferred teaching
methods granting them greater freedom. This may imply that teaching methods
presupposing freedom of activity are particularly necessary for mathematically
talented pupils. Pupils whose mathematical achievement is based not only on in-
nate ability but also other factors are less enthusiastic about teaching methods
that give them a free hand.

Regarding the content of mathematics, however, the only significant differ-
ences were those between the two achievement groups. They concerned the im-
portance of calculation skills in mathematics. The high achievement group con-
sidered these skills an important feature of good mathematics teaching. The es-
tablishment of the type of high-achievement pupils who consider the above fea-
ture particularly important would require further research.
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Abstract
In August 1998 we started a longitudinal study of how students in upper
secondary school develop their knowledge of algebra. The main source
of inspiration for this study was an animated debate that was going on in
the end of 1997, on beginner university students’ skills – or rather lack
of skills – in mathematics. We have now followed about 100 students at
the science programme of Klippans Gymnasieskola during their three
years in upper secondary school. In this paper we give a summary of the
study and present some preliminary results.

Background
It is a well-known fact in most countries for researchers as well as teachers, that
the learning and teaching of algebra is difficult. Many students – perhaps most of
them – find it hard to learn algebra and the outcome of the teaching is often
depressing. On the other hand proficiency in algebra is a critical filter for suc-
cessful studies in mathematics, science, engineering etc. and most failures on
undergraduate level in these careers are probably due to lack of algebraic ability.
Consequently there is a great interest in improving the learning and teaching of
algebra. Even if we still wait for a general and testable theory in the field there
are some results of interest for classroom practice. However, much work remains
to be done, and it will certainly take a long time to understand thoroughly how
students learn algebra (Kieran, 1992; Bednarz et al., 1996; Bergsten et al., 1997).

Algebra in this context is traditional school algebra. Typical topics are
simplification of algebraic expressions, linear and quadratic equations, simple
systems of equations and simple functions. One way to structure school algebra
is to use the three different phases of the algebraic cycle (cf. e.g. Bell, 1996, p.
185):

• translation from a problem situation to an algebraic expression
(representing)

• transformation and simplification of an algebraic expressions
(manipulating)

• interpretation of an algebraic expression (interpreting).

In traditional algebra teaching much emphasis has been on transformations, but
we think all the three phases are equally important. One reason for this is modern
technology. Computers and calculators can manipulate algebraic expressions, but
they can’t translate and interpret them.
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So far results from this study have been presented in four reports (Persson &
Wennström, 1999, 2000a, 2000b, 2000c). As the students have now (June 2001)
left upper secondary school, the acquisition of data is completed. Some further
analysis of the material collected remains. Results and a summary of the whole
study will be published in a fifth and final report. This is expected to be available
in the end of this year.

Questions of interest
Our perspective is that of the practitioner – the teacher in the classroom. There-
fore our main concern is how to improve our students’ learning of algebra and
our own teaching practice. Of course a lot of different questions can be posed in
this context. We have focused on the following ones:

• What skills of algebra are necessary today and which of them are most
important? What by hand skills must the students know and how certain
must they be in performing them? What should comprise a minimal
curriculum?

• How will modern technology affect the learning and teaching of algebra?
What algebra should be learnt, when relatively cheap calculators that can
perform symbolic calculations are available? How can we use the
technology to improve the understanding of algebra?

• What factors facilitate the learning of algebra?
• What factors obstruct the learning of algebra?
• What skills of comprehensive school mathematics are most important in

learning algebra?
• What factors make some lower-ability students – having initially many

difficulties in learning mathematics – succeed in the end?

Methods
The study is mainly a qualitative one although some quantitative results will be
given. To collect data the following methods have been used: tests, question-
naires and other written material, interviews and observations of the students. As
we have been teaching about half the number of students ourselves, it has been
possible to observe these students almost daily.

By testing at intervals we have been able to monitor the development of the
students’ knowledge of algebra. The first test was given when the students began
upper secondary school in August 1998. They also answered a questionnaire and
some (about 20) were interviewed. The purpose was to classify their skills and
attitudes at the beginning of upper secondary school (Persson & Wennström,
1999).

The second test and questionnaire was given a year later in the beginning of
September 1999. A lot of other written material from the students’ first year was
also collected. Using all this material we could see if and in what way the
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students’ algebraic knowledge had changed during the first year (Persson &
Wennström, 2000a, 2000b).

In the end of the second year the students were given a third test (Persson &
Wennström, 2000c) and a fourth test was given in the end of their final year. The
main purpose of these two tests was to study what knowledge of algebra the
students retain.

Some methodological problems should be noted:

• The amount of data collected is huge. How are we supposed to select and
structure the material in order to get the most interesting and relevant
information? How to avoid bias?

• As we have been teaching some of the students, we have been both
observers and participants. How does this affect our objectivity? All
observers are more or less subjective, but how do we minimise the
subjectivity?

• Our study is performed in a certain environment with a limited group of
students. How general are our findings?

These problems are not easily resolved. All experimental educational research is
facing them and it is always necessary to stress that the findings of such research
never have the same reliability as e.g. those in physics (cf. Wheeler, 1996,
p.147). One way – maybe the only one – to test the plausibility of one’s findings
is to compare them with those of others – scholars as well as practitioners.

Results
To give the reader an idea of the tests used in the study we present here the fourth
and final test. Some results with comments are given and comparisons are made
with the other tests. Some facts should be stressed:

• The students’ learning situation has not been favourable. The curriculum
of 1994 has been too ambitious. Too much material (in algebra,
trigonometry, calculus etc.) has been covered in too short a time. For most
of the students this has resulted in superficial and procedural learning
without a deeper understanding of many of the concepts discussed. Both
knowledge and skills have been affected negatively by the shortage of
time. (In a new curriculum more time will be allocated to mathematics.)

• Because of practical and administrative problems it has not been possible
for all the students to perform the test. 74 out of 92 have done it. We think
this is enough to give a true picture of the situation. Besides we have a lot
of other material to check the reliability of our findings.

• In a longitudinal study too many tests, questionnaires etc. may wear out
the students and as time goes by they become less motivated to participate
in the study. This has not been a great problem in our study. Most of our
students have been very co-operative and made a real effort. Nevertheless
we have encountered some small problems of motivation on the last two
tests
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The test consisted of 20 questions. It was a paper and pencil test. Calculators
were not permitted. On 17 of the questions (1a-8) an answer should be given and
on 3 (9a-c) a solution. The figures given below (in brackets) are the number of
correct answers/solutions in percent.

- . Solve the following equations

a)  

€ 

4 15 75x x− = − (72%)

b)   

€ 

x

5
6 14− =   (86%)

c)  

€ 

x2 3 7+ = (70%)
d)  

€ 

( )( )x x− + =3 2 1 0 (28%)

Most wrong answers on question 1a and 1b are slips. Almost all students know
how to solve these types of equations. On the first test there were similar

equations e.g. 

€ 

4 15 75x − =   (71%) and 

€ 

x

5
6 14+ =  (81%). The conclusion is

that students know how to solve simple equations already when they leave
comprehensive school and that they maintain and improve this ability in upper
secondary school.

Question 1c shows that most students know the meaning of a solution of an
equation and can find its root by trial and error. Comparison with a similar

question on the first test  

€ 

2 1 7x − =  (51%) indicates some progress.
The results on question 1d are a bit disappointing. Many students multiply

the parenthesis and then they use a formula to solve the quadratic equation. They

get 

€ 

1 25 1 25 1 52. . .± + . But without a calculator they get stuck. On this question
most students show more instrumental skills than a real understanding of
equations.

/ . Simplify the following expressions

a) 

€ 

3 4 3 4 3 4( ) ( )− + −x x (77%)
b) 

€ 

3 4 3 4 3 4( ) ( )+ − −x x (88%)
c)  

€ 

( )( )2 5 3 4x x− + (84%)

d) 

€ 

2x 8

x 2

2 −
−

(22%)

If we compare question 2a-c with similar ones on the first two tests (figures in
brackets are results of the first and second test),

€ 

10 3 4 3 8x x+ − +( ) (54%, 88%)

€ 

10 3 4 3 8x x− − −( )   (42%, 77%)
 

€ 

( )( )2 5 3 4x x− + (19%, 79%)
we observe that the improvement in transforming simple algebraic expressions
the students achieved during their first year in upper secondary school is retained.
This supports the opinion Ekenstam and Greger expressed as early as 1987:
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The customary way of teaching elementary algebra has to be reassessed:
algebraic transformations and manipulations, described at the beginning
of this article seem to be introduced too early and too quickly. (Ekenstam
& Greger, 1987, p. 312)

Our study strongly indicates that most of algebraic transformations and simplifi-
cations could wait until upper secondary school. The students should meet alge-
bra in compulsory school but other aspects of it as understanding of variables and
the use of letters in algebraic expressions should be stressed.

The very depressing result on question 2d was expected. When the students
start upper secondary school most of them lack both understanding of rational
numbers and skills in using them. As there hasn’t been enough time to learn this
properly in upper secondary school it has been more and less pointless to work
with rational expressions.

0 . What can you say about c if c+d=10 and c<d ? (61%)1
. Which is larger 2n or n + 2.? Explain! (41%)

These two questions test the interpretations of letters on the highest levels
according to the classification by Kücheman - letter as generalised number and
letter as variable (Kücheman, 1981). Most wrong answers also indicate some
understanding e.g. “0 ≤  c ≤  4.9 or 1 ≤ c ≤ 4” on question 3 and “if n > 1.5
2n > n+2”  on question 4. The conclusion is that most students have reached the
highest levels according to Kücheman’s scheme.

2 . At a school there are 9 times as many students as teachers. Find a formula
between the number of students S and number of teachers T. (59%)

This is the classical Student Professor problem (cf. e.g. Kieran, 1992, p. 393).
About 30% of the students give the wrong answer T=9S. That is something to
reflect on.

3 . How many stars are there in
a) pic. 5 ? (92%)
b) pic. 100 ? (66%)
c) pic. n ? (66%)

That almost 70% of the students can give a correct general formula is encoura-
ging. Compared to a similar question on the first test it is an improvement.

4 . From a wire of 12-cm length a piece of x cm is cut off. From this piece of x
cm a circle is formed and from the remaining piece of the wire a quadrate.
a) Find the radius of the circle expressed in x. (35%)
b) Find the length of the side of the quadrate expressed in x. (69%)

It is a bit surprising that twice as many give the correct answer on question 7b
than 7a. A general reflection – supported by results of other tests and many
observations – is that the ability to translate from a problem situation to an
algebraic expression could be improved.

5 5 5 5 5
5 5 5

5 5 5 5
5 5 5 5
5 5 5 5

5 5 5 5 5
5 5 5 5 5
5 5 5 5 5
5 5 5 5 5

6 7 8 9 � 6 7 8 9 : 6 7 8 9 ; 6 7 8 9 <
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> . Apples cost a kr each and pears b kr each. What does the expression 3a + 5b
mean? (92%)

The result of this question shows that almost all students can interpret simple
algebraic expressions. Other material supports this conclusion.

? . Solve the following equations.

a) 

€ 

2 3 02x x+ − = (12%)

b) 

€ 

4 1 2 1 392 2( ) ( )x x− − − = (31%)

c) 

€ 

3
2

2
3x −

= (43%)

The result of question 9a may seem very depressing. Yet the students know how
to solve a quadratic equation. Many of them get the expression 

€ 

− ±0 25 1 5625. . ,
but without a calculator they can’t go on (cf. question 1d). The difficulty is
avoided if one uses fractions instead of decimal numbers, but as our students
haven’t much practice to use fractions they avoid this.

The mistakes on question 9b are mostly small ones. For example,

€ 

12 3 39x + = gives 

€ 

12 42x =  and 

€ 

4 2 1 4 4 1 392 2( ) ( )x x x x+ + − − + =  gives

€ 

4 8 8 4 4 1 392 2x x x x+ + − + − = . There are minor errors of plus and minus.
Most students know how to simplify expressions of this kind. They have an
understanding, but lack the certainty to perform by hand calculations correctly.
More drill could be a remedy. But is this certainty important today, when we
have calculators and computers that can perform symbolic calculations? Can’t
the time available be used in a better way e.g. to improve the students’ under-
standing of mathematical concepts and their ability to solve problems?

Summary
Let us sum up the major findings of our study so far:

• What makes some lower-ability students succeed is a very complicated
interplay of cognitive and affective factors. However, one very important
factor for success – perhaps the most important one  - is that both the student
and the teacher believe it is possible. Another is that the student is allowed to
start from what she/he knows and not from what she/he is supposed to know.

• Important skills of comprehensive school mathematics are good number
sense, understanding of variables and the use of letters in algebraic expres-
sions. This knowledge is more important than being able to manipulate
algebraic expressions. Often simplifications and transformations are intro-
duced too early and too quickly. The students don’t understand what they are
doing and the answers are often haphazard.

• Affective factors as motivation and self-confidence are very important in
learning algebra.
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• Acquiring knowledge of algebra often occurs in leaps. There are thresholds to
be passed.

• It is absolutely necessary to analyse the student’s mistakes thoroughly to be
able to find the right remedy. If e.g. the student makes mistakes in mani-
pulating algebraic expression and the errors are mainly due to difficulties in
handling negative numbers, it is pointless and might even be harmful to
practice more manipulations. It is not possible to go on until the student
masters negative numbers.
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Abstract
In universities the teaching of service mathematics often encounters
negative attitudes as if it were redundant in the age of computers and,
moreover, mathematics is not easy to learn and understand, especially
if the starting level is not high. Here some objectives for learning
mathematics, apart from that of gaining general mathematical
knowledge, are formulated and some ways of achieving them are
described. It seems that if a student espouses the concept of lifelong
study, then through the formulated objectives and effective study
methods it is possible to attain a result of greater generality: the
student should be able to continue to handle mathematical materials
and help himself in applications that may arise.

Introduction
The part of mathematics used in applied sciences and therefore taught at univer-
sities to students of numerous specialties had remained relatively stable for a
long time in all countries, including Estonia. However, the opportunities of the
past decade to lead our own political and economic life have led us to a need to
reform our educational life as well – to give sense to the nature of education
under the new conditions and to make any corresponding changes in the con-
tents and methods of what was being taught. Grounded on long-time expe-
rience in teaching mathematics at a tertiary institution inclined towards applied
science, being aware of the basic mathematical topics required in applications,
and having observed how the knowledge acquired by pupils at school as well
as their readiness for acquisition of new mathematical knowledge has been
changing, we have had to conclude that the gap between the needs and the
possibilities was widening. A lot of work has already been done in Estonia on
the rearrangements of curricula and course systems in schools of general
education as well as universities, but it is not clear at all, due to the inertia
inherent in education, whether these changes are working in the desired
direction. In the hope of generating ideas conducive to progress, let us note
some observations and make some suggestions based on experience.

In a computerised world it is important to educate the public that mathe-
matics is not merely computation, but a special system of knowledge developed
to help mankind answer questions it has faced (McComas, Almazroa and
Clough, 1998). It serves that same basic purpose today. This is especially true
from the viewpoint of applied sciences, which it serves as the language of
problem solving, a language that is itself in need of study (Lozinskaja, 1999) and
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further development for its own internal requirements. Without doubt, only
interested mathematical enthusiasts work in this field, and here we will not deal
with specific problems of their preparedness for this task, but rather direct our
comments for consideration to fellow educators who work in schools of general
education or with tertiary students of applied subjects.

Objectives for learning mathematics
The purpose of teaching mathematics in general education is the familiarisation
of the student with basic mathematical concepts, operations and facts, all of
which set the ground for immediate application of such knowledge as well as for
the development of logical thinking and a scientific outlook. No doubt this
purpose will remain. However, use of a wider context, i.e. reference to life
around us from which to seek and find mathematical problems of suitable
difficulty capable of solution, might facilitate acquisition of this knowledge. At
every stage, in the ideal case, one wants to expect that the student develops a
world outlook conducive to a more favourable attitude on the part of the
general public towards mathematics and its study (Kahn, 1999). This should
certainly be an aim in universities. Ever decreasing time availabilities at all stages
of the educational road create a difficult situation for first-year tertiary students
and the staff working with them, due to a continuous decline of basic mathe-
matical knowledge of the entrants. It is therefore more imperative for universities
to define their objectives to which they aspire with any particular mathematical
study course and which take account of both the knowledge level of the
student as well as his preparedness for serious work, and yet allow him to
succeed in meeting future challenges of life. We have in mind the following
objectives:

1) ability to see and enunciate the problem;
2) ability to formalise the problem;
3) ability to search for a method of solution;
4) ability to assess the truth value of the solution and to interpret the result.  

It seems that this set of goals helps young people to acquire the concept of
lifelong study and gives them experience in effectual study methods.                                                     

The opportunity for this lies within any kind of mathematics course. The
teacher needs to take  advantage  of  it  and  seek  ways  of  making  use of  it
even when the study programme follows traditional lines. For instance, he might
try to achieve the result that, by the end of the course, the student should have
acquired the skill to formulate and interpret a problem, and to find a method of
solution at least with the aid of literature. This presupposes familiarity with
theoretical material of a certain level and proper ability to read mathematical
texts. The outcome of the solution should not be the goal in itself. Rather, the
goal should be the ability to assess the truth value of the answer, and a skill to
use or interpret it. Ways leading in that direction have been examined by Kahn
(1999) and by Mousley (1999). At the Estonian Agricultural University we have
some practical experience with these goals which essentially rests on the idea of
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discarding the usual view of mathematics as consisting by and large of mathe-
matical analysis, algebra and geometry, the existence of whose inter-connections
is not often given sufficient attention (Riives, 1999).

Our experience
Our one-year course of higher mathematics begins with chapters on linear
algebra, vector algebra and analytical geometry. This provides an opportunity to
revise and systematise the knowledge gained in high school and to bring it to a
level from which one can advance either through additional mathematics or
specialty courses. As the material is already largely known to our students,
according to current high school curricula, it is possible to devote major
attention to precisely the goals mentioned above. Often this presupposes, on the
part of the students, a work attitude different from that which was manifest
before – continual intensive independent work, to which they are led by home
assignments on every integral topic treated. Difficulties that arise can be solved
by way of  individual counsellings, which can also provide an impression of
how well the material has been understood. While questions on linear algebra
are often easily done by algorithm and therefore the methods of solution are
standard and, with proper equipment, capable of being handled by calculators or
computers, problems in vector algebra and analytical geometry are different in
that it is possible to refer to the use of handy material and to the importance of
interpretation when seeking a method of solution.

Besides other existing reference material, we have employed special tables
of the elements of theory. These point out the differences and similarities of
corresponding operations and concepts, and draw useful comparisons. In dea-
ling with topics in geometry, it is inevitable that one will visualise concepts and
problems in terms of models, other handy devices or drawings. Seeing that
problems in analytical geometry require application of methods of linear and
vector algebra, and elements of vector algebra will render the solution of a
problem very compact and elegant, we have here an opportunity to refer to
mathematics as an integral discipline, in which familiarity with one part will help
with another part. Also, in this discipline, the formulation of a problem may
depend on the point of view. For instance, solution of a system of linear
equations is usually given in algebraic terms, but in geometric terms the same
problem means determination of the intersection of hyperplanes. This example
allows us to speak of a linear equation as one determining a hyperplane or to
view a hyperplane as the set of points whose coordinates satisfy a linear equa-
tion. No doubt it is possible to come up with many such relationships. The
interpretation to be used would depend, on the one hand, on the particular
problem under consideration and, on the other hand, on the capabilities and
psychology of the working group. First and foremost, however, it would depend
on whether the dominant way of thinking is analytical or visual. Which repre-
sentation is to be preferred, in what part and to what degree, would depend on
the emotional intelligence of the teacher, on the degree he knows and considers



� � � � � � � � � � � �  � � � ! " # � �

� � (

his students, their level of proficiency, their abilities and interests. The latter
should rapidly become evident during counselling on individual difficulties
brought to light by assignments.    

The main part of a course on higher mathematics is usually devoted to
traditional mathematical analysis – differentiation and integration of functions of
one or several variables, topics already partly familiar from high school – as well
as applications to solving differential equations and in the theory of infinite
series. These latter endeavours frequently occur in the private studies and
further work of university students. In these areas also, especially in clarification
of basic concepts, a geometric approach is very useful. Most students of applied
special subjects will arrive at a proper comprehension of a variable and its limit
only when, alongside with a mathematically correct definition, they are given a
geometric interpretation in which every detail in the definition is viewed in terms
of the motion of a point on the real axis. When the need arises to clarify relations
between extremal and stationary points of functions of several variables, formal
definitions are often insufficient, though it is not difficult to learn them by heart.
Considerable excitement and even surprise can be generated in students by
treatment of these concepts in terms of examples involving graphs of elliptic and
hyperbolic paraboloids. The exciting geometric features of the latter, when first
mentioned, have even led to objections, which could be dispelled with the aid of
thread models. It is particularly noteworthy that this could not be achieved by
rigorous analytical presentation. With reference to the possibilities of use of
such surfaces in civil engineering, one has gone a long way towards seeing
mathematics as an exciting field of knowledge.

In many topics, in order to systematise the search for a method of solution,
use may be made of a special syllabus-based questionnaire, which could lead to
a considered choice. For instance, faced with a task of integration, we usually
begin by determining the class to which the integrand belongs, after which it
becomes evident whether the integral can be found directly from tables or
reduced to a table integral by algebraic or trigonometric simplifications or whe-
ther a substitution or an integration by parts will supply the solution. The
sequence within the questionnaire will eliminate arbitrary attempts at solution to
which students are prone when the nature of the task has remained obscure. An
ordered arrangement of various differential equations will serve the same
purpose. It will lead to a method of solution based knowingly on facts derived
from theory, in terms of their types. By analogous procedures it is possible to
deal with all the topics in our programme. Such a search for suitable methods of
attack could provide enjoyment to the teacher as well.

Conclusions
At the end of the study course it has been satisfying to observe that many
students have sensed their ability in mathematics, have acquired a measure of
experience in working with mathematical materials, and have learned to see
possibilities of application in their areas of specialty. Not of least importance are
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the positive formal results at completion of the course. To sum up, the set goals
are in many instances achievable in the manner described. Our conversations
with students to test their knowledge help them to assimilate the material and to
appreciate connections between different parts of the course. They could see
the course as being an integral whole and also gain experience in precise
thinking and expressing their thoughts properly. Often they would confess that
the proposed work style helped them master the subject with understanding. It
seems that through formulated objectives we can attain a general result:  the
student should continue to be able to handle mathematical materials and help
himself in applications that may arise.
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For teaching on the basis of the genetic approach, we offer to construct didactical
system of study of a mathematical discipline (a part of a mathematical course,
important concept or system of concepts) consisting of two parts 1) preliminary
analysis of the arrangement of the contents, of didactical means and 2) concrete
design of the process of teaching.

The preliminary analysis consists of two stages: 1) genetic elaboration of the
subject matter and 2) analysis of the arrangement of a material and possibilities
of using various ways of representation and effect on students. The genetic
elaboration of a subject matter consists of the analysis of the subject from four
points of view:

a) historical;
b) logical;
c) psychological;
d) socio-cultural.

The historical analysis frequently encounters with large complexities because of
insufficient knowledge of the history of the origin and development of many
branches of modern mathematics included in university curricula, inaccessibility
of the literature on the given subjects. Therefore, it is necessary to conduct re-
search of the history both of appropriate areas of modern mathematics, of their
inclusion in the university curricula, to study educational literature, text- and
problem-books, the history of the teaching of modern mathematics. As more or
less accessible sources for the teachers and students the monographs and other
scientific works – books  and articles, books on the history of mathematics and
mathematics education, manuals and encyclopaedias can serve. Very important is
also to study original works of great mathematicians, classical textbooks, popular
scientific literature, journal and magazine articles. The purpose of the historical
analysis is to reveal paths of the origination of scientific knowledge underlying
the educational material; to find out, what problems have generated need for this
knowledge, what were the real obstacles in the process of the construction of this
knowledge.

In designing the system of genetic teaching very important is to develop
problem situations on the basis of historical and epistemological analysis of a
theme.

The major aspect of logical organisation of an educational material consists
in organising a material so that to reveal the necessity of the construction and of
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development of concepts and ideas. It is necessary to arrange problem situations
or tasks, for which the important concepts or ideas, which should be studied,
would serve as the best solutions. It is necessary to analyse those problems of
knowledge, for which the considered concepts and ideas serve as the necessary
solutions. For this purpose, both historical analysis and epistemological conside-
rations, and special search for appropriate problem situations and tasks can help.

In our view, for the logical organisation of a system of concepts and pro-
positions of a theme, of the teaching unit of a mathematical discipline, one
should carefully analyse the logical structure of such system, for example,
required, for example, for the construction of a concept or for the statement of a
proposition. We will name the results of such analysis a logical genealogy of a
concept or a proposition. In the university mathematics, especially in higher
algebra, such genealogies may be rather complicated (see fig. 1).

Clearly, such complicated structure of concepts and statements, needed for
understanding the theorems of large difficulty, requires well-designed activities
for successful learning.

Therefore, very important is also the psychological aspect of the genetic
approach to the teaching of mathematical disciplines.

The psychological analysis includes determination of the experience and the
level of thinking abilities of the students (whether they can learn concepts, ideas
and constructions of the appropriate abstraction level?), possible difficulties
caused by the beliefs of the students on mathematical activities (for example, the
students can bear from school views on mathematics as mere calculations aimed
at the search of (usually unique) correct answers with the help of ready instruc-
tions etc.). The psychological analysis has also the purpose to plan a structure of
the activities of the students on mastering concepts, ideas, algorithms, to plan
their actions and operations, and also to find out necessary transformations of
objects of study.

When studying university algebra courses, the students usually are encoun-
tered with sequentially growing steps of abstraction - with a «ladder of
abstractions».

Stolyar (1986, pp. 58-60) has revealed 5 levels of thinking in the field of
algebra and has noted, that “the traditional school teaching of algebra does not
rise above the third level, and in the logical ordering of properties of operations
even this level is not reached completely”. The following is the description of the
third, fourth and fifth levels according to Stolyar (ibid., p. 59):

On the 3-d a level the passage from concrete numbers expressed in
digits, to abstract symbolic expressions designating concrete numbers
only in determined interpretations of the symbols is carried out. At this
level the logical ordering of properties is carried out “locally.



! " # � � $ � % & � ' ( )

� � *

+ , - . / 0 1 0 2 - / 0 3 . 4 5 /

6 7 8 5 7 5 8 9 - 0 7
6 9 5 7 - / 0 3 . : 3 .: 5 / : ;5 < 9 / = : 5 /

4 , > : 5 / ? - 7 / 5 : 0 - .
9 7 3 8 , 2 /

@ A B B C D E A F G C F H C

I 0 . - 7 =7 5 J - / 0 3 . K - 9

L M , 0 N - J 5 . 2 57 5 J - / 0 3 . I 0 . - 7 =- J O 5 > 7 - 0 2 P3 9 5 7 - / 0 3 .Q
- 7 / 0 / 0 3 . R 7 3 , 9 I 0 S 5 2 / 0 3 . 4 , 7 S 5 2 / 0 N 5< - 9

+ , 3 / 0 5 . /: 5 / 4 , > O 7 3 , 9 T A U A U A B E V W D UA X Y B A Z E D

? 3 : 5 / : 3 1 -: , > O 7 3 , 9 0 . -
O 7 3 , 9

[ 5 7 . 5 J L 9 0 < 3 7 9 \ 0 : < ? 3 < 9 3 : 0 / 0 3 .3 1 \ 3 < 3 ]
< 3 7 9 \ 0 : < :^

3 7 < - J: , > O 7 3 , 9

Q
7 3 9 5 7 / = 3 1 -_ 5 7 . 5 J / 3 > 5 -: , > O 7 3 , 9

` : 3 < 3 7 9 \ 0 : <3 1 O 7 3 , 9 :

+ , 3 / 0 5 . /
O 7 3 , 9

^
3 7 < - J 0 / = 3 1 -_ 5 7 . 5 J

a U b Y C A X bV A U A U A B E V W D U
^

- / , 7 - J5 9 0 < 3 7 9 \ 0 : <
Q

7 3 9 5 7 / = 3 1 - .0 < - O 5 / 3 > 5 -: , > O 7 3 , 9
+ , 3 / 0 5 . /

O 7 3 , 9 > = / \ 5_ 5 7 . 5 J

c d e d e d f g c h i e ij
c k d f k e l d fm

f d n g i

Figure 1. Logical genealogy of the homomorphism theorem for groups.
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On the 4-th level the possibility of a deductive construction of the entire algebra
in the given concrete interpretation is become clear. Here the letters designating
mathematical objects are used as variable names for numbers from some given
set (natural, integer, rational or real numbers), and the operations have a usual
sense.

At last, on the 5-th level distraction from the concrete nature of mathematical
objects, from the concrete meaning of operations takes place. Algebra is being
built as an abstract deductive system independent of any interpretations. At this
level, the passage from known concrete models to the abstract theory and further
to other models is carried out, the possibility of existence of various algebras
derived formally by properties of operations is accomplished”.

Thus, to the 5-th level the deductive study of groups, rings, serially ordered
sets etc. corresponds. The highest degree of abstraction here is the study of gene-
ral algebraic systems with various many-placed operations.

To the 4-th level corresponds, for example, a systematic and deductive study
of the sets of natural numbers or integers. Therefore, taking into account, that in
school teaching even the 3-rd level is not completely reached, it would be
certainly a big mistake to omit in pedagogical institutes the 4-th level (systematic
study of an elementary number theory) and immediately pass to the deductive
study of groups, rings and even of general universal algebras (as is done in a text-
book by Kulikov, 1979). Therefore, systematic study of the elementary number
theory can serve as a good sample of the construction of a deductive theory for
preparation for the further construction of the axiomatic theories.

Stolyar built his classification of levels from the point of view of teaching
school algebra. In our view, development of algebra as a science in the last
decades (after the World War II, under the influence of works of Eilenberg and
MacLane, 1945, and Maltsev, 1973) allows to distinguish one more higher, the 6-
th level of algebraic thinking - we will name it the level of algebraic categories.
At this level the entire classes of algebraic systems together with homomor-
phisms of these systems - varieties of universal algebras, categories of algebraic
and other structures (for example, topological spaces, sets and other objects) are
considered. Thus, the abstraction from concrete operations in these structures and
from the nature of homomorphisms and generally of maps takes place; mor-
phisms between objects of categories are considered simply as arrows subject to
axioms of categories – for example, the associativitiy law for the composition.
Moreover, the functors between categories – certain maps compatible with the
laws of the composition of morphisms, and natural transformations of functors
are considered.

Note that Piaget in the last years of his life was interested in the theory of
categories as the highest level of abstraction in the development of algebra
(Piaget & Garcia, 1989).

The teaching of algebra at this level (theory of categories and varieties of
universal algebras) is not included into the obligatory curricula even of leading
universities and happens only on special courses. But, nevertheless, the presence
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of this level demands that the students should master algebraic concepts in
obligatory courses in a sufficient degree for understanding the algebraic ideas on
the highest level of abstraction.

Essential in teaching algebra and number theory in pedagogical institutes are
the 4-th and 5-th levels in the classification of Stolyar. First of all, the 4-th level
(which is already beyond the school curricula) should be reached. Therefore,
during the first introduction of the definition of group in the beginning of the
algebra course, one should not immediately begin the full deductive treatment of
the axiomatic theory of groups. Only after the experience of the study at the 4-th
level of thinking in the field of algebra, namely of the study of the elements of
number theory, it is possible to consider a deductive inference of the most simple
constructions and statements of the group theory, and the systematic account of
complicated sections of the theory should be postponed to a later time, after
studying at the 4-th level of such themes as complex numbers and arithmetical
vector spaces.

Piaget who developed the classification of levels for thinking in the fields
of geometry and algebra (“intra”, “inter” and “trans”), noted that it is possible to
distinguish sublevels inside each level (Piaget & Garcia, 1989).

According to the theory of Leontyev (1981), actions on learning concepts, as
well as any actions, consist of operations, which are almost unconscious or
completely unconscious. These operations are essentially «contracted» actions
with the concepts of the previous level of abstraction. As Kholodnaya (1997)
noted, «a contraction is immediate reorganisation of the complete set of all
available … Knowledge about the given concept and transformation of that set
into a generalised cognitive structure».

The theories of Dubinsky (1991) and Sfard (1991) are close to the Soviet
conceptions of actions and operations as contracted actions in mathematics
teaching.

In our view, for reaching a contraction of an action with algebraic objects
into (automatic) intellectual operation it is necessary, after sufficient training
with of this action, to include it in another action, connected with the construc-
tion of objects of the next step of abstraction.

One more purpose of the psychological analysis of the subject matter is
finding out the ways of the development of motivation of learning.

The socio-cultural analysis has a purpose to establish connections of the
subject with natural sciences, engineering and economical problems, with ele-
ments of culture, history, public life, to reveal, whenever possible, non-
mathematical roots of mathematical knowledge and paths of its application
outside of mathematics.

During the second part of analysis, considering the succession of study, it is
necessary, in accordance with the principle of concentrism (Safuanov, 1999), to
find out, on the one hand, which earlier studied concepts and ideas should be
repeated, deepened and included in new connections during the given stage, and,
on the other hand, which elements studied at the given stage, anticipate important
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concepts and ideas, which will be studied more completely, become clearer later,
to check, whether there are possibilities of such repetitions and anticipations.

The principle of multiple effect requires also the finding out possibilities of
multiple representation of concepts studied, of use of active, iconic and verbal-
symbolical modes of transmission of information, of other means of effect on
students (the style of the discourse, emotional issues, elements of unexpectedness
and humour).

After two stages of analysis, it is necessary to implement the project of the
process of study of an educational material. We divide the process of study into
four stages.

1) Construction of a problem situation
In the genetic teaching, we search for the most natural paths of the genesis of
processes of thinking and cognition.

According to the activity approach to the process of teaching, usually “the
initial moment of the mental process is the problem situation … This problem
situation involves the person in the thinking process; the thinking process is
always directed to the solution of a problem” (Rubinshtein, 1989, p. 369). There-
fore, the main purpose of the teacher is to construct a problem situation. The
necessity of the construction of a problem situation was underlined by many
prominent educators – by constructivists (creation of “disequilibrium”) and rep-
resentatives of the “French didactique” (“didactic engineering”, directed on the
creation of the didactical situations, on determination of the “epistemological
obstacles”) as well.

2) Statement of new naturally arising questions
According to the theory of the activity approach to teaching, “the arising of a
questions is the first sign of the beginning work of the thinking and the first step
to understanding … Every solved problem generates a lot of new problems; the
more a man knows, the better he realises what more he should know” (Rubin-
shtein, 1989, pp. 374-375). Therefore, it is important, after the solution of the
initial problem situation, to constantly consider new, naturally arising questions.
It was well understood by Izvolsky (1924) in his version of the genetic approach.
Thus, in the design of the process of study of a subject the statement of new,
naturally arising, questions is necessary.

Actually, both stages –  construction of a problem situation and the statement
of new, naturally arising questions – are aimed at the same purpose - to help
students  in the independent mastering of a concept. Therefore it is necessary to
organise a construction of problem situations and also statement of new,
naturally arising questions in such way that in a certain moment of time (we will
name such moment “the hour of truth”) the students could, independently or with
the minimal help of the teacher, discover the new concept for themselves. It is
similar to the moment of the selection in a subject of “the initial universal
relation”, leading to the theoretical generalisation in the theory of learning
activity of Davydov (1986, p. 148), and also to the act of reflective abstraction
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(as the of interior co-ordination of operations of the subject in a scheme) in the
theory of Piaget (Dubinsky, 1991), and also to a moment of a reification (Sfard,
1991). Such organisation of teaching frequently may be quite difficult and not
always completely possible. For this reason we admit appropriate help from by
the teacher.

3) Logical organisation of an educational material
Here, after the problem situation has been dealt with, the paths of its solution,
various aspects and natural arisen questions have been discussed, the appropriate
motivation has been reached, the construction of the elements of the theory -
precise definitions, statements (axioms and theorems), conclusions takes place.
At this stage deductive reasoning plays the great role. In our approach this stage
may be rather long in time and even, in the accordance with the principle of
concentrism (Safuanov, 1999),  divided in several stages – “coils of a spiral”.

4) Development of applications and algorithms
After the logical organisation of mathematical objects of a studied theory, it is
possible to consider various interesting and useful applications of the theory in
practice and in mathematics itself. According to the principle of multiple effect
(Safuanov, 1999), it is necessary to solve the sufficient number of exercises on
the variations of signs of concepts, on the inclusion of concepts in new
connections and contexts, on various transformations of mathematical objects
under study.

During all stages of study of the teaching unit or theme it is important to help
the students to develop their own language for expression of the reasonings and
ideas. For this purpose each proposition (definition or statement) should be stated
(at lectures and in textbooks), whenever possible, in various languages: logical-
symbolical and verbal (this suggestion complies also with the principle of
multiple effect).

It is necessary also to give the students the exercises on development of
mental operations (analysis, synthesis, generalisation, comparison, analogy,
abstraction and concretisation). For example, the exercises on extraction of
conclusions from theoretical positions will be useful. Such exercises promote
development of abilities of the synthetic reasoning.

Finally, it is very important to encourage reflection in minds of students, i. e.
the ability to realise the foundations of their own activities, reasonings and
conclusions, to be aware of the structure of their thinking process.
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Abstract
The aim of this paper is to analyse the relationship between affect and
cognition on the level of the individual learner. The concept of "affect
logic" which combines the psychoanalysis of Freud with the genetic
epistemology of Piaget, were employed.  Within this concept, the psyche
is understood as a complex hierarchical structure consisting of affective-
cognitive schemata. These are the result of maturation and learning pro-
cesses which are based on assimilatory/accomodatory interactions with
reality. If we regard affect and cognition as two inseparable componets
of a mental unit, we are in a position to understand why we can know
anything about our feelings.

Introduction
Learning - especially learning of mathematics  - was long considered to be only a
problem of cognition. The restriction to cognition was helpful in constructing
complex cognitive models of the learning process, but neglected the important
role of affects. McLeod (1992) emphasised the importance of affect as follows:

Affective issues play a central role in mathematics learning and instruc-
tion. When teachers talk about their mathematics classes, they seem just as
likely to mention their students' enthusiasm or hostility towards mathema-
tics as to report their cognitive achievements. (p. 575)

Concerning research on affects and learning of mathematics, McLeod's central
demand is the linking of  affective and cognitive components in models of the
learning process and he also suggests that beliefs (about mathematics, self,
mathematics teaching and the social context), attitudes and emotions should be
important factors in research on the affective domain in mathematics education.
McLeod (1992) distinguishes the following dimensions of variations in affect:
Intensity, directions  (positive vs. negative) and stability.

Beliefs and attitudes are seen as "cool" and  "stable" whereas emotional
reactions are "hot" and "unstable".

Many investigations show an interrelation between affects (beliefs, attitudes
and emotions) and  performance in mathematics. There are also some models that
explain the influence of factors that lead to beliefs, attitudes and emotions, but
the origin of the psychic structure in the background is not part of these models.
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Affect logic - a concept combining affect and cognition
The Swiss psychiatrist,  L. Ciompi, developed a concept that combines Freud's
psychoanalysis and Piaget's genetic epistemology on the basis of system theory
(1982, 1988, 1991, 1999). The following is a brief summary of the most impor-
tant aspects of the affect logic:
* The psyche is seen as a unit. This means affect and cognition, feeling and
thinking are inseparably combined, though  dissimilar in nature.

* The psyche is understood as a complex hierarchical structure consisting of
affective- cognitive schemata. These affective-cognitive schemata are the result
of maturation and learning processes based on assimilatory/ accommodatory
interactions with reality.
* The affective-cognitive schemata are condensed to affective-cognitive refe-
rence systems that form an individual's "world view" and control acting and
thinking.

* The affective-cognitive reference system is structured by both the affective and
the cognitive components. Therefore, access is possible through both compo-
nents, but the access is often not complete because certain parts of the system are
unconscious.

Remarks on the concept of affect logic
For Piaget (Piaget, 1995, p25), affect is only  an energy supplier:

The energetic of behaviour arises from the affectivity, whereas the struc-
ture comes from the cognitive functions.  (Translation W.S.)

Ciompi's concept extended the influence of affects to general effects, all of which
have affects in thinking as well as special effects consisting of the basic feelings
(interest, anger, fear, sadness and joy (Ciompi, 1999). In general, affects
influence cognition like operators. They provide the energy through which cog-
nitive processes are motivated or hindered. They control attention and memory
processes, and influence the hierarchy of cognitive schemata. On the other hand,
Ciompi speaks of special "logics" of the basic feelings (for instance, "fear logic"
or "logic of joy or anger"). The term "logic" expresses the view that the kind of
thinking is different if a special feeling dominates. The graphic below (an adap-
tation of  Case et. al., 1988),  illustrates the influence of affects.

The arrows in both directions mean that the affective-cognitive system
influences the perception, body reactions, actions, thinking and learning, and that
all these, in turn, also influence the affective-cognitive system. To study these,
we go back to Piaget's concept of equilibrium, assimilation and accommodation.
The central idea is as follows. On the one hand, all systems make an effort to
attain and remain in equilibrium with their environment; on the other hand,
systems must interact with their environment, but these interactions can disturb
the equilibrium. To restore the equilibrium, system-specific reactions are requi-
red. These system-specific reactions are "assimilation" and "accommodation".
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Piaget distinguishes a number of forms of assimilation. The simplest only needs a
simple application of a scheme in the cognitive system. Each new successful
application of a scheme extends the application field of the scheme and leads,
therefore, to generalisation. But in this simple case, no change of the scheme is
required in turn.

The second form of assimilation is the so-called "reciprocal assimilation".
This kind of assimilation leads to co-ordination of  subsystems  or to the integra-
tion of a subsystem into a more general system. Piaget (1976, p. 14) formulates
these properties of assimilation processes in a postulate:

Postulate 1: Every assimilation scheme has the tendency to grow, i.e. to
assimilate elements that are distinguishable to its nature. (Activity is
necessary for a subject.)

Accommodation is the second system-specific type of reaction of a system to
environmental requirements. An accommodation process is necessary if a prob-
lem is not solvable by assimilation, and requires an alteration of the system.
Piaget summarises the relation between assimilation and accommodation in a
second postulate:

Postulate 2: Every assimilation scheme is forced to accommodate the
scheme on the specificity of elements. These elements are now assimi-
lated. This postulate requires the necessity of an equilibrium between
accommodation and assimilation.

* + , - + . / 0 1 2 3 4 0 2 5 0 2 6 7 8 + 9 , 2 0 2 6

Arousal Action

Affective – Cognitive
System
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The last part of the postulate means that the goal of all assimilation/accommo-
dation processes is a new, more stable equilibrium.

 The concept of affect logic transfers Piaget's system-specific reactions
(assimilation and accommodation) to the development of the affective part of an
affective-cognitive scheme. If Postulate 1 sees activity as necessary for each
human, activity must be seen as emotionally valuable. The basic feeling of
"interest" provides, in principle, the positive energy required for discovering new
things. In evolutionary terms, humans are open to discovering their environment,
to acquiring new experiences - i.e., to learning. The basic feeling of "interest"
also motivates learning processes. This readiness, which exists in principle, to
discover the "world", to learn new things, can be disturbed by negative expe-
riences in relation to  earlier learning processes. In these cases, negative feelings
slow down new learning processes and can turn into an obstacle for further
progress.

For Piaget, the simplest form of assimilation is a process that only requires
the application of an existing cognitive scheme to a new situation. Repeated
application leads, in the cognitive case, to stabilisation of the cognitive scheme.
The person thereby acquires a routine for solving a special problem. In the
affective case, the origin of a scheme as the product of a successful problem
solution process is connected with positive feelings. Successful thinking pro-
cesses and learning processes are delightful. But repeated application of a
scheme leads to "emotional neutralisation" of the positive feeling, in some cases
to negative feelings. We know, from our experiences with everyday life actions,
that these actions are often routines, and that these routines are combined with a
low level of emotionality.

On the other hand, we ought to note that every successful application of a
scheme to a new situation leads to an extension of the application field, and that
the scheme is generalised as a consequence.

If we consider the situation in the case of reciprocal assimilation (the second
form of assimilation) from the affective perspective, we find a much more com-
plicated situation. The integration of subschemata into a more general scheme, or
the assimilation of a scheme into a more general scheme, is a very complex
cognitive as well as affective process. This process is closely connected to the
problem of context-related learning and school learning, and is founded on the
question of the relation between the special and the general. This is currently
being intensively discussed, especially in the case of mathematics learning. Here,
the clash is between mathematics as a special tool to be applied only in a special
field, and mathematics as a general tool for many problem situations (Lave/
Wenger, 1991; Evans, 1999).

From the affective perspective, a process as difficult as reciprocal assimi-
lation needs strong support from the basic feeling of "interest". But the process is
very sensitive to failures, and can, following unsuccessful results, lead to
negative feelings.
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In my opinion, the process of abstraction and generalisation is one of the most
difficult steps in a mathematical learning process. It is one of the origins of
negative beliefs and attitudes in relation to mathematics.

Beliefs and affect logic
Belief is a very important concept in the affective-cognitive field, and is used by
many researchers. (For a survey of the different aspects of the meanings of
mathematical beliefs, see Pehkonen and Törner, 1996.) One of the open
questions posed by  Pehkonen and Törner in their summary is:

How do pupils' mathematical beliefs develop under school instruction,
and which are the most influential factors in this development?

Furinghetti and Pehkonen (2000) describe the function of beliefs in the following
way:

(a) beliefs form a background system regulating our perceptions,
thinking and actions; and therefore, (b) beliefs act as indicators for
teaching and learning. Moreover, (c) beliefs can be seen as an inertial
force that may work against change, and as a consequence, (d) beliefs
have a forecasting character.

In the following, I will try to analyse these functions of beliefs from the
perspective of affect logic. The affect logic postulates the existence of an
affective-cognitive reference system consisting of a hierarchically structured
system of affective-cognitive schemata. This affective-cognitive reference system
forms, at each instant, the "world view" of an individual in respect of a special
content. It controls the individual's perception, thought, learning and action. The
development of this system and its affective-cognitive schemata is the result of
maturation of the acting and learning processes based on assimilation and
accommodation processes. We ought to note that the processes occur in the
subconscious, and that an individual is conscious of only a part of their out-
comes. Research into beliefs uses methods such as questionnaires and interviews,
methods that only have access to parts of the affective-cognitive system that are
available through introspection. Pehkonen and Törner distinguish between con-
ception and primitive beliefs:

Conceptions could be understood as conscious beliefs, and thus differ
from so-called primitive beliefs, which are often unconscious. In the case
of conceptions, we believe that the cognitive component is stressed,
whereas the affective component is emphasised in primitive beliefs.

We must take into account the fact that we have no insight into the processes at
the level of neurons and neuronal systems. At this level, all processes are sub-
conscious. Our research methods provide us with knowledge of all the facts of
the mental system that we are conscious of. Therefore, conceptions are beliefs for
which we have rational arguments. The arguments explain the background and
development of the conceptions in a rational way. For primitive beliefs, we don’t



� � � � � �

� � <

have a rational explanation. We are partly conscious of them; they affect our
acting and thinking, but their origin is unknown.

Summarising these reflections, beliefs are the conscious window to our
affective-cognitive reference system. They contain our knowledge of the mental
structure that regulates our perception, thought and action, and are therefore our
indicators for learning and teaching.

An affective-cognitive reference system is the result of many assimilation
and accommodation processes. In part 3, I discussed the development of routines.
Routines are the result of many successful applications of a mental system. Every
successful application stabilises the mental scheme. On the other hand, un-
successful learning experiences lead to a non-stabilised cognitive scheme and to
a negative emotional part. If there are many unsuccessful events in connection
with a special content, then on the one hand, an unstable cognitive component,
and on the other hand, a stable negative affective component of an affective-
cognitive scheme, arises. In this case, the affective component leads to a refusal
of all operations that are combined with this content. This is because of the fact
that affects are very important for assessment. They are part of our assessment
system (Roth, 1996), and the assessment system has a great influence on all
thinking and acting processes.

Summarising these ideas, the affective component of the affective-cognitive
reference system has a stabilising effect on the system, which may be negative or
positive. Beliefs, in being the conscious expression of an affective-cognitive
system, mirror this reaction of a system. Therefore, beliefs are able to provide
information pertaining to the inertial force of an affective-cognitive system. The
affective component often works against change if this change leads to more
insecurity and uncertainty. On the one hand, the stability of affective-cognitive
schemata as a consequence of development is responsible for the forecasting
character of beliefs; on the other hand, this stability works against change. We
ought to note that only stabilised systems lead to similar reactions in similar
situations. Only stabilised systems are suitable as a basis for forecasting certain
behaviour.

Social processes and beliefs
In the first sections, I tried to explain the mechanisms within the individuals that
lead to beliefs. I did not discuss the influence of social processes. But all the
processes take place within a society, within a culture.

I start from the point of view that people are products of the multiple cul-
tural and social situations in which we are born, grow up and develop.
These include gender, ethnicity, class, sexual identity, religion, local com-
munity, etc. (Lerman, 2000)

If the social conditions are constitutive of learning processes, the concept of
affect logic must be open to the frame conditions of social cognition. The
research concept of social cognition is a constructivist concept and therefore
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assimilation and accommodation processes are part of this concept. In the
following, we discuss the conditions of the affect development in a socio-cultural
environment.

Characteristic of a  social group is often its meaning and value system, as well
as special rules for feeling - so called "feeling rules".

Feeling rules' determine not only the expression of feeling, but also that
which one is allowed to feel, or which should be felt in a society, in
social position or subgroup. (Ulich & Kapfhammer, 1991).

The process of becoming a member of a social group is called "socialisation".
The goal of this process is to "learn" the common, shared meanings, values and
feelings of the group. The result of a socialisation process is a sample of
meanings, values and feelings that are common to all members of a group and are
used by all members in the same way. For all members of a group, this meaning,
value and feeling system is an unproblematic background that guides the inter-
pretation of special situations.

From the viewpoint of affect logic, people find it valuable to be member of a
group, and therefore they have interest in learning meanings, values and feelings
of this group.

Fennema (1989) developed a model to explain gender differences. In this
model, external social influences have an effect on affects, and on mediated
learning activities, and therefore on mathematics performance and on partici-
pation on mathematics courses. Evans (2000) generalises this model.

A difficult problem today is the fact that people belong to more than one
social group (family, social class, school, job, ...) and are included in the
"discourse practice" of all these groups. Mathematics can be part of different
discourse practices, each with its own meanings and feelings of what constitutes
structurally equal mathematical methods and terms. For instance, calculation
methods are used in everyday life situations, in occupational situations, in demo-
cratic processes, in school task, etc. Furthermore, in many applications, mathe-
matical algorithms are part of the context, and are often not seen as mathematics
because the uniqueness of a situation allows an algorithm to be adapted to the
particular need, without the user ever requiring the algorithm in an abstract form.
Therefore, many people do not see the connection between school mathematics  -
with its general algorithms - and mathematics used in everyday life and occu-
pational situations. On the borderline between structurally equal and contextually
different mathematical applications, conflict situations arise that lead to negative
affects towards mathematics. These affects are often specific to an entire group,
and lead to commonly shared feelings towards mathematics. In particular, the
group's understanding of mathematics can be very stabilising for this feeling. For
stabilised emotional schemata, people often construct cognitive reasons to ratio-
nalise such feelings. Beliefs and attitudes, being a conscious part of affective-
cognitive schemata, mirror in special way these stable emotions, as well as their
rational foundation.
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Computer represention of spatial geometry is to become an emancipated mode of
media specific representations in addition to the traditional ones. In this contri-
bution some types of current educational software (Tool, Tutor, Internet) for
spatial geometry in secondary education will be discussed. Included in this
discussion is the design of a tutorial program of a new kind and its quantitative
evaluation. This contribution closes with a perspective view of learning geometry
in Cyber Space.

Introduction
Experience teaches us continually that representing spatial geometric facts on
paper, at the blackboard or in the form of physical models is laborious and often
unsuccessful even if certain techniques of representation or design have been
practised. The flat representation of a spatial figure doesn't have any spatial
depth; it is statically and hardly correctable; it cannot be "manipulated"; it can
only be inadequately adapted to a learning and teaching process or a process of
exploration etc. These weaknesses of conventional media favour the lesson time
for plane geometry in comparison with the lesson time for spatial geometry (in
the teaching curricula we mostly find only these topics that can be well created
with the traditional media in the lesson)! Therefore the computer representation
(including video representation) for spatial geometry is added to paper and pencil
and print media representations and physical representations like physical models
of solids. However, this causes new interface problems.

The diagram 1 illustrates the relation of the three modes of media specific
representation with their corresponding interfaces Si , Si‘, i=1,2,3.

Diagram 1. Media specific representations
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Comments about corresponding interfaces:

� � / �� : If the solid represented in a drawing or provided as a physical
model is available but not already as a digital model in the
computer tool, how can it be implemented? If necessary we must
express and calculate the corners of the solid in question in a
three-dimensional coordinate system (a laser beam scanning of
material objects doesn't seem to be a practicable digitalization
method in school geometry).

€ 

Sl
1:   Geometrical screen representations can be printed and documen-

ted on paper in simple ways.

€ 

Sl
2: How do we get from a spatial object on the screen only acces-

sible to the visual perception of a physical object which can also
be referred to haptically − but not considering the perception
possibilities of the Cyber-Space here? The practicable solution
consists in the generation of solid nets on the screen, being able
to be printed and then folding them up as surface models.
However, this solution of this interface problem does not work
for the sphere and its parts etc. - The methods of Solid-Imaging
are still not available for school.

Diagram 2
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Educational software for (synthetic) spatial geometry

Computer graphical tools for spatial geometry in middle schools
In general, we can solve spatial geometric problems in the conventional learning
environment only by means of the solution of corresponding problems of plane
geometry developed by methods of descriptive geometry (Diagram 2).

Diagram 3

With the computer use we have the possibility to produce and to represent spatial
geometric configurations on the screen with virtual spatial depth and to mani-
pulate these configurations directly (Diagram 3). This simplifies solving spatial
geometric problems considerably and avoids the "traditional detour".

Two software developmental lines for computer graphical tools become
apparent. On the one hand, tools are developed that are essentially restricted to
the representation and processing of solids, and on the other hand, tools that
allow essentially spatial construction and visualization  like dynamic geometry
systems for the plane.

To date the latter tools have been completed only for Macintosh (3D-
Geometer, Klemenz, 1994/99) −with the deficit of the clear perceivability of
spatial objects in depth (e.g. the relational position of the sphere and a straight
line: all cases must be visually perceptible!). MiniGeometer, derived from 3D-
Geometer, is a Java-applet for interactive construction in spatial geometry
(http://geosoft.ch); it doesn't contain any improvement of the above mentioned
problem of perception, and has a quite complex user interface which is a limita-
tion of its use for middle and early secondary education. A hopeful development,
the Macintosh program Cabri-Géomètre 3D, has not yet been completed.
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Which essential requirements must now a computer graphical tool fulfil to be
used for learning and teaching synthetic spatial geometry in secondary education
that mostly deals with geometric solids?

) As a visualization tool it allows among other things the possibility to look
at the standard solids of school geometry and in addition the solids derived
from these solids as if one would have these solids as edge-, surface- or
full solid-model in one’s "hand". (This is managed by Virtual Sphere
Device, this means that a referencable virtual sphere circumscribed around
any solid can be arbitrarily moved with the mouse.)

) It makes possible the transition from only visually perceptible solids on
the screen to the haptic perception of them. (This can be done by printing
of solid nets and then folding them up.)

) As a measuring tool it allows the study of metric properties of a solid in
various ways and allows the investigation of the true form of objects
which are on or in a solid.

) As a construction tool it allows a flexible creation of solids by dissection,
composition, deformation etc.

In addition it must be possible to draw figures into and onto the solids to make
them carriers for further geometric information. Therefore the Windows program
KOERPERGEOMETRIE (Schumann et al., 1999), which essentially fulfils the
above mentioned requirements can provide:

) the demonstration of solid geometric facts

) the support of the knowledge of spatial shapes, the constructive represen-
tation, the calculation and the production of geometric solids

) the development and the training of spatial ability (here: ability to imagine
spatial objects and relations between spatial objects)

) the experimental finding of knowledge (discovery of geometric state-
ments, production of new solids etc.)

) the reinforcements of working creatively by spatial geometric exploration
(e.g. finding the solution to open problems).

Schumann (2001) gives an introduction to spatial geometry instruction using
such tools. The three-dimensional module of the tool Shape Up! developed by
Sunburst/USA is an edutainment tool only for visualization.

Tutorial software for spatial geometry −−−− an example
Tutorial software for synthetic spatial geometry has not yet been sufficiently de-
veloped. But there is not only a need for such development, there must be a quan-
titative and qualitative evaluation of their efficiency. We confine ourself here to a
single example: the computer exercise of  estimating solids.

Estimating volume of solids and surface size of solids is a neglected topic in
the geometry lesson in spite of its geometrical and practical respective applica-
tional meaning. In the use of conventional media there is a lack of creating corre-
sponding learning environments which in addition would not fullfil certain
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demands for feedback and self-control functions. This is a typical deficit, which
can be eliminated with the help of computer use.

The following questions arise:

+ How must a computerized learning environment be created so that the
ability of estimating geometrical solids exercised in it can effectively be
applied to estimating physical solid models? (It is of no use, if the students
can only estimate solids effectively in the virtual space on the computer
screen!)

+ How does the ability of estimating geometrical solids exercised in a com-
puterized learning environment influence the estimation of physical solid
models?

These questions are only specifications of the following fundamental research
questions which the geometry didactics must be answering in future:

+ How must the "virtual space" be arranged so that the abilities or skills
acquired in it can effectively be used in "real space“?

+ How do abilities or skills acquired in the "virtual space" influence their
application in "real space"?

Regarding these considerations a tutorial program was developed formatively
(Schumann / Alavidze, 1999). The task of this program entitled ESTIMATE! is
the exercise of estimating the surface and volume measurement of simple convex
solids and practising corresponding spatial abilities. The following kinds of
problem can be selected in the main menu:

Measurement estimation: Estimating the surface of a given solid. Estimating
the volume of a given solid.

Solid adaptation: Adapting a solid to a given surface size.  Adapting a solid
to a given volume.1

Rotations of the solids to be controlled by the user by means of the Virtual
Sphere Device help to visualize them. An implemented estimation value is
answered by the system with the blinking of the corresponding solid. The prob-
lems could be selected within type of problems according to different levels of
performance. The results are graphically and historically represented.The result
representation enables the user to recognize her/his estimation errors and their
tendancy. The following presetting parameters can be adjusted: type of solid
(cube, cuboid; prism, pyramid, pyramid frustum− respectively with regular or not
regular bases; cylinder, cone, cone frustum, sphere), number of problems, num-
ber of trials, size of tolerance, change of the unit dimension. Under use of the
corresponding parameter settings there can be defined up to five difficulty levels.
The dimensioning of solids is always executed stochastically.

In the context of a quantitative empirical investigation among others the
follo-wing question was answered for volume estimation: What is the effect of

1 The latter two kinds of problems could hardly be posed in a traditional learning environment.
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computer exercised volume estimation using ESTI-MATE! to the volume esti-
mation of some physical surface solid models made from cardboard?

The control-group design was selected as a suitable experimental design
accor-ding to conditions like students‘ motivation and concentration.

The volume estimation performance of the students improves significantly
by about 30%. In addition, the estimation performances of the computer exer-
cised students deviate to a lesser extent. A clear improvement in the ability to
estimate the volume of physical models of solids is reached by the exercise with
ESTIMATE!.

Spatial Geometry and the Internet
Today there is no more doubt for the efficiency of the Internet for the distribution
and appropriation of information as well as for the communication about infor-
mation in the context of cognitive education. It is to highlight the access to infor-
mation with the advantage of its current state independent from place, time and
person. As a worldwide language standard the English language gains increasing
acceptance.

The internet representation of spatial geometry is still weakly developed − as
far as content and software ergonomics are concerned. Most sites only contain
information and (dynamic) visualization of spatial geometrical facts. But the
conditioning information is still far remote from a systematization such as in a
context sensitive system "Mediothek Mathematik" (Klett, 1998) for synthetic
geometry in secondary education. Corresponding tools and tutorials are just at
the beginning of their development. Nevertheless, the problems of an adequate
implementation and processing of input of the learners by tutorial software
remain unsolved. Despite the inhomogeneous and uncontrollable growth of infor-
mation there are a lot of materials to supply online and offline teaching and
learning spatial geometry. It puts the challenging task to install a selection of
sites about spatial geometry in the national curricular context to be updated
permanently because of the dynamic extention of the Internet in order to support
the teachers in their school work and in their further education. (By correspon-
ding materials globally offered in the Internet something like an international
core curriculum on spatial geometry could crystallize itself; this can help to
recognize and to overcome deficits in content and media of national curricula.)
Besides the development of such Internet materials tasks of a programming
technical manner are the portation of educational software already evaluated
successfully to a platform independent standard (at present this is limited by the
facilities of Java as a software developmental tool) and the task of adaptation of
suitable foreign software to the corresponding cultural context.

In the following we select the search cue "Polyhedra" as an example relevant
for the spatial geometry lesson in secondary education.We have chosen this
topic, because neither the printed pictorial material nor any naturally restricted
collection of physical solid models has the time and place independent possibi-
lities of information and dynamic visualization like the Internet. Among the first
100 about 20 000 (!) sites found by FIREBALL we select “Polyhedra Inter-
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active“ (http://polytopes.wolfram.com) of Research Wolfram as an highly infor-
mative site, which is not indicated in the meta site “Links and topics related to
Polyhedra“ (http://www.links2go.com/topic/Polyhedra). − Regarding the didactic
functionality of such sites: the teacher can demonstrate and explain the beauty,
variety and the proporties of the forms of specific polyhedra; the students could
hardly explore that by themselves because they are inundated by the information
available. In addition there is the danger of a brief perception of the computer
graphical phenomena without their theoretical reasoning and without their haptic
learnability.

Final Comment
What might computer supported learning of spatial geometry look like in the
near future?

Learning of spatial geometry through virtual realities: The use of today's
spatial geometry programs still separates students and computer systems: The
student can only indirectly communicate with the computer for example using a
'mouse'; therefore her/his kinesthetic feelings and experiences are very restricted;
he/she executes options and watches the (spatial) result on the planar screen; the
spatial interpretation can only be improved by stereographic representations and
the use of red-green spectacles. The development of so-called virtual realities
partially overcomes the limits between the student and computer system: By
means of suitable interfaces it is possible that the student has the (illusory) sen-
sation to move and act with her/his whole body inside a simulated three dimen-
sional world −for example carrying out virtual operations on objects of virtual
reality.

The following scenario for future geometry learning is conceivable: The
geometry learner proceeds as a Cybernaut in a three-dimensional geometrical
world, for example in one for investigating polyhedra. She/he goes for a walk
among the solids, looks at them from the worm’s-eye or the bird's-eye view,
climbs on the solids around, feels the pointed corners and the sharp edges, she/he
slips down the slippery solid faces, she/he penetrates the solids and views them
from inside; she/he moves the solids, combines them, folding them down,
changes their size, deforms them arbitrarily and carries out operations on them,
for example section operations or she/he takes the role of a solid and for example
'experiences' rolling as a solid etc.

What effect will such a computer represented spatial geometry have on the
'imagination' of the students? How will this change their relationship to the real
3-dimensional world surrounding?
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Abstract
Belief research has tried to develop understandings of the relationship
between teachers’ beliefs about mathematics and mathematics teaching
and learning on the one hand and the classroom practices on the other.
A dominant implicit premise has been that beliefs may serve as an
explanatory principle for practice, i.e. that in the case of apparent
compatibility between the two there nothing else to explain, while in
other situations mediating factors are called upon to explain the
discrepancy. Based on the results of an empirical study of three novice
teachers’ beliefs and practices I question this premise and briefly present
a different approach to belief research.

Over the last decade belief research has grown big in mathematics education. It
has been part of the research agenda at least for the last 20 years, but it has
gained further momentum in the 1990s. In 1996 Törner and Pehkonen identified
764 titles in an incomplete list of the field, and from conference proceedings and
journals it is evident that it still attracts a lot of attention. Further, the interest in
one aspect of belief research may even have increased further, namely the one of
teachers’ meta-mathematical understandings (including those of the related
teaching-learning processes), of how these beliefs are developed, and of how
they may influence the classroom practices.

These questions have been addressed theoretically and empirically with a
wide range of quantitative and qualitative research methods, the former often in
terms of factor or cluster analyses, the latter using open-ended questionnaires,
semi-structured interviews, and classroom observations. In this paper my main
intention is to challenge what appears to be a basic rationale or premise under-
lying many of both the quantitative and the qualitative studies in the field: that
teacher beliefs are to be seen as a factor that does or at least should explain the
practices of the mathematics classroom. In this paper I shall challenge this
premise. However, before doing so I shall describe some of the background of
the growing interest in the field and question some of its substantive findings.

Fuelling belief research: the forced autonomy of mathematics teachers
The increased interest in the teacher’s meta-mathematical understandings follows
from a change in the role envisaged for the teacher in current reform documents
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and journal articles (for a summary of the theoretical underpinnings of the reform
see Skott, 2000, chapter 2). The reform is epistemologically framed by both con-
structivism (von Glaserfeld, 1995a, 1995b, 1996) and socio-cultural theory
(Vygotsky, 1986; Wertsch, 1985), and mathematically it is inspired by fallibilism
and by emphases on the social constitution of mathematical knowledge (Lakatos,
1976; Davis & Hersh, 1981). Consequently mathematics classrooms are en-
visaged to develop into small communities of mathematical practice in which the
individual students’ learning and the microculture of the classroom are seen
reflexively related (Cobb, 2000; Cobb and Yackel, 1998). The teacher is
expected to play an essential role for the emergence of these communities, as
(s)he is expected to develop and flexibly use a wide range of different tasks in
order both to encourage the students’ involvement in mathematical processes of
experimenting, investigating, generalising, formalising, etc. and to support their
conceptual understanding and procedural competence on the way. This requires
the teacher for instance to support the emergence of an atmosphere in which the
mathematical contributions of individuals and of groups of students are valued;
to interpret these contributions and make them become an accepted part of the
public domain in the classroom; and to pick out mathematically and pedago-
gically significant aspects of these different contributions and make them part of
the mathematical discourse of the classroom. This role of the teacher was
succinctly phrased in the draft of Standards 2000 (NCTM, 1998):

Curricular frameworks and guides, instructional materials, and lesson
plans are only the first elements needed to help students learn important
mathematics well. Teachers must balance purposeful, planned classroom
teaching with the ongoing decision-making that can lead the teacher and
the class into unanticipated territory from an effective mathematical and
pedagogical knowledge base. (p. 33)

In this situation teachers have come to be seen not only as important contributors
to educational reform, but also as potential obstacles to change. In particular the
beliefs about mathematics and its teaching and learning have become a focal
point in the literature, as these beliefs are expected to significantly influence the
ways in which the teachers cope with the situation of forced autonomy. Con-
sequently current reform initiatives in mathematics education have fuelled the
interest in the part of belief research linking teachers’ school mathematical priori-
ties to the classroom practices. Three main questions have been addressed in this
connection:

• What are teachers’ beliefs about mathematics and its teaching and
learning? This question deals with the relative emphases on mathematical
processes and products; with the teacher’s perception of his/ her own role
what role in the classroom as explicators of knowledge or unobtrusive
facilitators of learning; and with students as receivers of information or as
constructors of knowledge.
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• How may these beliefs change or develop? Generally perceived to be
relatively stable and resistant to change beliefs need to be challenged in
order to develop. This question is concerned with how this development
may come about, for instance through student teachers’ reflective activity
in pre- or in-service programmes conceived in line with current reform
initiatives (Cooney et al., 1998).

• do teachers beliefs about mathematics and its teaching and learning play
for the ways in which mathematics classrooms develop?

An implicit premise of belief research
The most dominant explicit or implicit answers to the last of the three questions
mentioned above are in the affirmative. Indeed, if this were not the case it is
difficult to explain why the first two questions were to attract more than minimal
attention. However, these affirmative answers differ greatly from very direct and
causal descriptions claiming that the teacher’s espoused views of mathematics
determine both the classroom practices and the students’ learning (Schoenfeld,
1992; and to a lesser extent Ernest, 1991), over an insistence on an unspecified
reciprocal relationship between the two (e.g. Thompson, 1992), to a claim that
there is no relationship between the beliefs espoused in research interviews and
the practices of the mathematics classroom and that none should be expected, as
beliefs are situated much in the same sense as cognition (Hoyles, 1992). The
claim in this latter position is not there is no positive correlation between teacher
beliefs and the classroom practices, but that the relevant beliefs are those held in
the mathematics classroom, and that these are seen as qualitatively different from
those held in other situations.

In a large part of belief research, then, the general affirmative answer to the
last of the above questions frames the understandings developed in these studies
themselves, even to the extent that beliefs come to serve as an explanatory
principle in relation to practice1. This means that in these studies there seems to
be no attempt to look beyond teacher beliefs when interpreting what happens in
the mathematics classroom. More specifically, if - from an observer’s perspective
- there is apparent compatibility between the beliefs espoused for instance in
research interviews and the classroom practices, there is little more to explain. If
no such compatibility is found an argument for the apparent lack of impact of
beliefs is made (i) by referring to a school culture that in the particular case
dominates belief enactment; (ii) with reference to a highly individualistic and
often condemning explanation of teacher inconsistency; (iii) by capitalising on
the conceptual and methodological problems inherent in the very notion of
beliefs, as the classroom practices are judged as dependent on implicit beliefs
residing at other levels of consciousness, than the ones described in research

1 The notion of explanatory principle is borrowed from Bauersfeld (1998) who uses it to
describe the role attributed to culture in education.
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interviews or questionnaires. Hoyles’ conjecture about the situatedness of beliefs
may be seen as one version of this.

In other terms, a dominant premise of belief research is that beliefs are and
should be the main influence on the classroom, and although the classroom prac-
tices may be mediated by external or internal constraints, they are indeed the
teacher’s practices: The teacher’s beliefs - conscious or not and explicit or not -
are thought to be directly related to the learning opportunities that unfold.

Challenging the substantive results of previous studies
I have previously questioned the substantive conclusions of previous studies that
claim a direct relationship between teacher beliefs and classroom practices
(Skott, 2000; 2001). I did so on the basis of an empirical study of three novice
teachers in the Danish folkeskole, the municipal school for children in grades 1 to
10. The three teachers were selected for the study, because they all presented
visions of school mathematics (school mathematics images or SMIs) that
strongly resemble current reform initiatives in mathematics education. In ques-
tionnaires and research interviews immediately before and after their graduation
from college they described the students’ activity in terms of investigations and
experimentation; they conceived mathematics as a way of approaching and
posing problems; and they presented their visions of teaching in terms that
reflected intentions of being unobtrusively supportive in relation to student
learning. In short, the SMIs of these teachers were strongly inspired by the
reform, and they all seemed confident that they could enact the reform intentions
in their prospective classrooms.

In the case of all three teachers, the classroom interactions often developed in
ways that resembled certain aspects of their school mathematical priorities.
However, there were also episodes in each classroom in which the teacher’s
contributions to the interactions appeared at odds with his or her SMIs or in
which (s)he was apparently tempted to make such contributions. The teachers
were asked to comment on video recordings of some of these episodes. When
doing so they sometimes referred to mathematical insecurity on their own part as
the reason why the interaction developed the way it did. In these episodes they
were primarily involved in attempts to manifest professional and mathematical
authority, and consequently contributed to the interactions in ways that seemed
counterproductive to student learning and at odds with their SMIs. In other
instances the teachers were more concerned with building students’ self-con-
fidence by ensuring that they - the students - provided an acceptable solution to a
textbook task than with supporting their mathematical learning. As a result they
got involved in funnelling types of interaction that in effect depleted the tasks in
question of its mathematical contents for the students in question. In yet another
type of situation the teachers’ activity was primarily directed towards managing
the classroom in a stressful situation in which many different (groups of) students
simultaneously called for help. In these situations they often became much more
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explicit in their assistance to the students in order to speed up the process of
helping them.

An important characteristic of the episodes that challenged the enactment of
the teacher’s school mathematical priorities, the critical incidents of practice
(CIPs), is the simultaneous existence of multiple motives of the teacher’s activity
(Skott, 2001). In each of them the intention of facilitating mathematical learning
is submerged by the emergence of other energising elements (Leont’ev, 1979) of
the teacher’s activity beyond the teaching of mathematics. The motives of the
teacher’s activity, then, should not be as seen as pre-determined by his or her
school mathematical priorities. Rather they must be understood as entities that
may be transformed or even emerge in and as a result of his or her interactions
with the students. Consequently the role of the SMIs is not to control the
teacher’s activity. Rather it becomes an underlying propensity that may play a
part as one possible element contributing to his or her interpretive efforts in
relation to the situation at hand. These interpretations sometimes lead to the
emergence of other motives of the teacher’s activity than facilitating the students’
mathematical learning, motives that in turn direct the teacher’s contributions to
the interaction.

Questioning a dominant methodological approach in belief research
The above conclusions not only challenge the results of previous studies in belief
research. They also question the implicit premise that beliefs may serve as an
explanatory principle for teacher actions. In the episodes referred to above the
classroom practices evolved in and as a result of the instantaneous interpretations
on the part of both teacher and students of their mutual intentions and expec-
tations. This supports Bauersfeld’s (1988) suggestion to view the classroom from
the perspective that “it is a jointly emerging ‘reality’ rather than a systematic
proceeding produced or caused by independent subjects’ actions” (p. 29), and it
questions whether the classroom should be seen as a field for the teacher’s
practice in the possessive sense of that term. This does not necessarily question
the existence of sets of beliefs that - at least in the short term - are relatively
stable across contexts. It does, however, indicate that the contextual embedded-
ness of teaching - in the local interactionist sense of context - challenges the
extent to which the intention of facilitating the students’ mathematical learning
remains the dominant motive of the teacher’s activity. This means that the social
interactions of the mathematics classroom have to be perceived exactly as inter-
actions, i.e. as processes “that form human conduct instead of being merely a
means or a setting for the expression or release of human conduct” (Blumer,
1969, p. 8; italics in original).

Referring to the use made of beliefs as an explanatory principle in relation to
classroom practice (cf. above) there is as much to explain, when there is apparent
compatibility between beliefs and practice, as when there is none. It is of obvious
importance to address the questions of when and how the classroom interactions
allow for the teacher’s activity to be directed at facilitating mathematical learning
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and to be influenced by his or her school mathematical priorities. Further, if there
is apparent lack of congruence between espoused priorities and observed practi-
ces, there may be no need to refer to beliefs residing at other levels of conscious-
ness than those that are expressed in research interviews. Nor does reference to
external constraints on belief enactment in the form of a school culture in and by
itself explain an apparent discrepancy between beliefs and practice. If a broader
school culture is expected to play a role, an account is needed for how the mutual
expectations of teachers and students are influenced by this culture, i.e. how it is
re-enacted in the classroom. Only then may such a reference contribute to an
understanding of how the culturally derived expectations come to play a role in
the formation of the motives of the activity of both teachers and students.

Finally, the above study indicates that the teacher instantaneously manoeuv-
res in relation to a multiplicity of different tasks rather than merely to one of
facilitating mathematical learning. This is inherent in the very notion of CIPs and
its defining concept of multiple motives of teacher activity. In other terms, the
teacher’s activity is related to the sense they make of the situation at hand, and it
momentarily focuses on some motive, that (s)he tries to pursue. This means that
inconsistency is an observer’s perspective that does not do justice to the com-
plexity of the teacher’s tasks. For classroom research - and for belief research in
particular - this means that it should be conducted with the understanding that
teachers’ and students’ activities do make sense; -  or phrased more bluntly in the
case of teachers: teachers cannot be inconsistent. This, of course, does not mean
that teachers necessarily pursue the different motives in what appears to be the
most efficient manner, nor that they - even according to their own priorities -
strike an appropriate balance between them at any one time. Teacher consistency
is a local and instantaneous phenomenon and as such implies that the teacher’s
activity should be viewed as his or her attempt to relate sensibly to a multitude of
different and possibly subjectively incompatible aspects of the situation at hand.

Conclusions
The study referred to in this paper deals with a main question in belief research,
i.e. the question of what roles the teacher’s beliefs about mathematics and mathe-
matics teaching and learning play for the learning opportunities that unfold in
mathematics classrooms. I have claimed the motives of the teacher’s activity
emerge in the classroom interactions, and that therefore his or her school mathe-
matical priorities may not be so significant as previous studies have suggested.
The more general claim is that we need to adopt an interactionist perspective on
mathematics classrooms and approach these from the perspective that teachers
are never inconsistent. In other terms, I have found it necessary to challenge what
appears to be a dominant premise of teacher related belief research in order to
address the main question of the field. This premise is that beliefs may serve as
an explanatory principle in relation to practice. By doing so the study also
questions the usefulness of types of answers found in much previous research
done in the field. In short the argument is that the main question of the belief-
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practice relationship should still be addressed, but that the dominant perspective
needs to be changed if significant answers to this question are to be provided.
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This paper addresses two questions: 1. How can curriculum architecture design a
rehumanised precalculus curriculum? 2. What happens in the classroom when
this curriculum is implemented? Brief answers are: 1. A dehumanised mathema-
tics curriculum disrespects the concept’s history by e.g. presenting linear and
exponential change as examples of functions, thus transforming mathematics to
‘metamatics’. Uncovering hidden eventuality, curriculum architecture could
rehumanise linear and exponential change by presenting them as stories about
uniting constant unit- and per-numbers. 2. When implemented the teachers will
have big problems leaving their traditional routines, only third time lucky. Most
students will show positive reactions, and many will change from dropouts to
dropins.

How can curriculum architecture design a rehumanised pre-calculus curri-
culum?
Curriculum architecture is a core ingredient of postmodern counter research
within education. To the question: ‘What is postmodern counter research?’, a
summary answer could be: Postmodern counter research is producing counter
examples to qualitative necessity claims. Postmodern counter research is a
middle position between structuralism and post-structuralism. To structuralism
the world has a structure that can be represented and echoed in language. Post-
structuralism denies this, and points out that unaware of a phrasing’s hidden
eventuality, the free modern individual becomes enslaved and clientified by
ruling echo-discourses: echo-phrasing is freezing, re-phrasing is freeing
(Foucault, 1970, 1972). Postmodern counter research is based upon the ‘pencil-
dilemma’: Placed between a ruler and a dictionary, a pencil can point to its own
length but not its own term. The pencil possesses a necessity enabling it to
number itself, but not to name itself. Hence numbering follows from necessity,
and naming follows from eventuality, contingency, i.e. from a choice, that might
have been otherwise. Modern qualitative research thus becomes problematic, but
regains its meaning as a postmodern counter research, accepting the numbering
of nature, but producing counter examples to echo-phrasings within ruling
discourses, thus guarding the line between necessity and eventuality by checking
for h�idden eventuality in claimed necessity.

To the question ‘What is curriculum architecture?’, a summary answer could
be: A curriculum is an example of an authoritarian discourse (Pinar et al., 1995).
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This ruling discourse is checked for echo-phrasings and hidden eventuality by
postmodern counter research using curriculum architecture. There is a widening
gap between theory and practice within mathematics education (Niss, 2000).
Curriculum architecture is addressing this problem by offering a practice based
research method avoiding the ‘London Syndrome’: ‘move all local universities to
London, since local knowledge doesn’t matter anyhow’. Postmodern counter
research accepts the principle of situated knowledge (Lave et al., 1992): If
knowledge is local, then the locals should be allowed to develop local knowledge
by bringing micro- or macro curriculum design into the classroom. Curriculum
architecture offers to teachers and students a creative alternative to just being
textbook echoes, and a possibility to perform postmodern counter research, thus
closing the theory-practise gap. Such research reports will not make claims,
convincing about necessity, but suggestions, inspiring to look for other examples
of hidden eventuality.

Curriculum architecture presupposes a national flexible core curriculum, i.e. a
curriculum that draws a line between necessity and eventuality in the curriculum
by assigning its authority to elements with no or low degree of eventuality. The
degree of eventuality increases from zero to high when moving from nature’s
necessities through social practices and institutionalised discourses to personal
opinions.

To the question ‘What is a dehumanised curriculum?’, a summary answer
could be: A dehumanised curriculum is a curriculum presenting a social con-
structed concept as a universal concept, e.g. a structuralist curriculum telling
about the world from above, thus providing the students with meaningless top-
down unknown-unknown relations. This forces the students to construct their
own meaning unassisted by the teacher, who is only present as a textbook echo.
The lack of meaning implies negative feelings towards the subject. This no-
meaning problem is not solved by a constructivist approach, which is still based
upon structuralism, and which deprives the teacher of the possibility of story-
telling.

To the question ‘What is a rehumanised curriculum?’, a summary answer
could be: A rehumanised curriculum is a curriculum presenting concept as social
constructions, e.g. a nominalist curriculum telling about the world from below,
thus providing the students with unknown-known relations to extend their self-
stories. A rehumanised curriculum respects the biological necessity, that the
holes in human heads are for food an stories, and that stories must be relevant
answers to the selfstory-builder questions ‘tell me something I don’t know, about
something I know’. And a rehumanised curriculum is feeding all three brains: the
human brain with meaning, the reptile brain with routines, and the mammal brain
with positive feelings.

To the question ‘What is a dehumanised mathematics curriculum?’, a
summary answer could be: A dehumanised mathematics is disrespecting the
nature of mathematics as a grammar of the number language by talking about
mathematics as applicable to the world, and is not respecting mathematics’ roots
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as a historical social construction based upon natural necessities giving birth to
social practices and stories. In short, a dehumanisation transforms mathematics to
‘metamatics’. An example of a dehumanised mathematics curriculum is a struc-
turalist curriculum presenting abstract concepts as an example of more abstract
concepts, as e.g. ‘A function is an example of a relation between two sets, that
assigns to each element in one set an element in another set’. A pre-calculus
curriculum is dehumanised if it phrases linear and exponential change as linear
and exponential functions, i.e. as examples of functions. Since the function
concept is younger than calculus it cannot be part of a rehumanised pre-calculus
curriculum.

To the question ‘What is a rehumanised mathematics curriculum?’, a sum-
mary answer could be: A rehumanised mathematics is respecting the close rela-
tionship between the word language and the number language by considering
mathematics a grammar of the number language, and is respecting mathematics’
roots as a historical social construction based upon natural necessities giving
birth to social practices and stories. In short, a rehumanisation transforms
‘metamatics’ to mathematics. Thus a rehumanised mathematics curriculum is
following the principle of low eventuality by placing its authority with the
necessity of multiplicity, which gives birth to the practices of bundling and
rebundling, and stacking and restacking, and to stories about the total, found by
counting or calculating. A rehumanised precalculus curriculum thus might origi-
nate from a practise of bundling and uniting constant $-numbers or constant %-
numbers, leading to questions like ‘100$ plus 7 days @ 5$/day total ?$’ and
‘100$ plus 7 days @ 5%/day total ?$’, plus the same questions with the question
mark placed elsewhere. And eventually leading to linear and exponential growth
calculations, but not to functions. Historically functions emerged after calculus
originating from a practise of bundling and uniting variable per-numbers, leading
to questions like ‘100m plus 7 seconds @ 5m/s increasing to 6 m/s total ?m.’
(Tarp, 1999)

What happens in the classroom when a rehumanised pre-calculus curri-
culum is implemented?
To the question ‘What happens to the teachers?’, a summary answer could be:
Most teachers are reluctant to try alternatives, even as a micro-curriculum.
Interested teachers are discursively willing but practically unable to change their
routines, only third time lucky. Thus an implementation of a rehumanised mathe-
matics curriculum presupposes an intensive training program changing both the
teacher’s discursive and practical conscience (Giddens, 1984) of mathematics,
and changing the teacher’s success expectation from short term to long term.

To the question ‘What happens to the students?’ a summary answer could be:
Most students will show positive reactions. Many students will change from
dropouts to dropins. Some students fear, that a rehumanisation will make mathe-
matics so easy it might be forbidden: ‘my former teacher said mathematics must
be difficult’. All in all, a rehumanised nominalistic bottom-up mathematics told
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from below has the potential to make mathematics a human right. So the question
is: Is there is a social will to admit mathematics as a social construction?
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Abstract
This paper develops the idea that the mathematical thinking of low
attaining students in the secondary phase can usefully be seen in
terms of proficiencies, rather than deficiencies. Evidence is offered
towards an approach based on recognising that low attaining
students exhibit conceptual mathematical thinking.

Difficulties created by a negative view of low attaining students
Teachers and authors tend to talk of low attaining students and under-achievers
in terms of what they lack or what they cannot do, thus dwelling on negative
aspects of academic performance. Haylock (1991) is in most respects a very
positive writer about low attaining students, but in case studies his positive
comments are usually about behaviour and low level skills, rarely about features
of mathematical thinking which might accompany such skills. Denvir, Stolz and
Brown (1982) list statements which teachers made about low attaining students:
there are a vast number, all of them negative.

Support offered in UK classrooms is often of a kind which simplifies the
mathematics until it becomes a sequence of small smooth steps which can be
easily traversed. The supporting adult will “take the pupil through the chain of
reasoning” and the learner merely fills in the gaps with arithmetical answers, or
low-level recall of facts and so on. Achievement in such situations is identified
by getting to the end of the work, completing something successfully, filling in
the required partial answers, and maintaining some concentration throughout.
The student may feel genuine success because, in the terms in which mathema-
tical success has been presented to them for their interpretation, they have
indeed achieved (Bergqvist, 1990). But path-smoothing is unlikely to lead to
significant learning on its own, since the strategy is to deliberately reduce a
problem to what the learner can do already. The learning, presumably, is then
deciding what to do and stringing the steps together - but the helper has already
done this for the learner! Furthermore, the view is reinforced that if the learner
does nothing for long enough, the helper or the teacher will provide the
appropriate task-transformations (Bauersfeld, 1988). There is no possibility that
leaps could or should be made, since the view is that a low-attaining learner can
not make such leaps and might lose confidence through being expected to do
so. Teachers may prioritise confidence rather than learning.
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For secondary teachers and students, there are two main ways in which prior
underachievement presents a daunting task. Firstly, accumulated past failure
leads to expectation of future failure on all sides; secondly, there may be utter
confusion about arithmetic. It is tempting for secondary schools to try a piece-
meal approach, concentrating on remediating what cannot yet be done rather
than building on what can be done. This brings students into renewed contact
with the site of their previous failures while offering them very difficult learning
tasks – to learn, recall and use facts and procedures which are unconnected to
anything about which the learner feels secure and which depend on remem-
bered words and instructions – a very expensive use of the brain (Butterworth,
1998). They conceive of mathematics as being fragmentary, illogical, difficult
and alienating. It is also very hard for teachers to organise individual attention
to weaknesses in the way required by this approach.

A cognitively-guided approach based on individual constructions
Daniels and Anghileri (1995), offer a detailed research-based report of the
difficulties inherent in mathematics, the way it is represented and the way it is
taught, as well as the debilitating effects of accumulated failure. Their report
encourages a move away from labelling the learner (e.g. as low attaining
student, under achiever etc.) and towards structuring teaching to enable indivi-
dual learners to achieve, given the problems they have encountered and the
meanings they have constructed in the past.  Fennema et al (1993) took a similar
approach. Teachers read research results relating to students’ informal mathe-
matical methods and structured their teaching in response to their students’
constructions of mathematical meaning. These approaches required detailed
diagnosis of the mathematics of individual students and the support of resear-
chers and fieldworkers whose knowledge of teaching, mathematics and research
may be beyond the resources of many schools. 

An activity-based approach
Another approach, reported in Boaler (1997), is to present mathematics in a
sequence of activities which are structured similarly to the kinds of task students
meet elsewhere in their school and outside lives, amenable to generic problem-
solving techniques. Low attaining learners in a school which used this approach
performed significantly better in their final examinations than similar students in
a school which used a more formal, technique-based approach. Teachers
believed that students' inability to recall and use what had been taught to them
in primary schools would be overshadowed by their ability to develop, adopt
and use suitable techniques to make progress with their current task. But their
results, although better than in a comparable school, were still low compared to
their cohort. A further problem with this approach is that ad hoc mathematical
methods do not provide a foundation for mathematics at higher levels of
abstraction. Everyday thinking skills were exploited in mathematics lessons,
(which is more useful than the pretence that mathematics lessons support every-
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day thinking), but mathematical thinking was not developed except where it
coincided with everyday thinking.

What is special about mathematical thinking?
In reviewing contributions to describing mathematical thinking, it is found that
some of the descriptions concentrate on problem-solving heuristics (e.g.
Schoenfeld, 1984) while others relate to the development of conceptual under-
standing in mathematics (Tall, 1991).

Ahmed (1987) and Boaler (1997) give evidence of how low attaining
students can often do well in problem-solving, activity-based and open-ended
situations. Ahmed’s project showed how such teaching styles could fundamen-
tally influence the attainment of students, simultaneously raising expectations
and making achievement in mathematics seem worthwhile. But we lack evi-
dence of ways of thinking which would enable low attaining students to deve-
lop the abstract conceptual understanding. Tall (1991) says that those who suc-
ceed are those who, without being taught, can reflect on processes, change rep-
resentations, abstract entities from them, manipulate these and hence gain an
image of concept, while overcoming obstacles to gain a conventional under-
standing and acceptance. Students for whom the usual logical sequence of pre-
sentation of formal mathematical products matches their own cognitive develop-
ment are in a highly advantaged position and make the matching of conceptual
development and formal, generally-accepted mathematics more likely.

The reader may believe that these ideas are irrelevant for low attaining
students, but Haylock (1991, p. 24) reports how one student (Ben) voluntarily
produces and uses a pictorial representation of division of whole numbers which
he then manipulates in order to get a correct answer. This shows the ability of a
low attaining student to create and use an appropriate visual image, that is, a
kind of concept image which is manipulated until a conventional result is
obtained. Since symbolisation and transformation are two mathematical actions,
and since this student performed them voluntarily, we could say that he was
doing some mathematical thinking.

A mathematical view of learning mathematics
There is a current tendency to describe learning in socio-cultural terms, but  
alongside this is a tradition of using mathematics, its own structures and practi-
ces, to think about how it might be learnt. Freudenthal (1971) claimed mathema-
tics as an activity involving organising and mathematising, not as a body of
knowledge. This view would release low attainers from needing to KNOW more
things, which keep slipping away, and replace these with opportunities to DO
mathematics in the kinds of ways described by Boaler and Ahmed. Vergnaud
(1997) says that what is needed to describe progress towards conceptual under-
standing in mathematics is within the mathematics itself, as part of it. He and Tall,
from different perspectives, both appear to support the notion that students
need to experience personal conceptual progress towards understanding, and
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that this journey is describable in terms which are already mathematical, rather
than social.

A characteristic of Ahmed’s (1987, p.72) approach is that it emphasises
proficiency rather than deficiency. He concentrates on general learning skills
such as curiosity, willingness to work, problem-solving skills and rightly points
out that all students display these in some contexts, but not perhaps in all
contexts. In this paper I go beyond this and describe abilities of some low
attaining students which are features of mathematical thinking, such as the
pattern use suggested above.

For this purpose mathematics is seen as sequences of: objects and their
properties; classes of objects with their associated properties; generalisations
about classes; abstractions and relations which become objects for more
complex levels of activity. All of these can be represented by a variety of sym-
bols which can, like abstractions and relations, be further manipulated in their
own right. Drawing on these views, I look for evidence that students can
exemplify and counter-exemplify in ways which do more than imitate what a
teacher has offered, since this implies some level of generalisation and some
knowledge about classes; can change and manipulate representations; can
develop and use images of concepts; can abstract by reflecting on processes;
can perhaps work with abstractions and relations, which is generally a feature of
more advanced study (but see Harries, 2001). 

What is not-so-special about mathematical thinking?
It is noticeable that some of these specific learning behaviours associated with
mathematical thinking turn out to be ordinary ways of thinking and problem-
solving playing a specially important part in mathematics. For instance, it is
common to exemplify in order to illustrate complex descriptions; it is common to
switch from one representation to another, such as when one draws a map to
accompany verbal directions (see the story of Ben above).  

Examples of low attaining secondary students thinking mathematically
A small research project was carried out in a small class of very low attaining
students in secondary school, year 9. It has been reported in more detail else-
where (Watson, 2000). The object was to observe, identify and record incidents
in which low-attaining students appeared to be exhibiting high-level mathema-
tical thinking skills, as described above. The mathematical contexts, which were
chosen by the usual teacher, were very simple for students of their age, and the
usual teaching style was to simplify tasks and give plenty of path-smoothing
support. I also acted as a support teacher and occasionally took the class,
focusing on using approaches which gave responsibility to the students and
offered something for them to discuss, informed by my work in Watson and
Mason (1998). I was interested in the ways of thinking which the students
displayed, given their history of extreme under-achievement in mathematics. The
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following incidents give some idea of the range of manifestations of mathe-
matical thinking, which took place during the observed lessons.

Giving an example/counter example
Almira had been asked to round 83 to the nearest ten. She replied ‘80, but if it
had been 87 it would have been closer to 90’. Not only was she showing that
she knew this particular answer, but that she also recognised the principle being
used and could give an example of the another kind of possible question and
answer. She had a sense of the classes involved and she recognised and chose
exemplification as a way to communicate mathematics. 

Choosing to work with structure and relations
Students had been using flow diagrams to calculate outputs of compound
functions. They were asked to make up some hard examples of their own for the
whole class to do. Most students’ idea of complexity was to use more opera-
tions and bigger numbers; this is a common response (see, for example, Ellerton,
1986) but Boris suggested constructing one in which the operations and output
are known and the input has to be found. Andrew then gave one in which input
and output were given but the last operation was missing. These two students
were working with the relations rather than the numbers and operations. They
saw the structure of the problem as something they could vary.

Reflecting on processes
Students were suggesting factorisations of 144 by responding to “If 144 is the
answer to a multiplication, what was the question?” John said “12 by 12”,
which was the only answer available to them from the posters in the classroom!
Dan immediately said “and 24 by 6”. There were puzzled faces, so the teacher
asked “how do you think Dan got this?” Eventually Raj said “by doubling and
halving, you could have 48 by 3”. Whether this showed understanding or was
something Dan had learnt in the past I do not know, but Raj was using the
example to abstract a principle which could be applied again, and doing so
successfully.

Using symbolic representation
June was drawing a square in the normal orientation on a coordinate grid and
noting the coordinates. I do not know if she would have reflected on the
coordinates if she had not been prompted to do so, but once prompted she was
able immediately to say which components of the coordinates were equal. She
was asked if this pattern would always be true and replied “yes”. She then
explained why it worked, and was asked if she could say it in algebra. Although
the expressions she developed depended on specified coordinates at one vertex
they were in other respects generalisations of such squares. She had been able
to make a transition, on the basis of one example and application of knowledge
of squares, from a specific case to a more general symbolic representation, and to
justify this.
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A proficiency agenda for low attaining secondary mathematics students
These incidents are not generalisable across the class, nor are they being offered
as conclusive proof that all low attaining students can engage in mathematical
thinking in all mathematical contexts. Nevertheless, every student at least once
during the study exhibited behaviour which showed ability to think in ways
which are usually described as mathematical thinking. 

Butterworth (e.g. 1998) and other neuro-psychologists put forward the
view that only a few aspects of mathematics (particularly arithmetic with small
numbers) depend on systems which are ‘hard-wired’ into the brain; the rest
comes from how we make sense of our experiences in mathematics. In other
words, weaknesses in mathematics are unlikely to be innate, except in certain
pathological cases. All the students in this study showed that they were able to
make mathematical sense from mathematical experience. All were able to partici-
pate in a learning environment which was not based on simple step-by-step
procedures, but which expected conjecture, exemplification, generalisation,
reflection on pattern and other aspects of advanced mathematical activity.

The simplicity of the mathematical contexts needs to be considered. Can it
really be said that these students were doing mathematical thinking, when the
contexts were so simple? Are the stories above, and in Watson (2000), only
illustrations of a borderline between everyday thinking and mathematical thin-
king which some students successfully transcend, but which these students
might never transcend? One could say that what characterises low attaining
students is their inability to make this transition, but it is unlikely that a defi-
ciency agenda which focuses on remediation and repetition, common practices
everywhere, will provide insight into this area.

A proficiency agenda would not simply dwell on the positive aspects of
behaviour, motivation or attitude, although those would play a part; rather, it
would recognise and emphasise the thinking skills which students exhibit and
offer opportunity for these to be used to learn mainstream curriculum mathema-
tical concepts. They might then conceive of mathematics as being accessible, as
a subject which they can think about, and as an arena for personal satisfaction.
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Abstract 
This paper seeks to provide a systematic analysis of some central aspects 
of the way in which mathematics is and may be conceived as a field of 
knowledge to be taught and learned at the tertiary level with more or less 
specific professional aims. The paper examines the connection and 
possible coherence between these conceptions in the contexts of training 
scientists and teachers, in particular as it occurs in the design of 
undergraduate curricula. 

 
Background 
There is a well-known crisis in the recruitment and operation of educational 
programs in mathematics and mathematics based disciplines in most of the 
Western world (Jensen et. al., 1998). Partially as a result of this, there is an 
increasing shortage of qualified mathematics teachers in several countries (e.g. 
UVM, 1999). Although this paper will not address these issues directly, they are 
certainly behind the widespread feeling that the basic definitions of mathematics 
as a field of study must be somehow modernised to meet the challenge of a 
changing academic and societal environment.  

Mathematics is of course not the only subject for which such a need is felt. 
Other fields of study - in particular the pure sciences and the humanities, which, 
like mathematics, do not evolve as a function of their direct relation to one 
particular profession - are under a similar pressure to redefine themselves. The 
notion of core curriculum is increasingly used to convey the idea that in many 
fields of knowledge, not all elements are equally essential or indispensable; but 
certain concepts, methods and insights are crucial and permeate the whole field 
(UVM, 2000). In fact, the identification of such fundamental elements of a field 
of knowledge is increasingly necessary to address reform issues in an educational 
landscape with several (at least partially) contradicting trends; in particular, to 
navigate in the well-known (but still more acute) conflict between the roles of 
education as preparation for professional life and as a space for individual 
realisation and development. To prevent reforms from being not only radical but 
also destructive, it is an important task for mathematicians and mathematics 
educators to develop a clearer and more complete understanding of the nature of 
a 'core curriculum' in mathematics.  
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This task is not to be construed only at a national level. In fact the current 
attempts towards structural homogeneity in European higher education (as evi-
denced e.g. by the Bologna Declaration) will only succeed if they are accom-
panied by common analytical conceptions of subject matter knowledge, not least 
in major and universal areas like mathematics. This paper constitutes a prelimi-
nary attempt to address this need, and, more modestly, to point out some major 
inconsistencies and false dilemmas in the common conceptions underlying the 
curriculum debate.  

 
Basic categories for the discussion 
Knowledge, in any area, concerns both contents (roughly, what is known) and 
competencies (roughly, abilities to put content knowledge to use). An elementary 
point is that the two are interrelated, in fact inseparable. And a part of our task is 
to sharpen both of these rough notions in the context of university level mathe-
matics1.  

There, study units are typically specified by a list of ‘broad content’, with 
items like ‘Second order linear differential equations with constant coefficients’. 
However, such items are not very telling of what content is actually learned (or 
meant to be learned), e.g. which definitions, examples and results are concerned. 
Also, mathematical concepts and results are typically related in complex struc-
tures of meaning and dependence; mathematical content knowledge is as much 
about these relational structures as about single topics. As concerns competen-
cies, some indications may be given in an official description of the ‘goals’ of the 
course, but the evaluation practice may often be a better guide. In the example, 
the latter may simply imply that the students are expected to be able to recognise 
and solve equations of the given type; or, that they are also expected to be able to 
explain a general or specific method; or, leaving the arena of strictly mathema-
tical competencies, that they are expected to know and be able to handle certain 
cases of extra-mathematical applications. Certainly, the actual practice of the 
course and its evaluation could give much more detailed information about these 
and other ‘broad competencies’. However, we may still know little of their 
quality, e.g. stability (independence on notation etc.), durability and relatedness 
with other competencies.  

One inescapable fact remains: we cannot, in actual practice, relate directly to 
content knowledge and competencies. We cannot dissect a student’s brain in 
order to produce a picture of his content knowledge, nor can any test display the 
full range of his competencies; we may only get (partial) information on the two 
through instances of his performance. In fact, even a student’s performance can 
be said to be partly inaccessible, as it may include thinking processes that are not 
evidenced in instances of discourse (written, oral, figurative etc.). Discourse, 
indeed, is all that can be observed in teaching and evaluation practices. It may, 
however, still be worthwhile to maintain the more general performance focus in a 
                                                
1 A more thorough treatment of the linguistic background and terminology may be found in 
(Winsløw, 2000). 



Papers 

 252 

discussion of core curricula, with the understanding that only its articulated part 
is immediately observable. For instance, the problems of stability and durability 
are more easily discussed at this level, discourse being always situated in time 
and place.  

Thus, one dimension of our discussion of core curricula is spanned between 
the rough notions of content and performance. However, in most contexts of 
higher education, mathematics occurs not only in se but also as a means to 
describe non-mathematical phenomena. Within this external aspect of mathema-
tical knowledge, its content (concepts, results etc.) typically becomes tools and 
methods for such a description, while performance is concerned with applying 
these in the context of the description. In this case, the performed discourse will 
typically be a mixture of mathematical discourse (cf. Winsløw, 2000) and that of 
one or more other disciplines. Part of the target competency will then be the 
ability to handle this mixture. More generally, what is often termed meta-
knowledge belongs to the external dimension. Even for segments or programs of 
mathematics education that are strictly confined to pure mathematics, it may not 
be wise to ignore the more philosophical (such as foundational) aspects of this 
second dimension. 

Based on these preliminaries, I propose the following rough guide for the 
discussion of core curricula at tertiary level2: 
 
 Content  Performance  
Internal  Structure of mathematical  

concepts and results 
Understanding and producing 
mathematical discourse 

External Range of mathematical  
methods, and their scope 

Understanding and producing 
mathematical models 

 
Here, the term understanding refers to receptive (as opposed to productive) 
performance, as in reading and making sense of an exercise; but, like content 
knowledge, receptive performance can only be observed indirectly through 
‘productive’ performance, e.g. producing a solution to the exercise. 

                                                
2 The above model is clearly inspired by linguistics. In the context of learning a foreign 
language X, we have the following analogue: 
 

 Content focus Performance focus 
Internal  Lexical inventory, phonetic  

and grammatical rules of X 
Understanding and producing correct 
phrases in  X 

External Cultural and social aspects  
of the usage of X  

Communicating using X in relevant 
contexts 
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The main theoretical point of this model is that its four fields are mutually depen-
dent. It can be said to relate two main debates in mathematics education: the 
object-process discussion (e.g. Sfard, 1991) and the role of mathematical know-
ledge in society (e.g. Niss in Biehler, 1994). For instance, even (in fact, 
especially) if the official goal of a segment of education can be said to fall 
entirely in the lower right box of the scheme, it is clearly necessary to take all 
aspects into account.  

For the rest of this paper, we shall explore some more pragmatic uses of the 
model in relation to the problems mentioned in the first section. 
 
Two crucial dilemmas 
Undergraduate programs in mathematics are usually constructed with the aim of 
building the ‘basic knowledge’ of students; here is a British description (Burn et. 
al., 1988, p.102), which is probably widely representative of the current situation: 

Our first year courses generally consist of things that have always been 
there, things we know about, things we feel a student ought to know, and 
things they will need to do our option courses later on. (…) Our objec-
tives may be administrative (bringing them up to the same levels), 
mathematical (knowledge and approach) or functional (employment, 
future courses). 

In view of the model of the second section, it is clear that the focus in the first 
years of such a program is very much on basic content knowledge, which is 
considered necessary for a variety of reasons. Now, many university mathema-
ticians do see this as a problem. The above quote was in fact part of the agenda 
for a working group at a conference on undergraduate education, setting out to 
address questions such as  

Should more attention be paid to developing skills of problem solving 
rather than the ability to reproduce material from memory? 
How can we encourage and reward thought and innovation rather than 
knowledge or imitation?  (ibid., p. 102-103) 

Here, a shift towards the performance level is evident; indirectly, the unease and 
experienced problems with the current situation are the main message. The 
recommendations of the group are summarised in a list of objectives for first year 
courses, which can all be said to fall in the other three boxes of the model, 
including the meta-level and modelling aspects. At other conferences in the same 
series, subjects like ‘geometry at A-level’ and ‘rigour and proof’ were more 
specifically considered, with similar apparent outcomes: a desire for a shift 
towards objectives that emphasise independent discursive and modelling skills, 
while reducing the role of content to illustrative examples. With ‘apparent’, I 
want to say that this may not quite reflect the actual wishes and certainly not the 
practices of the participants. Indeed, in much of their writing, the need for a 
‘content core’ is implicit, but nowhere explicit. Few mathematicians would con-
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sider it immaterial what mathematics is used to train the said skills. For instance, 
this could mean that no new mathematics (beyond school arithmetic and algebra) 
would ever need to be introduced. Several studies (e.g. Defranco, 1996) have 
shown that one may develop content knowledge very far alongside with a 
persistent low level of performance e.g. in problem solving. The opposite would 
be just as dissatisfactory: few of us would approve of an undergraduate curri-
culum stripped of substantial new content.  

The situation is often quite different within university programs in mathe-
matics partially or exclusively aimed at students in other fields than pure 
mathematics. Here, courses “designed to provide the students with the mathe-
matics necessary for work at degree level in their main subject” (Burn et. al, 
1988, p.181), and they tend to be heavily focused on content in the form of ‘tools 
and methods’. Tests are often in the form of written exams where success is 
determined by the ability to solve certain standard types of problems (e.g. 
ay’’+by’+cy=f(x) with a, b, c and f  varying from test to test). However, teachers 
in such programs often feel that more concrete applications (to the relevant 
field(s)) should be included, both as examples and as tasks for independent 
student work; the following, from a 1978 working group of people involved with 
service teaching to biology students, seems to be a common stand: “We believe it 
to be very important that examination questions should not merely test mathe-
matical techniques but should also involve the modelling of real phenomena” 
(op. cit., 184). In the context of mathematical modelling, the following was 
expressed by a similar group at the 1979 conference: “We have the strongly held 
opinion that applications should use only mathematical methods which the 
students already know (…) it has been suggested that there should be as much as 
a two year gap between learning and use” (op. cit., 195). In practice, students are 
often given a ‘tough start’ with much rote learning of topics and techniques that 
will only be applied later, but many teachers feel applications should be more 
immediate. Again, we see an apparent strong tendency to value independent 
performance over contents. Although the two quotes are taken from different 
contexts, they combine to point to a dilemma that is quite similar to what we 
found in the setting of pure mathematics: we do want to develop the students’ 
competencies for independent performance, but we are also committed to extend 
their domain of contents beyond secondary school level. 

The third main bulk of undergraduate mathematics education is teacher 
education. In many countries, future teachers enrol in undergraduate programs of 
the first kind considered, and then specialise in education. In other countries 
(including my own), there are separate programs or even institutions meant to 
train future teachers. Especially in the first case, the content-performance dilem-
ma already explained will arise for a different reason: by nature, the under-
graduate curriculum is beyond what the teacher will have to teach at primary and 
secondary level, and it may often not be clear for students how the more 
advanced material can be used as ‘background knowledge’ for teaching. A stri-
king and widely noticed study by Liping Ma (1999) has documented that 
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teachers may have passed several undergraduate courses in mathematics and still 
be unable to explain (or even produce) solutions to elementary tasks like the 
division of two simple fractions. Clearly, a teacher must be required to have a 
high level of discursive performance within the content frame to which his 
teaching pertains. In fact, a mature mastery is necessary but not sufficient: 

Because teachers must be able to work with content for students in its 
growing, not finished state, they must be able to do something perverse: 
work backward from mature and compressed understanding of the 
content to unpack its constituent elements (Ball and Bass, 2000, p. 98) 

But even more acute is the tension in teacher training between the professional 
needs of mastering internal and external aspects of mathematics. This is 
particularly so when teacher training is exclusively focused on preparing teachers 
for a school curriculum in which the official goals are very much oriented 
towards ‘everyday applications’, where the content frame may be reduced to 
(applied) arithmetic. A part of the most applauded recent Scandinavian work on 
teacher training seems to tacitly accept this as a consequence of the noble effort 
to promote values like ‘democracy’ and ‘critical citizenship’. More generally, the 
focus on the meta-mathematical part of externally oriented performance tends to 
relegate the content issue (internal as well as external) to a question of supporting 
illustrative examples. It is a truism that external aspects of mathematics, inclu-
ding real-life models and meta-mathematical issues, cannot be seriously tackled 
without a solid basis within the relevant internal parts, and it is widely argued 
that the latter must to some extent precede the former in teaching (e.g. Burn 
(quote above); Sierpinska, 1995; Sfard, in press). The tension in teacher educa-
tion arises in part from a lack of seeing the two as interrelated. 
   
The challenge of information technology 
Both in its academic and professional contexts, mathematics as an activity is 
increasingly dependent on information technology. The use of computer based 
tools must be clearly taken into account when specifying the target performance 
of students in mathematics and related disciplines. Only in the internal content 
focused part of mathematics education is it pragmatically feasible to disregard 
this, but it is often still attempted throughout educational programmes (in 
Denmark, this occurs in all three main contexts of the third section). There is a 
growing realisation that it may be pragmatically desirable to incorporate infor-
mation technology to some extent also in the internal content focused part of 
mathematics education (e.g. Winsløw, in prep.), which in many cases will just 
amount to an acknowledgement that mathematics related technological compe-
tency (e.g. the ability to use a CAS) is not innate and must be grounded in a 
partially separate structural knowledge. But it is also important to realise that 
such an inclusion will partially change the pedagogical conceptions and curri-
cular priorities of conventional mathematical content. This may produce desired 
as well as less desired effects. Two of the main effects observed in practice are  
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• Usiskin's problem: that work with computers tend to encourage 
inductive work with special cases (‘examples’), rather than deductive 
work with general structure (‘rules’), cf. (Usiskin, in Biehler et al., 
1994, p. 325), and  

• Dreyfus’ potential: the possibility of using computers for routine 
computations and visualisations, so that students’ time and energy can 
be focused on more challenging and perhaps (theoretically) advanced 
activities, cf. (Dreyfus, in Biehler et al., 1994, p. 205). 

Whether the former or the latter type of effect is observed, curricula may have to 
stress matters of content and forms of performance that are deemed to be impor-
tant but are not immediately within reach of current computer based tools. 
 
Towards coherence and balance 
From the above, it is clear that mathematics education at tertiary level is facing 
acute challenges, although not the same in the three domains of education con-
sidered in the third section. These can usually be considered separately at the 
more advanced levels where students will have decided between pure mathema-
tics, other scientific fields, and education. From a curriculum perspective, the 
most interesting and problematic is their cohabitation at the undergraduate level. 
This cohabitation may be desirable for more than the usual practical reasons 
(financial, postponing students’ choice of specialisation). To maintain or create a 
common ‘core curriculum’ in undergraduate mathematics has the virtue of reflec-
ting the partial dependency of professions – not least between teaching at various 
levels within the educational system – and to facilitate their cooperation. We 
shall now use the model of the second section to examine this delicate task of 
balancing3 the needs of different students and orientations, while making the 
single unit both independently meaningful and coherent with other units. 

First, the model suggests that we must consider all four aspects together. 
Simply specifying a list of contents (internally or externally oriented, or both) is 
not sufficient, and as such lists tend to be long, the result will often be a level and 
a quality of performance that do not satisfy anyone. Attempts to specify only 
performance (abstracted from contents) - sometimes promoted under the name of 
'general competencies' - are equally insufficient for actual curricular purposes, as 
such specifications merely reflect idealised views e.g. of what it takes to be a 
full-fledged mathematician (or, more generally, scientist) or what one would 
hope to find with 'good students'. Performance is always relative to contents. 
Likewise, the two are rarely sought to be exclusively internal or external. If we 
are to create coherent and balanced undergraduate curricula, we must first create 
a picture of the content-based forms of performance that are required or desired4, 

                                                
3 The frequent use here of the balance metaphor is much inspired by the insights of (Sfard, in 
press). 
4 In practice, it will often be impossible to distinguish here. But the nature and rationales of such 
demands will have to be addressed in the 'second run' (cf. the next paragraph). 
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including their stability and durability. Then we must look at how they are 
mutually related, both at the level of contents and in terms of the more general 
aspects of performance, so that the actual study units may be organised with a 
maximum of coherence and mutual support. This is where the 'general compe-
tencies' - such as the ability to use appropriate computer based tools - have their 
place. However, the task is by no means finished here, as we shall see, but it 
represents an important 'first run' of the model. 

The second point for our task is that the model suggests crucial aspects of the 
conditions that our curriculum may succeed. This includes, of course, pre-
conditions: what are the content knowledge and performance level of our fresh-
men? It concerns also our experience with the pace and depth with which the two 
may be expanded. And it requires an overall view of the nature and mutual 
dependence of various professions and institutions. Holding this together with 
what the 'first run' produced, we are likely to be faced with a need to make 
reductions through negotiations and compromise. As long as the overall cohe-
rence and balance are thoroughly considered, this is a sound and certainly 
inevitable part of the process. In particular, it may be a great opportunity to make 
use of recent studies in tertiary mathematics education and, indeed, to engage a 
broader range of efforts in this field.   

Finally, the model seems particularly geared towards the obvious (but often 
neglected) demands concerning accountability: any curriculum must be equipped 
with clear, testable goals of performance related to explicit and specific domains 
of contents. At university level, we have in particular to facilitate the variety of 
directions that may be taken by students (at graduate level, professionally, across 
institutions and national borders). Even this is only half of the balance; no matter 
how efficient the program may be in meeting these needs, it must also be 
sufficiently diverse and challenging to meet the needs for personal fulfilment of a 
sufficient number of our students. Including this in 'testability' means that the 
curriculum must be not only thoroughly devised, but also continuously revised. 
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Abstract
It is well-known that students’ conception of mathematics is closely
related with their problem solving behaviour. This conception is
shaped by a number of factors too, in particular, by the space of
learning they “live” in. In particular, the teachers’ conception of
mathematics could attribute to the shaping of this lived space. These
inter-relationships are the foci of a series of studies that the author is
involved in during these years. In this particular study, methods
parallel to the student studies were used to investigate the teachers’
conception of mathematics. Interesting results were obtained.

Introduction
Numerous studies have revealed that beliefs about mathematics as a discipline,
beliefs about mathematics learning, beliefs about mathematics teaching, and
beliefs about the self situated in a social context in which mathematics is taught
and learned are closely related to the students’ motivation to learn and their
performance in the subject (Cobb, 1985; Crawford, Gordon, Nicholas & Prosser,
1998; McLeod, 1992; Pehkonen & Törner, 1998; Underhill, 1988). Indeed,
students’ beliefs are the key to understanding their actions (Wittrock, 1986),
and students’ failures to solve mathematical problems are directly attributable to
their less powerful beliefs about the nature of mathematics and mathematics
problem solving (Schoenfeld, 1983). Naturally, the conceptions of mathematics
among students and their approaches to solve mathematics problems are shaped
by the “space” they live in.

The research team (other members: Chi-Chung Lam and Ka-Ming Wong)
started off the investigation of the lived space of mathematics learning in 1996
in which twenty-nine students were confronted with ten hypothetical situations
in which they were asked to judge whether “doing mathematics” was involved
in each case. Most of the situations were taken from Kouba and McDonald
(1991). Results revealed that students associated mathematics with its
terminology and content, and that mathematics was often perceived as a set of
rules. Wider aspects of mathematics such as visual sense and decision making
were only seen as tangential to mathematics. In particular, they were not per-
ceived as “calculable.” However, students did recognise mathematics as closely
related to thinking (Wong, Lam, & Wong, 1998). 

In 1997, 9 classes (around 35 students each) of each of grades 3, 6, 7 and 9
were asked to tackle to a set of mathematical problems. Each set comprised 2
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computational problems, 2-4 words problems and 4 open-ended questions. Two
students from each class (2 × 9 × 4 = 72 students) were then asked how they
approached these problems. The original hypothesis was, a narrow conception
of mathematics (as an absolute truth, say) is associated with surface approaches
to tackling mathematical problems and a broad conception is associated with
deep approaches (Marton & Säljö, 1976). Consistent with what was found in
previous research, students repeatedly showed in this study a conception of
mathematics being an absolute truth where there is always a routine to solve
problems in mathematics. The task of mathematics problem solving is thus the
search of such routines. In order to search for these rules, they look for clues
embedded in the questions including the given information, what is being asked,
the context (which topic does it lie in) and the format of the question (Wong,
2000; Wong, Marton, Wong, & Lam, in preparation). 

It is clear that students’ conception of mathematics is shaped by classroom
experience. In a study conducted in 1999, it was found that in Hong Kong, most
problems given to students lack variations, possess a unique answer and allows
only one way of tackling them (Lam, 2001; Wong & Lam, in preparation). It is
thus not surprising that students see mathematics as a set of rules, the task of
solving mathematical problems is to search for these rules and mathematics
learning is to have these rules transmitted from the teacher. Thus, it is natural to
turn our attention to the investigation of conception of mathematics among
teachers. 

Method
Twelve secondary school mathematics teachers in Hong Kong and fifteen
secondary school mathematics teachers in Changchun were confronted with
the same set of hypothetical situations that were used among students. Some
samples of them are “One day it rained heavily. Alan was sitting in a car then
and looked at the rain through the window”, “Siu Ping loves to play with dogs.
So, he often runs over to Siu Wan’s house to see her dog” and “One day the
classmate sitting next to you took out a ruler and measured his/her desk”. We
asked them what would be their reactions if students have different ways of
responding (whether taking them as doing or not doing mathematics) to these
situations. In addition to these, we confronted the teachers with some quota-
tions of mathematicians like

(a) “Mathematics has nothing to do with logic” (K. Kodaira)
(b) “The moving power of mathematical invention is not reasoning

but imagination” (A. DeMorgan)

The interviews were transcribed and content-analysed.
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Results

Mathematics is a subject of number and shapes
In judging whether a certain situations involves doing mathematics, one of the
major factors of consideration was whether it concerns number and shapes. This
is similar to what we found among students. For instance, in responding to the
question “One day it rained heavily. Alan was sitting in a car then and looked
at the rain through the window”, a teacher said, “apparently, it is not
mathematics, but since it involves quantity, it is in fact mathematics” (C-A1-4).
Though we may have conflicting responses to the same question, number and
shape are still the major criteria. For instance, for “Siu Ping loves to play with
dogs. So, he often runs over to Siu Wan’s house to see her dog”, a teacher did
not take it as doing mathematics, “as it does not involve number or shape or any
relationship between the two” (C-D1-1) but another teacher thought that it is
mathematics, “as going to Siu Wan’s house can demonstrate a travel graph, in
which there is a lot of mathematics” (C-A3-1). We get similar responses from
Hong Kong teachers, e.g. “Number is mathematics” (H-CKC-1) and “Those
involving number must be math” (H-LCW-2).

Mathematics  is closely related to manipulation
Again, similar to what was found among students that mathematics is a subject
of “calculables”, many teachers judged by whether the situation involves
manipulations. Just like what some Hong Kong teachers said, “Mathematics
should be calculable, mere observation is not mathematics” (C-CKC-2, C-CKC-
5)1. This is clear from the following responses that concerns the question “One
day the classmate sitting next to you took out a ruler and measured his/her
desk”:

S. I think this is doing math.  Since it is not likely that one can get the
length of the desk by just measuring once.  The student may have to
make a number of measures and then have them added up.

I.  How about if s/he can get the length in one measure ?
S. Then, this is not (doing) mathematics since s/he did not calculate. (C-

D2-4)

Along this line of thought, calculations with machines are not regarded as doing
mathematics. As it was said that “(Using calculators) is not doing mathema-
tics,… since it does not come from the brain of the student” (C-D2-5). 

Mathematics is precise and rigorous
This is particularly salient among teachers in Mainland China. Many teachers
took that estimation is not mathematics. It is just a kind of “intuition obtained
from daily life experience” (C-C3-1, C-D2-T6). A teacher even said that “it is
mathematics if one can get a precise estimation. Otherwise, it is not” (C- A3-T3).

Rigor and precision are repeatedly stressed. This is clear from the following

1 C-XXX indicates responses from participants in Mainland China and H-XXX indicates
responses from participants from Hong Kong.
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responses:

“Mathematics is different from language. No matter how one handles,
there is only one solution. There is rigor and uniqueness. … Mathematics
is rigorous, the way of handling it is governed by (what is laid down in
the) textbooks, and there is only one correct answer” (C-A1-10).

“Mathematics is rigorous. It is the exercise of the mind. … Just like
whether you can speak rigorously, it depends on your mathematical
training” (C-B1-5).

Not many such responses were found among Hong Kong teachers though they
did mention that mathematics involves logic (H-LTY-5, H-CKC-8). 

Mathematics is beautiful
Another aspect more salient among teachers in Mainland China was that
mathematics is beautiful. Some of them pointed out the joy when a problem was
eventually solved and such an “Aha, gotcha” is the beauty of mathematics (C-
C3-3, C-C4-5). Obviously some also mentioned that the beauty of different
shapes, including symmetry (C-D2-12). Simplicity and precision are other aspect
of the mathematical beauty as mentioned by the teachers (C-C2-8, C-C3-7),
“Simple language is used to describe a complicated situation, I think this is
mathematics” (C-C1-11). Though Hong Kong teachers did not talk about the
beauty of mathematics, one of them did point out that mathematics is a “cultural
activity” (H-LTY-14).

Mathematics is applicable
The conception that mathematics is “closely related with daily life” (H-LTY-1,
H-CKC-7) and thus has extensive applications is repeatedly expressed among
teachers in both places.  “(There is) much mathematics content around us” (H-
CKC-9), “(Mathematics) deals with realistic problems with symbols, formulas
and diagrams” (H-LWK-8), “Mathematics originates from the realistic situation
and applies back to it, it is the abstraction of daily life practices” (C-B1-4),
“Mathematics is not isolated, without application in the society, mathematics
would not exist” (C-A3-11) were some of their responses. Certainly we see
some teachers who put the idea into the extreme:

“Pure mathematics is an abstract task… just like the Goldbach conjec-
ture, it is pure mathematics. But to me, it has no value in real, it is a waste
of time” (C-B2-6).

This point of view seems to be particularly found among teachers in Mainland
China. Here we get another similar response, “mathematics can only be legiti-
mised by whether the task is useful” (C-C3-5). 

In the interview, we found that teachers are more aware of the relationship
between mathematics and real life applications these years due to such an
emphasis in the new syllabus, however, many reflected that they still lack such
illustrations in the textbooks.
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Mathematics involves thinking
Mathematics involves thinking is again unanimously agreed with the teachers in
both places. We get comments like “Mathematics is for training logically
thinking” (C-C4-4), “Mathematics trains people, other subjects train people too,
but mathematics trains the brain of the people” (C-A1-9), “Developing one’s
thinking mode is special in mathematics. This is different with other subjects.
Without mathematical concepts, there is no training of thinking” (C-A1-12),
“Mathematics should involve thinking” (H-LWK-3), “Mathematics is a
thinking exercise” (H-LWK-9), “Mathematics involves reasoning” (H-LCK-5)
and “Mathematics is conceptual” (H-LWK-5).

Some Hong Kong teachers even used this as a criterion to judge whether it
is mathematics or not. Though an action may involve number and mathematical
contents, one is not doing mathematics when thinking is not involved. This is
clear from the response that “Though mathematics is a subject of numbers and
shapes, thinking must involve in between” (H-LCK-11). The same respondent
also mentioned that “Mathematics is computation with thinking (reasoning)”
(H-LCK-3). Doing mathematics is to “reason with a theory” (H-LWK-4) and
“Mechanical calculation without understanding is not math” (H-LWK-11).

The role of problem solving was mentioned among Hong Kong teachers
too.  “Mathematics is problem solving” (H-CKC-6), “Mathematics involves the
handling of problems” (H-LWK-6), “Mathematics helps to match, rearrange and
organise” (H-LWK-12) and “Mathematics is a process linking up input infor-
mation and output solution” (H-LCK-10) were found in their responses. A
teacher also pointed out that mathematics activities include the recording,
analysis, understanding, interpretation and presentation of data. (H-LTY-9, H-
LTY-10, H-LTY-12, H-LTY-15).

A wider perspective
Some Hong Kong teachers could offer a wider perspective and see both sides of
the story. For instance, one of them said that “Not everything that involves
number is mathematics” (H-LCK-2). Furthermore, “the working steps is not
mathematics, it is just a way of presentation. Real mathematics involve thinking
procedure rather” (H-LCK-7). The same teacher elaborated, “Though
mathematics not confined to ‘calculables’ but it is not wild guess either.
Mathematics involves reasonable ways of estimation” (H-LCK-1). Also, “Some-
thing is regarded as doing math or not does not depend on the formalities but
whether one has mathematics awareness in the process of doing” (H-LCK-6).
Though we can find another Hong Kong teacher who holds a relatively narrow
conception of mathematics, stating that “Mathematics is what is found in
textbooks” (H-THS-1).

The responses of some teachers are more refined, for instance, “Mathematics
involves logic but logic is not mathematics” (H-SYF-15), “mathematics is com-
putation with reasoning” (H-SYF-17), and “computation is a way to train
thinking” (H-YPS-37). 
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Discussion
Though some held a wider perspective, the conceptions of mathematics among
the teachers basically resemble those of the students. Nevertheless, it was found
that the conception of mathematics among the teachers is broader, among
which, “mathematics involves thinking” was unanimously agreed. Other facets
of mathematics, as reflected by the teachers, include “Mathematics is a subject
of number and shapes”, “Mathematics is closely related to manipulation”,
“Mathematics is precise and rigorous”, “Mathematics is beautiful” and
“Mathematics is applicable”. Also, the apparent dilemma of mathematics being a
structured set of knowledge and being widely applicable in daily life, was raised
by the teachers in Changchun. Some Hong Kong teacher could offer a wider
perspective of mathematics too.

Inevitably, the conception of mathematics among students is both an
antecedent and outcome of mathematics learning. If we see the “lived space” of
mathematics learning as one that is shaped by the teachers, the teachers’
conception of mathematics may directly influence the students’ conception of
mathematics. This in turn will affect students’ problem solving abilities and other
learning outcomes of mathematics. In fact, in a recent analysis of the
mathematics problems given to Hong Kong students, an overwhelming portion
of them are close-ended, demand only low level cognitive skills and are stereo-
typed (Lam, 2001; Wong & Lam, in preparation). It is hypothesised that, by the
systematic introduction of variation, with the widening of the “lived space” of
mathematics learning, students could become more capable mathematics prob-
lem solvers (Runesson, 1999; Wong, Marton, Wong, & Lam, in preparation).
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Abstract
This talk will present postmodern mathematics as a third alternative
to modern mathematics, both set-based and constructivist. Modern
mathematics is based upon Platonic structuralist thinking regarding
mathematics as universal metaphysical structure above that is echoed
in the physical world below. Postmodern mathematics is based upon a
post-structuralist thinking regarding mathematical concepts as cul-
tural constructed names for social practices. This talk focuses upon
agriculture showing how mathematical concepts grow up from all
over agriculture. The talk was given to students at the Vilnius
Pedagogical University, and the students’ reactions are reported.

Mathematics education: Two fundamental questions and four answers
There are two fundamental questions within concept education as e.g. math:

•   How does concepts come into the world - from above or from below?
•  How does concepts come into the students - from outside or from

inside?

Modern set-based mathematics answers “from above, and from outside” presen-
ting an abstract concept as an example of a more abstract concept: “A function
is an example of a relation between two sets, that …”. The students hear this as
“bublibub is an example of bablibab”, i.e. a statement without meaning.

The lack of meaning forces students to construct their own meaning e.g. by
using a metaphor, that “carries over” meaning from the same abstraction level:
“A function is like a machine processing numbers”. Constructivist mathematics
thus answers “from above, and from inside” seeing concepts as being construc-
ted by the individual student through activity and communication.

Postmodern mathematics answers “from below, and from outside” presen-
ting an abstract concept as a name for a less abstract concept: “A function is a
name for a calculation with a variable quantity”. The students hear this state-
ment as “bublibub is a name for a calculation” thus obtaining meaning from
below, s�o they will not have to construct their own meaning.

Practise learning e.g. through apprenticeship answers “from below, and
from inside”. The apprentices construct meaning from observing and partici-
pating in the practise: “A function is for example 2+x or 2·s, but not 2+3”.
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This talk will focus upon how postmodern mathematics gives meaning to mathe-
matics by building mathematics from below as a cultural construction.

Agriculture
In agriculture humans are taking over part of the production by cultivating
fields and breeding animals. Agriculture faces three important questions: How to
divide the land? How to divide its products? How to distinguish between
degrees of many? The first question creates the stories of Geometry, meaning
“earth-measuring” in Greek. The second question creates the stories of Algebra,
meaning “reuniting” in Arabic. The third question creates number names. In
agriculture humans are engaged in practices as sowing, harvesting, bundling and
stacking, and rebundling and restacking. The practice of rebundling creates
multiplication and division, and the practice of restacking creates addition and
subtraction.

In the field: Naming many
After the harvest the products are united into bundles, and bundles can have
different sizes. The first ten bundle sizes get different names (one, two, ..., ten)
and different symbols (1, 2, ..., 9, D). In most cultures ten is considered a full
bundle, so after ten two countings takes place: the one counting full-bundles
and the other counting unbundled: 35 means three full-bundles and five
unbundled. Zero 0 is introduced to account for absence: 60 means six full-
bundles and no unbundled. A full-bundle of full-bundles is called a hundred-
bundle C. And a full-bundle of hundred-bundles is called a thousand-bundle M.
A full-bundle of thousand-bundles is not named, neither is a full-bundle of full-
bundles of thousand-bundles, but a full-bundle of full-bundles of full-bundles of
thousand-bundles is called a million.

©   ©   © The total is 3 times
 an apple

T = 3 x ©   or   T = 3 x a

•     •     • The total is 3 1s T = 3 x 1
••• The total is 1 3s T = 1 x 3
•••   •••   •   •   •   • The total is 2 3s and 4

1s
T = 2 x 3 & 4 x 1

D   ••••••••••   •   •   •   • The total is 2 tens
and 4 1s

T = 2 x D & 4 x 1 or T = 24

D   D The total is 2 tens
and no 1s

T = 2 x D & 0 x 1 or T = 20

C   DDDDDDDDDD
DDD   •   

The total is 2 hundreds
and 3 tens and 1 1s

T = 2 x C & 3 x D & 1 x 1   or
T = 231

W   ••••••••    •   •   •   • The total is 2 7s and 4
1s,    or    The total is 2
weeks and 4 days

T = 2 x 7 & 4 x 1       or
T = 2 x W & 4 x d
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Special bundles have special names:
1 x week = 7 x days, 1 x hour = 60 x minutes, 1 x meter = 100 x cm etc.
“T = 3 x 1” is called a total-story, a T-calculation story or a T-equation.

Naming Parts of Bundles
We use fractions to tell, that only part of a bundle has been filled.

••· The total is 2 of 3 3s T = 2/3 x 3
••··· The total is 2 of 5 5s T = 2/5 x 5
••········ The total is 2 of ten tens T = 2/10 x 10 or T = 0.2 x 10

Rebundling
From 2s to 1s: multiplication (taking away 1s)

••   ••   ••   •• The total is 4 2s is ? 1s T = 4 x 2 = ? x 1
•   •   •   •   ? T =  4 x 2 = 4·2 x 1 = 8 x 1

Notice: 4 x 2 = 4·2

From 1s to 2s: division (taking away 2s)

•   •   •   •   •   •   •   • The total is 8 1s is ? 2sT = 8·1 = ?·2
••   ••   ? T = 8/2·2 = 4·2

From 2s to 3s: multiplication and division (taking away first 1s then 3s)

••   ••   ••   •• The total is 4 2s is ? 3sT = 4·2 = ?·3
•••   ? T =  4·2/3·3 = 8/3·3 = 2·3 & 2·1 =

= 2 2/3·3

The rebundling rule
Rebundling can be done manually by rearranging and counting. And
rebundling can be done mentally by calculating, thus predicting the result of a
rebundling before it is carried out.
The ability to predict through calculations is the heart of (postmodern)
mathematics.
The “rebundling rule” tells how to calculate a rebundling from 1s to e.g. 2s:

8 = 8/2·2   or   T = T/b·b

The rebundling rule shows the meaning of the Arabic word algebra, reunite: First
8 is divided into 2s (8/2), then 8 is reunited (8 = 8/2·2).

Rebundling into special bundles
From weeks to days

W   W   W The total is 3 weeks is ? daysT = 3·w = ?·d   (1·w = 7·d)
ddddd   ? 1 week is 7 days T = 3·7·d = 21·d
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From days to weeks

ddddddddddddddd
ddddd

The total is 18 days is ?
weeks

T = 18·d = ?·w  (1·w = 7·d)

W   W   ? 1 week is 7 days T = 18/7·7·d = 2·w & 4·d,
or T = 2 4/7·w

At the farm: Stacking like bundles
Back at the farm we stack like bundles, unless we use parts of bundles.

•••   •••   •   •
_

•••   •
•••   •

The total is 2 3s and 2 1s
_
a 2-stack of 3s and a 2-stack of 1s

T = 2·3 & 2·1
_
T = 2·3 & 2·1

•••   •••   •   •
_

••·   
•••
•••  

The total is 2 3s and 2 1s
_
a 3-stack of 3s

T = 2·3 & 2·1
_
T = 2 2/3·3

Paying parts to the king and to the bishop
The king and the bishop does not work in the field, they provide protection paid
for by parts.

•••••••••••••••
500      9

The total is 4500 1s
The part is 2 9-parts of the total
Rebundle the total into 9s!

T = 4500/9·9 = 500·9 = 9·500
1 9-part is 500 = 4500/9
P = 2 9-parts = 2·500 = 1000

•••••••••••••••

45    100

The total is 4500 1s
The part is 20 100-parts (20%)
of the total
Rebundle the total into 100s!

T = 4500/100·100 = 45·100
1 100-part is 45 = 4500/100
P = 20 100-parts = 20%
P = 20·45 = 900

Coding and decoding
A total of 2 150s can be coded as T = 2·150 = 2·a
Decoding can be guessing by filling out tables or by drawing stacks in diagrams:

a T = 2·a
0
1
2
3
4
5

T = 2·0 = 0
T = 2·1 = 2
T = 2·2 = 4
T = 2·3 = 6
T = 2·4 = 8
T = 2·5 = 10

T

a
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Decoding can also be solving the equation T  = 2·a, if we know what T is (e.g.
300 or 460 or 720)

a T = 2·a
a=?
a=?
a=?

T = 2·a = 300 = 300/2·2 = 150·2
T = 2·a = 460 = 460/2·2 = 230·2
T = 2·a = 720 =

a = 150
a = 230
a =

In the shop: Bying and selling
A shop takes care of trade, i.e. buying and selling e.g. 3 digits numbers, where
mr. C trades hundreds, mr. D trades tens, and mr. 1 trades ones.

Buying:   mr.C   mr.D   mr.1 mr.C mr.D mr.1
T1 = 4·100 & 6·10 & 3·1 = 4 6 3
B = 2·100 & 7·10 & 5·1 = 2 7 5
T2 = T1+B = (4+2)·100 & (6+7)·10 & (3+5)·1

Full House = 6·100 & 13·10 & 8·1 = 6 13 8
Restack! = (6+1)·100 & (13-10)·10 & 8·1 = 6+1 3 8

= 7·100 & 3·10 & 8·1 = 7 3 8
Selling:

T2 = 7·100 & 3·10 & 8·1 = 7 3 8
S = 2·100 & 7·10 & 5·1 = 2 7 5
T3 = T2–S = (7-2)·100 & (3-7)·10 & (8-5)·1

Empty House = 5·100 & -4·10 & 3·1 = 5 -4 3
Restack! = (5-1)·100 & (10-4)·10 & 3·1 = 5-1 10-4 3

= 4·100 & 6·10 & 3·1 = 4 6 3

Multiple packages can be bought (or sold):
B1 = 5·B = 5·(1·100 & 6·10 & 9·1) = 5·(1 6 9)

= 5·1·100 & 5·6·10 & 5·9·1 = 5·1 5·6 5·9
Full House! = 5·100 & 30·10 & 45·1 = 5 30 45

= (5+3)·100 & (30-30+4)·10 & (45-40)·1= 5+3 30-30+4 45-40
= 8·100 & 4·10 & 5·1 = 8 4 5

A package can also be split:
B1 = B/5 = (7·100 & 6·10 & 9·1)/5 = (7 6 9)/5

= ((7-2)100 & (20+6-1)·10 & (10+9)·1)/5= (7-2 20+6-1 10+9)/5
= (5·100 & 25·10 & 15·1 & 4·1)/5 = (5 25 15+4)/5
= (5/5)·100 & (25/5)·10 & (15/5)·1 & 4/5·1
= 1·100 & 5·10 & 3·1 & 4/5·1 = 1 5 3  4/5

The restacking rule
Restacking can be done manually by rearranging and counting. And restacking
can be done mentally by calculating, thus predicting the result of a restacking
before it is carried out.
The ability to predict through calculations is the heart of (postmodern)
mathematics.
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The “restacking rule” tells how to split e.g. an 8-stack into an e.g. 2-stack &
another stack:

8 = 8–2+2   or  T = T–b+b

Also the restacking rule shows the meaning of the Arabic word algebra, reunite:
First 8 is split into 2 and something (8–2), then 8 is reunited (8 = 8–2+2).
So rebundling creates multiplication and division, and restacking creates
addition and subtraction:

Rebundle 8 into 2s by taking away 2s: 8 = 8/2·2= 4·2       T = T/2·2
Restack 8 into 2 & something by taking away 2:8 = 8–2+2= 6+2 T = T–2+2

Coding and decoding in the shop
Writing bills can lead to coding and decoding and to solving equations
A bill typically consists of a subtotal (e.g. 80$) and an added purchase:

The Total of 80 $ and 5 days @ 6$/day is 110 $: T = 80 + 5·6 = 110

This bill can be coded in different ways:

The Total of 80 $ and 5 days @ 6 $/day is     ? $: T = 80 + 5·6 =     ?
The Total of   ? $ and 5 days @ 6 $/day is 110 $: T =   b + 5·6 = 110
The Total of 80 $ and ? days @ 6 $/day is 110 $: T = 80 + n·6 = 110
The Total of 80 $ and 5 days @ ? $/day is 110 $: T = 80 + 5·a = 110
The Total of   b $ and n days @ a $/day is 110 $: T =   b + n·a

Decoding 110 = 80 + 5·a:
Coded bill: 110 = 80 + 5·a
Restacking 110 into 80 & something: 110-80+80 = 80 + 5·a

30 = 5·a
Rebundling 30 into 5s: 30/5·5 = 5·a

6·5 = 5·a
Decoded result: 6 = a

Later decoding becomes solving a linear equation 110 = 80 + 5·a by means of
an equation-scheme:

Unknown: a = ? T = b + a·n    Equation
Known: T = 110

b = 80
n = 6

T–b+b = b + a·n
T–b = a·n
(T–b)/n·n = a·n
(T–b)/n = a
(110–80)/6 = a
5 = a

   Restacking T into b & something

   Rebundling T–b into ns
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Geometry: Dividing the land

P P

Q Q

A given piece of land is to be divided between to settlements P and Q so that
each has the same distance to the border. This leads to words as points, lines,
perpendicular bisectors, polygons and triangles. And to right triangles being the
half of a rectangle, divided by a diagonal.

B The Greeks The Arabs
c A + B = 90 A + B = 90

a

€ 

a b c2 2 2+ = sinA = a/c
cosA = b/c
(tanA = a/b)

A b C

A triangle has six pieces: Three angles and three sides. In a right triangle we
know the right angle. In order to draw a right triangle we need additional
information about a side and about a third piece. The last three pieces can then
be measured, or calculated if we have three equations.

The Greeks failed since they only found two equations: The sum of the
angles are 180 degrees. And the Pythagorean Theorem  

€ 

a b c2 2 2+ = .
The Arabs succeeded in finding two additional equations to the Greek ones

by introducing a double measurement of the sides: an outside measurement in
“meters”, and an inside measurement in diagonals, thus rebundling the short
sides in diagonals: a = a/c·c = sinA·c and b = b/c·c = cosA·c.

Rebundling and restacking areas
Rectangular areas can be rebundled and restacked into another shape having
the same area. Rebundling and restacking into squares as below will lead to the
Pythagorean Theorem: a·b = 

€ 

x2, (b-a)·b = 

€ 

y2, so 

€ 

b x y2 2 2= +

y b-a
x b

a
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Student reactions
After the talk 32 of the teacher students handed in a questionnaire asking them
to express their attitude on a scale from very negative to very positive:

0: very neg., 1: neg., 2: a little neg., 3: neutral, 4: a little pos., 5: pos., 6: very pos.
The numbers report the mean, median and the mode and its frequency.

in primary
school (1-4)

in basic school
(5-10)

in secondary
school  (11-12)

in teacher
education

Only modern math
should be taught

3,6    4    5 (8) 3,9    4    3 (11) 3,9    4    4 (11)3,5    4    4 (8)

Only postmodern
math should be
taught

2,3    2    1 (9) 2,7    3    1,3 (8)3,0    3    3 (13)3,8  4  3,4,5 (7)

Both should be
taught

3,1    3    5 (8) 3,6    4   3,4 (8) 4,2    4    4 (13)5,4    6    6 (17)

Bundling leads to Total stories as T = 3*4 & 2*1 3,8    4    4(15)

Describing parts of bundles leads to fractions as T = 2/3*3 4,0    4    4(13)

Describing parts of bundles leads to decimals as T = 2/10*10 = 0.2*103,9    4    4(12)

Rebundling leads to the rebundle-rule T = T/b*b 4,3    5    5(14)

Coding and decoding can lead to solving an equation as 300 = 2*a4,5    5    5(17)

Buying leads to addition T =T1+B = (2*w & 4*d)+(3*w & 5*d) =
(2+3)*w & (4+5)*d

4,0    4    4(11)

Selling leads to subtraction T3=T2-S=(6*w & 2*d)-(2*w & 3*d) = (6-
2)*w & (2-3)*d

4,4    4    4(14)

Restacking leads to the restacking-rule T = T – b + b 4,4    5    5(14)

Writing bills leads to coding and decoding and solving the equation
T= b+a*n

4,4    4    4(16)

In the field dividing land leads to points, lines, polygons, triangles and
right-angled triangles

5,0    5    5(13)

Right-angled triangles lead to Greek failure with only two of three
equations and to Arabic success with 3 equations

4,4    4    4(11)

Rebundling rectangular land into squares leads to the Pythagorean
theorem

4,3    4    4(11)
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Conclusion
Teaching only modern mathematics in school and in teacher education got a
partial positive reaction. Teaching only postmodern mathematics in school got a
partial negative reaction, and a partial positive reaction in teacher education.
Teaching both modern and postmodern mathematics in school got a partial
positive reaction, and a very positive reaction in teacher education.

As to specific topics especially rebundling, restacking, coding & decoding
equations and geometry through dividing land got a positive reaction.

Encouraged by this the authors have started to develop a talk on post-
modern rehumanised mathematics in the renaissance and in modern industrial
culture, thus offering an alternative postmodern approach to secondary mathe-
matics. 
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Linda Hall
USA

In primary, elementary, and special education teacher preparation programs
many students lack confidence in their mathematical abilities. This translates into
a lack of success in course work and a less than positive attitude toward mathe-
matics. The pre-service teacher will fail to learn important concepts, strategies,
and teaching methods necessary to successfully guide their students in their
acquisition of mathematical knowledge. And, in most cases, these teachers will
slight the time given for mathematics during the school day. The result is critical
since not only are we graduating future teachers with marginal mathematical
knowledge and poor attitudes toward mathematics but they are failing to instill in
their students’ numeracy, the beauty of mathematics, and a love of mathematical
learning.

To counteract this critical situation, it is imperative for those in teacher
education to view critically the course structure for these pre-service teachers. To
require courses with advanced mathematical rigor that encourages failure rather
than success is to further alienate these students from mathematics. To require
courses that fail to increase numeracy, to instill a quest for mathematical know-
ledge and to model best teaching practices is to shortchange our children.
Building the mathematical confidence of these future teachers is critical to their
attitudes toward and success in teaching mathematics.

Many of these pre-service teachers enter teacher education programs with
math anxiety, ranging from mild to severe cases. In a class of 27 students
enrolled in a mathematics course structured for primary education, just under
90% of the students expressed a lack of confidence in their mathematical ability,
anxiety when faced with mathematical problems, and concern about their lack of
knowledge in mathematics. To provide an environment that would allow these
students to increase their mathematical confidence while increasing their mathe-
matical knowledge necessitated changes in course delivery.

Three things were initiated immediately: no formal or written “tests”, a classr-
oom atmosphere that encouraged attempting all mathematical problems and
situations without fear of failure or ridicule, and the formation of groups. In
announcing that no formal or written “tests” would be given there was an audible
sigh in the class. Students later indicated that the knowledge they would not be
taking tests relieved the anxiety they experienced when preparing for and taking
tests and gave them the freedom to learn. This did not relieve them from evalua-
tion - students were required to research assessment and evaluation practices and
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to assist in developing an assessment for their course grade and a self-evaluation
instrument.

In developing a classroom atmosphere where students were encouraged to
attempt all mathematical problems a class ethos was established. No one would
be criticized or ridiculed if they did not succeed, respect would be given to all
students, and recognizing and correcting mistakes was as important as being
correct originally. This also meshed with the formation of the groups. Students
were encouraged to work together on problems, to share their thinking, and to
assist other group and/or class members who might be having difficulty in
understanding concepts or problems. The students were expected to accept
responsibility as a group.

Most of these students had come from a background of rote learning,
individual work product, and grades based on homework and tests. They were
now exposed to a classroom where they were expected to work in groups, share
information and thinking, and produce work that would reflect their learning over
the entire course. In evaluations, students reflected on their discomfort initially
when asked to work as groups. One student indicated that she thought it would be
difficult but found it to be a very positive experience. She reflected on the
patience of other group members when she did not understand something, how
they would explain it and make sure she understood it thoroughly before moving
on.  They also had to move past the perception of “cheating.” After working with
Pascal’s triangle in class students were asked to find other patterns. One student
returned with information obtained through internet sites and was concerned that
it would be considered cheating. She had researched the problem, found
information that increased her mathematical knowledge, and shared that informa-
tion with the class in a way that indicated her understanding of the pattern. The
class was enriched by her contribution and she realized that what she had
accomplished was not cheating but learning.

It was important to model the teaching methods that the students would be
expected to use in their classroom.  Every class started with at least 15 minutes of
mental math. A few problems would be put on the overhead projector for the
students to solve mentally. This again was difficult for many students who
wanted to revert to paper and pencil for easy problems. When all students had an
opportunity to complete the problems students were asked to volunteer an
answer. After several answers were given, correct or incorrect, students were
asked to explain how they arrived at the answer. Initially students were hesitant
to explain, fearing criticism for their approach, their thinking, or their answer.
When it became evident that criticism was not forthcoming, students became
more willing to share their thinking, even when they had reached an erroneous
conclusion. Students indicated in their evaluations how important it had been to
hear others explain their thinking, to see different approaches to the same
problem, and then to try these themselves.

Mathematical concepts were also learned through problem solving and acti-
vity based explorations, similar to the activities they would be using in their own
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classrooms. These activities allowed the students to explore mathematical con-
cepts, increase their mathematical knowledge, and learn to work cooperatively
within their group,

Students were required to keep a journal throughout the class. They were
encouraged to look at mathematical insights, insights about teaching and lear-
ning, things that contradicted their belief system, insights about themselves as a
learner, things they found interesting, frustrating, challenging, exciting, or aha’s.
These journals helped students reflect on their learning and experiences with
mathematics.

For their final assessment students compiled a comprehensive portfolio. In
addition to all assignments from the course they selected pieces that included:
their most important work, a selection that helped complete the picture of them as
a learner/teacher of mathematics, a reflective piece, a letter synthesizing their
“big ideas” from the course, a statement of their philosophy of mathematics
education, and a reflection on what they learned from other students in the class
and members of their group. The last item in the portfolio was a self-assessment
that looked at all the goals of the course. Not only did this provide the students
with a comprehensive record of all their work in the course, it required them to
evaluate their own learning.

Though this approach differs greatly from the majority of mathematics classes
required for pre-service teachers it was evident from evaluations that students
learned mathematics, became confident in their mathematical ability, and in their
ability to teach mathematics. These students have been given a taste and their
thirst has not been quenched. They will continue their mathematical learning.
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Heidi Strømskag Måsøval, Frode Rønning
Sør-Trøndelag University College

Introduction
Concepts and notation in connection with functions often turn out to be very abstract
for many pupils and students. At the same time, it is possible to reach a certain level of
computational skill sufficient to solve many exercises without possessing a basic
understanding of the concepts. Solving equations, solving max/min problems, compu-
ting derivatives and integrals serve as examples of this situation.

We will present the way we have let our students in teacher education work with
the concepts of differentiation and integration.

Our didactical ideas
According to the national plans for teacher education our students shall ‘acquire
insight into the basic ideas behind differentiation and integration’. Some of our
students have studied mathematics for three years in secondary school, and they have
worked quite a lot with these topics. However, many of them do not have a genuine
understanding of the concepts, but they have developed a mechanical mastering which
makes them capable of solving problems by manipulating algebraic expressions. These
students will not be very motivated to go deeper into the understanding of the concepts
as long as their algebraic skills are sufficient to solve problems. On the other hand,
most of the students have studied mathematics just one year in secondary school, and
they have barely touched the topics differentiation and integration before. For them it
sounds very advanced, far from their everyday life, and therefore both frightening and
irrelevant. Their fear is also due to the fact that they think that some of their fellow
students ‘know a lot about it’.

To strengthen the motivation for a deeper understanding for all groups, and to
smooth out the differences due to previous experience, our students have been given
problems to work with where they themselves to some extent have participated in
creating the context, and where algebraic skills have neither been sufficient nor neces-
sary to solve the problems. In this way we have generated a situation where the
students have started to discuss with each other and with the teachers in a meaningful
way. Here we see traces of what Skovsmose (1998) refers to as a ‘landscape of
investigation’ (Danish: ‘undersøkelseslandskap’). It has been vital for us to move away
from an arena where the teacher is in the centre – where the teacher is the one to
decide what are sensible questions, and then to pose these questions to the students.

Our motive has been to create nearness to the concepts. The students should
actively construct the concepts by making them meaningful to themselves. Through
discussion, the understanding of the concepts will be more robust. A basis for our
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work is a constructivist view on learning based on the idea that each individual builds
his/her own knowledge. In addition we will underline the importance of being active.
The students gain knowledge through activity, and it is important that this takes place
in an interaction between fellow students and teachers. We have tried to take the
students to a ‘landscape’ where they become curious and want to investigate mathema-
tical coherence.

Examples with experiences and comments
Our program starts with developing a qualitative understanding of phenomena that can
be described by differentiation and integration.  We preferred to use the concepts ‘rate
of change’ and ‘summation’ instead of the words differentiation and integration.
Gradually we develop quantitative calculations that require that one goes to the core of
the concept, but at no point we develop algebraic methods (formal differentiation and
integration). The main scope of our program is to give a good basis for the under-
standing of the mathematical concepts, and at the same time we want to show how
these concepts can be found in the society around us.

Example 1. How to measure the speed
If a ball rolls down an inclined plane, its speed will gradually increase. By measuring
we find that it has covered 1 meter in 1 second, 4 meters in 2 seconds, 9 meters in 3
second and 16 meters in 4 seconds.  The problems that were given in connection with
this were the following:

• Discuss how you could measure the speed of the ball at the various points based
on the information in the figure below.

• Discuss how you could find the speed more accurately by making more
observations.

For the first problem we got several
different answers. To get the speed for

€ 

t = 2, say, some calculated the average
speed from 0 up to 2, some from 1 to 2, and
some even from 1 to 3. When they got
different answers, they started to discuss
the reason for this, and also to discuss what

would be the most correct answer in the sense which answer would be closest to the
actual speed, and why this was so. For the second problem, the idea of measuring over
shorter intervals came up in a natural way. They also developed the idea that it would
be wise to measure a little bit before and a little bit after the point we are interested in
since the speed is increasing, and therefore “it will become more accurate if we take
one piece where the speed is too small, and one piece where it is too large”.

Example 2. How to find the distance knowing the speed
You are driving a car, and your speed increases steadily from 0 km/h to 60 km/h for 6
minutes. After that you have constant speed 60 km/h for 12 minutes, then your speed
again increases steadily from 60 km/h to 80 km/h for 6 minutes. Finally you drive with
constant speed 80 km/h for 36 minutes. 
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• What is the total distance you have covered?
• Draw in a coordinate system a graph describing the speed as a function of time
• Compute the area of the region bounded by the x-axis, y-axis and the graph you

have drawn. Comment on the result.

Before working with this example, we had worked with ‘the constant speed situation’,
so the idea of ‘distance equals speed times time (

€ 

s v t= ⋅ )’ was familiar, and so was the
geometric interpretation of the distance as the area of a rectangle in this case. But what
about the situation when the speed was not constant, and the graph was no longer a
horizontal line? In the discussion following this example, the idea of finding the
average speed in the intervals where the speed was increasing, came up. Intuitively,
they argued that the average speed in such an interval had to be midway between the
speed in the beginning and the speed at the end. Now the average speed could be
introduced in the graph as a horizontal line (GF in the figure below), the 

€ 

s v t= ⋅
formula could be used, and the distance represented by the area of a rectangle was
again brought back into the picture.

Comparing the area of the rectangle ABFG and
the triangle ABE, they found that they were equal.
Therefore, the distance could also be interpreted
as the area under the actual (non constant) speed
curve, because as one of the students said: “What
we have extra until we are half way is just as
much as we have too little on the last half.”

We find it of interest to mention that these students now made the same observation as
Galilei did more than 350 years ago (Two New Sciences, 1638), here in a quotation
from Gårding (1983).

The time it takes a body with uniform acceleration to move a certain distance
equals the time it takes for the same body to move the same distance with a
uniform velocity equal to half the sum of the least and the largest velocities in
the uniformly accelerated motion.

The value of the approach in a wider perspective
We think that this approach has a value in two main respects. First, we must bear in
mind that these students will be primary school teachers. Therefore they will not face
the need for teaching formal differentiation and integration in their future profession.
However, these concepts are found in our everyday life, and it is relevant to work with
the ideas also on primary school level. An algebraic approach, in particular combined
with poor understanding of the concepts themselves, will be of little or no value in
transforming the ideas to primary school level. Second, some of these students will go
further in mathematics, and then formal calculus will be a natural next step. We
believe that the basis given through this approach will be a good one since applications
of calculus in problem solving require a solid understanding of the concept.
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One of the most time-consuming tasks for any educator is the construction and
correcting of tests. With the emphasis on standards, accountability, and standar-
dized testing, classroom assessments become even more important. Textbook
related tests or pre-constructed tests do not always align to state or local stan-
dards and benchmarks. How does the teacher or administrator determine with any
degree of accuracy how students are progressing, whether they understand
concepts required by standards, and whether the questions really align to the
standards and assess that concept?

Internet based assessment programs may revolutionize how assessment is
conducted in education. Though this technology could be considered “first gene-
ration” it is advancing rapidly. These programs vary in the product and support
they provide to teachers, and administrators. Some allow a teacher to select the
standards she/he would like to test, select questions that align to these standards,
and construct the test. Students take the test on-line, it is graded on-line, and the
results are provided to the teacher. Reports can be generated that track the
progress of an individual student throughout the year, indicate possible deficien-
cies in student knowledge, pinpoint gaps in curriculum, show test results accor-
ding to selected demographics, and allow administrators to view district progress
on standards. These comprehensive programs give the teachers and admini-
strators a wealth of information that allows them to truly assess the progress and
knowledge of their students.

Other sites only provide questions for use as paper and pencil tests. Many
times these questions have been submitted by teachers with no alignment to
national or state standards. There are also sites that provide assessment oppor-
tunities on the internet at specific times under controlled conditions.

With internet based assessment increasing, it is imperative for educators to be
aware of this rapidly advancing technology and become familiar with some of the
many sites that offer these programs.
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Tiiu Kaljas
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Teaching mathematics at the lower secondary school level comprises mostly of
teaching basic arithmetic, geometry and algebra. The goal of the teacher is to
present basics to the student in an interesting and understandable manner. Lear-
ning of algebra requires relatively higher levels of comprehension and abstrac-
tion. Therefore the challenge for the teacher is to teach algebra in a manner that
would not lose the students’ motivation and comprehension.

For the past 50 years, Estonian teachers have relied on a teacher-oriented
method of presenting facts, as opposed to encouraging student initiative to re-
search their own solutions to problems and answers to questions:

-  It is easier for a teacher to pontificate from a standard class program
than it is to encourage student initiative;

-  It is easier to evaluate each individual student with a standardized test
as opposed to evaluating the success or shortcomings of individual
initiatives.

With the new millennium, we need to rethink our teacher-oriented teaching
methods in our schools and encourage individual student initiatives and inter-
action. Even good teachers can fall into a route, tending to stick to their familiar
methods as opposed to customizing their teaching to the students.

With the introduction of information technology often being an enigma to
many of today’s teachers, it is the younger teachers who are open to new forms
of education. Younger teachers are quicker to accept the idea of a student focused
educational system and more willing to accept the added responsibilities and
obligations of student based education.

They are beginning to introduce new methods while older teachers keep to
continuity. Until the new educational focus becomes generally accepted, teachers
today focus on and make the most of subject based teaching. Teachers today can
rely more on multimedia visual aids to enhance comprehension. Teachers can
utilize more integrated methods for understanding, i.e. practical applications to
reinforce theorems.

Every concept in school algebra should be presented in four different forms:
verbally, symbolically, by figures, and visually.

Literature
Maletsky, E.M. (1996). Handling, seeing, and thinking experiences in mathe-

matics. In The art of problem solving (pp. 173-198). Thousand Oaks, CA:
Corwin.
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Tünde Kantor
Hungary

generalized inequality of
Erdös-Mordell for the
tetrahedron

↑
generalization to the out-
side point P:
k1d1+k2d2+k3d3+k4d4=
const.
k1, k2, k3, k4=±1

similar theorem for the
regular tetrahedron
d1+d2+d3+d4=const.=h

↑
Barrow's theorem
(scalene triangle)

VIVIANI'S theorem
(regular triangle)
d1+d2+d3=const.=h

theorem of Erdös-Mordell
(scalene triangle)

converse theorem
↓

P is on the base of the
isosceles triangle
d1+d2=const.=2a

converse theorem

P is on the side of the
equilateral triangle
d1+d2=const=2a

P lies on the extension of
a side of the equilateral
triangle
k1d1+ k2d2=const.
k1, k2=±1

↓
P is an exterior point of
the equilateral triangle
k1d1+ k2d2+ k3d3=const.
k1, k2, k3=±1

↓
in an equilateral triangle
we draw parallels through
the interior point P to the
sides
d1+d2+d3=const.

in an equilateral triangle
we draw segments
through the interior point
P. The segments make the
same angle with the
proper sides of the
triangle.  d1+d2+d3=const.

generalization to regular
n-gons
k1d1+k2d2+…+kndn=const.
k1, k2,…, kn=±1
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Allan Tarp
Danish University of Education

Target group: Graduates within humanities wanting to become number
language teachers.

Background: A decreasing enrolment in mathematics and mathematics based
education within science and technology, and a coming mathematics teacher
shortage.

Philosophy: A rehumanised mathematics curriculum is following the principle
of high necessity by placing its authority with the necessities of nature that gave
birth to mathematics. First to multiplicity giving birth to the practices of bundling
and rebundling, and stacking and restacking, and to stories about the total, found
by counting or calculating. Later to the four necessities of nature that physics is
built upon: Mass, charge and extension in time and space.

Content: The quantitative literature of different eras

Module 1. The antique dominated by agriculture and local trade
Cultural background: From hunting and gathering to agriculture and local trade
1. Phrasing and quantifying the necessity of multiplicity. Different number

systems
2. Phrasing and quantifying the dividing up of earth. Greek and Arabic geometry
3. Phrasing and quantifying the dividing up and reuniting of numbers. Arabic

algebra

Module 2. The renaissance dominated by mining and global trade
Cultural background: From local trade to silver based global trade
1. Quantifying the mine. Levers, wheels and pulleys
2. Quantifying money. Bookkeeping and interest calculations
3. Quantifying local motion and the necessity of time. The local laws of falling
bodies
4. Quantifying figures. Perspective and co-ordinate geometry

Module 3. Early modernity dominated by steam power
Cultural background: From His incalculable will to nature’s calculable will
1. Quantifying the necessity of space. Vectors
2. Quantifying macro motion. The global laws of falling bodies
3. Quantifying games and chance. Probability and statistics
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Module 4. Late modernity dominated by electronic technology
Cultural background: From manpower to cyborgs
1. Quantifying micro motion. From calculable atoms to incalculable electrons
2. Automating numbers. Electronic number processing
3. Automating calculations. Systems: linear, dynamical, risk, chaotic

Language Perspective: Qualities and quantities. Word language and number
language. Language and meta language. Mathematics as a grammar of the
number language. Modern structuralism and Bourbakism dehumanising the
number language� Genres of quantitative modelling: fact, fiction and fiddle. The
question of representing the world in language.

Learning Perspective: Biological brain forms: Reptile-, mammal- and human
brains. The two main questions of learning: How do concepts come into the
world, from above or from below? How do concepts come into the students, from
outside or from inside? The corresponding learning theories: Structuralism and
nominalism, transfer and constructivism.

Organisation: Each module consists of a number of meetings and assignments,
and a terminal project. Distance education will be an option. The language and
the learning perspective are integrated into the modules.
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