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Preface 

This volume contains the proceedings of MADIF 6, the Sixth Swedish Mathema-
tics Education Research Seminar, with a short introduction by Barbro Grevholm. 
The seminar, which took place in Stockholm January 29-30, 2008, was arranged 
by SMDF, The Swedish Society for Research in Mathematics Education, in co-
operation with Stockholm University. The members of the programme 
committee were Christer Bergsten, Barbro Grevholm, Kirsti Hemmi, Katarina 
Kjellström, and Thomas Lingefjärd. The local organiser was Katarina Kjellström 
at Stockholm University. 

The programme included two plenary lectures (Eva Jablonka and Rosamund 
Sutherland), one plenary panel (Thomas Lingefjärd, John Mason, Anne Watson, 
and Paola Valero), ten paper presentations (Tomas Bergqvist et al., Elsa Foisack, 
Håkan Lennerstad, Cecilia Kilhamn, Lisbeth Lindberg, John Mason, Guri 
Nortvedt, Frode Rønning, Olov Viirman, and Anne Watson), and eight short oral 
presentations (Iiris Attorps, Iiris Attorps et al., Thomas Dahl et al., Hans Melén 
et al., Eva Norén, Maria Reis, Eva Taflin, and Magnus Österholm). In this 
volume one plenary address, nine papers, and all short presentations are included. 
We want to thank the authors for their interesting contributions. In addition to the 
pre-conference peer-review process, the revised final papers were submitted after 
the conference and re-reviewed by the editors. The authors are responsible for the 
content of their papers.   

We wish to thank the members of the programme committee for their work 
to create an interesting programme for the conference, Kataria Kjellström for her 
valuable help with the preparation and administration of the seminar, and the 
special reactors to the papers for initiating stimulating discussions during the 
paper sessions. We also want to express our gratitude to the organiser of 
Matematikbiennalen 2008 for its valuable financial support. Finally we want to 
thank all the participants at MADIF 6 for creating such an open, positive and 
friendly atmosphere, contributing to the success of the conference. 

 
 

Christer Bergsten 
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1 

Reflections on  
Perspectives on Mathematical Knowledge 

Barbro Grevholm 
University of Agder  

’Mathematics is the sorrow kid of school’ was the title of a recent TV-
programme in Sweden. Mathematical knowledge can look like that from one 
perspective. From another perspective it can be seen as a subject for joy, which 
was the theme of one of the biannual conferences in Sweden, ‘Matematik-
biennalen’. At MADIF6, the 6th research seminar of SMDF (Swedish Society for 
Research in Mathematics Education), many other perspectives on mathematical 
knowledge were presented. In the welcome speech I reminded the participants, 
that it is 10 years since the seminar in Sundsvall took place, before 
'Matematikbiennalen' in 1998, that led to the series of mathematics education 
research seminars called MADIF (an acronym for the Swedish expression 
MAtematikDIdaktisk Forskning, i.e. research in mathematics education). There a 
committee was appointed to prepare what was to become SMDF. This committee 
produced the constitution of SMDF, which was approved in January 1999 at a 
seminar in Stockholm, MADIF1. Over the years different themes have been in 
focus at the research seminars of SMDF (see references for the previous MADIF 
proceedings), and for this 6th seminar it is Perspectives on Mathematical 
Knowledge. At the seminar 10 research papers were presented and 8 short 
presentations took place in addition to two plenary addresses and a concluding 
plenary panel. In this book most of those papers are presented. 

Eva Jablonka talked in her plenary address about The everyday and the 
academic in the mathematics classroom: Confrontation or conciliation? It is a 
common practice in mathematics teaching to include particular aspects of 
everyday out-of-school activities as resources for mathematical activities. But in 
doing so the tension between everyday and academic practices cannot be easily 
resolved. In research we find discussions and studies concerning the authenticity 
of contexts in word-problems, the function of horizontal and vertical mathema-
tisation in ‘realistic mathematics education’ and the role of mathematical 
modelling. Although many argue for the inclusion of contexts from everyday 
practices, some are suspicious of the potential to create a bridge between 
everyday practices and formal, academic mathematics through the use of 
contextualised tasks. The paper draws on episodes from classroom discourse in 
different countries, which document the interactions between teachers and 
students. Jablonka claims that the students often face a dilemma when confronted 
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with contextualised tasks: should they make extensive or only little reference to 
their everyday knowledge? These issues are discussed in terms of the re-
contextualisation of out-of-school practices. The aim is to describe how some of 
the students’ difficulties are related to the ways in which the re-contextualisation 
operates in mathematics classrooms.  

Rosamund Sutherland talked in her plenary about Integrating ICT into 
teaching and learning mathematics. She discussed a model of professional 
development for mathematics teachers and linked it to a view of knowledge as 
being produced by engagement with and in practice. This professional enable-
ment demands that practice is guided and legitimated by a blend of practitioner 
wisdom and researcher knowledge and credibility. Drawing on socio cultural 
theory she focused on the ways in which teaching and learning mathematics in 
schools is always situated in a particular cultural context, involving interactions 
with people and supported by the use of language and tools. She also emphasised 
the ways in which students bring informal perspectives on mathematics to any 
new learning situation, and that these inevitably influence what they learn in the 
classroom. Sutherland argued that teachers and teaching is a key to learning 
mathematics in schools. Sutherland’s contribution is not presented here but 
interested readers can consult her book ‘Teaching for learning mathematics’ 
(Sutherland, 2008).  

All the contributions in this book have been peer-reviewed before they were 
accepted to be presented at the seminar and then in the final round by members 
of the editing committee. We thank all the contributors for being willing to take 
part in the peer review process and read papers written by fellow contributors.  

Podcasting in school is the theme of Tomas Bergqvist’s paper. He claims 
that podcasting is a new phenomenon in Swedish schools. The paper describes a 
project where the main goal is to analyze if the students’ interest in mathematics 
is affected, if mathematics is made accessible via podcasts and iPods. Teachers at 
eleven schools were encouraged to produce podcasts as a part of their 
mathematics teaching in grade eight. The results indicate that the possibility to 
explore mathematics wherever and whenever you want is an important aspect for 
the students. Other findings are that the technical difficulties for the teachers 
were underestimated in the project, and that teachers had problems in finding 
time for the production of podcasts. 

Making sense of negative numbers through metaphorical reasoning is the 
title of Cecilia Kilham’s paper. The concept of negative numbers is an abstract 
concept and it has been argued that it can only be understood through symbolic 
reasoning. Others argue that mathematical concepts are understood through 
metaphors. Kilhamn claims that previous research has identified three aspects of 
understanding negative numbers: direction and multitude, proficiency in 
arithmetic operations, and the meaning of the minus sign. Her study explores the 
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theory of conceptual metaphors and metaphorical reasoning by investigating the 
use of models and metaphorical reasoning when dealing with negative numbers. 
The data consists of test results from 99 students in the teacher training program 
and follow-up group interviews. Kilhamn’s results show that some students’ 
difficulties seem to be a consequence of their use of metaphorical reasoning 
using a metaphor that is insufficient. Metaphorical reasoning seems to be helpful 
for students who are aware of the limitations of the metaphor. Enlightened use of 
metaphorical reasoning, i.e. being aware of the potentials and constraints of 
models and metaphors, could be described as a fourth important aspect of 
understanding negative numbers.  

Håkan Lennerstad writes about Spectrums of knowledge types: Mathematics, 
mathematics education and praxis knowledge. He claims that, while mathematics 
is deductive and mathematical education is evidence based, practical knowledge 
is a type of knowledge that professionals in any profession develop by 
experience and by exchange with other professionals. Such knowledge, to a large 
extent is difficult to articulate, is also essential in important types of mathema-
tical knowledge. Lennerstad argues for a more fluent cooperation between the 
paradigms, in which the advantages of all the different knowledge types may 
interact and become increasingly useful to each other. For such an idea to reach 
reality it is necessary for mathematicians, mathematics education researchers, 
mathematics teachers,, and others, to listen in depth to each other, and to have a 
dialogue. To achieve that, Lennerstad describes one alternative called the 
Dialogue Seminar. 

Lisbeth Lindberg’s paper is in Swedish and about the historical background 
to the importance of mathematics in vocational programmes in upper secondary 
school (Historisk bakgrund till matematikens betydelse i yrkesprogrammen). She 
investigates the development of vocational education in Sweden over 150 years 
and the parallel development of the role of mathematics in working life. The 
teacher’s professional role in vocational education has changed from being the 
role model and practitioner to the theoretical representative. Teacher education 
has not been able to follow in this development but development projects have 
been carried out to help teachers work with the new task. The role of the students 
has changed as the education has grown more theoretical. Mathematics has 
changed from general calculations and vocational calculations to become a core 
subject that all students study. A political debate is going on about these changes 
and a new design of vocational education has been suggested for upper second-
dary school. This model builds on a tripartite school: a university preparatory 
way, a vocational way, and an apprenticeship education. 

John Mason presented A study of the movement of attention: The case of 
reconstructed calculation. Mason’s enquiries have convinced him that both what 
learners are attending to, and how they are attending to it play a central role in 
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what learners are able to make sense of and eventually internalise. The paper 
illustrates that conclusion based on experiences of using a mathematical 
reconstruction task. Examples are given of different ways in which people’s 
attention moves and shifts, sometimes voluntarily and sometimes involuntarily, 
in relation to variation theory, but Mason is also drawing on other theoretical 
discourses. 

Guri Nordtvedt’s paper is about Reading word problems. Students’ work on 
word problems infers demands on comprehension and solving strategies. 
Students reading a word problem, construct a mental representation of the 
problem text that serves as the basis for solving the problem. But reading and 
solving word problems is not necessarily a linear process. Students might for 
instance reread the problem during solving or when evaluating answers. The first 
part of Nordtvedt’s paper outlines a framework for investigating the connections 
between strategies for reading and solving word problems. Her last section 
concentrates on exemplifying by discussing some instances where one student 
rereads before tying the discussion of his competence to the suggested frame-
work.  

The paper by Frode Rønning is about Early work with multiplicative 
structures. The purpose of his paper is to discuss the way very young children 
handle problems connected to multiplication and division. The discussion is 
based on classroom observations from England and Norway. Rønning has linked 
this to a discussion about how Norwegian textbooks present the pupils’ first 
encounter with division. In mathematics textbooks division is often regarded as 
the inverse operation of multiplication. Based on the classroom observations, 
Rønning argues that it could be worthwhile pursuing division as a process in its 
own right and postpone the strong link to multiplication until later.  

Olov Viirman presents Different views: Teacher and engineering students on 
the concept of function. His study analyses what kind of conceptions teacher 
students and engineering students have about the function concept, and how 
these conceptions differ between the two groups. The study was conducted 
through questionnaires, and 34 students at a Swedish university participated. In 
the classifications of the function conceptions of the students he used modified 
versions of models presented by Vinner and Dreyfus and Sfard, DeMarois and 
Tall. Viirman claims that his study shows that the students primarily have 
operational conceptions and only a couple of students have structural concep-
tions. He also argues that distinct differences exist between prospective compul-
sory school teachers and engineering students, where the prospective teachers 
have less developed functional conceptions. 

Anne Watson turned her interest to Different versions of the ‘same’ task: 
Continuous being and discrete action. In the paper she probes subtle differences 
in lessons which are based around similar tasks. This work is done by analysing 
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the experiences the tasks afford students, and identifying what is available for 
students to construct from these experiences. This analysis provides a new lens 
for looking at mathematical activity in lessons, and at how teachers’ own 
mathematical senses act out to afford different mathematical experiences for 
learners. 

Prior to the seminar each paper was read by a reactor who during the paper 
session at the seminar contributed to the discussion with specially prepared 
critical questions to the authors. We thank all the reactors for their important and 
much appreciated contributions to the seminar: Ewa Bergqvist, Morten Blomhøj, 
Ola Helenius, Kirsti Hemmi, Ingemar Holgersson, Johan Häggström, Per 
Nilsson, Per-Eskil Persson, Astrid Pettersson, and Frode Rønning. 

In the short presentations section of the book we find reports from Iiris 
Attorps, Iiris Attorps and Timo Tossavainen, Thomas Dahl and Thomas Biro, 
Hans Melén et al., Eva Norén, Maria Reis, Eva Taflin, and Magnus Österholm. 

The plenary panel included the speakers Thomas Lingefjärd, John Mason, 
Paola Valero, and Ann Watson, with Christer Bergsten as chair. They shared 
their personal views on the theme of the seminar, Perspectives on mathematical 
knowledge, commented each other’s presentations and engaged with questions 
from the audience. Different aspects were illustrated such as individual 
mathematical knowledge, socio-political views, cultural and contextual 
influences, habits to notice mathematical connections, and being mathematical 
and talking mathematics. The discussion highlighted the complexity of the theme 
and brought forth a wide spectrum of thought provoking examples and 
challenges. 

The contributions in this volume illustrate that mathematical knowledge can 
be perceived from many different perspectives and it can be approached from 
different dimensions such as time, age, content, context, mediating tools, and 
expected aim for the knowledge. We hope that readers will find it interesting to 
inquire into the authors’ different ways of approaching mathematical knowledge. 

References 
Bergsten, C., Dahland, G. & Grevholm, B. (Eds.) (2002). Research and action in the 

mathematics classroom. Proceedings of the Second Mathematics Education 
Research Seminar (MADIF2). Linköping: SMDF. 

Bergsten, C. & Grevholm, B. (Eds.) (2003). Challenges in mathematics education. 
Proceedings of the Third Mathematics Education Research Seminar (MADIF3). 
Linköping: SMDF. 

Bergsten, C. & Grevholm, B. (Eds.) (2004). Mathematics and language. Proceedings of 
the Fourth Mathematics Education Research Seminar (MADIF4). Linköping: 
SMDF. 
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mathematics teaching and learning. Proceedings of the Fifth Mathematics 
Education Research Seminar (MADIF5). Linköping: SMDF. 

Sutherland, R. (2006). Teaching for learning mathematics. Milton Keynes: Open 
University Press. 



 

7 

The Everyday and the Academic in the 
Mathematics Classroom:  

Confrontation or Conciliation? 
Eva Jablonka 

Luleå University of Technology 

Abstract: Including particular aspects of everyday out-of-school activities as resources 
for mathematical activities is a common practice in mathematics teaching. The relation-
ship between these two domains is a topic that has been extensively discussed in mathe-
matics education. Discussions and research studies concern, for example, the authen-
ticity of contexts in word-problems, the function of horizontal and vertical mathemati-
sation in ‘realistic mathematics education’ and the role of mathematical modelling. 
Although many argue for including contexts from everyday practices, some are 
suspicious of the potential to create a bridge between everyday practices and formal, 
academic mathematics through the use of contextualised tasks. The students often face a 
dilemma when confronted with such tasks: should they make extensive or only little 
reference to their everyday knowledge? In the paper, these issues will be discussed in 
terms of the recontextualisation of out-of-school practices. The discussion will draw on 
episodes from classroom discourse in different countries, which document the inter-
actions between teachers and students who are engaged in solving tasks that relate 
mathematics to everyday activities. The paper aims at describing how some of the 
students’ difficulties are related to the ways in which the recontextualisation operates in 
mathematics classrooms. 

Introduction 
The “everyday” in the title is used as an abbreviation for everyday practices that 
consist of common activities, in which people are involved in family, peer group, 
community or in some semi-skilled jobs that do not require specialised formal 
training. Some everyday practices include mathematical techniques, but it is not 
an established rule to use these, and no mathematical skills beyond those 
acquired in compulsory school are needed for successful participation. That 
means that the application of mathematical techniques is not institutionalised in 
those practices. Many of the studies classified as ethnomathematics are indeed 
devoted to identifying and studying mathematical activities that are not part of 
the practice in the conventional institutions where mathematics is taught and 
practiced.  

Even though mathematical components might be identified from an obser-
ver’s point of view, people who are engaged in the activities do not necessarily 
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think that what they are doing involves mathematics. In line with other studies, 
Wedege’s (2002) investigations of workplace mathematics show the invisibility 
to the workers of their own mathematical knowledge. The workers tend to “see” 
the mathematical components of a task only when they have difficulties in 
dealing with those components. A variety of studies of everyday mathematical 
practices show that children and adults engaged in those practices possess 
successful problem solving strategies (for example, Abreu, Bishop & Pompeu, 
1997; Carraher, Carraher & Schliemann, 1985; Masingila, 1994; Saxe & Moylan, 
1982). The mathematical strategies employed are not necessarily those learned at 
school. On the other hand, some studies indicate that the techniques learned at 
school are also likely to be used and connected with the strategies used by people 
who did not learn their strategies at school (Acioly & Schliemann, 1986; Knijnik, 
2000).  

The “academic” in the title is used as an abbreviation for academic mathe-
matics, that is, the mathematical practice at higher academic institutions, in 
which mathematics is produced and acquired. This type of mathematical practice 
consists of highly specialised activities. The notion “activity” refers to a structure 
of relations and practices that regulates who can say or do or mean what 
(Dowling, 1998). The positions of the participants in an activity are not sym-
metric.  

One shared goal of mathematics curricula for upper secondary education in 
many countries is to initiate students into academic mathematical activities. In 
the course of proceeding through a typical mathematics curriculum from primary 
through secondary towards higher education, the amount of traces of the every-
day decreases. The non-mathematical contexts, if there are any, become more 
scientific or technological. Also the ways in which contexts are treated change. 
This can be seen from analysing textbooks and other curriculum materials (cf. 
Jablonka, 2002). In other words, in the course of learning mathematics, students 
move through a range of different mathematical practices, consisting of distinct 
activities, with their related discourses that represent different institutionalised 
forms of organising and expressing mathematical knowledge, ideas, and 
experience. In the end only a few successfully participate in the discourse of 
academic mathematics. 

There are different purposes of including traces of the everyday in 
mathematics classrooms. The following functions are important for the 
subsequent discussion: 

• Everyday as pretext for mathematics or as a springboard for developing 
school mathematical concepts and procedures; this is not only to attract the 
students’ attention, but for establishing the meaning of mathematical 
expressions; 
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• everyday as a field for applying standard procedures or as being modelled 
by some school mathematics (which the students have already acquired); 
this is to teach useful mathematical strategies. 

The classical study of Lave, Murtaugh and de la Roche (1984) and many other 
investigations of students’ difficulties with contextualised school mathematics 
tasks show that a transfer of everyday mathematical activities to the school 
context is problematic. In any classroom, there is a process of confrontation and 
of translation of different discourses. The everyday discourse is confronted with 
that of school mathematics. Riesbeck (2008) recognises that the crossing over the 
boundaries between these two discourses is problematic, especially if it happens 
unknowingly, and points to the limiting effect of extended reference to the 
everyday with respect to the students’ acquisition of school mathematical 
knowledge. 

For investigating the relationship between everyday activities that include 
mathematical components and academic mathematics, it is essential to ask what 
happens to the everyday when it appears – in one or another form - in classroom 
mathematical activities. The question in the title of this presentation suggests that 
there is a discontinuity between the everyday and the academic, pointing to a 
disparity between these practices and their related discourses, which produces a 
tension. This tension permeates many aspects of mathematics education and of 
education in general.  

Theoretical background 
The theoretical background of the analysis presented here, are studies of re-
contextualisation of practices and of the discourses that constitute these practices. 
Recontextualisation of a discourse means moving it from its original site in order 
to use it for a different purpose. Recontextualisation brings about the subordina-
tion of one discourse under the principles of the other: 

Pedagogic discourse is constructed by a recontextualizing principle which 
selectively appropriates, relocates, refocuses and relates other discourses to 
constitute its own order. In this sense, pedagogic discourse can never be 
identified with any of the discourses it has recontextualised. (Bernstein, 2000, 
p. 33) 

Though it aims at enculturation into the practice of academic mathematics, 
school mathematics (“math”) is not academic mathematics: 

From one point of view pedagogic discourse appears to be a discourse without 
a discourse. It seems to have no discourse of its own. Pedagogic discourse is 
not physics, chemistry or psychology. Whatever it is, it cannot be identified 
with the discourses it transmits. (Bernstein, 2000, p. 32) 
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In which respect and to what extent, if at all, school mathematical practice 
resembles academic mathematical activities is not a simple question. From 
Bernstein’s point of view there cannot be resemblance because discourses are 
specific to the contexts with their specific purposes. However, school mathema-
tics not only recontextualises academic mathematics, but also outside-school 
practices. The traces of the activities from the everyday that appear in school 
classrooms can be, for example, solving a money problem when shopping, 
cooking, doing woodwork, buying a mobile phone etc. The transformation into 
school mathematical activities includes a sub-ordination of the everyday 
discourse under the school mathematical discourse. The everyday activities are 
viewed from the perspective of school mathematics. Viewing contextualised 
school mathematical tasks from the perspective of everyday discourse would 
amount to a critique of their authenticity.  

From the perspective outlined here, contextualised mathematics tasks cannot 
be authentic. Solving a shopping task in a school classroom (however authen-
tically the situation might be described) is neither an everyday nor an academic 
mathematical activity. It has to be acknowledged that school classrooms can be 
analysed as a distinct domain of practice. This raises the question: How can the 
students know in which discourse they are participating and what contribution 
they are supposed to produce?  

The following examples are taken from different studies of classroom prac-
tice and are used in an illustrative way.  

A challenge for the students 
In the following example the everyday is used as a pretext for mathematics. The 
problem that the students are facing can be interpreted as stemming from too 
extensive reference to the everyday. The episode is from a year eight classroom 
(USA)1. The teacher introduces the example of sharing 10 candy bars. They have 
talked about the meaning of 10 divided by 1. The teacher writes ‘10/1 = 10’ on 
the board and says: “Ten right?  He gets all ten…So he's happy. He gets all ten 
pieces of candy. Now let me ask you this”: 

Teacher: What happens in this case right here? [He writes ‘10/0 = ’ on the 
board.] 

Teacher: So- so if I divide it zero ways, is anybody getting anything? 
Students: No. 
Student: Not even you. 
Student: It's your candy bar. 
Student: I already told you. 

                                            
1 Transcript from The Learner’s Perspective Study (for a description of the research design, see 
Clarke, 2000, or http://extranet.edfac.unimelb.edu.au/DSME/lps/) 
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Teacher: Guys, sorry I- I can't multi-function, listen to both at the same time.  
I need one person at a time.  I'm really trying. 

Student: My other teacher can. 
Teacher: Your other teacher? Pretty good.  I haven't mastered it yet. 
Amiri: It- It's like a hashy [by ‘hashy’ she might mean ‘minced into little 

pieces’] bar cuz you don't have to ( ) little, uh little pieces you can 
tear and stuff. 

Student: Squares. 
Amiri: Uh, like you can give people pieces but- it, you're the only person 

that can eat the whole ( ) 
Student: But then that would be one, divided by one. 
Amelia: Can you just give us the answer? 
Antoine: Can’t share. 
Student: It's like you didn't buy a candy bar. 
Student: You don't even have it. 
Student: You never bought it yet. 
Antoine: You can't ev- you might as well not even think of candy if you can't 

afford it. 
Teacher: Okay.  I'll tell you right now guys, um, division by zero ... is, what we 

call in math, is undefined. [He writes “Division by zero is 
undefined.”] 

The two domains of practice and the related discourses at stake in this episode 
are the sharing of candy bars and ordinary real number arithmetic. The sharing 
activity is recontextualised from the perspective of real number arithmetic and 
used as a mediator between the everyday and the school mathematical domain. It 
is an interesting exercise to ask what the meaning of division by -5 or by 1/3 
would be.  

The episode shows the pitfall of the attempt to develop the fact that division 
by zero is undefined in real number arithmetic from the everyday activity of fair 
sharing (usually referred to as sharing in contrast to grouping as a model for 
division). The interesting part is that the episode starts by an exercise of 
translating mathematical expressions into everyday discourse. The teacher 
retranslates “10 divided by 1” into “He gets all ten…So he's happy”. 

Then a fragment of technical language is introduced (‘10/0 = ’), which 
cannot be easily translated into everyday anymore. But still “zero” has a meaning 
in the activity of sharing. It is, for example, possible to say, “you get absolutely 
zero”. The students then try to translate the mathematical expression into some 
everyday meanings and produce some nice interpretations; they do this because 
this is exactly what they have been asked to do.  

Amelia gets frustrated; the expected translations cannot be produced without 
knowing the principle. The conversation is reminiscent of a guessing game. Only 
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one student tries to validate the contributions by a re-translation into mathema-
tics. After Amiri’s suggestion that “you're the only person that can eat the 
whole”, this student observes that this “would be one, divided by one”. He or she 
seems to know that the recontextualisation of sharing from the perspective of real 
number arithmetic is at issue and tries to work out the principle.  

The teacher’s attempt of developing the meaning of division by zero in 
arithmetic (that is: the fact that it has no meaning because it is undefined) from 
the everyday meaning of sharing is faced with a paradox: there is no fixed or 
reasonable everyday meaning of sharing among zero people and at the same time 
the mathematical meaning is unknown to the students. Consequently, both 
meanings have to be specified at the same time; one cannot be derived from the 
other. The problem can be seen as an attempt of expressing the meaning of a 
specialised discourse with well-defined, hierarchical meanings (real number 
arithmetic) into one that includes blurred or contradictory meanings (sharing). 
Translation is not possible without changing either the everyday or the school 
mathematical meanings.  

In the example discussed above, the everyday is used as a springboard for 
developing school mathematical meanings. The second example that will be 
discussed below consists of an episode, in which the everyday is introduced as a 
field for usefully applying (or for being modelled by) some school mathematics. 
Many researchers argue that, with this type of tasks, there is a problem because 
students fail to link the mathematical results to their informal knowledge from 
everyday practices. The students’ productions are often described as a “suspen-
sion of sense making” (e.g., Baruk, 1985; IREM, 1980; Silver, Shapiro & 
Deutsch, 1993; Schoenfeld, 1991; Verschaffel, Greer & DeCorte, 2000). 
Freudenthal (1982) challenges the interpretation of the students’ reactions to the 
famous problem “Quel est l’âge du capitaine?” The students might interpret the 
text, and similar ones, as a story in a magic context, in which the relationships 
between the numbers indeed have a meaning. It is just in the everyday where 
these are meaningless. 

On the other hand, the students’ difficulties are often interpreted as stemming 
from too much reference to the everyday: Successful mathematical problem 
solvers abstract from the details and recognise the structural features (Suydam, 
1980), attending to the contextual features referred to in a problem prevents the 
students from seeing analogies to other problems (Silver & Smith, 1980), and 
literally interpreting isolated phrases in word-problems in their everyday 
meanings causes errors (Cummins, 1991). Students are also found to fail in tests 
because of using too much knowledge from everyday practices when solving 
contextualised tasks (Cooper & Dunne, 1998; 2000). The question of referring 
too much or not enough to the everyday becomes a question of guessing the right 
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dose, as epitomised in the following example from a grade-9 mathematics class-
room in Catalonia (transcript from Gorgorió, Planas & Vilella, 2002).  

The mathematical topic is proportionality. The teacher has asked the students 
to bring a cooking recipe to the next lesson. It is no surprise for the teacher that 
the students actually do not bring recipes. She has been anticipating that the 
students would not take this as a serious and important component of their 
normal mathematics lessons. Only Nadja, a 15-year old girl from Russia, has 
brought a recipe for a meat pie. The other students in the class think of Nadja that 
she is very clever [“She always gets it”].  

The data in Nadja’s recipe are for 6 people. There are, for example, 250 g of 
meat needed. The teacher asks to find the amount of all ingredients “if you have 
to cook for 11 people”. The students are thinking a while for themselves. Then 
the following conversation starts: 

Teacher: Who wants to begin? Do we know how much meat we have to buy? 
Nadja [raises her hand]: May I go to the blackboard? [She goes and writes: 

“458,333333...” on the board] 
Teacher: Grams of meat? 
Nadja: Shall I put the other ingredients? 
Teacher: Wait, let us first finish with the meat. Are we going to buy 

fourhundretfiftyeight point three three three three three three dot dot 
dot grams of meat? 

Joel [shouting disgustedly]:  She is crazy! 
[Nadja, erases the 3’s and writes her result in this form: 458,3] 
Joel: And what is that thing over the three? 
Nadja: You shut up! 
Teacher: Wait Nadja. Let us hear what Joel wants to say. Joel, good manners, 

please. Could you please tell us what’s the matter? 
Joel: She has never been shopping! We buy 500 grams and everybody eats 

a little more. 
Nadja: But you are inventing a new problem, it is for 11 people, not for 12! 

The everyday activity to which the original task refers is cooking. In the course 
of the conversation, the activity is expanded and also includes shopping: The 
teacher initially asks how much is “needed”, and, before Nadja comes to the 
board, asks how much meat one has to “buy”. Joel interprets the original text 
(Nadja’s recipe for 6 people) as clearly belonging to the everyday domain. He 
sees no hints that this is not to be interpreted as such, and Joel produces an 
authentic solution: Being faced with the task of cooking for 11, he changes the 
constraints by planning for 12 people and the shopping problem is solved in an 
efficient way. 

Nadja interprets the task as a problem that has to be re-contextualised from 
the school mathematical perspective of calculating exact proportions. Maybe she 
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recognises that there is something unusual introduced: The number of 11 people 
is not commonly used in cooking activities, recipes in cooking books mostly 
refer to 2, 4 or 6 people or the number of the “eaters” is not given (if it is a cake, 
for example). Nadja knows that she is participating in a mathematics classroom 
and might be able to assume that asking for 11 people is a deliberate act of “de-
authentisation” by the teacher. She understands the example not as cooking, but 
as cooking recontextualised from the perspective of real number arithmetic. 

In this episode, it is as hard as in the previous episode about division by zero, 
to understand what the legitimate contribution consists of. Neither Nadja’s nor 
Joel’s versions seem to be accepted by the teacher. As in many similar examples, 
the students are expected to produce something in between an everyday strategy 
or a solution in real number arithmetic. How can the students know the demar-
cation line between the two discourses? Starting from Nadja’s result, there is a 
series of questions that cannot be answered because of lack of criteria for a 
legitimate contribution: How many significant numbers should a rounded result 
have to inform the meat shopping? And then, does one have to buy the resulting 
amount? And if so, how? Are there only packages of pre-packed meat in the 
supermarket? Can the shopper buy more and make a soup from the rest? In 
everyday activities, efficient solutions often rely on changing the constraints. In 
school mathematical tasks this is not allowed, as Nadja insists.  

The implicitness of the criteria 
The following anecdote shows that the tension between the everyday and the 
academic is not restricted to solving contextualised tasks. In a grade-6 mathe-
matics classroom in an Austrian high school in the early 1970ies, a girl (the best 
friend of the author) is called to the blackboard and asked to divide a line into 
three sections of equal length. She draws a line, takes one step backwards, looks 
for a while at the line, and then draws by eye a very accurate trisection of it. The 
teacher says: “Thank you, sit down. You have got a good visual judgement. You 
can become a tailor.” The comment by the teacher shows how recontextua-
lisation creates a hierarchy of knowledge and experience, favouring institutiona-
lised knowledge over everyday knowledge. All three episodes have in common 
that the principle of the recontextualisation remains implicit. As a consequence 
of the implicitness, the students who are able to “guess” the criteria that are 
essential for producing a legitimate contribution are systematically advantaged 
over others. Thus school mathematics constructs hierarchies of positions of 
students as low-achievers and high-achievers. The mechanisms of classroom 
interaction that introduce students into the recontextualisation principle of school 
mathematical practice, and which at the same time, account for the emergence of 
disparity in achievement, need to be further described and analysed (see 
Knipping, Reid, Gellert & Jablonka, 2008; Jablonka, Gellert, Knipping & Reid, 
2008). 
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The analysis of interactions between teachers and students while solving 
contextualised tasks, which has been presented here, suggests that the tension 
between the everyday and the academic does not go away, if the problems are 
changed, for example, by making them more “authentic”. Still, the students’ 
problems in these and similar examples can be conceptualised by asking:  

• How can the students have access to the principles of recontextualisation 
that define what is to be viewed from which perspective, how the activities 
from outside school become fragmented, how the meanings change and how 
the relations between the meanings change? 

Teachers employ different strategies in their interaction with students when 
handling the insertions of the everyday in classroom interaction (eg. Sethole, 
2005; Chapman, 2006; Jablonka 2004): 

• Accepting non-mathematical solutions and suggestions, 
• treating the context as an aside, allowing a discussion before moving to a 

mathematical solution, 
• contrasting and comparing the mathematical solutions with the students’ 

everyday experiences, 
• allowing a critical discussion about the artificiality of the problems, 
• pointing out the difference and independency of the mathematical structure, 
• comparing problems with a similar mathematical structure, asking explicitly 

to judge the relevance of the everyday meanings, 
• getting students to make their assumptions about the problem context 

explicit, comparing alternative meanings and solutions, 
• deliberately making the context inauthentic (in opposition to maximising 

authenticity), as, for example, found in many classical word problems, 
• getting the students to fragment the problem statement for translation into 

mathematics (often as “steps”). 

These strategies differ in the extent to which they provide access to the principles 
of the recontextualisation of the everyday activities. All except the one listed last 
help focus on the difference between the discourses, and thus might assist in 
making the principle more explicit. The last strategy is more likely to camouflage 
it, by maintaining the fiction that abstraction from extra-mathematical contexts to 
mathematical concepts and structures is possible and straightforward (cf. Gellert 
& Jablonka, 2009 for a more theoretical elaboration of the problem). Introducing 
segments of everyday discourse, which is structured horizontally, for facilitating 
access to the vertically structured discourse of academic mathematics remains 
problematic. Bernstein (1999) describes a horizontal discourse as “a set of 
strategies which are local, segmentally organised, context specific and depen-
dent, for maximising encounters with persons and habitat”, whereas vertical 
discourse takes the form of a “coherent, explicit, and systematically principled 
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structure” (p. 159). Attempts of blurring the boundaries can make the transitions 
from horizontal to vertical discourse difficult. 

Conclusion 
In this paper the problem of the tension between the everyday and the academic 
has been conceptualised in terms of a relationship between domains of practice 
and their corresponding discourses. This relationship consists in the recon-
textualisation of out-of-school practices for didactical purposes, including a 
relocation and an appropriation of the corresponding discourses by the school 
mathematical discourse. From this perspective, the confrontation between the 
everyday and the academic is inescapable. Attempts of a conciliation through 
conceptualising the relationship between the everyday and the school mathe-
matical discourse as a transformation between representational systems or as a 
translation between two languages are misleading: The mathematical structures 
projected into the everyday activities are not determined by the structure of these 
activities; the corresponding discourses differ in the ways in which the meanings 
are specified and organised. In the mathematics classroom, different versions of 
contextualised questions and tasks serve as mediators between the everyday and 
the academic. The challenge for the students, when confronted with this type of 
questions and tasks, consists in both recognising different forms of discourse and 
being able to produce a legitimate contribution. However, if the principle of the 
recontextualisation remains implicit, the students are unlikely to recognise the 
difference between the discourses, of which the academic is privileged with 
respect to successful participation. In addition, the institutionalisation of 
segments from everyday discourse within school mathematical discourse has a 
tendency to allocate the everyday insertions to marginalised groups. The 
distinctions between different types of knowledge structures (symbolic systems, 
tools, ways of acquiring them) are likely to be transformed into distinctions for 
categorising and labelling knowers (cf. Muller, 2006). 
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Abstract: Podcasting is a new phenomenon in Swedish schools. This paper describes a 
project where the main goal is to analyze if the students’ interest in mathematics is af-
fected if the mathematics is made accessible via podcasts and iPods. Teachers at eleven 
schools were encouraged to produce podcasts as a part of their mathematics teaching 
in school-year eight. The results indicate that the possibility to look at mathematics 
wherever and whenever you want was an important aspect for the students. We also 
found that the technical difficulties for the teachers were underestimated in the project, 
and that teachers had difficulties in finding time for the production of podcasts. 

Introduction 
During the spring 2006 a pilot study was carried out (Gårdare, 2006) where a 
teacher, together with a media pedagogue, was introduced to the possibility to 
produce podcasts as a part of the teaching of mathematics in school year 8. 
Teaching mathematics is a difficult endeavour. The serious problems found in 
the Swedish school system connected to mathematics, for instance the large 
focus on rote learning, will not be avoided just by using podcasts. However, pod-
casts might offer opportunities to develop the teaching and address some of these 
problems, maybe problems related to the low interest and motivation among stu-
dents. 

Project description 
PIS – Podcasting In School2 was a project that involved 11 schools and 22 teach-
ers of mathematics in lower secondary school in Sweden. One class of approxi-
mately 25 students from each school participated. The teachers were equipped 
with laptop computers and video cameras. After a one-day initial training they 
were encouraged to start testing on their own, and to produce short simple video 
recordings (podcasts) to be published on the web. Examples of podcasts in math-
ematics from the pilot study were presented, but no other instructions concerning 
the content were offered. The idea behind the low amount of instruction to the 

                                              
1 Umeå Forskningscentrum för Matematikdidaktik  www.ufm.org.umu.se 
2 The project was funded by Rektorsakademien, The Swedish National Agency for School 
Improvement, and Apple. 
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teachers had to do with issues of scalability, that is that support could be hard to 
offer in a large-scale implementation. 

Each school in the project was supposed to involve one class and two 
teachers. The teachers should produce podcasts with a mathematical content, and 
the students would be offered to look at the podcasts on a computer and on a 
video iPod3. In some schools other subjects than mathematics were also con-
sidered. The iPods were provided to each class for half the project time, i.e. one 
term with an iPod and one term without.  

The research part of the project was given the following overarching ques-
tion: Does the students’ interest in learning increase when you introduce youth 
culture into the school? 

Youth culture is here represented by podcasting and ipods. The research de-
sign will look at affordances (action possibilities) and constraints (limitations) 
concerning podcasting in mathematics education, in connection to interest and 
motivation for learning.  

One school in the project (here called School 11) was treated differently from 
the rest in that there was a close contact between the researchers (who are re-
searchers in mathematics education) and the teachers. The ways in which the 
teachers produced podcasts were here developed in dialogue with the researchers. 
Issues concerning process goals, communication skills, problem solving and 
mathematical reasoning were raised to enhance the podcasts. The analysis of the 
data from School 11 will not be a central part of this paper, but some observa-
tions will be mentioned. 

Research questions 
Students’ attitudes towards the learning of mathematics are central in many dis-
cussions of the problems found in the Swedish school. Of course it would be very 
interesting to be able to measure how students’ performance in mathematics was 
affected by the use of iPods and podcasts very clearly. However, as in many 
other situations where a new tool or a new way of working is implemented, so 
many things are changing that it is as good as impossible to connect a change to a 
single variable. Therefore we will focus more on student attitudes to mathemat-
ics, since it is reasonable to believe that an increased student interest will result in 
better student performance.  

The research questions we have formulated are the following: 

1. How are student’s attitudes towards mathematics, and the learning of 
mathematics, affected by the use of podcasts? 

2. To what extent are the teachers producing podcasts, and what charac-
terizes the podcasts in terms of what is presented? What are the affor-
dances and constraints?  

                                              
3 Video iPod is registered trademark by Apple. 
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3. In what ways and to what extent are the students using the podcasts? 
What are the affordances and constraints? 

The first question is very closely related to the overarching question. In order to 
reach clear answers to the first question, we need information concerning the 
podcasts as well as information on how the podcasts were used by both teachers 
and students. 

It is also important to point out that this report deals with only the first half of 
the project, and that not all research questions will be addressed. For example, a 
discussion about the mathematical content of the podcasts will not be a part of 
this report. 

Theoretical framework 
The importance of attitudes for mathematics learning is well accepted among 
mathematics education researchers, especially in connection with motivation 
(Op’t Eynde et al, 2006; Hannula, 2006). Motivation is often divided into extrin-
sic and intrinsic motivation (e.g. Ryan & Deci, 2000). Extrinsic motivation has to 
do with rewards of different kinds (grades, praise from parents etc.), while intrin-
sic motivation is connected to the learner’s curiosity and wish to learn. The use 
of podcasting and iPods will in this study be discussed as important for both the 
students’ extrinsic and their intrinsic motivation.  

One example of a quality in the use of podcasting that might affect the stu-
dents motivation is that it gives the students the possibility to decide when, and to 
what extent, they are to be exposed to mathematics:  

Rather than having the teacher make all instructional decisions, offering stu-
dents control over the amount and sequence of instruction, including options 
for review, can result in higher achievement and improve student attitudes to-
ward learning. iPod, with its virtually limitless opportunities for playback, liter-
ally places control in students’ hands. (Pasnik, 2006)  

This means that by giving the students control over their own learning envi-
ronment, it is possible to achieve positive effects on the both extrinsic and intrin-
sic motivation.  

We find the theory of affordances and constraints (Greeno, 1994) potentially 
helpful in the process of data analysis. In the case of the use of ICT, an affor-
dance can be seen as a property of the particular application e.g. the use of digital 
media on the iPod. As such affordances are conceived as preconditions for ac-
tivity and in particular for mathematical activity in the case of this project. On the 
other hand the affordances provided by a device or application may be seen as 
conditions for constraints. The existence of an affordance for some activity is not 
seen to imply that the intended mathematical activity will occur, although it con-
tributes to the possibility that it will do so. The perception and motivation to en-
gage in the activity on the part of the user becomes a key factor to consider. 
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Method 
The research questions in this study demand a variety of data collecting methods 
and analyses. Interviews and observations of podcasts are the main methods in 
relation to the research questions. In order to understand what initial knowledge 
and experience the participants had, questionnaires, both to students and teachers, 
were used.  

At the beginning of the project questionnaires were sent out to each school, 
one to the students and one to the teachers. We received answers from all teach-
ers and near all students. The questions to the students centred around four areas: 
questions on attitudes towards mathematics, questions about previous experience 
of podcasts, questions about the use of mp3-players, and questions about expec-
tations on the project. 

The questions to the teachers also concerned, apart from standard back-
ground information, four areas: questions about the participation in the project, 
questions about the teacher’s own goals with the project, questions about the 
teacher’s normal teaching and lessons, and questions about expectations on the 
project. The main use of the questionnaires was as a background for the inter-
views. 

In May we visited eight of the eleven schools. Interviews with teachers and 
students were carried out at each school. All interviews were audio recorded and 
selected parts were transcribed. The selection was based on the existence of pas-
sages considered important for answering the research questions. The interviews 
were of a semi-structured format using a pre-designed scheme. 

The teacher interviews ranged from 30 to 90 minutes, and in most cases one 
teacher from each school took part. The interview scheme concerned attitudes to 
mathematics and the use of the podcasts. In the section when we discussed the 
teacher’s views on the possibilities and limitations we connected the interview 
question to the each teacher’s answer to the corresponding question in the ques-
tionnaire. 

The student interviews ranged from 15 to 30 minutes, and three or four stu-
dents from each school took part. We were also very careful to explain to the 
students that their answers are very important for the research, and that they are 
one of our main sources of information. 

All interviews were transcribed in a condensed form, followed by a complete 
transcription of important passages, i.e. passages where discussions clearly re-
lated to the research questions took place. The complete transcriptions were used 
in the analysis. 

In one school the teachers in the project had recurrent meetings with the re-
searchers in the project. Their podcasts, both content and form, were discussed in 
a rather systematic way. The content was related to the syllabus and process 
goals of the education. Questions like “what process goal do we want to address 
with this podcast” and “what known difficulty in mathematics learning can be 
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focus here?” were asked. Four meetings, in addition to the meetings for all par-
ticipants in the project, took place during the spring. Each meeting lasted ap-
proximately 1.5 hours and the researcher took notes. 

Analysis 
The find answers to the first research questions in this study, concerning how 
students’ attitudes towards mathematics, and motivation to learn is affected by 
the use of podcasts and iPods, we need information in how teachers and students 
have been using podcasts, i.e. the second and third research question. Therefore 
we will in this section first treat research questions two and three, followed by an 
analysis concerning the first research question. 

In the analysis we have used the theory of affordances and constraints in 
order to find important issues that not only are interesting from the teachers’ or 
students’ perspective, but also indicate that it is the podcast or iPod in itself that 
gets attention. 

Research question 2: Teachers and podcasts 
Two issues were put forward by the teachers as central affordances in the use of 
iPods and podcasts. The first was the possibility for students to take part of con-
tent when they have been absent during a lesson. This was seen as one of the 
most important aspects. In relation to this it is not surprising that the podcasts to 
a large extent had the same content as classroom presentations, especially in the 
beginning of the project. In addition, this affordance can also become a con-
straint. If teachers are very convinced that this is the best way to use podcasts 
they may refrain from trying other types of podcasts. 

The second affordance focused on by the teachers was the possibility to show 
out-of-school situations in order to present the setting for a problem, and also the 
problem itself.  In some podcasts the problems were solved, in other the students 
were given the problem as homework. The use of podcasts to present problems 
was in many schools something that came after a few months of testing and try-
ing out the technical issues in the production. It seems possible that the teachers 
after the initial period wanted to do something more than just copying the class-
room. One might argue that presenting a problem in a podcast is no different 
from doing it on paper or any other media. However, some new possibilities oc-
cur, e.g. visualisations of problem situations or solutions. One example from a 
podcast in this study is when the concept of VAT4 (25% in Sweden) is discussed 
and rectangular blocks are used to show that you need to remove 20% in order to 
get the price without VAT. All in all we must conclude that only a small number 
of podcasts in this study contained something that could not be done in the class-
room. 

                                              
4 Swedish: MOMS. 
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One of the two constraints highlighted by all teachers was that there was too 
little time to plan, produce and publish the podcasts. Since few teachers in the 
study were compensated regarding their workload, the production of the podcasts 
had to take place in their free time. Most teachers had to carry out their normal 
assignment as well as taking part in the project, so it is not surprising that the 
production of podcasts declined radically for several teachers towards the end of 
the term. Some teachers could use the schools days for open-air activities to work 
with the podcasts, and some could use days specified for competence develop-
ment, but on the whole, most teachers experienced the time issue as a significant 
problem. 

The other constraint was that the teachers experienced a lot of technical diffi-
culties, from the actual filming via the cutting and preparation of the podcasts, all 
the way to the final publication of the podcasts on the web. The most common 
problem had to do with the last part of the production, the uploading of the pod-
casts to the web, and the creation of an RSS-stream. Several teachers felt that 
they lacked a more thorough instruction concerning the last steps. In some school 
there were also difficulties originating in the fact that the project computers were 
Apple laptops (running Mac OSX), while the school (and the municipality) were 
Microsoft Windows environments only. The problems could for instance be that 
the Apple computers couldn’t run Windows programs necessary to access the 
municipality intranet. 

All teachers in the project had experienced a lot of positive feedback from 
students and parents concerning the project. This was regarded as important, both 
from a more general school perspective and for more individual reasons, like the 
possibility to get previously not so interested students to take part of the math-
ematics teaching to a larger extent. 

Research question 3: Students and podcasts 
In general, the students who had an iPod looked almost all podcasts. There were 
a significant difference between the group of schools with iPods and the schools 
without iPods. Few students without iPods had used the podcasts at all. They 
were all looking forward to the day when they would get their iPods. “The day 
the project really will start” was an often-heard comment, both from students and 
from teachers in these schools. The students with iPods the first period believed 
that the use of the podcasts would decrease when they have to do without the 
iPods and only look at the podcasts in iTunes. The importance of this affordance 
of the iPod is not so easy to value at this stage of the project. Maybe we can 
know more after the second half of the project when the iPods are switched be-
tween the schools. From the interviews we also believe that many students have 
looked at podcasts in addition to (and not instead of) their normal amount of 
mathematics outside school. This would indicate that the amount of mathematics 
the students have met during the project is larger that normal. 



Papers 

 26 

The most common perceived affordance discussed by the students was that 
the podcasts could be used for reviewing before a test and catching up when 
missing a lesson. The possibility to look at the podcasts anytime, anywhere ap-
pealed to all the students. “To be able to prepare for a test on the bus” and “dur-
ing the lunch break we have no access to computers in school” were two state-
ments that highlight the view that this affordance was important. 

Interesting was also that in one class the students looked at a podcast before 
the teacher presented the content to the class. The students found it easier to fol-
low the presentation and the teacher claimed that he got deeper questions from 
the students. Of course, this possibility exists in normal teaching also; the stu-
dents can read the section in the book in advance. However, this is not common 
student behaviour according to the teacher. This affordance of the podcasts, that 
they might influence the students to look at mathematics in advance, is an im-
portant finding in this study, especially if we interpret this as a motivation to en-
gage in mathematics to a larger extent than without podcasts. 

Indications of another affordance were also found. Some students and several 
teachers reported on positive feedback from parents who had looked at some of 
the podcasts. After viewing the podcasts the parents suddenly could help their 
child in mathematics. It would be very interesting to interview some parents con-
cerning this issue, but that is not a part of this study. 

Among many of the students in the interviews, a perceived constraint of the 
podcasts was found, concerning the idea of putting a whole content area into 
podcasts. This had been tried in one school (not in mathematics, but in geogra-
phy, concerning latitude and longitude) with very good result and positive opin-
ions from the students. However, none of the interviewed students from other 
schools believed it to be a good idea. “You need someone to explain the content” 
was a common comment. 

An interesting observation concerning the students’ use of the podcasts is 
that most students were in agreement that it was rather easy to download the 
podcasts to iTunes and to the iPods. Some cases of technical difficulties were 
found, but nothing serious, and definitely not at all on the scale that the teachers 
reported concerning the production and publication of the podcasts. The students 
were very satisfied with the quality of the podcasts. “It’s easy to see and the 
sound is very good”. 

Research question 1: Attitudes and interest in mathematics 
It seems that the use of podcasts and iPods in this project have lead to an in-
creased amount of mathematics the students meet in their learning of mathemat-
ics. Many students said that they spend more time with mathematics due to the 
fact that they have iPods and have podcasts to look at. It seems reasonable that 
increased time with mathematics is connected to motivational aspects of the 
learning. In that case, it indicates that the presence of iPods and podcasts have 
affected the students’ attitudes and interest in mathematics. 
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Other reasons for the increased time with mathematics are the affordances 
described above. The possibility for a student to take part of the content after 
missing a lesson was a central aspect according to both teachers and students. 
The students also mentioned some other uses of the podcasts, for instance to 
practice before a test and to review a specific method. These affordances were 
often mentioned in connection to the affordance that the students’ could look at 
the podcasts anywhere, e.g. on the bus or between classes. 

All students we interviewed agreed that the use of iPods was a cool thing in 
mathematics. “Mathematics is more fun with the iPods” and “you can review in a 
more fun way”. They also claimed that it was more fun and stimulating to look at 
a podcast compared to read in the book or review ones notes. They stated that 
mathematics had become a more popular subject in their school thanks to the 
project. Whether this was because the students could learn mathematics in a bet-
ter way, or because they were the only class in their school to be part of a project 
where they got an iPod, was a question the students couldn’t answer. Student 
voices concerning the content were also heard. One student was very clear on 
this: “If I won’t benefit from the use I will not look at the podcasts.” Similar 
statements, but maybe not so direct, was heard from several other students. 

Concerning extrinsic and intrinsic motivation, all students agreed that the 
iPod is a very cool gadget that definitely leads them to spend more time on math-
ematics. They also stated that it is not enough with an iPod, you also need to 
benefit from the content. It was clear that the students to a very large extent 
talked about extrinsic motivation using expressions like “making the course”, 
“getting good grades”, “be prepared for higher studies”. They rarely talked about 
intrinsic motivation, even if a few students mentioned things like “mathematics is 
more fun”, which can be interpreted as such. 

From the interviews with both the teachers and the students it seems clear 
that the iPod was a very important part of the project. When we compare the 
schools with and without iPods, there is a significant difference in the level of 
activity, both among the students and the teachers. This must of course be inter-
preted carefully. Since the iPods are considered as very ‘cool gadgets’ by the 
students, it is only natural that the students are affected and it is not necessarily 
so that the students’ really are more interested in the learning of mathematics. 

School number 11 
The first podcasts produced at school 11 was similar to most other podcasts in 
the project in that they consisted of presentations of the same kind as in the class-
room: introductions to a new area, presentations of a concept, presentations of a 
method, or presentations of problems. 

The second group of podcasts was of a different type. Here the teachers went 
outdoors, interviewed people, and made things not possible in the classroom etc. 
The idea was now that the podcasts should be a complement to the classroom 
activities, not the same thing in another package. The teachers also instructed the 
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students that it was mandatory to look at the podcasts in advance, and that they 
would discuss the content during the following class. Due to some practical cir-
cumstances this was not carried out fully, but the teachers are planning to use this 
strategy after the summer. 

In one podcast the podcast consisted of a number of short interviews around 
large numbers and the use of prefixes. In the interviews we heard a lot of differ-
ent ways of using prefixes, as well as some erroneous statements and concepts 
that are not prefixes. Here is one example of a passage. 

Interviewer: How big is the hard disk in your computer? 
Victim: Around… I would say… one cubic decimetre. 
Interviewer: OK… and how much memory does it have? 
Victim: Well, eighty gigabyte. 

Here the victim uses two different prefixes and also the word “cubic”. There are 
opportunities to discuss several aspects of the use of prefixes in everyday life 
starting from this short passage. Questions like “when do we use prefixes”, “why 
do we use them” and “is ‘cubic’ a prefix” may trigger students interest in a way 
that might be different from a normal classroom situation. 

Discussion 
The results from this study indicate that students’ attitudes towards mathematics 
are affected in a positive way in this project. There are of course several possi-
bilities for this positive effect. The students all got a ‘cool gadget’, they were part 
of a research project, their teachers (in some cases) got extra time for the teach-
ing of mathematics and so on. However, in the interviews some other reasons 
were found. The possibilities to take part of the content after missing a lesson and 
to review the content before a test were important aspects. Especially the possi-
bility to look at mathematics anywhere and at any time, was highlighted by the 
students. This is also supported by Pasnik (2006), who means that giving the stu-
dents control over the learning environment (to some extent) has a possibility to 
increase students’ motivation. One might argue that the increased interest is a 
temporary situation, only while the situation is new, and that it will go back to 
normal after some time. One thing that supports such a belief is that the main part 
of the positive factors the students reported had to do with extrinsic motivation. 
On the other hand, several students pointed out that there had to be a gain in the 
learning of mathematics if they would use the podcast to any extent. 

There were several effects found in the study that were caused by the specific 
use of podcasts, and not only by the fact that the students got a device or that 
they were part of a research project. One example is when the students looked at 
a podcast before the same content was presented by the teacher in the classroom. 
This lead, according to the teacher as well as the students, to better possibilities 
for the students to understand the content and to pose more accurate and pro-
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found questions. Another example is that several teachers reported on positive 
feedback from parents who, after looking at some of the podcasts, experienced 
increased possibilities with their child’s homework. However, the most promi-
nent affordance with the podcasts concerned the use of iPods that the students got 
an option to look at presentations of mathematical content whenever they 
wanted: in the bus, when waiting for a lesson to begin, during the lessons, at 
home etc. 

One serious problem in the project was that many teachers experienced that 
they could not find enough time to produce podcasts the way they wanted. Al-
most all teachers raised the time issue. Of course, in a longer perspective, the 
production of podcasts in mathematics must be one part of the teachers’ work, 
since we cannot assume that mathematics teachers suddenly will get more time 
for mathematics just because they use a new working model. One important 
question in a possible future use of podcasts is to find a balance between podcast 
production and other parts of the work as a mathematics teacher. What can be 
reduced and what can be made in more rational ways? What can be removed? If 
podcasts should be a normal part of the job as a mathematics teacher, without an 
increase in workload, something must change. 

This paper has mainly discussed the availability of the podcasts, and the ef-
fect that student use of podcast might have on student attitudes. In the second 
part of the project we also want to include the quality of the podcasts. Why is one 
podcast interesting and another not? What is it in a podcast that catches a student 
and affects attitudes? Can we characterise what it is in a podcast that students 
find interesting? 
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Making Sense of Negative Numbers Through 
Metaphorical Reasoning  

Cecilia Kilhamn  
University of Gothenburg 

Abstract: The concept of negative numbers is such an abstract concept that it has been 
argued that it can only be understood through symbolic reasoning. However, others 
argue that all mathematical concepts are understood through metaphors. Previous re-
search has identified three important aspects of understanding negative numbers: di-
rection and multitude, proficiency in arithmetic operations, and the meaning of the mi-
nus sign. This study further explores the theory of conceptual metaphors and meta-
phorical reasoning by investigating the use of models and metaphorical reasoning 
when dealing with negative numbers. The data consists of test results from 99 students 
in the teacher training program and follow-up group interviews. The results show that 
some students’ difficulties seem to be a consequence of their use of metaphorical rea-
soning using a metaphor that is insufficient. However, metaphorical reasoning also 
seems to be helpful for students who are aware of the limitations of the metaphor. En-
lightened use of metaphorical reasoning, i.e. being aware of the potentials and con-
straints of models and metaphors, could therefore be described as a fourth important 
aspect of understanding negative numbers.  

Introduction and research question 
Negative numbers are well known to be difficult to teach and to understand. Pre-
vious research has documented difficulties and dilemmas concerning both nega-
tive numbers as such and when they appear in algebra. Proficiency in calculating 
with negative numbers is a prerequisite for understanding algebra (Gallardo, 
2001; Vlassis, 2002) and since algebra today is a part of school curricula (at least 
in the Swedish compulsory school) negative numbers are important to master. In 
the encounter with negative numbers students get important experiences of what 
mathematics is about; mathematics in a much broader sense than the art of count-
ing and calculating quantities. Students often say they find negative numbers dif-
ficult because the negative numbers are so abstract and lack connections to the 
real world. The most common real world connection to negative numbers is the 
thermometer, at least in Sweden where we use the Celsius scale and have tem-
peratures below zero every winter. A visual representation related to the ther-
mometer is the number line. Although previous research and work on didactics of 
mathematics dating hundreds of years back have dealt with different models used 
when teaching negative numbers difficulties remain and teachers keep asking for 
better models. Instead of further exploring the models as such the models are 
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here viewed through the theory of conceptual metaphors. It is therefore not the 
model itself but rather how the model is used that is focused upon. Reasoning 
about numbers and calculations in terms of actions on or with models or repre-
sentations is here referred to as metaphorical reasoning.  
 The research question for the study reported here is: To what extent do stu-
dents make use of representations/models and metaphorical reasoning when 
solving tasks with negative numbers and how does this relate to their solutions 
and their confidence? In the next section the theoretical framework used will be 
described. 

Metaphorical reasoning  
The theories that have developed around metaphorical reasoning and conceptual 
metaphors are in some ways an answer to the classical dilemma of how one can 
learn things about that which one does not know. It is assumed here that learning 
new things is about connecting new experiences to already known experiences. 
Metaphors serve as important links between prior knowledge and new concepts. 
Metaphors can be defined as understanding one conceptual domain (the target 
domain) in terms of another conceptual domain (the source domain). Lakoff and 
Núñez (2000) assert that most mathematical and abstract concepts are concep-
tualized in concrete terms, for example thinking of numbers as points on a line. 
There are, they say, two kinds of metaphorical mathematical ideas: grounding 
metaphors yielding basic ideas and linking metaphors yielding sophisticated or 
abstract ideas (p. 53). All metaphors have limitations since the target domain is 
never identical to the source domain. When we construct highly abstract concepts 
we build up whole metaphorical systems that together characterize the concept. 
Metaphors make sense of our experiences by providing coherent structure, and 
thus focusing attention on those aspects of the source and target domains that 
bear similarities. The theory of metaphorical concepts claims that different meta-
phors are used to structure different aspects of a concept (Lakoff & Johnson, 
1980). 
 Since the words ‘model’ and ‘metaphor’ are used alternatively by many au-
thors the two concepts are often confused and a clarification is called for. As 
shown in Figure 1; a conceptual metaphor can be described as a set of mappings 
from a source domain to a target domain (Kövecses, 2002).   

 
 

 

                         Figure 1: Illustration of a metaphor. 

A ‘pedagogical model’ is an embodied experience or a visual representation cho-
sen to represent a mathematical concept in order to reveal features of the math-
ematical concept and it is used as a conceptual metaphor by treating the model as 

source domain target domain 
mapping 
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a source domain and mapping the features inherent in the model onto the math-
ematical target domain. This use of the word model is not to be mixed up with 
‘mathematical modelling’ where the metaphor is reversed. In mathematical mod-
elling the source domain is mathematics and the target domain is reality. In a 
mathematical model we might investigate speed and time/distance relations in 
terms of functions, mapping features of functions onto reality, whereas saying “-
2+5 is when the temperature is -2º and then goes up 5 degrees” is a way of using 
the thermometer model as a conceptual metaphor for addition, mapping experi-
ences of temperature change and how that is shown on a thermometer onto 
arithmetic. Henceforth when the word model is used it refers to a pedagogical 
model, i.e. a visual representation or embodied experience chosen to represent a 
mathematical concept. The model is not a metaphor in itself; it supplies the 
metaphor with a source domain and can thereby be used as a metaphor. Several 
different metaphors can have different source domains but similar or even iso-
morphic mappings to the same target domain. Take for instance a model of an 
elevator going up and down in a building, temperatures rising and sinking on a 
thermometer or a glacier growing in winter and melting away in summer. They 
are all different but when these models are used as conceptual metaphors for 
arithmetic they have isomorphic mappings to the grounding metaphor ‘Arithme-
tic as Motion Along a Path’ (Lakoff & Núñez, 2000). The differences between 
the models lies in what is moving along the path and what kind of path it is, but 
the structure is the same.  
 Some models are already in themselves abstractions and as such removed 
from a child’s everyday knowledge. A model has to be a model of something be-
fore it can be used as a model for something (Gravemeijer, 2005). Understanding 
of the source domain is a requirement if a model is to function as a conceptual 
metaphor. “A metaphor can serve as a vehicle for understanding a concept only 
by virtue of its experiential basis” (Lakoff & Johnson, 1980  p.18).  Using a par-
ticular model as a conceptual metaphor by reasoning about a mathematical con-
cept in terms of this model is what is here referred to as metaphorical reasoning.  

Previous research concerning negative numbers 
Researchers have previously identified three main aspects of understanding the 
concept of negative numbers. The first aspect is an understanding of the numeri-
cal system and the relative size of the numbers (direction and multitude) as well 
as an understanding of the number zero (Ball, 1993; Kullberg, 2006; Martínez, 
2006). Ball shows that the absolute value aspect (the multitude) of negative num-
bers is very powerful. These are all different aspects of number sense (Reys & 
Reys, 1995). 
 A second aspect is how well the students understand the arithmetic oper-
ations (Chacón, 2005; Vlassis, 2004). The big problems when calculating with 
negative numbers arrive with the subtracting of a negative number (multiplica-
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tion is even more problematic but is usually brought in later). Gallardo (1995) 
showed that it is of great importance whether the student understands subtraction 
only as an operation (taking away) or if they also have a structural understanding 
(as a comparison between two numbers). On the other hand Linchevski and Wil-
liams (1999) did an experimental study where ‘subtraction as take away’ was 
understood by the students to be ‘the same as adding the opposite number’ 
(through a dice-game and counting on a double abacus) and never used the struc-
tural aspect of subtraction. Sfard (1991) indicates that the interiorization of nega-
tive numbers is the stage when a person becomes skilful in performing subtrac-
tions.  
 The third identified important aspect is the meaning of the minus sign. The 
same sign is used both as a sign of operation and as a sign indicating a negative 
number, that is, indicating the nature of the number (Gallardo, 1995; Kilborn, 
1979; Kullberg, 2006; Vlassis, 2004). In some ways it is unfortunate that the sign 
is the same, and there has been experimental research where different signs are 
used for the two different purposes (Ball, 1993). The different meanings of the 
minus sign could be described as the operational and the structural aspects of the 
sign, where the operational meaning is usually introduced long before the struc-
tural meaning. Many errors appear when the minus sign indicating a negative 
number is detached from the number (Herscovics & Linchevski, 1991; Vlassis, 
2002).  
 Many textbooks use visual representations/models1 (such as the number line, 
a scale, a time line) and everyday life representations/models (such as tempera-
tures or money) to explain subtraction with negative numbers. According to 
Linchevski and Williams (1999) some researchers “…argue against using the 
existing models for negative numbers […] concludes that the topic of negative 
numbers should be taught only when the students are ready to cope with 
intramathematical justifications” (p. 134).  Contrary to this, through their ex-
periment Linchevski and Williams draw the conclusion that at least subtraction 
with negative numbers can be understood through models; not a single model but 
a multiplicity of models. Gallardo (1995) suggests teaching negative numbers 
using discrete models where whole numbers represent objects of an opposing 
nature rather than using the number line. Kilborn (1979) points out that some 
teachers use several different models simultaneously during a lesson and that 
these models seem to confuse the students. Ball (1993), on the other hand, states 
that no representation captures all aspects of an idea and “teachers need alterna-
tive models to compensate for imperfections and distortions in any given model” 
(p. 384). She articulates a dilemma when she asks whether she confuses the chil-

                                              
1 The word model is here used to be tantamount to a visual or experienced representation. Once 
seen, this visual representation can be referred to as a mental representation or mental model 
without being actually visible.  
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dren by letting them explore multiple dimensions of negative numbers by intro-
ducing different representations. Some work has been done on the use of meta-
phorical reasoning when dealing with negative numbers (Chiu, 2001; Stacey, 
Helme, & Steinle, 2001), which is also the focus of the study presented here.  

Method 
In this study a test was given to students (N=99) in the teacher training program 
prior to the topic being dealt with in their mathematics course. The test included 
calculation tasks on negative numbers with follow-up free text questions and 
self-estimate ratings. There were two groups of students who were enrolled in a 
one term course in Mathematics Education for young children. They were not 
obliged to have taken more mathematics than the basic mathematics course 
(mathematics A) before entering the course. More than 90 % of the students in 
the two groups were women. The test was given to the students at the end of an 
ordinary lecture on a randomly chosen day during the course without the students 
knowing beforehand about the test. The students attending the lecture that day 
therefore made up the respondent group. Participation in the test was voluntary 
but all the students chose to respond. The test took 10-15 minutes to complete 
and was anonymous. The students knew me as a teacher in some parts of the 
course, which might be considered a complication. However, the students had no 
reason to assume that this test would in any way influence their grades since the 
test data were analysed after their exam. 
 Solutions of the calculation tasks were categorised and counted. The follow-
up questions were used to get hold of the students’ reasoning and their answers 
were categorized according to similarities, and analysed with a special interest in 
the use of metaphorical reasoning and arithmetical (symbolic) reasoning.  
 As a means of triangulation (Bryman, 2004) three groups of students partici-
pated in video recorded group interviews some weeks after they finished the 
course where they discussed their answers and a few related tasks. Each of the 
three groups consisted of 2-5 students. Data from the group discussion interviews 
were used as a complement to achieve a more holistic view (Cohen, Manion, & 
Morrison, 2000, p.115).  
 There were three parts on the test. This paper reports on the results of the 
first part which dealt with subtraction of a negative number. The first question 
asked only for an answer to a calculation. The second question aimed at measur-
ing the confidence of the student and in the third question the mathematical rea-
soning was sought2.  

1a) calculate: (-3) – (-8) = ________ 
1b) How sure are you that your answer is correct? (choose one answer) 

__ very uncertain      __ a bit uncertain     __ rather confident     __ very confident 

                                              
2 The questions were not numbered in the actual test but are so here for practical reasons. 
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1c) There are different ways of thinking to reach an answer to a question like 
this. Try to describe your way of thinking. 

Results 
As shown in table 1; 67 % of the students solved the subtraction task (1a) cor-
rectly and 33 % gave an incorrect answer. The most common incorrect answer 
was  –11.   

 
Table 1: Results from task 1a (percentage and number out of total 99). 
 

  Answer    5  (correct)  –11 or  –5   –11 and  5     Other / no   Total incorrect 
  total n= 99     67 %  (n=66)   28 % (n=28)   2 % (n=2)   3 % (n=3)   33 % (n=33) 

 
60 % of the students who gave incorrect answers on task 1a chose either ‘rather 
confident’ or ‘very confident’ on the next question, many of them referring to 
either a representation like the thermometer or to arithmetic rules. For those with 
correct answers the corresponding percentage was 85 %. The answers given to 
question 1c were categorized as either  

• using metaphorical reasoning referring to some mental or visual represen-
tation of negative numbers (n=23) 

• referring only to an arithmetic rule or a deductive argument (n=71) 
• no or irrelevant answer (n=5) 

Metaphorical reasoning on the first task included the thermometer, money debts 
and movements along the number line. The category using metaphorical reason-
ing (n=23) fell into two distinct subcategories: First; students who referred only 
to metaphorical reasoning on this task (n=14), all of which had arrived at a 
wrong answer, and second; students who used both metaphorical reasoning and 
an arithmetic rule (n=9), all of which had arrived at a correct answer (see table 
2). One person gave two alternative answers; reference to the thermometer ren-
dered the wrong answer and reference to an arithmetic rule rendered the right 
answer.  
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Table 2: Metaphorical reasoning using temperatures or number line models 

Answers of the first subcategory: incorrect answer given ( -11) 

I think of the thermometer. It was minus 3º and then it got 8º colder.  
On a number line or a thermometer I think of where -3 is and keep going -8 to 
get to -11.  

 
 

 
 
 
 
 
 

 
I count up from -8, add 3 which in this case is -3. Think addition. I also have a 
vague idea that negative numbers sometimes become positive. I would show a 
thermometer.  
It’s just automatic. I have simply learned it. Just take a scale with negative num-
bers and back 8 steps from (-3) 

 
Answers of the second subcategory: correct answer given ( 5) 

I will start by simplifying the expression3, take away as many brackets and signs 
as possible: I know that minus and minus makes + (that is in front of and inside 
the brackets) and then + and – makes – (1:st pair of brackets). Then what remains 
is just -3+8. (Which I in my head picture on a thermometer-scale and count up 8 
steps from -3)  
I think that two minus make a plus. I picture a thermometer.  
I see a ladder/temperature scale & “look” where zero is  
& -3 steps from there and then +8.  
From minus three you have to take away minus 8. That makes “+” 8 because it 
was minus to start off with. [made a drawing of a vertical number line] 
Like my drawing. I remember that two minus cancel each other and makes plus, 
hence -3+8=5.  
 

 
 
 

                                              
3 In Sweden the word “tal” is used both in the meaning of “number” but also in the meaning of 
“mathematical expression” or “mathematical task” This can be very confusing. In the translation 
I will use different words. 

I add -3 and -8. That makes -11. 
If I have -3 on a thermometer.  
Take away another 8, that makes -11.  
 
“-3 count down 8 steps to -11”                  
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Summary of the results 
The results and different categories can be summarised as in a figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Overview of categories. 

Discussion 
It is interesting to note that many of the students, who failed the calculation task, 
neither seemed to understand these numbers well enough to solve the task, nor 
did they anticipate that they might be wrong. They seemed to believe that the 
metaphorical reasoning they used would give them a correct answer. Understand-
ing can be defined in terms of connections between ideas, facts and procedures. 
“…the mathematical idea is understood if its mental representation is part of a 
network of representations.” (Hiebert & Carpenter, 1992 p. 67). Of course it is 
desirable that this network of representations will help to produce mathematically 
correct answers to mathematical problems. Self-estimate ratings, which were 
used as a measure of how confident a student is that her answer is correct, are an 
indication of to what extent the mathematical idea is part of such networks, as-
suming that a tight network creates more confidence than loosely connected 
pieces of knowledge. Confidence with an incorrect solution would in that case 
indicate that the incorrect solution is based on ideas, facts and procedures that are 
part of a network of representations, but a network which is inconsistent with 
mathematics.  
 In this data a large group of incorrect answers (n=14 out of 33) was found to 
be those who only used metaphorical reasoning, and most of them declared that 
they were rather confident (n=6) or very confident (n=3) about their answer be-
ing correct. Another group of students (n=9) used metaphorical reasoning as a 
complement to symbolic transformation (changing –(-8) into +8). These students 
all arrived at a correct answer. It seems as if metaphorical reasoning is only help-
ful, when the student is aware of the constraints of the metaphor and is capable of 
treating numbers as entities without meaning in order to transform them into 

changes  
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something that carries meaning and has similarities to the representation at hand. 
It is crucial that students become aware of the constraints of the metaphors that 
underlie their understanding. This is in line with the results of Chiu (2001), 
claiming that experts know the limitations of the metaphors they use and there-
fore learn when to use each metaphor.  
 The largest group of correct answers were found among students who trans-
formed the operation (-3)-(-8) into -3+8 and then calculated the answer. It is pos-
sible, as seen in the group interviews, that these students implicitly used a mental 
number line, scale or thermometer or other representation when dealing with the 
operation -3+8. Those who explicitly did so arrived at the correct answer. Stu-
dents who gave a wrong answer without referring to metaphorical reasoning gave 
more arguments about the number of minus signs or gave plus priority over mi-
nus and in general got all tangled up in arithmetic rules without meaning. A pos-
sible interpretation of this data is that metaphorical reasoning is essential in order 
to create meaning in the calculation and judge if the answer makes sense or not. 
This argument supports Chiu’s (2001) claim that novices more often than experts 
use metaphorical reasoning to verify their results. An expert would have done so 
many similar calculations that she need not verify it anymore (as expressed by 
student B) whereas a novice would need some way of justification. In this respect 
the metaphor serves as scaffolding (Vygotskij, 1999). In addition to the three 
previously shown aspects of understanding negative numbers these results shed 
light on a fourth aspect that might create difficulties and cause incorrect calcula-
tions; relying on metaphorical reasoning using a metaphor that is insufficient for 
the purpose it is used. The results of this study suggest that teachers should make 
use of metaphors with experience based models and visual representations as 
source domains but emphasize their limitations concerning negative numbers. 
Knowing the potentials and constraints of a model is necessary if it is to function 
as a conceptual metaphor and for the learner to be creative in striving to under-
stand. As a contribution to the body of research, these results suggest that the 
debate should not be concerned with which model to use and why one model is 
better than another but rather what are the consequences of our use of metaphors 
and how we deal with these consequences. 

References 
Araya Chacón, A. M. (2005). Difficulties found by the students during the study of sub-

traction of integer numbers. In M. Bosch (Ed.), European Research in Mathematics 
Education IV. Proceedings of the Fourth Congress of the European Society for Re-
search in Mathematics Education (pp. 643-651). Barcelona: FUNDEMI IQS – 
Universitat Ramon LLull. 

Ball, D. L. (1993). With an eye on the mathematical horizon: Dilemmas of teaching 
elementary school mathematics. Elementary School Journal, 93, 379-397. 



Kilhamn 

 39 

Bryman, A. (2004). Social research methods (2nd ed.). Oxford: Oxford University 
Press. 

Chiu, M. M. (2001). Using metaphors to understand and solve arithmetic problems: 
Novices and experts working with negative numbers. Mathematical Thinking and 
Learning, 3(2-3), 93-124. 

Cohen, L., Manion, L., & Morrison, K. (2000). Research methods in education (5th 
ed.). London: Routledge Falmer. 

Gallardo, A. (1995). Negative numbers in the teaching of arithmetic. Seventeenth 
Annual Meeting for the Psychology of Mathematics Education. North America. 

Gallardo, A. (2001). Historical-epistemological analysis in mathematics education: Two 
works in didactics of algebra. In R. Sutherland, T. Rojano, A. Bell, & R. Lins 
(Eds.), Perspectives on school algebra (pp. 121-139). Dordrecht: Kluwer Academic 
Publishers. 

Gravemeijer, K. (2005). What makes mathematics so difficult, and what can we do 
about it? Maths education: paths and crossroads. International meeting in honour 
of Paolo Abrantes (pp. 83-101). Lisboa, Portugal. 

Herscovics, N., & Linchevski, L. (1991). Pre-algebraic thinking: Range of equations 
and informal solution processes used by seventh graders prior to any instruction. In 
F.Furinghetti (Ed.), Proceedings of the Fifteenth PME Conference (Vol. II, pp. 173-
180). Università di Genova, Italy. 

Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D. 
Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 
65-97). USA: Macmillan Publishing Company. 

Kilborn, W. (1979). Ämnesmetodiska processanalyser i matematik inom komvux (No. 
8). Stockholm: Högskolan för lärarutbildning. Institutionen för pedagogik. Forsk-
ningsgruppen för vuxenpedagogik och återkommande utbildning. 

Kullberg, A. (2006). From learning study to design study. Paper presented at the EARI 
SIG 9 Biennial Workshop, University of Hong Kong. 

Kövecses, Z. (2002). Metaphor, a practical introduction. New York: Oxford University 
Press. 

Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: University of Chi-
cago Press. 

Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from. New York: Basic 
Books. 

Linchevski, L., & Williams, J. (1999). Using intuition from everyday life in 'filling' the 
gap in children's extension of their number concept to include negative numbers. 
Educational Studies in Mathematics, 39, 133-147. 

Martínez, A. A. (2006). Negative math: How mathematical rules can be positively bent. 
Princetown, NJ: Princetown University Press. 

Reys, B. J., & Reys, R. E. (1995). Perspektiv på number sense och taluppfattning. Näm-
naren, 22(1), 28-33. 

Sfard, A. (1991). On the dual nature of mathematical conceptions. Educational Studies 
in Mathematics, 22(1), 1-36. 



Papers 

 40 

Stacey, K., Helme, S., & Steinle, V. (2001). Confusion between decimals, fractions and 
negative numbers: A consequence of the mirror as a conceptual metaphor in three 
different ways. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th 
International Group for the Psychology in Mathematics (PME 25) (Vol. 4, pp. 217-
224): Freudenthal Institute, Utrecht University. 

Vlassis, J. (2002). The balance model: Hindrance or support for the solving of linear 
equations with one unknown. Educational Studies in Mathematics, 49, 341-359. 

Vlassis, J. (2004). Making sense of the minus sign or becoming flexible in `negativity´. 
Learning and Instruction, 14, 469-484. 

Vygotskij, L. S. (1999). Tänkande och språk (K. Öberg Lindsten, Trans.). Göteborg: 
Bokförlaget Daidolos AB. Original work published in 1934. 

 
 



41 

Spectrums of Knowledge Types – Mathematics, 
Mathematics Education and Praxis Knowledge 

Håkan Lennerstad 
Blekinge Institute of Technology 

Abstract: While mathematics is deductive and mathematical education is evidence 
based, practical knowledge is a type of knowledge that professionals in any profession 
develop by experience and by exchange with other professionals. It is based on 
experience more than on written text. It is well known that it to a large extent is difficult 
to articulate. Such knowledge is also essential in important types of mathematical 
knowledge. I would like to sketch a more fluent cooperation between these areas, in 
which the advantages of all the different knowledge types may interact and become 
increasingly useful to each other. For such an idea to reach reality it is necessary for 
mathematicians, mathematics education researchers, mathematics teachers, and others, 
to listen in depth to each other, and to have a dialogue. In this paper one alternative to 
achieve that is described: the Dialogue Seminar. 

Introduction 
In order to improve mathematics education, are our efforts well spent? Are there 
possibly other ways of work that may lead to more significant improvements? 
This is an extremely basic issue for an applied science, which underlies this 
paper. It is a question that directly concerns how three professions form and 
perform their work: mathematics education research, teacher education, and 
teaching. 

This paper tries to use a viewpoint of the teacher profession as a profession 
among professions. When comparing to non-teacher professions, one particula-
rity of the teacher profession stands out: its relation to knowledge. It has parti-
cularly strong relations to knowledge in two ways. The first is that its main 
purpose is the learning of certain subject knowledge for other humans. The 
second is that there is a long knowledge tradition about how teaching and 
learning can be done: pedagogy and didactics – incorporated in educational 
science. Knowledge is essential in all professions, but for teachers it is the very 
material of work, and there is a lot of written knowledge on how this particular 
profession works – since the school is so important in society. 

This strong knowledge tradition concerning the teacher profession has been 
developed in a positivist tradition – which was the dominant tradition in the 
previous century. In this tradition, knowledge is what can be formulated in words 
(Johannessen, 2006b, p. 273), a type of knowledge that can be called proposi-
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tional knowledge. This viewpoint neglects much of practical knowledge, a fact 
that is not changed by propositional knowledge that has practical knowledge as 
focus (such as partly this article). Practice is different in essence from propo-
sitional knowledge. For example, it is very much possible to be an expert in 
every possible aspect of listening to dialogues, without being able to take part in 
one. Another person may be known to reoccurring valuable dialogues with 
students, but unable to describe what a dialogue is and how it works in depth. 

Despite the strong knowledge tradition in the teacher profession, difficult-to-
articulate practical knowledge is important in all professions – also in the teacher 
profession. Practical knowledge enables a professional to act in appropriate ways 
in unforeseeable teacher situations – it develops intuition. It is a knowledge that 
enables skill – the ability to perform the profession. This ability is distinct from 
knowing. 

In terms of action research, for example, pedagogy and mathematical 
education are searching ways to handle teachers’ reality and practical knowledge. 
However, it is not easy to allow teachers to fully express their views of their 
teaching situation if it contradicts established paradigms. This problem is one 
main focus of this article. The philosophical foundations of practical knowledge 
(Johannessen, 2006a) may also contribute to the understanding of propositional 
knowledge, both its limits and its values. 

A different but related serious problem for research in mathematics education 
is that it serves two goals that are rather conflicting. One is to help teachers; the 
other is to fulfil the requirements for research. The second goal is a long term 
goal that makes results more reliable, but tends to make results inaccessible for 
teachers. In lack of time and resources, a researcher may have to choose between 
reaching teachers or reaching researchers. Some ambitious researchers have 
written popular versions of their research, more accessible for teachers and 
decision makers. This should be mandatory for an applied science. We need to 
leave behind the fact that “popular” writing sometimes is seen as negative among 
researchers. 

The purpose of this paper is to find ways to discuss and illuminate the non-
propositional components of mathematical and mathematics education know-
ledge, which take many different forms. It is also to suggest ways in which the 
knowledge traditions can cooperate, develop and stimulate each other. For this, 
the professional reality experienced by mathematics teachers need to be a well 
developed starting point, from which mathematics education research provides a 
resource. Since such cooperations are both extremely valuable and appear to be 
rather rare, I next describe one alternative in arranging such dialogue: the 
Dialogue Seminar. 
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Differences between paradigms, research questions 
A Dialogue Seminar is an organized dialogue between professionals, to be more 
described later in this text. By taking part in Dialogue Seminars with other 
teachers, a rather obvious observation has become clear to me. It is that a teacher 
professionally faces a complex teaching situation with many different parts to be 
handled well. Such parts are subject knowledge, how to present subject know-
ledge, to understand students’ present level of subject knowledge, how to 
respond to students questions and actions, correspondence to neighbouring 
subjects, how to plan future lessons, etc. etc. These parts need not only to be 
handled well; they also need to be balanced into a reasonable whole. I argue that 
from an epistemological viewpoint, mathematics education generally provides 
solid information about one or a few of the different parts at a time in order to be 
possible to base upon evidence, while it is more difficult to address the balancing 
act that a teacher needs to handle in such a way. On one hand, from the 
viewpoint of practical knowledge, the balancing act naturally attracts focus, since 
here active teachers formulate their needs and views. On the other hand, in the 
praxis paradigm solid evidence based results are rarely produced, as is more 
typical for mathematics education. Results in mathematics education are usually 
more solid and general. We have a trade-off between generality and authenticity. 

These two paradigms have different and complementary roles to play. In 
research on praxis knowledge, a group of teachers play the main role in problem 
formulation as well as in reformulation and development. Mathematics education 
research results are founded in evidence and theory, which to some extent limits 
which problems may be studied. Mathematics education results tend to be more 
reliable, less dependent on local culture; however the depth typically means a 
larger distance from teachers’ experiences. If we compare with mathematics, one 
may claim that the overwhelming reliability of mathematics lies in that here 
extremely limited problems are studied – so limited that they allow a very high 
degree of certainty.  

Following a line of praxis knowledge, I argue that there are fundamental 
categories of knowledge that are vital for teachers and that cannot be accessed by 
traditional analytical approaches. One such category often mentioned by 
mathematics researchers as essential is intuition. The Dialogue Seminar can be 
seen as a serious and well developed means, mainly using analogy, metaphor and 
dialogue, often taking advantage of areas as history, philosophy, mathematics 
education, to put practical knowledge in motion that is particularly useful for 
teacher’s education, and that provide an answer to the following fundamental 
question: 

How can the sources of knowledge and skill that experienced teachers 
possess become available for student teachers, as described by 
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experienced teachers themselves, and in ways that student teachers find 
valuable, supported by mathematics education results? 

This is one of the main research questions in this paper. Related questions 
addressed here are: 

Which types of knowledge are relevant in the mathematics teacher’s 
profession? Which types of knowledge are important in subject 
knowledge in mathematics? How can the different knowledge types be 
handled in successful ways? 

The purpose of the paper is to put forth underestimated types of knowledge, to 
give a general view of the epistemological landscape, and to suggest ways to 
design this landscape. This proposed design is to professionally take advantage 
of existing experience by allowing different knowledge traditions to meet 
systematically and constructively. Teachers will not acknowledge the value of 
their own resources of experience unless researchers emphasize these resources 
and try to find ways to develop them. 

Propositional and professional knowledge 
In Hudson (2002), Shulman’s (1987) model of categories of teachers’ knowledge 
is used. It contains the following categories, where I have added (in brackets) 
counterparts/characterizations relevant for the discussion in this paper. It 
illustrates well the balancing act that teachers constantly face in their profession: 

• Knowledge of subject matter (mathematics) 
• Pedagogical content knowledge (mathematics education) 
• Knowledge of other content (knowledge of the educational program) 
• Knowledge of the curriculum (course knowledge) 
• Knowledge of learners and their characteristics (student culture) 
• Knowledge of educational aims (political and school knowledge) 
• Knowledge of the educational context (school culture) 
• General pedagogical knowledge (pedagogy, classroom management) 

Parts of these knowledge categories can be formulated in words, a knowledge 
type that may be called propositional knowledge (Göranzon, 2006, p. 19). Two 
types of knowledge that cannot easily be expressed in words are also part of most 
of these categories. These are practical knowledge, which is knowledge that 
contains experiences from having been active in a practice, and knowledge of 
familiarity, that is built by interaction with colleagues about examples of 
practice. These two are often called professional knowledge. This is knowledge 
with special properties, described by Kjell S. Johannessen as follows: 

Professional knowledge is essentially characterized by two basic traits: (a) It is 
acquired over a relatively long period of time by individuals; and (b) attempts 
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as articulating it in some reasonably satisfactory way all fall short of even 
elementary standards of plain speech (Johannessen, 2006a, p. 229).  

During scientific development new concepts become articulated, but there 
constantly seem to be new important kinds of knowledge to try to formulate. Can 
we expect this discovery process to stop so that finally everything that is relevant 
can be expressible in words? 

These two properties cast doubt upon whether professional knowledge is 
knowledge. We have fundamental epistemological problems here: Is knowledge 
that is distinctly individual and cannot be shared knowledge? Is knowledge that 
cannot be articulated knowledge? Here are Johannessen’s words (ibid.):  

Both of these traits stand out as inherently provocative to the adherent of the 
received and positivistically tinged view of knowledge that is predominant in 
our time. The first trait threatens to make knowledge dependent on individuals; 
and the second more than indicates that some kinds of genuine knowledge may 
in basic respects be resistant to verbal or notational articulation and thus be 
beyond the reach of language.  

Is such professional knowledge (for examples, see Paul Ernest on vagueness 
below), difficult to formulate and perhaps to study, important for mathematics 
teachers? A famous and experienced research mathematician has once claimed 
that logic is very important in mathematics, but it has never been used to find a 
proof. Proofs are found by knowledge, experience, analogy, intuition and 
experiment, and later verified by logic. Mathematics students attempt to solve 
mathematical problems, which is a counterpart to mathematician’s search for 
proofs. Inherent in the statement is the recognition of the vague concept of 
“intuition”, which is addressed by Davis and Hersh (1995, p. 435) in the 
following way: 

(1) All the standard philosophical viewpoints rely in an essential way on some 
notion of intuition. 

(2) None of them even attempt to explain the nature and meaning of the 
intuition that they postulate. 

(3) A consideration of intuition as it is actually experienced leads to a notion 
which is difficult and complex, but it is not inexplicable or unanalyzable. A 
realistic analysis of mathematical intuition is a reasonable goal, and should 
become one of the central features of an adequate philosophy of 
mathematics. 

These are strong words about the role in mathematics on something as vague and 
undefinable as “intuition”. Personally, I look forward to the “realistic analysis of 
mathematical intuition”. Intuition can be expected to require a metaphoric and 
poetic language, far from traditional mathematical language, and it would shed 
light on this very language.  
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Vagueness and knowledge 
Epistomology and linguistics are firmly related to mathematics education, and 
have during later years found increasing attention. This is described by Paul 
Ernest in the preface of a book by Rowland (1999, p. x). He describes that the 
lack of attention to linguistics may depend partly on the focus of mathematical 
thought over talk. He continues to write that it may also depend on absolutist 
epistemology of mathematics, in the light of which language serves to describe 
absolute logic. Spoken mathematics is imprecise and has limited value in this 
perspective. This diverts the attention from students’ actual mathematical 
thinking. 

On the importance in mathematics of the opposite of preciseness, vagueness, 
Ernest writes in the same preface: 

Precision is the hallmark of mathematics and a central element in the “ideology 
of mathematics”. Tim Rowland, however, comes to the startling conclusion that 
vagueness plays an essential role in mathematics talk. He shows that vagueness 
is not a disabling feature that detracts from precision in spoken mathematics, 
but is a subtle and versatile device which speakers deploy to make mathematical 
assertions with as much precision, accuracy and confidence as they judge the 
content and context warrant. 

Thus, vagueness needs to be restored as a valuable complement to precision for 
good mathematics learning. Certainly, vague descriptions may lead to misinter-
pretations, but that is also possible for precise descriptions. Essential is that 
descriptions are to the point, and that the teacher has an idea of how students 
interpret. A better dialogue is required to understand each other’s interpretations 
– vague or not. 

A praxis paradigm 
In the tradition of the Dialogue Seminar there is not much fear of vagueness. 
Instead, the unformulated knowledge that is possessed in a group of experienced 
professionals is focused. Unsuccessful computerizations of workplaces in the 80-
ies were a starting point of this line of research. Reforms were related to a 
conviction that most or all of the relevant knowledge could be programmed in 
computers. Instead, groups of experienced professionals possess more knowledge 
than they are able to formulate in words. I have earlier described the knowledge 
categories practical knowledge, knowledge of familiarity and propositional 
knowledge. The two first develop while taking part in a professional practice, and 
interaction with colleagues, respectively. Such knowledge is not necessarily 
individual; it usually lives in a professional group. Sometimes the group is 
needed to find an appropriate action – for the knowledge to come alive.  

The Dialogue Seminar is an arena for professional groups to find, formulate, 
characterize, stimulate and value their practical knowledge based upon 



Lennerstad 

 47 

experience, or in some sense (not necessarily with words) make it palpable or 
present. Analogue and example are important elements in this process. Historical 
texts are often rich in these respects. Musicians, engineers and others may 
participate in the same sessions. Meetings with other professions incur no rivalry, 
and appear surprisingly often to be fruitful for all parts. The sessions work with 
writing as a method of reflection. All members prepare actively each session 
along a certain theme with a text to be read aloud and reflected upon. Then, each 
member is invited to comment verbally upon each text that is read. 

The invitation to reflect from experience is central. It makes the sources of 
experience increasingly visible for each bearer of that experience. These sources 
may grow into resources of knowledge that deliver more and more. Associations 
to other persons’ experiences, which may be partly similar and partly different, is 
the tool for this discovery.  

The dialogue seminar is an arena where mathematics teachers, mathematics 
education researchers, mathematics teacher educators and mathematicians can 
meet, listen to each other in depth, and learn from each other through dialogue. It 
appears as if mathematicians often experience dialogue with musicians as 
particularly valuable. This may come from the fact that intuition is important 
both in music and in mathematics, in somewhat similar meanings, as described 
above in Davis and Hersh (1995), while musicians may have advanced longer 
than mathematicians in formulating their intuition. 

Göranzon and Hammarén (2006) describe the major goals of the dialogue 
seminar as follows:  

The dialogue seminar method is a method of working that aims to  
(i) create a practice of reflection  
(ii) formulate problems from the dilemma  
(iii) work up common language 
(iv) train the ability to listen. 

I remark that the ability to listen does not follow automatically from the ability to 
talk. In academia, the ability to talk is trained much more than the ability to 
listen. From a very practical viewpoint, we learn in three ways: from reading, 
one-way-listening during lectures, and dialogue and reflection with others. Self-
reflection is of course always a component. Reading is a form of listening, but 
without an opportunity of dialogue. The relative dominance of these learning 
modes in academia determines the corresponding degrees of training, and which 
abilities are developed.  

Teaching and Bildung 
Hudson also describes differences between the Anglo-American curriculum 
traditions versus the German. In the first case the teachers are employees of the 
school system which has a strong formal control of teachers (Westbury, 2000). 
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Professionalism is achieved by training and certification, to teach the curriculum. 
In the German tradition, the teacher is directed rather than controlled by the 
institutional framework. There is a larger professional autonomy for the teacher, 
for example in interpretation of the curriculum. This is related to the presence of 
the idea of Bildung. Klafki (1998) has specified three main elements of Bildung: 
(i) self-determination, to be enabled to make independent responsible decisions, 
(ii) co-determination, to be enabled to contribute together with others to the 
society, and (iii) solidarity, actions to help others.  

Khalid El-Gaidi’s doctoral thesis (El-Gaidi, 2007) Teacher’s professional 
knowledge – Bildung and reflective experiences (my translation of the title, 
which was in Swedish only) was defended 2007 at the Royal University of Tech-
nology in Stockholm. Here teachers’ skill at a technical university is examined. 
The dissertation starts with a case study in form of a Dialogue Seminar where 
university teachers participated actively in a series of meetings about their view 
of their praxis and of skill. The discussion on knowledge and skill based on this 
case study converged clearly towards Bildung. In this thesis Bildung is seen from 
many aspects, such as the ability to see the limits of the activity and to avoid 
misunderstandings. It is also seen as a standpoint involving judgement, sensus 
communis and taste (Gadamer, 2004), a way to view knowledge in that we need 
to recognize the different forms of cultures we live in, and as a way of seeing the 
whole picture, intuition and as rhythm of thought and communication. 

Conclusions 
Like in all professions, a large part of the relevant mathematics teacher know-
ledge is difficult-to-articulate practical knowledge. This is in striking parallel 
with mathematical subject knowledge in the sense that also this knowledge has 
important vague and tacit components. Such knowledge may be essential for the 
mathematics teacher profession, but is today largely neglected, for rather natural 
historical reasons. A positivist view of knowledge dominates, in which know-
ledge is what can be formulated in words, since the teacher profession has deep 
roots intertwined with positivist knowledge. Its particular purpose, different from 
other professions, is to induce learning of mathematics and other subjects, which 
at least in the previous century has a predominantly positivist view of knowledge. 

Also, difficult-to-articulate knowledge comes into play mostly when the 
subject is verbalized. Mathematics is still a subject with a low degree of dialogue. 
It is a culture where written communication dominates over verbal communi-
cation. 

Simultaneously, there is a division between mathematics teacher’s culture and 
mathematics education researcher’s culture that is dangerous from both perspec-
tives: for the improvement of mathematics teaching, and for the relevance of 
mathematics education research. This division stems also from the differences in 
aims and history – on the view of knowledge. A dividing issue is the view of 



Lennerstad 

 49 

mathematics teachers’ role. If they are not involved in formulating mathematics 
education research questions, dilemmas, there is a risk of the research to be 
difficult to apply. On the other hand, researchers may be able to add relevant 
aspects to teachers’ view on teaching. Meeting points are needed where such 
exchanges are possible. 

To bridge divisions, a complementary way to work is proposed in this paper. 
As a tool the Dialogue Seminar is proposed, which is designed and developed for 
the purpose of allowing experienced professionals to search and find difficult-to-
articulated types knowledge – or at least to find tangible knowledge resonances. 
Such seminars are verbal in nature, but works with both reading and writing as 
reflection and individual preparation before the seminars.  

The proposal is to apply this method for the benefit of mathematics education. 
Mathematics education research texts are natural starting points for the 
participants, but the dialogue may focus dilemmas that mathematics teachers find 
crucial in their profession. Since it is a very open way to meet, it offers an 
opportunity for mathematicians, mathematics education researchers, mathematics 
teachers and teacher students, and others, to give their view of practical mathe-
matics teaching problems, listen in depth to different experiences and con-
clusions, and to have a dialogue. 
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Historisk bakgrund till matematikens betydelse 
i yrkesprogrammen 

Lisbeth Lindberg   
Göteborgs Universitet och Luleå Tekniska Universitet 

Abstract: Under de senaste 150 åren har yrkesutbildningen förändrats drastiskt i Sveri-
ge samtidigt som matematikens roll i yrkeslivet har utvecklats. Vi har gått från skråvä-
sendet till ett modernt gymnasieprogram där alla elever studerar matematik. Skolrefor-
mer har avlöst varandra. Lärarnas yrkesroll inom yrkesutbildningen har förändrats 
från att vara förebilden och praktikern till att även vara teoretikern. Även yrkesläraren 
ska verka som matematiklärare och integrera yrkesämnet med matematiken. Lärarut-
bildningen har inte hängt med i denna utveckling, men utvecklingsprojekt har bedrivits 
för att hjälpa lärarna ute på skolorna för att genomföra det nya uppdraget. Elevens roll 
har förändrats allt eftersom utbildningen har teoretiserats. Matematikens roll har för-
ändrats från allmän räkning och yrkesräkning till ett kärnämne som alla elever stude-
rar. Just detta är något som ifrågasätts i den politiska debatten idag. Vi väntar dessut-
om på förslag om en reformerad tredelad gymnasieskola som skall formas med tre ut-
bildningsvägar, en högskoleförberedande, en yrkesförberedande och en lärlingsutbild-
ning. 

Inledning 
Syftet med denna artikel är att visa hur dagens situation för matematiken i yrkes-
utbildningarna har sina rötter i den historiska utveckling som föregått dagens 
skola och hur detta påverkar möjligheterna till en framtida utveckling. Stort ut-
rymme ges därför åt en historisk tillbakablick på vad som kan anses vara yrkes-
skolans ursprung. Källorna är utvald litteratur om yrkesutbildning särskilt med 
matematiken i fokus och officiella dokument samt styrdokument för utbildning. 
Flertalet av dessa källor är utvalda i dialog med professor Lennart Nilsson, Göte-
borgs Universitet, som har varit framträdande inom fältet yrkesutbildning under 
flera decennier och som disputerade 1981 med sin avhandling 'Yrkesutbildning i 
nutidshistoriskt perspektiv' samt Anne Outram Mott som har varit delaktig i ut-
redningsuppdrag inom fältet och som nu är verksam vid Université de Géneve. 
Genom att fördjupa mig i sådan utvald litteratur (Elmgren, 1952; Marklund, 
1980; Marklund, 1981; Mellin-Olsen, 1984; Lindberg, 2003) och genom att stu-
dera relevanta dokument utfärdade av regering och riksdag (SOU 1981:96,1981; 
Ds 1995:56, 1995; 1996; SOU 1997a, 1997b) har jag följt utvecklingen fram till 
de yrkesinriktade programmen i dagens gymnasieskola. 

 Sedan 1991 är alla kommuner i Sverige enligt lag skyldiga att erbjuda alla 
elever som avslutat grundskolan en gymnasieutbildning. Den svenska gymnasie-
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skolan skall ge grundläggande kunskaper i yrkesliv - och samhällsliv. Skolans 
uppdrag är bland annat att utbilda för yrket.  Sedan 1994 studerar alla elever på 
gymnasiet i varje program en kurs i matematik. Eftersom innehållet i denna arti-
kel fokuserar på yrkesutbildning är det viktigt att definiera vad yrkesutbildning 
är. Den år 1963 tillsatta Yrkesutbildningsberedningen fick i uppdrag att ge en 
definition av begreppet yrkesutbildning. Resultatet lyder: 

Med yrkesutbildning avses såväl meddelande som inhämtande av kunskaper 
och färdigheter vars syfte är att utbilda och förbereda för arbetsuppgifter varav 
utövaren kan vinna sin utkomst (SCB 1984:2, s 17). 

Historisk tillbakablick på yrkesutbildning med särskilt fokus på ma-
tematiken 
Under medeltiden var lärlings- och hantverksutbildningen organiserad i mycket 
bestämda former. Från den svenska historien känner vi också till den stränga 
ordningen med de tre stadierna lärpojke, gesäll och mästare. Gesällarbetets kvali-
tet bedömdes av mästare och mästarna utfärdade mästerbrev som var internatio-
nellt gångbara. En mästare var inte enbart en erkänt skicklig yrkesman utan skul-
le också vara pedagog och lärare. Rätten att utöva sitt hantverk var förenad med 
skyldigheten att utbilda hantverkets utövare. Den sammankopplingen mellan yr-
kesutövning och yrkesutbildning stod kvar ända till mitten av artonhundratalet, 
då skråväsendet avskaffades och näringsfrihet stadgades. 

Genom 1649 års skolförordning fastställdes att det skulle finnas tre slag av 
läroanstalter, nämligen trivialskolor, gymnasier och akademier. Genom skolord-
ningen av år 1611 ägde yrkesutbildning i mera skolmässig form rum i skriv- och 
räkneklasser i gymnasiet. Innehållet i dessa räkneklasser skulle i första hand till-
godose det behov som de som inte skulle fortsätta till högre studier hade. Det 
handlade om att tillgodose borgarklassens barn. Det som främst nämns är han-
delsräkning. Innehållet är matematik som är direkt användbart i ett handelsyrke. 
Första gången gymnasium används som officiell benämning i Sverige är i ett do-
nationsbrev år 1623. Genom ett beslut 1649 inrättades den så kallade apologistk-
lassen som var en direkt fortsättning på skriv- och räkneklassen. Denna klass 
byggde på skolans första klass. (Varje klass omfattade två år). Genom inrättandet 
av apologistklassen fick man en kortare gymnasieutbildning för de borgerliga 
yrkena. Det blev en utbildning för de elever som inte ville fortsätta den lärda ba-
nan som var tänkt att leda till universitetsstudier.  

Förra seklet 
Yrkesskolor i form av fristående inrättningar ledda av kommuner och landsting 
hör huvudsakligen 1900-talet till. Så kallade praktiska ungdomsskolor fanns från 
1918. Dessa var kommunala. De grundläggande bestämmelserna för yrkessko-
lorna var 1918 och 1921 års yrkesskolstadgar. Man skilde där på olika typer av 
yrkesskolor, nämligen centrala verkstadsskolor och centrala yrkesskolor, kom-
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munala yrkesskolor, enskilda yrkesskolor samt företagsskolor och industriskolor. 
På 1930-talet kom de centrala verkstadsskolorna i landstingskommunal regi. I 
dessa skolor varierade matematikinnehållet och företrädare för ämnet var verk-
stadslärarna, dvs. yrkeslärarna. Yrkes- och affärsräkning för metallarbetare sjun-
de utgåvan (1939) som tillkom på uppdrag av Kungliga skolöverstyrelsen inne-
håller geometrisk räkning, teknisk räkning och affärsräkning. I förordet står:  

I samlingen har medtagits ett avsevärt större antal uppgifter än vad som i all-
mänhet torde medhinnas, varigenom läraren har tillfälle att åt eleverna välja ut 
exempel han anser lämpliga, på samma gång som mera intresserade elever 
kunna finna material för självständigt hemarbete (1939, s.5). 

Uppgifterna är insamlade från yrkeslärare med början från 1923 och insamlade 
av Yrkespedagogiska Centralanstalten. Syftet var att i första hand utarbeta exem-
pelsamlingar för lärlingsskolorna. 

På 1940-talet inrättades allt fler kommunala yrkesskolor, främst i städerna. 
Huvuddelen av utbildningen gavs till en början som kvällskurser, i betydande 
utsträckning i form av lärlingsskolor inom företag eller vid särskilda företagssko-
lor och industriskolor. I Göteborg startade företag och industrier skolor av vilka 
några fortfarande existerar. Den stora expansionsperioden inföll efter 1950 års 
riksdagsbeslut om skolväsendets utveckling.  

Det dröjde ända till efterkrigstiden, innan man kunde skönja ett brett och 
stort intresse för yrkesskolan och dess ställning inom skolväsendet i stort. Känne-
tecknande för yrkesutbildningen har nämligen tidigare varit, att man sett den som 
helt fristående från den allmänna utbildningen. Till detta kom att man tidigare 
såg föga samhörighet mellan olika slag av yrkesutbildning. Yrkesskolan som ett 
samlat begrepp var därför ännu på 1940-talet en ny företeelse. I Yrkesräkning för 
industri och hantverk (1961) kommenterar författaren att i den inledande mate-
matikundervisningen i yrkesskolorna är det av erfarenhet nödvändigt att repetera 
tidigare i grundskolan genomgången kurs för att ge en bredare bas för de följande 
lärlingsårens kommande yrkesräkning. I läromedlet presenteras grundläggande 
matematikinnehåll såsom enheter, allmänna bråk, procenträkning, överslagsräk-
ning och medelvärde. Enklare ekvationslösning med hjälp av prövning presente-
ras. Även grafisk framställning och grunder i algebra presenteras. 

Handelsgymnasiets förebild  
Förebilderna till handelsgymnasiet utgjordes dels av Göteborgs handelsinstitut, 
senare Levgrenska Gymnasiet, grundat 1826, dels av Schartaus Handelsinstitut i 
Stockholm, som började sin verksamhet 1865. Båda fick statsbidrag från 1894. 
Nya handelsinstitut grundades från sekelskiftet även i Malmö, Helsingborg och 
Gävle samt strax efter sekelskiftet i Örebro och Nyköping. I 1913 års riksdag 
antogs ett förslag om att inrätta handelsgymnasier. Nya handelsgymnasier till-
kom i Örebro och Norrköping 1914 och 1915. Handelsgymnasierna omfattade 
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ursprungligen en tvåårig normalkurs som byggde på avslutad sexårig kurs från 
allmänt läroverk. 1957 bestämde överstyrelsen för yrkesutbildning att handels-
gymnasiernas normalkurser skulle vara treåriga. Den matematik som var i fokus 
var handelsräkning och handels- och ekonomilärarna undervisade i detta ämne. 

Den gymnasiereform som trädde i kraft 1966 innebar att handelsgymnasiet 
inlemmades i det gymnasium som fick fem linjer. I och med denna reform till-
kom ämnet matematik som undervisades av matematikutbildade lärare. Den eko-
nomiska linjen ersatte det treåriga handelsgymnasiet. Den blev kvar till 1994. 

Tekniska gymnasier växer fram 
De tekniska gymnasiernas föregångare var de tekniska elementarskolorna som 
upprättades vid mitten av 1800-talet. Den första tekniska elementarskolan börja-
de sin verksamhet i Malmö i oktober 1853 efter principbeslut vid 1850-1851 års 
riksdag. Målet för utbildningen var att den skulle utgöra dels en allmän förbere-
delse för tekniska yrken, dels en grund för fortsatta högre tekniska studier. Ma-
tematikundervisningen präglas av den tekniska inriktningen och innehåller 
mycket aritmetik och huvudräkningsstrategier samt geometri, där enhetsbyten 
och mätteknik finns med. 

År 1872 tillsattes en kommitté att utreda dessa skolors uppgift och organisa-
tion. Utredningens förslag godtogs i stort av riksdagen 1877. Skolorna blev ett-
åriga med en differentiering på en mekanisk, en kemisk och en byggnadsteknisk 
linje. År 1874 föreslog man att allmänna ämnen skulle tas bort och man skulle 
endast inhämta kunskaper som hade omedelbar praktisk användning. Genom 
ändring 1901 bortföll de tekniska elementarskolornas roll att förbereda för högre 
tekniska studier. Nya tekniska skolor upprättades nu i Stockholm, Eskilstuna, 
Göteborg och Härnösand. Under åren 1907-1912 utreddes den lägre tekniska ut-
bildningen av två statliga kommittéer. På grundval av deras förslag fattade 1918 
års riksdag beslut om treåriga tekniska gymnasier och tvååriga tekniska facksko-
lor. Då sådana fanns på samma ort, skulle de utgöra ett tekniskt läroverk. Beslut 
fattades också om krav på förpraktik och om ny linjedelning. Förpraktiken skulle 
vara minst 2 år och minimiåldern för tillträde 17 år. De vanligaste linjerna var 
maskinteknisk, byggnadsteknisk, elektroteknisk och kemisk-teknisk linje. Den 
stadga som utfärdades 1919 gällde i stora delar ända fram till den 1 juli 1962. I 
1948-års tekniska skolutredning som presenterades 1955 fastslog man att de tek-
niska läroverken skulle indelas i två skolformer, dvs. gymnasium och fackskola. 
Detta skedde för att man skulle kunna få en allsidig rekrytering till ingenjörskå-
ren. De tekniska gymnasierna avskaffades 1967. 

Fortsättningsskola 
År 1918 blev en fortsättningsskola efter folkskolan obligatorisk för elever i Sve-
rige. Den hade två huvudformer, en allmän och en yrkesbestämd. Uppgifterna 
om elevtalen för utbildningen vid yrkesskolorna är ofullständiga och även svår-
tolkade. Flertalet elever i den utbildningen gick deltidskurser eller heltidskurser 
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som var kortare än fem månader. Antalet elever i heltidskurser om minst fem 
månaders längd var ännu vid 1940-talets slut bara hälften av antalet elever vid 
gymnasierna och endast tiondelen av antalet realskol- och flickskoleelever. Det 
fanns inte specifika matematikkurser, utan matematikinnehållet var integrerat i 
tillämpningarna. 

Yrkesskolväsendet i Sverige och dess huvudmän 
Överstyrelsen för yrkesutbildning (KÖY) inrättades vid 1943 års riksdag och 
övertog den 1 januari 1944 skolöverstyrelsens befattning av yrkesskolväsendet. 
Kommerskollegiet hade varit tillsynsmyndighet och huvudman för lärlingsut-
bildningen hos hantverksmästare. Dessa uppdrag övertogs också av KÖY den 1 
juli 1944. 

Överstyrelsen för yrkesutbildning utövade den centrala ledningen av yrkes-
utbildningen för industri, handel och husligt arbete. 

De anstalter som stod under överstyrelsens ledning var högre tekniska läro-
verk (gymnasier och fackskolor), handelsgymnasier, centrala verkstadsskolor, 
kommunala och statsunderstödda enskilda yrkesskolor, avseende industri, hant-
verk, handel och husligt arbete. Tekniska skolan i Stockholm, textilinstituten i 
Borås och Norrköping, bergsskolan i Filipstad samt Grafiska institutet i Stock-
holm låg under överstyrelsens ansvar. Övriga utbildningsanstalter för yrkesut-
bildning underställdes också överstyrelsen på grund av särskilt beslut av Kunglig 
Majestät.  

Den centrala statliga myndigheten på yrkesundervisningens och yrkesutbild-
ningens område, nämligen överstyrelsen för yrkesutbildning, utövade högsta in-
syn över yrkesutbildningen i riket liksom även över den yrkesutbildning, som 
med bidrag av statsmedel bedrevs inom näringslivet. Överstyrelsen var organise-
rad på fem byråer, varav den femte hade hand om den av överstyrelsen bedrivna 
lärarutbildningen och pedagogisk reformverksamhet. En yrkesskolstadga antogs 
den 30 juni 1955 och gällde för statsunderstödda yrkesskolor.  Denna stadga 
nämner inget om matematikinnehåll för yrkesskolan. 

Skolkommissionen 1946 
1946 års skolkommission huvudsakliga arbete kom att bedrivas i ett antal delega-
tioner. En anledning till dess tillkomst var de svaga resultaten i matematik i dåti-
dens realskolor (Nilsson, 1992). 

Delegationen för lärarutbildningsfrågor bestod av 10 personer. Kursplanede-
legationens ordförande var Alva Myrdal. Yrkesutbildningsdelegationens ordfö-
rande var Emil Näsström. Den delegationen skulle arbeta med den lägre yrkesut-
bildningens ställning i skolsystemet och dess framtida utformning. I och med att 
huvudbetänkandet avlämnades var kommissionens egentliga uppgift slutförd. 
Yrkesutbildningsdelegationen inom kommissionens avlämnade i oktober 1949 ett 
mindre betänkande med förslag till bestämmelser om tillsyn över privata skolor 
för yrkesutbildning. Ett år senare, i november 1950, avlämnade samma delega-
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tion ytterligare ett betänkande med förslag till statsbidragsgrunder för det kom-
munala och enskilda yrkesskolväsendet. Yrkesutbildningsdelegationen ingick 
också tillsammans med skolöverstyrelsen, yrkesöverstyrelsen och arbetsmark-
nadsstyrelsen i en samarbetsdelegation för utredning av yrkesvägledningen inom 
skola. Denna samarbetsdelegation gav sitt betänkande i juli 1952. 

De skolproblem man stod inför 1950 var den obligatoriska skolans eftersläp-
ning, de många parallella organisationsformerna på real- och gymnasienivå, yr-
kesutbildningens otillräcklighet, den klara dualismen med ett lägre och ett högre 
utbildningssystem osv. 1946-års skolkommission tog avstånd från den gängse 
uppdelningen av eleverna i ”teoretiska ” och ”praktiska” och stödde sig därvidlag 
på forskning av pedagogikprofessor John Elmgren. Han fann att de båda begåv-
ningarna hade ett starkt samband (1952). I en skrift från 1967 föreslog skolöver-
styrelsen att bemöta flykten mot g-sidan, dvs. den del av enhetsskolan som var 
gymnasieförberedande,  genom att göra hela högstadiet mera teoretiskt inriktat 
och mindre inställt på praktiska ämnen och yrkesutbildning. 

Ny beredningsgrupp 1963 
1963 bildades Yrkesutbildningsberedningen för att göra en översyn av yrkesut-
bildningens uppgifter, innehåll och organisation. Hösten 1964 fattade regeringen 
ett beslut om reformering av de gymnasiala skolorna som fick stor betydelse för 
yrkesutbildningen. Från den 1 juli 1966 infördes dels en kommunal gymnasial 
skola, gymnasiet, och dels en parallell skolform, nämligen fackskolan. Bered-
ningsgruppen erinrade om tankar vid 1964 års riksdag då man diskuterade att de 
tre gymnasiala skolformerna gymnasium, fackskola och yrkesskola skulle likstäl-
las och i möjligaste mån integreras.  Den föreslog därför att en skolform skulle 
bildas med de tre ingående delarna och att den skulle kallas gymnasieskola. Den-
na skolform infördes från den 1 juli 1971. 

Utvecklingen står inte still 
I regeringens proposition 1983/84:116 Gymnasieskola i utveckling under Lena 
Hjelm-Walléns tid som utbildningsminister  står följande: 

Förändringarna mot en mer kunskapsintensiv produktion, som jag tidigare pe-
kar på, kommer att ytterligare höja kunskapskraven för inträde på arbetsmark-
naden och därigenom starkare understryka behovet av någon form av gymnasi-
al utbildning för alla. Ungdomar med enbart grundskoleutbildning kommer en-
ligt min bedömning också fortsättningsvis att ha stora svårigheter på arbets-
marknaden. 

Gymnasieskolan och de mer arbetsmarknadsinriktade insatserna inom uppfölj-
ningsansvaret måste därför ses som en helhet. Om inte gymnasieskolan utfor-
mas så att den står öppen för samtliga ungdomar kommer kraven i stället att 
öka på insatser inom uppföljningsansvaret…… Samtliga insatser för ungdomar 
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måste således samordnas och sättas in i ett gemensamt utbildningspolitiskt 
sammanhang. (1983/84:116, s.11) 

Vidare skriver man: 

Den största nackdelen är den stora åtskillnaden mellan teoretiska (studieförbe-
redande) och yrkesinriktade utbildningar. Detta är i sig en spegling av utbild-
ningssystemets tidigare uppdelning i dels gymnasier och senare också facksko-
lor, vilka framför allt skulle ge förberedelser för universitets- och högskolestu-
dier, dels yrkesskolor som skulle ge direkt användbara yrkesfärdigheter. Denna 
uppdelning svarar varken mot arbetslivets behov eller mot den syn på livslångt 
lärande som jag tidigare redovisat. (1983/84:116, s.15) 

Betänkanden från utbildningsdepartementet som senare har presenterats (1989, 
1996, 1997) uttalar hela tiden en vilja att fortsätta integrationen av gymnasiesko-
lan och att följa upp de läroplaner som började gälla när linjerna har ersatts av 
program. I programgymnasiet har eleverna möjlighet att komponera en utbild-
ning utifrån givna kurser. Detta har emellertid bidragit till att det Individuella 
programmet är bland de största inom gymnasieskolan.  

Läroplan för de frivilliga skolformerna 1994, Lpf94 
Gymnasieskolan följer läroplanen från 1 juli 1994 (Lpf94). Styrdokumentet an-
ger 16 olika nationella program där samtliga är treåriga. De avses ge en bred bas-
utbildning och grundläggande behörighet för att kunna studera på universitet el-
ler högskola. De nationella programmen har åtta kärnämnen, nämligen engelska, 
estetisk verksamhet, idrott och hälsa, matematik, naturkunskap, samhällskun-
skap, svenska (alternativt svenska som andraspråk) och religionskunskap. I varje 
program ingår den obligatoriska matematikkursen, Kurs A, som omfattar 100 
gymnasiepoäng. Kurs A innehåller aritmetik, geometri, beskrivande statistik, al-
gebra, datoranvändning och funktionslära och kursen kan närmast ses som en 
sammanfattning och avrundning av grundskolan kurs i matematik. Avsikten är att 
matematiken i kurs A ska exemplifieras med material från elevernas valda karak-
tärsämnen. Ämnet ”skall därför knytas till vald studieinriktning på sådant sätt att 
det berikar både matematikämnet och karaktärsämnena. Kunskaper i matematik 
är ofta en förutsättning för att målen för många av karaktärsämnena skall upp-
nås” (Lpf 94). Varje program får sin inriktning genom sina karaktärsämnen 
(fackämnen). Fjorton av programmen har yrkesämnen och ska omfatta minst 
femton veckor på en arbetsplats utanför skolan, s.k. arbetsplatsförlagd utbildning. 
De flesta programmen är uppdelade i olika grenar under år 2 och 3. Genom att 
kombinera karaktärsämnen från olika program kan en kommun inrätta specialut-
formade program. Dessa skall tillgodose lokala och regionala behov. Även indi-
viduella program kan inrättas och ha olika längd och innehåll och bestämmas av 
den enskilde elevens behov. Inom individuellt program finns också möjlighet att 
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kombinera yrkesutbildning, som anställd på ett företag, med studier. Sådan s.k. 
lärlingsutbildning omfattar tre årskurser. 

1995 beslutade riksdagen att ta bort beteckningarna studie- och yrkesförbere-
dande utbildningar. Förändringen är motiverad av att man önskar öppna vägen 
för vidare studier för elever från alla program.  

Cirkeln är sluten  
En försöksverksamhet startade hösten 1998 i form av en modern lärlingsutbild-
ning. Det finns redan konst- och hantverksskolor inom de fristående gymnasie-
skolorna. Detta för tankarna till det som skedde för cirka 500 år sedan. 

De allt fler fristående gymnasieskolorna motsvarar den kommunala gymna-
sieskolan, så till vida att de erbjuder olika gymnasieprogram och får kommunala 
bidrag. Skolverket beslutar om en fristående gymnasieskola får inrättas eller inte.  

En annan form av fristående skola som erbjuder utbildning över grundskole-
nivå är de ”kompletterande skolorna”. Till dessa utbildningar hör t ex vissa 
konst- och hantverksskolor. 

Lärarutbildning  
Det kan ligga nära till hands att numera se den tidigare beskrivna mångfalden av 
skolor vid 1940-talets slut som en tillgång, ett rikt smörgåsbord att fritt ta för sig 
från. Mångfalden var dock klart delad i en folkskoledel och en läroverksdel. 
Gränsen mellan dem var mycket påtaglig. Folkskolor, fortsättningsskolor och 
vissa slag av högre folkskolor var helt skilda från realskolor, flickskolor och lä-
roverk.  

Lärarna var klart uppdelade i två läger, man kunde rent av tala om två lärar-
kårer. I ett ingenmansland mellan dem fanns facklärarna i de så kallade övnings-
ämnena. I den mån de valde sida var det som regel för folkskoledelen de var 
hänvisade till, de hade ingen koppling till läroverkssidan i skolan omkring 1950. 

I början av 1960-talet bestod yrkeslärarutbildningen av en 5-veckorskurs i 
Kungliga yrkesöverstyrelsens (KÖY) regi. Yrkeslärarutbildningen var tänkt för 
den som tidigare arbetat med industri och hantverk, handel och merkantila äm-
nen. Den förutsatte och byggde nämligen på en god föregående yrkesutbildning. 
Kurserna utökades och organiserades från 1964 i fem yrkespedagogiska institut, 
som senare inordnades i lärarhögskolorna som ettåriga yrkeslärarlinjer, innefat-
tande även en praktiktermin. I dessa kurser finns inte matematik med annat än i 
tillämningar och undervisningen sköttes ej av matematikutbildade lärare.  

Lärarfortbildning - ändrad lärarutbildning 
I SOU 1996:1 diskuteras de svårigheter med gemensamma kärnämnen som redo-
visas av lärare och i den allmänna debatten. Det finns lärare och skolledare som 
anser att man inte kan ha samma krav på elever som går på program med yrkes-
ämnen och elever som går samhällsvetenskapligt program och naturvetenskapligt 
program. Detta anser man trots att utbildningarna numera är lika långa och har 
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samma kärnämnen med samma kursplaner. Det man argumenterar för är att ele-
ver på yrkesprogram bara behöver yrkesmatematik, yrkesengelska osv. Det ge-
mensamma för dessa synpunkter är att kraven bör vara lägre i kärnämnena för 
dessa elever än för andra. 

Följande citat utgör en tänkvärd kommentar:  

Praktiskt taget alla ungdomar (98 %) går direkt från grundskolan till gymnasie-
skolan. Detta innebär en stor omställning för lärare som har sin bild av gymna-
sieskolan från den tid de hade hela sin tjänstgöring på teoretiska linjer och 
gymnasieskolan fortfarande var en urvalsskola. 

Det finns också lärare som har omprövat sina arbetsmetoder och som i sam-
band med det fått intresserade, framgångsrika elever i kärnämnena och på pro-
gram med yrkesämnen. (SOU 1996:1,s. 42). 

Inom yrkesutbildningen i den gamla gymnasieskolan dominerade de tvååriga 
yrkesinriktade linjerna. Där ägnades cirka 80 % av undervisningstiden åt linje-
specifika yrkesämnen. Matematiken upptog cirka 10 procent av undervisningsti-
den. På många linjer svarade en enda yrkeslärare för hela undervisningen och 
satte endast ett terminsbetyg i yrkesämnet. I utvärderingen av försöksverksamhet 
med en 3-årig yrkesinriktad utbildning i gymnasieskolan som skedde från 1988 
under tre år, påpekas att fortbildningsbehovet är mycket stort bland lärare och 
handledare (SOU 1989:90, s 79).  Den nya gymnasieskolan ställer nya och andra 
krav på många av karaktärsämneslärarna. 

Förslag till fortbildningssatsning i 'Den nya gymnasieskolan – Hur går det?' 
ges på sidan 74 av kommittén för gymnasieskolans utveckling. 

Kommittén vill i detta sammanhang också betona vikten av att yrkeslärarna får 
en breddad kompetens. Det är viktigt att yrkeslärarna har bättre kunskaper än 
sina elever både i yrkesämnen och i t ex matematik. Kommittén har i flera 
sammanhang framhållit betydelsen av att karaktärsämneslärare och kärnämnes-
lärare samarbetar för att eleverna skall kunna få sammanhang i sitt lärande. För 
många elever på program med yrkesämnena är det av avgörande betydelse att 
yrkeslärarna stöder undervisningen i kärnämnen och därmed ger legitimitet åt 
elevens hela studieprogram. Det är också viktigt att kärnämneslärarna har för-
ståelse för undervisningen i yrkesämnena. Därför bör fortbildningen för lärarna 
i kärnämnena och lärarna i yrkesämnena i så stor utsträckning som möjligt ske 
gemensamt. 

Här pekar man alltså på behovet av att integrera matematiken och karaktärsäm-
nena. Integrationstanken har funnits länge och för flera behov. Mellin-Olsen 
skriver i Eleven, Matematikken og Samfundet (på sidan 124): 

Yrkesskolene har lang tradisjon i å integrere arbeid og teori i forbindelse med 
norskfaget og matematikkfaget (”trekke praksis inn i teorien”). 
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Det indikerar parallella traditioner i Sverige och Norge när det gäller yrkesut-
bildningen och behovet att integrera matematiken i yrkesämnen för att vinna ele-
vernas intresse. 

Början av det nya milleniet 
Elever som väljer program med yrkesämnen får första delen av en utbildning till 
sitt yrke. Yrkets kännetecken skall synas i hela utbildningen. Det gäller både i 
kärnämnena och i karaktärsämnena.   

Allt fler friskolor har bildats, flera av dem med direkt knytning till industrin. 
Troligtvis kommer denna trend att fortsätta. Det är nu och i framtiden viktigt att 
ha samarbete med branschorganisationer för att hålla skolan informerad om vad 
som är modern yrkeskunskap.  

En genomtänkt satsning på fortbildning av karaktärsämneslärarna behövs för 
att hålla lärarna a jour med förändringar i yrket. Det bör ges möjlighet till gemen-
samma fortbildningar av karaktärsämneslärare och kärnämneslärare med god 
pedagogik och yrkesdidaktik för att förbättra elevernas möjlighet till en relevant 
utbildning för yrket och möjlighet till fortsatta studier och ett livslångt lärande.  

Skolverket stödde flera utvecklingsprojekt där man ville uppnå en god un-
dervisning för eleverna på yrkesprogram. Ett av dessa projekt var KAM-projektet 
(Grevholm, Lindberg & Maerker, 2001, 2002) som fick stöd för att öka samver-
kan mellan karaktärsämneslärare och kärnämneslärare när det gäller de innehålls-
liga aspekterna. Speciellt gällde det matematikämnet och karaktärsämnen inom 
fordonsprogrammet. Resultatet från projektet visar på goda möjligheter att kunna 
förändra undervisningen så att matematikinnehållet kan lyftas fram och syn-
liggöras för eleverna. Projektet pekade också på svårigheter att nå resultat på kort 
tid eftersom det kräver stöd från många aktörer inte minst inom skolans område. 
En del av resultaten kan härledas till det faktum att lärarna har helt olika utbild-
ning och bakgrund och olika syn och värderingar när det gäller mål och genom 
förande (Lindberg, 1998). 

Några slutsatser om matematikens betydelse i yrkesprogrammen 
Utifrån innehållet i denna artikel där den historiska utvecklingen och matemati-
kens roll diskuterats från ett yrkesutbildningsperspektiv kan man utan vidare på-
stå att historien har i hög grad påverkat var vi står idag. Matematikinnehållet har 
inte lyfts fram utan har varit en otydligt integrerad del av yrkesämnet och dess 
tillämpning. Dessutom har yrkeseleverna fram till läroplan Lpf 94 i obetydlig 
grad undervisats i matematik av matematiklärare. Debatten om huruvida yrkes-
elever ska erbjudas yrkesräkning eller matematik verkar inte ha fått ett klart slut. 
Fortfarande diskuteras hur matematiken ska kunna tjäna som verktyg för yrkes-
ämnena. Dilemmat att eleverna dels behöver matematik för att klara sin yrkesut-
bildning och det framtida yrket och dels behöver det som en teoretisk grund för 
fortsatt livslångt lärande är inte löst. Klyftan mellan hur yrkeslärare ser på mate-
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matiken och hur matematiklärarna ser på ämnet har ej heller överbryggats. De 
skilda historiska traditionerna dröjer kvar och de två lärargrupperna verkar tala 
olika språk till eleverna när det gäller matematik (Grevholm, Lindberg & Maer-
ker, 2002). Försöken att integrera matematiken och yrkesämnena verkar inte ha 
lett till framgång för eleverna. Lärarutbildningen har inte gjort några försök att 
närma de två lärartraditionerna till varandra så att eleverna uppfattar att lärarna 
leder dem åt samma håll. 

Vad pågår nu? 
I aktuell samhällsdebatt har frågan om teori och praktik i utbildningen kommit 
tillbaka. Matematikens roll kommer med all sannolikt att diskuteras i samband 
med presentationen utifrån direktiven för reformering av gymnasieskolan (Dir 
2007:8). Där talas om tre utbildningsvägar: en högskoleförberedande, en yrkes-
förberedande och en lärlingsutbildning Den nuvarande skolministern har pekat på 
behovet av kvalificerad yrkesutbildning på postgymnasial nivå. Ett argument i 
debatten är att inte alla ungdomar är intresserade av teoretiska studier. Men frå-
gan är om de kategorier av praktisk och teoretisk, som fördes fram bland annat av 
1946 års skolkommission, kan appliceras i dagens samhälle. Är inte de flesta av 
dagens yrken med den datorisering och specialisering som sker relativt teoretis-
ka? Kan inte matematik tillämpad i yrket vara i hög grad praktiskt? Behöver vi 
andra kategorier än teoretisk och praktisk för att komma till kloka slutsatser om 
hur matematiken ska vara utformad i professionsutbildningar? Ett förslag för 
framtiden är att kursplaner i matematik för olika yrkesutbildningar i högre grad 
bör vara grundade på vad forskning om användning av matematik i yrkena kräver 
och på synen att utbildning idag måste vara livslång. 
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A Study of the Movement of Attention: The 
Case of a Reconstructed Calculation 

John Mason 
Open University and University of Oxford 

Abstract: My enquiries have convinced me that both what learners are attending 
to, and how they are attending to it play a central role in what learners are able 
to make sense of and eventually internalise. This paper illustrates this based on 
experiences of using a mathematical reconstruction task. Examples are given of 
different ways in which people’s attention moves and shifts, sometimes 
voluntarily and sometimes involuntarily, in relation to variation theory, but also 
drawing on other theoretical discourses. 

Background 
The construct of attention has ancient roots, and has been the subject of attention 
(sic!) by researchers in various periods in the past. William James (1890) is a 
notable example of someone who recognised the central role of attention in 
human experience, whereas some of his immediate precursors saw attention as an 
aspect of emotion linked to sensation. Recently there has been an upsurge of 
interest in attention as people try to find somatic correlates for psychological 
constructs. 

My own interest stems from multiple experiences of being asked, at the end 
of a workshop, where my accent is from. This led me to realise that for some or 
much of the time, these people had been attending to my accent rather than (or 
perhaps in addition to) what I had been saying and what they had been 
experiencing. I was led to ask first, “what are learners attending to?” in classes, 
and then, because of my experiential methods, to “what am I attending to?”. I 
soon discovered that what matters is not only what is being attended to, but how 
that attention is structured. By observing movements of my own attention from 
this perspective, I have been led to observations which impact directly on 
teaching and learning, and which go some way to explaining why teaching 
mathematical reasoning is so difficult. 

Methods 
My methods are experiential. I pay close attention (sic!) to my own experience. I 
find myself making distinctions in order to recognise incidents as instances of 
phenomena. I then seek tasks which I can offer others which serve to highlight 
distinction that I have found useful, in order to seek resonance in the experience 
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of others: do they notice what I notice, and do they find such sensitisation to 
notice informative in their future practice? My methods are based on what I refer 
to as the discipline of noticing (Mason, 2002), which provides both methods and 
foundational justification for those methods, for researching your own 
experience, or researching from the inside. 

This paper is a distillation of my experience of using a particular mathema-
tical task with hundreds of people over several years. It is an empirical enquiry in 
the sense that I look for resonance and recognition by others, but it is not 
empirical in the sense of analysing systematic observations of individuals or 
small groups ‘doing’ the task. In that sense, my approach is both phenomeno-
logical and phenomenographic (Marton, 1981). The data I present, in the first 
instance, is what you the reader notice in the movement of your attention as you 
work on the task.  My comments and analyses will make sense only to the extent 
that they resonate with your recent experience or illuminate your past experience, 
and they will prove useful only if you find that they inform some of your choices 
in the future. 

Analytic frames 
I shall use my experience of working on this task with others to develop a 
collection of distinctions that I have already described elsewhere (Mason, 2003, 
2004; Mason et al., 2005), under the heading of the structure of attention: 
holding wholes, discerning details, recognising relationships, perceiving proper-
ties and reasoning on the basis of agreed properties. These distinctions are 
closely related to other ways of speaking about understanding in mathematics 
such as the van Hiele levels in geometric thinking (Usiskin, 1982), the onion 
model of understanding developed by Pirie and Kieren (1989, 1994), the SOLO 
taxonomy (Biggs & Collis, 1982).   

I shall also call upon variation theory (Johansson, Marton & Svensson, 1985; 
Marton & Booth, 1997; Runesson, 1999; Marton & Tsui, 2004; Marton & Pang, 
2007). The essence of variation theory is that in order to distinguish some feature 
or aspect of something, that is, in order for it to come to attention, it is necessary 
that there has previously been some experience of variation in that aspect. For 
example, the familiar adage “if you want to know about water, don’t ask a fish” 
refers to this, because the fish, being immersed in water, knows nothing else. 
Similarly, if everything were a single colour, there would be no such thing as 
‘colour’ because without variation there is no discernment. Marton goes further 
of course, suggesting that learning is a matter of becoming sensitised to 
discerning or distinguishing aspects not previously discerned. Explorations have 
also demonstrated two basic principles: variation needs to take place within a 
short period of time in order that it be experienced as variation, and if too much 
or too little is varied at one time, it may not be detected as variation (op cit), but 
merely as noise (Skemp, 1969, p. 28). 
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The Task 
In the 18th and 19th centuries particularly, children destined to become clerks 
were required to keep a copybook ‘in best writing’ in which they recorded the 
contents of their lessons. These copybooks included laying out arithmetical 
computations in formats inherited from the abbacist traditions of the 13th and 14th 
centuries (Grattan-Guiness, 1997, p. 140). 
 
Diamond 
Try to trap movements of your attention as you make sense of the following 
calculation. 

30

361635
54242840

28634836
4236423245

5681
497254

63
5160119905

796 54

2420

64789

    
 
Throughout the following comments, reference is made to ‘some people’, 
because no observation is universal, highlighting one of the difficulties in 
researching attention extra-spectively (Mason, 2002). 

Some people find themselves gazing at the whole, even, in some cases, 
transfixed by the complexity. There is a sense of an array of numbers, and of 
course individual numerals are noticed but not really attended to. They do not 
become focal. 

Some people manage to overcome or put to one side any emotional and 
cognitive obstacles triggered by the array. For them it is then possible to focus 
for a moment on the top two rows of numerals and to see them both as numbers, 
and as made up of digits: there may be a simultaneous awareness of individual 
digits and of a number (strictly, a numeral) made up of those digits. Attention 
may slide down and become aware of the diamond shape in the middle, and then 
the large number (or the multiplicity of digits) in the bottom row. 

Familiarity with number calculations leads some people to expect, and so to 
look for, some numerical relationship between the top two rows and the bottom 
row via the intermediate diamond. Sometimes they are explicitly aware, and 
sometimes only implicitly as a theorem-in-action (Vergnaud, 1997) of a conjec-
ture that this is probably multiplication, perhaps with some degree of caution, but 
in some cases with a good deal of certainty. People not familiar with long 
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multiplication sometimes do not experience this coming to mind, so they have 
more work to do to try to make sense of the whole. 

Either in the context of expecting multiplication, or by attending to specifics, 
attention turns to details. Often people report that the top or bottom of the 
diamond attracted their attention, and so they searched for a source for the 30 or 
the 63. Other people report focusing on the middle row, or one end of one of the 
rows. Others start with the units digits in the top rows (5 and 9) and look for the 
product, 45. Alternatively, the 45 may trigger a search for a 9 and a 5, and so 
reinforce the conjecture that this is a long multiplication. The point is that 
different details are distinguished and treated as entities (30 is seen as thirty not 
as three and zero).  

At this point, some people experience a state summarised by “Oh, it’s just 
long multiplication rearranged”. This labelling of immediate experience wraps 
the display up into a ‘thing’, an ‘it’, and assimilates it into a well established 
schema of long multiplication. Labelling can be beneficial, reducing the need to 
dwell in particulars because of assimilation, but it can also be maleficent in 
wrapping the whole into a bundle and so reducing any impulse to look more 
closely. The labelling reifies the calculation while at the same time adding an 
affective component of ‘no need to look further’. Where individuals are working 
on the task, they may be inclined to stop at this point. Where small groups are 
working on the task, the presence of multiple perspectives is likely to mean that 
different people are in different states, and so someone may call upon others to 
explain or elaborate, and this may induce the group to probe more deeply. 

For example, long multiplication includes ‘carrying’, but there is no evidence 
of carrying in this display. Attention is often attracted to the 45 at the extreme 
right of the diamond. Notice that the digits are now being perceived as pairs, so 
the second row of the diamond is seen as twenty-four and twenty not as two 
thousand four hundred and twenty. The 45 is readily related to the 9 and the 5 in 
the units places of the top two rows. This relationship stands out for many 
people, and draws them to look at the 36 below the 45 (more often than, for 
example, the 40 above it). The 36 is readily seen as related to the 9 and the 4. 
When people find themselves, for example, expecting to see the 9 (in the units 
place) and the 6 in the hundreds place of the top row related to a 36 their 
experience can usefully be described as ‘making a delicate shift from recognising 
relationships to perceiving properties’. An almost automatic conjecture accom-
panies or is integral to this shift from relationship to property, and most people 
do not even notice the shift until it is described and labelled. The diagonal move-
ment is related to multiplication of 9 by the entries in the top row, confirming the 
conjectured perception of a property that holds for several of the relationships 
recognised so far. 
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Again some might be satisfied that they have plumbed the calculation. Others 
want to be sure, and so other details are discerned and checked. Perhaps the 
rising right hand diagonal of the diamond, although this can obscure structural 
awareness because now it is the 5 in the upper units place that is being held 
invariant while the entries in the second row are changing. Alternatively, the 
diagonal parallel to the bottom right diagonal might be inspected, under the 
conjecture that it will be formed by multiplying by the 8 in the tens position of 
the second row. But to check this requires some careful discerning of details, 
isolating through focused attention the relevant pairs of digits. 

Some people inspect the middle row, and discover how it relates to the 
products of the digits in the units, tens, hundreds, etc. places in the two top rows. 
Again a conjecture accompanies the perception of a property which is instantia-
ted in this particular calculation.  

There is often an expressed sense of satisfaction as people shift from 
recognising how the various pairs of digits are related to products of digits in the 
top two rows. However it usually takes some outside force to shift the affective 
component from satisfaction that it can be explained, to describing to yourself, 
then to someone else, ‘how to do diamond multiplication’. Some people 
experience this as a necessity for themselves, because they want to justify the 
diamond layout in terms of the long multiplication format with which they are 
familiar. For others it requires some outside stimulus. 

In the process of bringing to articulation ‘how to do diamond multiplication’, 
it may occur to some people that there is an un-instantiated variation: what if the 
product of two of the digits is only one digit rather than two? Of course the 
answer arises immediately, illustrating the instantiation of a property already 
perceived but not previously challenged or instantiated: you use a leading 0, so 3 
x 2 = 06. Justifying this calls upon making use of properties of place value which 
are more intuitive than formal, more like a theorem-in-action (Vergnaud, 1997) 
than explicitly articulated. It is an expression of an appreciation of structure 
which, if challenged, might cause some stumbling, even some babbling (Malara 
& Navarra, 2003) before settling down to a succinct and clear explanation. 

One of the best ways to show that you ‘know how to do diamond 
multiplication’ is to construct an example which displays all of the things that 
can happen. How big it needs to be, and what digits to use involve a combination 
of mathematical and pedagogical aesthetic (Dreyfus & Eisenberg, 1986; Sinclair 
2005). Mathematically, there is the issue of how many digits are needed in the 
multiplier and the multiplicand in order to provoke the general shape of the 
diamond, and pedagogically there is the issue of which digits to use (including at 
least one pair that have a single digit answer). 

Some people are open to making more connections with the more familiar 
long multiplication format via a version of gelosia, lattice, or grid multiplication. 
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The diamond looked at from the bottom right, with the paired digits placed in 
cells divided by a diagonal line between the digits looks very much like grid 
multiplication. 

5

7 9 6 4 5
6

4
7
8
9

0
5
02

3
4
4

30

3 65 48 16 3  
 
Even without seeing a connection with grid multiplication, the question may 
arise as to why the layout ‘works’ in the sense of getting the digits into the 
correct place value column. To justify the layout’s correctness requires, among 
other things, another shift of attention from recognising relationships between 
digits and their products, to the place value of those digits. Again details are 
discerned as special cases to ‘check’. For example, in the diamond it could be 
tempting to read down the middle columns the numbers 30, 42, 16, 42, 42, 34, 
72, 68, 63, isolating adjacent pairs of digits. If discerning these details of the 
diamond remains unconnected to the awareness that the digits in the diamond 
belong in pairs throughout each row, then the person is likely to become rather 
stuck, as it is impossible to make sense of these numbers. Juxtaposing the 
awareness of digits to be taken in consecutive pairs in each row contradicts the 
selection of some of these pairs.  This could serve to reinforce recognition of the 
relationship of lying on diagonals which almost immediately becomes an instan-
tiated property.  

Roles of the teacher 
The teacher plays several roles in work on the task.  

Task choice 
First there is the choice of the task itself. Here the task was chosen because it has 
proved fruitful in many sessions with many different groups of people concerned 
with the teaching and learning of mathematics. It serves to provide a taste of the 
ways in which attention darts around and of the different ways of attending to the 
same details. A teacher in school might choose the task to introduce formal long 
multiplication (anticipating inviting the class to modify the layout to make it 
more efficient, or to relate it to gelosian, lattice or grid multiplication with which 
they may already be familiar).  

In the language of Ainley and Pratt (2002), there is potential utility for some 
learners who have trouble remembering to ‘carry’ and who might choose to do 
long multiplication this way, as well as utility in a way of working with 
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examples. There is potential purpose for the learner in trying to work out what 
children of a similar age were doing over 100 years previously and so comparing 
themselves with those children (“if they could do it, we can surely work out what 
they were doing!”). Thus there is some potential motivation in addition to the 
simple challenge of working out what is going on.  The teacher may be using it to 
provoke rehearsal of single digit multiplication facts and further experience of 
the role of place value. 

In terms of the Structure of a Topic (Mason & Johnston-Wilder, 2004a), the 
need for massive numbers of clerks to run the Indian civil service as well as to 
record business transactions provides a source for the problem of laying out 
multiplication so that they could be checked easily, and also a context in which it 
was useful at the time.   

There is also purpose from the teacher’s point of view, in evoking learners’ 
powers to attend in different ways, to make use of their powers to imagine and to 
express, to conjecture and convince (Mason & Johnston-Wilder, 2004b), and to 
encounter the mathematical themes of invariance in the midst of change and 
doing and undoing (here is the answer, what was the question, or how was it 
done?). The teacher can choose how much of this to make explicit during work 
on the task, how much to refer to later during reflection and reconstruction, and 
how much to leave unspoken as a contribution to enriching experience. 

Task presentation 
Secondly there is the choice of how to present the task.  It could be presented in 
silence, as a phenomenon to be construed. It could be introduced with a story 
about children in the 18th century being trained as clerks and having to write 
neatly and without any blots. It could be presented in an animated form, though 
this would alter the affordances considerably, by using a ‘this is how’ format 
rather than a reconstruction format. It could be presented with some entries 
missing or incorrect, with a challenge to complete or correct it, justifying any 
proposals. Having initiated activity, it is necessary to sustain relevant activity so 
that there is sufficient experience, including both sufficient variation and 
sufficient opportunity, to get-a-sense-of what is going on and to bring that to 
articulation (Mason & Johnston-Wilder, 2004a). 

Task involvement 
Sustaining relevant activity involves redirecting attention when it is deemed 
necessary, such as when learners think they have it all worked out, and including 
asking learners to justify their conjectures. It may mean proposing supplementary 
tasks such as constructing your own example, or finding a different layout, or 
even an interesting layout for long division. It is during the activity phase of task 
work, when learners are experiencing some of the intended inner aspects of the 
task as envisaged that the core of teaching takes place (Tahta, 1981). Here is 
where much of the teachers’ values are manifested in terms of what constitutes 
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an adequate justification, how conjectures are dealt with, how learners interact, 
and how justification resides in mathematical structure not in opinions. If 
learners are kept in a situation long enough to rehearse and refine the language 
patterns associated with a topic (a component of the structure of a topic) then 
they may internalise the actions together with inner incantations (another 
component of the structure of a topic) which accompany those actions and which 
can be used to reconstruct the actions in the future if required. 

Task conclusion 
Doing things is not the same as construing. What learners make of a task and the 
subsequent activity can be highly varied. Because ‘a succession of experiences 
does not add up to an experience of that succession’, it is usually necessary to 
initiate some reflection so that something is actually learned from the experience. 
As Watson (private communication) has observed, reflection as a geometrical 
transformation can only be manifested as a rotation by moving up into an extra 
dimension. This supports the view that reflection as a pedagogical strategy 
requires more than ‘thinking back over what has happened’. It involves drawing 
back from the action and getting-a-sense of the whole, of the choices made, the 
obstacles encountered, and the actions which overcame or otherwise dealt with 
those obstacles. 

In the present case, the drawing back is being done by the author of the 
paper, intended as a stimulus to the reader to recognise possibilities for them-
selves in terms of what might be learned and what was possible to experience. In 
particular there is the principal intention of elucidating in experience distinctions 
concerning the structure of attention. The teacher also engages in personal 
reflection and on the basis of experience, imagines doing something a little 
differently in the future. 

Structure of attention 
Sometimes people gaze at something, only vaguely aware of constituent details if 
at all. This is a useful state to employ when doing geometry: staring at a diagram 
and allowing it to speak, as it were, but this can also be usefully done with 
complicated algebraic expressions. In order to make use of alliteration as an aid 
to memory, it is useful to refer to gazing as holding wholes. Attention can 
suddenly switch to discerning details thereby creating new sub-wholes for gazing 
at. More usually, and perhaps more naturally, scanning different details in quick 
succession leads to recognising relationships between different details. Some-
times you can catch yourself seeking out relationships, and sometimes you 
become aware of recognising relationships. These relationships all concern the 
specific details discerned in what ever is being contemplated. But suddenly you 
can become aware of a relationship as an instance of a property. Perceiving 
properties is often so natural and quick that it is hard to trap, and yet it represents 
a major hurdle for many learners of mathematics. Properties can be seen as 
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recognising relationships between particular relationships, and it can happen at 
many different levels or even in a sort of fractal form, where relationships 
between relationships between relationships between … are eventually perceived 
as properties at some meta-level. What perhaps distinguishes mathematics from 
some other disciplined modes of enquiry is that mathematics also involves the 
formalisation of properties and their relationships. Some properties are chosen as 
basic building blocks (often referred to as axioms or assumptions) and then other 
properties are deduced from these (using agreed properties of logic known as 
reasoning). It is the agreement to use only agreed properties and certain modes of 
reasoning which constitute mathematical reasoning, and it may be that mathema-
tical reasoning is so difficult to teach mainly because it depends on property 
perception which itself involves a delicate shift from recognising relationships, 
which itself depends on discernment of details or aspects as entities. 

Variation theory 
On the surface, it may seem that this single example of diamond multiplication 
might form a counter-example to variation theory: there is only one example. 
However the reader brings to the situation multiple examples of calculations laid 
out in one way or another. Furthermore, once the digits in the diamond have been 
discerned as pairs of digits forming products of single digit pairs, there is 
considerable variation (though not in the aspect of the number of digits in the 
product). It is precisely the variation available in the construction of the diamond 
that enables a reader to re-construct diamond multiplication: there are plenty of 
instances from which, through becoming aware of what is varying (digits used in 
product, location of the product in the diamond in relation to the position of the 
multiplied digits) to recognise relationships, and for this to shift to perception of 
a property which is instantiated in the specific relationships. 

The reference to mathematical and pedagogic aesthetic can usefully be re-
interpreted in terms of variation theory. When constructing your own ‘example’ 
(Watson & Mason, 2005) it is quite natural to want to vary the digits used. Under 
an aesthetic of making it a bit challenging, you might be led to include some 
digits more than once, as in the case presented here. Under an aesthetic of 
wanting it to be as simple as possible while still being paradigmatic as an 
example, you might want to reduce the number of digits in the numbers being 
multiplied, perhaps to four. Under an aesthetic of sufficient variation, perhaps 
you might choose to have at least two instances of single digit answers to single 
digit multiplications, though you could also argue that one instance should be 
enough if the reader brings an already developing sense of single digit multi-
plication, because it would simply confirm to a reader their own conjecture. 
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Reading Word Problems 
Guri A. Nortvedt 
University of Oslo 

Students’ work on word problems place demands on both comprehension and 
solving strategies. When reading a word problem, students construct a mental 
representation of the problem text that serves as the basis for solving the 
problem. Still reading and solving word problems is not necessarily a linear 
process. Students might for instance reread the problem during solving or when 
evaluating answers. The first part of this paper outlines a framework for investi-
gating how strategies for reading and solving word problems are connected. The 
last section concentrates on exemplifying by discussing some instances where the 
student Boy1 rereads before tying the discussion of his competence to the 
suggested framework.  

Introduction 
Word problems are not a novelty in school curricula. Different aspects of student 
work on word problems are extensively researched, still many students, even 
some teachers, find word problems challenging. Much research is conducted 
within a cognitive framework, researching different aspects of reading or solving 
word problems (Cook, 2006; Cummins, Kintsch, Reusser & Weimer, 1988; 
Reed, 1999; Verschaffel, Greer, & De Corte, 2000). In the present study I am 
concerned with students’ strategy use while working on word problems. The 
overall aim of the study is to describe different levels in strategy use and domain 
competence. This paper outlines a framework for investigating students’ strategy 
use while reading and solving word problems. In the last section of the paper data 
on one student, exemplifying rereading during different phases of solving word 
problems, are presented. The full range of this student’s competence for working 
on word problems is however not presented, but his use of the strategy rereading 
is discussed in relation to other measures of competence and the suggested 
framework. As the title suggests, the main focus is on reading the word prob-
lems, on understanding what a word problem is about.          

      
Prior research on students’ comprehension of word problems 
In my study understanding is connected to comprehension of word problems: To 
understand means to create a mental representation of the problem situation to an 
extent that enables you to solve the problem (see for instance Thevenot, Devidal, 
Barrouillet, & Fayol, 2007). 
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Word problems are defined as verbal descriptions of problem situations by 
Semadeni (1995). Each problem embeds one or more questions that can only be 
answered by first constructing an understanding of the mathematical relation-
ships in the text. They are traditionally associated with a school setting wherein 
the student is being asked to solve the problem in connection to a mathematics 
lesson, a test situation or as homework (Verschaffel et al., 2000).  

While students’ competence traditionally is evaluated through inspecting 
calculations and explanations, causes for student’ difficulties or errors could also 
lie in shortcomings in text comprehension or difficulties in constructing a mental 
representation of the underlying mathematical situation (Reed, 1999). Cummins 
et al. (1988) found that solution performance is related to comprehension of the 
word problem text and to the language in the text. When students make errors 
and arrive at an erred solution, it is often the correct solution of the word problem 
the student thinks (s)he is solving. In other words they solve correctly the 
problem as it is constructed in their mental representation of the problem text.   

My research interest lies in investigating students’ strategy use when reading 
and solving word problems. This is not necessarily a linear process; students 
might reread problem text while planning or solving (Hegarty, Mayer, & Monk, 
1995). Findings in a pilot study also suggest that reading and solving strategies 
are intertwined: Strategies for reading1 were visible also when students were 
working on solving the problems (Nortvedt, manuscript). Word problems are 
traditionally short and condensed texts. The pilot study revealed that texts are 
often so short that students keep necessary numbers in working memory and 
move directly on to solving the problem. This was the case both for compre-
hended as well as for misunderstood problems. When working on their solutions, 
students revealed several general reading strategies such as rereading, looking for 
key words, clarifying etc (ibid.).  

Nathan, Kintsch & Young (1992) suggest that when reading word problems, 
students construct a qualitative situation model representing the social context of 
the word problem and a quantitative model containing the algebraic structure or 
schema of the text. Thevenot, Devidal, Barrouillet and Fayol (2007) argue that 
this mental model is a situation model containing the mathematical relationships, 
not an activated schema. This suggestion is based on findings tied to increases in 
success rate for word problems when the question is placed in front of the body 
text versus after as in traditional word problems. Increases are significantly 
higher for low achieving students and not as expected for high achieving students 
that supposedly have more schemas accessible for use. The situation model is a 
“temporary structure stored in working memory that contains in addition to the 
mathematical information necessary to solve the problem, nonmathematical 
information that is related to the context in which the situation described by the 
                                                 
1 This refers to reading comprehension, not decoding 
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problem takes place. A situation model is therefore more qualitative and less 
formal than a schema” (ibid., p. 45). 

Addition and subtraction problems can be placed in different categories 
according to the semantic structures in the text. Making content more explicit 
without changing the semantic structure raises the number of students solving the 
problem successfully (De Corte & Verschaffel, 1991). Errors are often due to 
misconceptions of the problem situation grounded in insufficient understanding 
of the semantic schemes, also “word problems that can be solved by the same 
arithmetic operation but differ with respect to their underlying semantic 
structure have very different degrees of difficulty” (ibid., p. 119).  

Cook (2006) found that college and elementary school students used the 
same strategies to discriminate between relevant and irrelevant information in 
word problems. The same strategies were also found when students did not 
succeed in solving the word problem. Transition strategies or multiple strategy 
use were more frequent for incorrect word problem solutions. Littlefield and 
Rieser (1993) found that when successful students based their discrimination on a 
feature analysis of the text, less successful students were more likely to use 
surface-level aspects like positioning of numbers or number grabbing. Such 
results were also found by Brekke (1995) in the Norwegian KIM-study, while 
Cook and Rieser (2005) found that mathematically disabled students attempted to 
apply the same strategies as successful students, only were not able to implement 
the strategies effectively. Misinterpretations or surface-based strategies might 
lead students to automatically consider a word problem an addition problem if 
they encounter the word all together in the text (Cummins et al., 1988; Reed, 
1999). Cook (2006) on the other hand suggests that when students do not succeed 
in constructing a fitting mental model, this could be due to lack of mathematical 
knowledge (domain knowledge) relevant in the given situation.  

The model of domain learning – a framework for describing student 
competence 
The model of domain learning is an alternative perspective on expertise 
(Alexander, 2003). While research on expertise within cognitive science has 
given rich profiles of experts and contrasted novice behaviour by expert 
behaviour, the model of domain learning describes characteristics of competence 
at acclimation, competence and proficient levels within academic domains 
(Alexander, Buehl, Sperl, Fives, & Chiu, 2004). A novice student typically has 
little and fragmented domain knowledge accompanied with few and rigid 
strategies and can be described as being at an acclimation level, while an expert 
will have reached the level of proficiency (Alexander, 1997). The goal of 
compulsory schooling is to bring students to the level of competence (Alexander, 
Graham & Harris, 1998).  
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The model of domain learning is a stage theory, defining competence as 
consisting of three interrelated parts: domain knowledge, strategic behaviour and 
interest (Alexander, 1997). Differences in domain knowledge and strategy use 
within the mathematical domain are well documented (see for instance Ostad & 
Sørensen, 2007 or Schoenfeld, 1992). Collins, Brown & Newman (1989) claim 
that the strategic knowledge experts possess usually is tacit knowledge and 
thereby difficult to verbalise and make explicit and observable to others. Experts 
have a broad range of strategies that they apply in a flexible manner, allowing 
them to perform different activities necessary to work on unknown or unfamiliar 
problems (Alexander, 1997). Often strategies are defined as goal directed and 
non-obligatory actions. Collins, Brown and Newman (1989) claim that strategies 
can consist of both automatic and controlled processes. Within the model of 
domain learning “strategies are defined as intentional and effortful actions taken 
when individuals perceive some problem or gap in understanding” (Alexander et 
al., 2004, p. 547). Alexander et al. (1998, p. 132) stress that “principled know-
ledge is the hallmark of academic competence, and that strategies are necessary 
to achieve such principled understanding”.   

Researching strategy use 
Verbal protocols are traditionally used in research studies where researchers aim 
at investigating thinking or strategy use. Such protocols in the form of either 
retrospective or concurrent think aloud protocols, are collections of students’ talk 
when conducting an activity (Pressley & Afflerbach, 1995). While retrospective 
reports are generally considered too reflective to reliably tap into only cognitive 
and not also meta-cognitive strategies and self-reflection, concurrent think aloud 
protocols are considered appropriate tools for building theory about cognition. 
The challenges of validity are lesser than with retrospective reports since think 
aloud protocols are reports of the latest contents of short term memory (Ericsson 
& Simon, 1993).  

When students think aloud while performing an activity, there is no delay in 
time between conducting the activity and reporting. Such reports can be termed 
level 1 reports and are considered to be actual reports of the content of working 
memory and hence strategies in use (Ericsson & Simon, 1993; Pressley & 
Afflerbach, 1995). However such verbalisations are difficult to children, and they 
also some times forget to verbalise their thinking. At such occasions the student 
should be reminded to think aloud (Ericsson & Simon, 1993). If time spans are 
too long, students might be giving retrospective reports and thereby expose meta-
cognitive understanding or reflections (level 3 protocols) instead of cognitive 
strategies in use. Still meta-cognitive and cognitive strategies are an equally 
important part of students’ strategy repertoire. Of special interest are strategies in 
consideration to self-monitoring or students’ strategies to evaluate answers 
(Alexander et al., 1998). Considerable empirical evidence exist that demonstrate 
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that giving verbal protocols in the form of thinking aloud while engaging in 
higher order thinking activities does not affect students’ success-rates or test 
scores (Leow & Morgan-Short, 2004; Norris, 1990).  

Ginsburg, Jacobs and Lopes (1993) suggest that think aloud protocols are a 
potentially strong tool in order to assess thinking. Verbal protocols applied with 
scaffolding open up for diagnosing students’ zones of proximal development. 
Scaffolding offered by a more knowledgeable other, adjusts for and is sensitive 
to the student’s difficulties in consideration to a specific task. Scaffolding can be 
described as “controlling those elements of the task that are initially beyond the 
learner’s capacity, thus permitting him to concentrate upon and complete only 
those elements that are within his range of competence” (Wood, Bruner & Ross, 
1976, p. 9). Hence a larger portion of students’ strategy use is displayed than 
when left alone and unable to solve the task. This difference between what 
students can do when working independently and what they can do with scaffol-
ding is what is in a student's zone of proximal development (Vygotsky, 1978).         

Investigating student strategy use when working on word problems 
The main part of the study Understanding and working on word problems con-
sists of a protocol analysis. Students have given verbal protocols while working 
on a collection of word problems. While the verbal protocols give rich informa-
tion about student strategy use, only limited knowledge about students’ domain 
knowledge can be derived from them. For this reason test scores on national tests 
in numeracy2 have been collected to give individual measures of domain know-
ledge, while test scores on national tests in reading serve as individual measures 
for reading comprehension. No separate measure for students’ interest has been 
applied. While giving protocols some very limited knowledge of students’ likings 
or dislikings, motivation or interest has been demonstrated, but not to an extent 
that would validate using these mere outbursts as measures of interest.  

The decision to introduce scaffolding resulted in protocols that are in part 
students’ concurrent reports of thinking while reading and solving word prob-
lems (level 1 protocols) and in part scaffolding conversations between student 
and researcher (level 3 protocols). While the level 1 protocols are appropriate for 
investigate students’ strategy use, protocols including scaffolding talks are more 
appropriate for diagnosing what students can do in their zone of proximal 
development.  

Data collection 
19 students3 have given verbal protocols while solving eight word problems and 
one practice problem. Protocols were given in an interview setting. Students were 

                                                 
2 ’Regning’ in Norwegian. 
3 The students come from two different schools situated in a major city in Norway. Both schools 
are combined primary and lower secondary schools. Protocols were collected during the last 
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asked to read and think out aloud while working through the problems as similar 
to what they would do if the problem was assigned in a lesson or for homework 
as possible. The word problems were age appropriate, collected from national 
tests, exams and text books, some challenging even to very competent students. 
The collection consisted of both multiple choice (3) and open ended questions (5) 
representing different levels of complexity. To these students all word problems 
demanded more than one “step” of calculations in order to be solved correctly. 
Each problem was printed on top of a separate page (A4), allowing more than 
sufficient space for taking notes, drawing or performing calculations. Students 
would work through the word problems in their own pace4. They would decide 
for themselves when a problem was solved and when to move on to the next 
problem. Scaffolding was offered when students got stuck.  

Analysis 
The analyses of level 1 protocols are mainly based on a priori developed cate-
gories, representing findings in other laboratory studies where the unit of analysis 
has been students’ strategy use. The category rereading is applied when students 
reread a part or all of the word problem text before, during or after solving the 
problem. This category is used both when students are successful and when 
students fail to approach an understanding of the text. Analysis is still ongoing, 
which is why only examples of one student’s strategies is used to exemplify the 
present discussion. The presented examples are parts of level 1 protocols. 
Exemplification: Boy1’s use of rereading  
In this section of the paper examples of how Boy1 interacts with the text while 
working on the word problems are discussed in the light of the suggested 
framework. The strategy of interest is rereading. Also his comprehension of the 
word problems in the form of manifestations of mental representations will be 
touched upon. Only parts where the student rereads will be discussed, focus will 
not be on solving in itself. Boy1 can be termed a student at acclimation level. His 
scores on the national tests are well within the score interval for the 20th 
percentile for both reading comprehension and numeracy. WP35 is the only one 
of the eight word problems where he arrives at a correct solution (se transcript 
note). Boy1 rereads for several reasons and during different phases of solving of 
the word problems. He rereads before solving for the practice problem and WP1, 
2, 3 and 4, he rereads during solving for the practice problem and WP1, 2, 5 and 
6. He only rereads after solving for WP3. For the two last word problems he 
never rereads.  

                                                                                                                                               
week of teaching in grade seven or during the first fourteen weeks of grade 8. A total of 22 
students participated. 19 students have reminded in the study. 
4 Interviews lasted between 25 and 60 minutes. 
5 I use WP1 for word problem 1 etc, referring to the word problems used for collecting the 
verbal protocols 
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Example 1: Boy1 WP3 – Anita’ wages – rereading before solving.6 

Boy1: Anita works in a store after school every Tuesday and 
Thursday. She makes 80 kroner per hour. When she 
turns 16, she will get a raise in her wage for five 
percent an hour. How much will she make an hour 
when she turns 16? 

Initial reading, 
reads through WP 
text once 

 After school every Tuesday and Thursday. Rereads 
 80 kroner, I think she earns… Five percent. Five 

percent. How much is five percent more an hour? 
Elaborates 

 How much will she make an hour when she turns 16? Rereads 
 Five percent more 

 
Identifies relevant 
information 

 Then it is 85.  Suggests solution 
I: Mm  
Boy1: I think it will be 85. Confirms 

suggestion 
I: Mm  
Boy1: I need to find out. I need to. I must try to… Questions model 
 

There are several reasons for solvers to reread. Rereading can for instance be 
aimed at discriminating between different text elements or at elaborating on the 
content of the text (Pressley & Afflerbach, 1995). Before they can start out to 
solve a word problem, students need to comprehend the text of the word problem 
in order to arrive at a mental representation (Thevenot et al., 2007). If texts are 
short or easy to comprehend, it is possible to hold the whole text in working 
memory after reading through once (Pressley & Afflerbach, 1995), but often it is 
necessary to reread to be able to discriminate between relevant and irrelevant 
information (Cook, 2006). In example 1 Boy1 is working on WP3, a word 
problem that contains both relevant and irrelevant information. When he rereads 
the part of the first sentence that states when Anita works in the store (irrelevant 
information), this is not elaborated on further, and he moves on to elaborate on 
more relevant information. Students need strategies to discriminate between 
relevant and irrelevant information in the word problem text. Many students 
employ a question orientated strategy to do this (Cook, 2006).   

Boy1’s elaborations in the transcript is guided towards understanding the 
problem text, that is creating a mental representation and identifying the relevant 

                                                 
6 After questioning his initial understanding of the word problem, Boy1 decides that he needs to 
work out how much is 5 % of 80 kroner. When he reaches the total of 84 kroner for the new 
wage, he very much doubts that this is the correct answer. He goes back to 85, and after a 
scaffolding discussion and rereading the segment after school every Tuesday and Thursday once 
again, he decides 84 is the correct answer, because, after all 5 % is not very much. 
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information needed to solve the problems as represented. His elaborations could 
be viewed as either repeating or rewording text elements for elaboration purposes 
in order to explain parts of the text (Pressley & Afflerbach, 1995). He also 
focuses on the word problem question in relation to the rest of the text. Such 
elaboration can be viewed as being about understanding the social situation, as in 
understanding the context. According to Thevenot et al. (2007) the mental 
representation is to the main part a more qualitative social model that the mathe-
matical structure of the problem lies within. Boy1’s initial structure suggests 
adding 80 and 5. It is not clear however whether this means 85 kroner or 85%. 
Other students adding 80 and 5 demonstrate two different surface strategies: 
Number grabbing or use of key word. Alexander et al. (2004) labels such 
strategies text base strategies. In the Norwegian version of WP3 the term “more” 
is used in the problem text about the raise in wages. This could suggest that 
adding is the appropriate mathematical action to students focusing at key words 
(Reed, 1999). However use of key word can be a success strategy in situations 
where key words give indications as to the mathematical structure and proto-
typical character of word problems (ibid.), but then the use of key words is a 
result of deep processing (Alexander et al., 2004).  

Students who fail to form an appropriate mental representation often reread 
the whole text several times. According to Cook (2006) these students could 
either not know how to implement rereading in order to discriminate between 
relevant and irrelevant information, or they could lack necessary domain know-
ledge. WP1 asks for students to calculate how many bikes having two and three 
wheels respectively you can have if you have 19 wheels. This word problem has 
three correct solutions, and students are asked to produce as many as possible. 
When working on WP1 Boy1 rereads both before and during solving. Two 
different reasons for his failure to understand this word problem can be identified 
from his work. Partly he is not able to make meaning of the sentence “Find as 
many solutions as possible” and partly he fails to understand that he has to find a 
combination of 2’s and 3’s that form 19. His attempt to make meaning consists of 
reading the whole text without elaborating on the meaning, just repeated reading. 
This could be termed a surface-strategy (Alexander et al., 2004) or his efforts 
could be termed using a transition strategy, meaning that he does not recognise 
how rereading can be used to get to the meaning of the text (Cook, 2006). 

Rereading can also be part of monitoring (Alexander et al. 2004, Pressley & 
Afflerbach, 1995). Monitoring your own process, to keep on track, is an impor-
tant part of a student’s domain competence (Schoenfeld, 1992; Teong, 2003).  
Students for instance reread to check if what they are calculating is an expected 
answer to the problem question, to adjust their mental representation. Boy1 
demonstrates the ability to use the word problem text to check if he is on track 
for one of the more traditional two-step word problems (WP2). When he arrives 
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at an erred solution for this problem, it is because he does not manage to employ 
standard algorithms well enough, not because he fails in employing the reading 
strategy.   

Concluding remarks 
According to Alexander’s model, to be mathematically competent means 
different “things” to different people; acclimation students also know something 
even though it is fragmented and not flexible in respect to domain knowledge and 
strategy use (Alexander et al., 2004). Viewing domain knowledge and strategy 
use as two parts of students’ domain competence, as suggested, seems to be 
useful in order to understand what Boy1 accomplishes when he uses the strategy 
rereading. The word problems in the examples are rather trivial problems to 
competent grade 8 students. To students at an acclimation level they can however 
be challenging. To solve them correctly students need to master appropriate 
domain knowledge (multiplication, division, subtraction and percentage) as well 
as reading strategies aiming at comprehending the text of the word problems, 
adjusting the mental representation, monitoring or keeping on track. To some 
extent Boy1 has knowledge of the strategy in question. However, unlike in the 
transcript, the use of text-based strategies rather than deep processing strategies 
was found to be more frequent. But while test scores suggest that Boy1 might be 
considered to be at acclimation level, the protocol data reveals that some strategic 
knowledge was applied in company with some domain knowledge even though 
some strategies were transitions strategies. In a wider perspective, to understand 
how he uses strategies and what he accomplishes might be a key to understand 
how he might move towards competence.  
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Children’s Early Work with Multiplication 
and Division 

Frode Rønning 
Sør-Trøndelag University College, Norway 

Abstract: The purpose of this paper is to discuss the way very young children 
handle problems connected to multiplication and division. The discussion is 
based on classroom observations from England and Norway, and it is linked to a 
discussion of how Norwegian textbooks present the first encounter with division. 
In textbooks division is often simply regarded as reverse multiplication. Based on 
the classroom observations I will argue that it could be worthwhile pursuing 
division as a process in its own right and postpone the strong link to 
multiplication until later.  

Introduction 
Following a social constructivist view on learning (Ernest, 1998) I take the 
stance that knowledge is developed by the learner in interplay with teachers, 
fellow learners and the teaching material. A constructivist view entails that 
knowledge cannot be regarded as detached from the knower but it is actively 
built up in a process where the learner organises his/her experiences in relation to 
previous knowledge (von Glasersfeld, 1995). When it comes to teaching, this 
means that it is of vital importance to establish strong links between the 
children’s own ways of thinking and the input provided by the teacher and the 
teaching material. Along with the development of a basic number concept 
children will also develop ways of solving problems involving calculations, both 
in everyday life and in school contexts. Algorithms that children develop for 
solving tasks they meet in school is referred to by Steffe (1994) as child 
generated algorithms. These algorithms usually differ from the standard 
algorithms taught in school and are also often quite inefficient and insufficient. 
Nevertheless they are important, and for the teacher the challenge will be to 
create links between the child generated algorithms and other, more efficient 
algorithms.  

Fischbein, Deri, Nello, and Marino (1985) write that there seems to be 
certain natural, intuitive models for multiplication and division. The intuitive 
multiplication model is based on equal grouping and is often referred to as 
repeated addition. For division the basic model is that of sharing equally between 
a given number of persons, often called partitive division. Alternatively, division 
may be regarded as sharing out in groups with prescribed size, and this is called 
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quotitive division. Although the equal grouping model for addition and the 
partitive model for division will be insufficient for modelling situations that the 
students encounter at a later stage, they have a strong influence on how students 
perceive the conceptual field of multiplication and division.  

An examination of current Norwegian textbooks indicates that the main 
approach to division is through the partitive model, and the quotitive model is 
more or less tacitly introduced, if it is at all mentioned. In addition the study of 
the textbooks indicates that division already in the very beginning is presented as 
the reverse operation of multiplication and that in this context commutativity of 
multiplication is taken for granted. Based on observations of children at an early 
stage of working with multiplication and division problems I will discuss 
whether it might be desirable to a larger extent to work with division as an 
operation in its own right, and I will discuss what considerations should be made 
when the link between division and multiplication is introduced. I will also 
discuss how commutativity of multiplication is intuitively investigated and 
justified. This could be formulated as the following research questions: What are 
children’s intuitive ways of approaching division problems, and how do these 
approaches fit with the way division is introduced in textbooks? How will 
commutativity of multiplication be justified in an experiential situation which is 
not in its nature commutative?  

Theoretical framework 
Children’s first encounter with multiplication is usually connected to situations 
involving a number of groups of objects having the same number in each group 
(Greer, 1992). Later other models for multiplication will appear but the equal 
grouping model (repeated addition) is recognised as the basic intuitive model for 
multiplication (Fischbein et al., 1985). For division Fischbein et al. discuss both 
partitive (or sharing) division and quotitive (or measurement) division. However, 
they claim that “there is only one intuitive primitive model for division problems 
– the partitive model” (p. 14, emphasis in original) and that the quotitive model is 
acquired later as a result of instruction. According to Fischbein et al. these 
intuitive models for multiplication and division reflect the way the concept was 
initially taught at school and they correspond to features of human mental 
behaviour that are primary, natural and basic.  

Following Steffe (1994, p. 7) a child’s solution process can be described in 
three steps. First there is an experiential situation as perceived by the child. Then 
there is the child’s procedure to deal with the situation, and finally there is the 
result. These steps may involve different challenges. To get from the situation to 
the procedure the child has to determine which arithmetic operation should be 
used. In this step familiarity with a diversity of models for each arithmetic 
operation is expected to be helpful. After the operation has been determined the 
task is to carry out the actual calculations, and this step may be quite independent 
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of the chosen models for the situation. Here the child may use different strategies 
irrespective of how the actual situation is modelled. In early learning these steps 
are not clearly separated.  

Neuman (1999) has studied small children’s work with division problems. 
She distinguishes between the situational aspect, meaning the modelling of the 
practical situation, and the computational aspect, meaning the procedure to 
obtain the answer. These two aspects correspond to Steffe’s (1994) three steps in 
the sense that the situational aspect corresponds to the experiential situation and 
the computational aspect corresponds to the procedure and the result. In solving 
division problems by dealing out one at a time there is hardly any difference 
between the situational and the computational aspect.  

The most basic strategy for division is dealing out objects one at a time by 
direct counting, and Mulligan and Mitchelmore (1997) write that direct counting 
“achieve the aim of creating equal-sized groups, but the calculation procedure 
does not reflect this structure” (p. 318). Repeated subtraction can be applied 
directly in quotitive division where the required number in each group is taken 
away repeatedly until the initial set is empty. In partitive division however, the 
number in each group either has to be guessed or, if the process is carried out by 
sharing out one item at a time, the required number is seen only when the process 
is completed. Multiplication is usually regarded as a binary operation, that is a 
mapping from A A A× → , where A denotes the number set one is working within 
(integers, rationals, etc.). In many situations involving multiplication the multi-
plier and the multiplicand will have different roles. Then it might be natural to 
look at multiplication as a unary operation, that is a mapping from A A→ , where 
the multiplicand is the number that is operated on, and the multiplier is the 
operator. Vergnaud (1983) discusses two ways to look at multiplication as a 
unary operation – the scalar and the function operator – using the example “if the 
price of one cake is a, what is the cost of b cakes?” Here b is called the scalar 
operator and a is called the function operator. In the language of Vergnaud, 
partitive division amounts to reversing the scalar operator and quotitive division 
amounts to reversing the function operator. Neuman found that in partitive 
situations, dealing out 28 marbles to seven boys, the children sometimes 
constructed a quotitive model by looking at the number seven as the number of 
marbles being dealt out in each round. The answer four will then represent the 
number of rounds (Neuman, 1999, p. 113). Hence, although the situation is 
partitive the computation may be quotitive in the sense that it measures how 
many 7s there are in 28. To make this change the number 7 has to be 
reinterpreted from representing boys to representing marbles.  

A model which is quite different from both the partitive and the quotitive 
model is the splitting model suggested by Confrey (1994). This model is based 
on a repeated halving procedure, and Confrey suggests that splitting should be 
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taken as a primitive action complementary to counting, which is the basis for the 
partitive and the quotitive model. The splitting model exhibits a structure like 
exponential growth.   

Method 
I will discuss three episodes that are based on observations made in a class 
consisting of 18 1st grade pupils (6-7 years old) in a small English school. I was 
an observer in this class in all of the mathematics lessons for three weeks. In the 
whole class teaching I was passively observing and after having been in the class 
a few times, I videotaped the sessions. When the pupils were working in groups 
or individually I interacted with them in ways that a teacher would do, and I 
video- and/or audiotaped also some of these sessions. I had no influence over the 
topics the class worked with, or the ways in which the topics were handled. 
However, the teacher said that she made some adaptations due to my presence. 
The episodes that are included in this paper are based on video and audio 
recordings. All three episodes take place on the same day but in different class-
room settings, partly in a whole class situation and partly when the children are 
working in small groups.  

Furthermore I will discuss the relation between multiplication and division 
by analysing excerpts from two Norwegian textbooks on the level where division 
is first introduced as a formal arithmetic operation. The textbooks that are chosen 
are all recent editions adapted to the current Norwegian national curriculum, 
LK06 (Kunnskapsdepartementet, 2006).  

Finally I will discuss a classroom episode from a Norwegian school where 
three 2nd grade pupils (eight years old) are working on a specific problem. This 
episode is also videotaped. 

The classroom episodes on division 
Episode 1 
This is a whole class situation and the class is working with halving. First they 
have been rehearsing with numbers by saying out statements like “half of eight is 
four”. Afterwards the teacher picks out 10 plastic cubes from a box and asks two 
children to come to the board. Following the earlier activity they establish that 
“half of ten is five”. The teacher then shares out the cubes in a “one for you – one 
for you” manner and when all the cubes are shared out, the two children count 
their cubes and confirm that they have five each. This lays the foundation for the 
perception of division as ‘sharing equally’ and that sharing between two is the 
same as halving. Next the teacher picks out eight plastic cubes from the box and 
asks two children to come to the board. A third child is given the cubes and is 
asked to share the cubes equally between the two others. After the sharing 
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process is completed the two children find that they have four cubes each and the 
teacher prepares the following sentence on the board 

Here the children are expected to suggest what should be filled into the blank 
fields.  After having completed the sentence the teacher writes with mathematical 
symbols 8 ÷ 2 = 4, and says out while writing: “Eight divided by two is four”. 
The teacher states that the sign ÷ is “another way of saying divide by or share 
between”. After another example of the same kind the situation is changed into 
sharing between five children. First, Kyle, who is sharing out, is given ten cubes. 
He gives one cube at a time to each of the five children until there are no more 
cubes left. The children now verify that they have two cubes each and 10 ÷ 5 = 2 
is written on the board. Next Kyle gets 20 cubes to share between the same five 
children and the following conversation takes place while Kyle is doing the 
sharing.  

Teacher: Does anyone think they know the answer already? 
Amy: Four. 
Teacher: Why do you think the answer is going to be four? 
Amy: When they were going round with ten they had two, and then they 

just had to double that.  
In the dialogue above Amy shows that she is able to find the answer by 
generalising. She knows that 10 divided by 5 is 2, and from this she infers that 20 
divided by 5 must be 4. It seems that she is seeing a general pattern in the sense 
that when the amount to be shared is doubled, the outcome for each person will 
also be doubled. I support this claim by the fact that she is actually using the 
word ‘double’ in her utterance, hence she is not just going from 10 to 20 but 
from 10 to “double 10”.  

Episode 2 
Here the children are sitting in groups of four and they are playing a game in 
pairs that involves solving division tasks. The tasks are given with numbers and 
symbols only, for example 8 ÷ 4 = __ . They have centicubes available, and a 
calculator that they use to check their answers. At the bottom of the task sheet is 
written “Knowing division facts up to 25 ÷ 5”. Amy and Alice are playing 
together and when they get to 20 ÷ 4 they are stuck. They sit for some time 
without coming up with any suggestion about how to solve the task and I decide 
to intervene. I suggest that they leave that particular task for a while and instead 
try with some other numbers. I ask then “what is eight divided by two?” The 
answer “four” comes immediately. Then I ask “what is eight divided by four?” 
Again the answer comes immediately, “two”. I continue by asking “what is 

___ shared equally between ___ is ____ 

 

___ shared equally between ___ is ____ 
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twelve divided by two?” The answer “six” comes without hesitating. My next 
question is “what is twelve divided by four?” and then there is no answer.  

In Episode 1 Amy observed that if the amount to be shared was doubled the 
outcome would be doubled. Here I had hoped that she or Alice would make the 
observation that if the number to share between was doubled the outcome would 
be halved. They do not seem to make that observation. I continue to try to help 
them by inventing a situation and the following conversation takes place.  

Frode: Imagine that you have twelve apples and you are going to share 
between you and Amy, then you would get six each … right? 
You just said that. But what if you had the same twelve apples 
and also Jack and Jamie [sitting opposite them at the table] 
should have a share.  

Alice:  We would share all. 
Frode:  Yes, and what would happen with your lot of apples then? 
Amy:  I would give three of mine to Jamie and she would give three 

of hers to Jack.  
Frode:  Then you have done twelve shared out between how many? 
Amy:  Four. 
Frode:  And how many are you left with? 
Alice: Three.  
Frode: Now imagine that you have twenty apples and you are going to 

share between yourself and Amy. If you have twenty apples. 
Alice:  So it’s ten each. 
Frode: Ten each. 
Amy: Five each, between all of us. 

In this dialogue the girls, probably supported by my way of presenting the 
situation, develop a way of dividing by four by successive halving. In the final 
part of the dialogue, with 20 apples, it seems that both girls envisage the 
imaginary sharing process going on at the table. Alice makes a stop after the first 
halving, saying “so it’s ten each”. Amy, however, says out almost simultaneously 
“five each, between all of us” indicating that she has done the two successive 
halvings in her mind before stating the final result. The model that is used here is 
the splitting model (Confrey, 1994).  

Episode 3 
In the last episode Amy wants to solve 15 divided by 5. She cannot come up with 
an immediate answer and after a short while of thinking she says “I’m going to 
use the cubes”. She then counts 15 cubes which she distributes one by one into 
five heaps. When she has finished she counts the cubes in each heap and states 
“Fifteen divided by five is three”.  
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In this case none of the strategies that she had developed and used earlier in 
the lesson were applicable so she falls back on the basic strategy of sharing out 
one by one and then counting the result.  

Textbook presentations of division 
In school, multiplication is usually presented and worked with before division 
but problems involving multiplication and division are solved by children long 
before they have been exposed to any formal teaching on the subject (Mulligan 
& Mitchelmore, 1997; Neuman, 1991). In a Norwegian textbook for 4th grade 
(Solem, Jakobson, & Marand, 2006) the first formal encounter of division is 
through the following problems (p. 51).  

Three children eat two pizza slices each. How many do they eat altogether? 
3 · 2 = __ . They eat __ pizza slices altogether.  
There are six sweets left. Tom and Eric share them. How many do they get 
each? 
6 : 2 = __. They get __ sweets each. 

At the bottom of the same page is written: “Multiplication and division are 
inverse arithmetic operations. 6 : 2 = 3 and 3 · 2 = 6.”  

The first situation in this example will most naturally be modelled as 2 + 2 + 
2 = 6 whereas the second situation will be 3 + 3 = 6, or 2 · 3 = 6. The 
interpretation 2 + 2 + 2 = 6 is meaningless in the situation with the sweets. 
Despite of this the book links it to 3 · 2 = 6 which elsewhere in the book is taken 
to mean three lots of two. This example can be linked to the following example 
discussed by Vergnaud (1988, p. 144). 

Connie wants to buy 4 plastic cars. They cost 5 dollars each. How much does 
she have to pay? 

a) 5 + 5+ 5 + 5 = 20 

b) 4 · 5 = 20 

c) 5 · 4 = 20 

d) 4 + 4 + 4 + 4 + 4 = 20 

Commenting on the four procedures a) – d) Vergnaud writes: ”Procedure d is 
meaningless in terms of cars and costs. […] Young students apparently are aware 
of this and never use procedure d. So there is a strong asymmetry between 
procedures b and c” (p. 146). Therefore the multiplicative situations in the 
                                                 

 

1 All excerpts from textbooks are originally written in Norwegian and translated by me.  
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textbook are not conceptually the same, and to see that they are mathematically 
equivalent requires knowledge of commutativity of multiplication.   

In another book (Alseth, Kirkegaard, Nordberg, & Røsseland, 2006) the 
authors seem to be conscious about presenting situations giving rise both to 
partitive and quotitive division. On page 104, under the heading “We practice 
division”, there are three monkeys holding four bananas each. Below the picture 
is written “We write 12 : 3 = 4”. On the side of the picture there are two fantasy 
creatures, and one of them says “Now I have shared equally. That gave 4 to 
each”. The other one says “Yes, that is correct because 4 · 3 = 12”. On page 105 
is another example presented by the text “20 carrots are shared out between 
a number of zebras. Each zebra gets 5 carrots. How many zebras will get 
carrots?” A picture with four bunches of carrots, five carrots in each, is 
shown, and the two fantasy creatures are saying: “Look, it is enough for 
four zebras. That is correct because 4 · 5 = 20”. Also here it seems that 
commutativity of multiplication is tacitly assumed because the situation with the 
monkeys and the bananas really should have been modelled by 3 · 4 = 12. 

The situational aspect (Neuman, 1999) is clearly different in these two 
examples. In the example with the monkeys a partitive situation is modelled, and 
in the example with the zebras a quotitive situation is modelled. However, when 
the answer is tested using multiplication both examples use a model where the 
dividend is measured with the divisor. To do this in the partitive situation (12 : 3 
= 4) would require that the number 3 is taken to represent the number of bananas 
in each round in a similar way as in the example with the 28 marbles from 
Neuman mentioned earlier.  

Commutativity of multiplication 
It is important for many purposes that the children develop an understanding of 
the commutativity of multiplication. In some of the textbook examples discussed 
above it may seem that commutativity is tacitly assumed in order to see 
multiplication and division as reverse operations. Also for making calculations 
easier it is important to use commutativity, in particular if one of the factors is 
large and the other is small. Through working with problems connected to 
models for division I have become interested in the process through which 
children develop understanding for the commutativity of multiplication. If multi-
plication is regarded as a unary operation, which is natural for young children 
(Vergnaud, 1983), the two factors will have different roles, and therefore the 
situation is not commutative (three lots of two is not the same situation as two 
lots of three). It is only later, when models involving area or number of combi-
nations are introduced, that the roles of the factors are symmetric, and multi-
plication will be viewed as a binary operation. I will give an example to show 
how a child constructs his own model of thinking to justify commutativity in a 
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situation which is not at the outset a commutative situation. This example is 
taken from a Norwegian classroom. 

Three boys, age eight, are sitting together working on the following problem.  

Today is Kenneth’s birthday. He is eight years old. There are 20 children in the 
class and each child will light eight firecrackers to celebrate Kenneth’s 
birthday. How many firecrackers do we need altogether?  

Kenneth, himself being one of the three boys, starts by counting “two, four, 
six … “, and he suggests that the answer will be 160. He supports his thinking by 
saying “We can take every twenty. In a way every twoeth2 just that we take a 
tenner.” Harry objects, saying “it is not the tenners we are counting, it is eight.” 
Then Kenneth says “I know that but every twenty because we were twenty 
children.” Kenneth continues to talk and he also starts writing on a sheet of 
paper: 20 40 80 100 120 140 160 180. He counts the numbers to make sure that 
he has eight entries and seems a bit puzzled by the answer 180 since he got 160 
the first time.  

At the same time Brian is sitting quietly writing on his sheet of paper: 8 = 16 
= 24 = 32 = 40 = 48 = 56 = 64 =  and so on. Obviously he is adding eight at a 
time and he keeps track of how many times he does this. Kenneth walks over to 
him, looks at what he has written, and counts the number of entries. He counts to 
19 and says that one more is needed. Adding one more eight Brian arrives at 152. 
(The error is due to the fact that at two instances he has added four instead of 
eight.) Now there are three different solutions. Kenneth seems to think that both 
his and Brian’s way of thinking should lead to the same answer, and the fact that 
they have come out with different answers must be due to some computational 
error. Kenneth says “Eight times twenty, eight twenty times or twenty times 
eight, twenty eight times, ‘cause this is the same you know.”   

These children have not been formally taught multiplication so I interpret 
what is happening here to express how they intuitively perceive the situation. All 
three boys are making composite units iterable (Steffe, 1994) which is essential 
for establishing a multiplicative situation. Brian and Harry are counting eights, 
which might be the most natural in this case, but Kenneth is counting 20s. Hence 
they iterate on different composite units, and at least Kenneth expects that the 
two approaches should give the same result. This amounts to establishing 

                                                 

 

2 Here Kenneth is not using the usual Norwegian words for ‘every second’ but a constructed 
word (‘hvert toende’) which I translate to ‘every twoeth’, a construction corresponding to ‘every 
twentieth’. 
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commutativity of multiplication. In the beginning Kenneth cannot justify his 
thoughts very clearly but suddenly he says:  

Yes, it is like this, ‘cause, twenty, for each child, everybody sends up, this 
(pointing to the numbers on the paper) is one firecracker for each child, two 
from each child, three from each child, four from each child, five from each 
child, six from each child, seven from each child, eight from each child. I am 
eight years old.   

The expression on his face and the tone of his voice indicate that at this point 
he made a discovery and was able to express in words why it would work to take 
20 eight times.  

Afterwards Kenneth starts to scrutinise Brian’s calculations. He does not 
finish it but goes back to his own paper where he writes 20 + 20 + 20 + 20 + 20 + 
20 + 20 + 20 = . He and Brian go through this together and find the answer 160. 
Now the teacher intervenes and asks them to look at Kenneth’s first attempt and 
the erroneous step from 40 to 80 is soon discovered. It takes more effort to 
discover the errors in Brian’s calculations but with the help of the teacher the two 
instances where four is added instead of eight are found and they all agree that 
the correct result is 160.  

Kenneth’s calculations correspond to procedure d) in the example from 
Vergnaud (1988) discussed before, and Brian’s calculations correspond to proce-
dure a). It could be argued that Kenneth’s procedure is meaningless in the sense 
that it seems as if he is adding children to obtain firecrackers. My interpretation 
of what he is doing is that he tries to get around this and he struggles to find a 
way of justifying his thoughts. This leads to interpreting the number 20 as one 
firecracker for each child. In this way he is really adding firecrackers, 20 for each 
year of his age, and there is consistency between the left and the right hand side 
of the calculations. Compare this example to Neuman’s (1991) example 28 : 7 = 
4 where the 7 is reinterpreted to mean marbles per round instead of boys. In the 
same way Kenneth reinterprets the number 20 to mean the number of fire-
crackers for each year of his age instead of children.  

In the example with the firecrackers it is clearly much easier to count eight 
20s than twenty 8s. Hence Kenneth’s strategy is more efficient, which probably 
is the reason why he chooses it in the first place. Commutativity is not obvious 
for these children, and the two numbers (8 and 20) have different roles, 8 
represents firecrackers (or years) and 20 represents children. I find it interesting 
to observe that Kenneth is working with two different unary operations at the 
same time, and that he is able to justify that both operations will give the solution 
to the given problem. I interpret his expression “this [the number 20] is one 
firecracker for each child” that he is describing the function operator (Vergnaud, 
1983) where he takes the number of firecrackers from the whole group per year 
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of his age (20) times the total number of years (8). Brian uses the scalar operator, 
thinking that 20 children will send up 20 times as many firecrackers as one child.  

Final comments 
In the development of multiplicative thinking there is a goal that children should 
see multiplication and division as inverse operations. It could be argued that this 
is advantageous for both their conceptual and procedural knowledge (Hiebert & 
Lefevre, 1986) of multiplication and division. In terms of conceptual knowledge 
the argument is that pupils should develop the understanding that dividing by a is 
the same as multiplying with 1/a, thereby developing understanding for the 
multiplicative inverse. In terms of procedural knowledge it will make compu-
tations more efficient if one can solve division problems by evoking knowledge 
about the multiplication table, in particular when doing long division. I will argue 
however, that in children’s first encounter with division, important conceptual 
development may be lost if the children are not given time to investigate division 
as a process in its own right. In children’s first encounter with the concept of 
division, which commonly is in situations involving sharing equally, the multipli-
cative structure is not readily apparent. As the classroom examples in this paper, 
and also a number of other studies, show, children treat division as an indepen-
dent process without linking it to multiplication. Despite the fact that the class 
where I made my observations about division recently worked with multipli-
cation there is no sign of employing multiplication facts in solving the problems 
with division. This is coherent with the findings of Neuman (1991, 1999) who 
worked with children of about the same age as I did. Commenting on the view on 
division as reverse multiplication Marton and Neuman (1996) write “[I]t was not 
with division of this type that most of the children in Neuman’s investigation 
addressed the problems” (p. 319). 
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Different Views – Teacher and Engineering 
Students on the Concept of Function 

Olov Viirman 
University College of Gävle, Sweden 

Abstract: This study analyses what kind of conceptions student  teachers and engineer-
ing students have about the function concept, and how these conceptions differ between 
the two groups. The study was conducted through questionnaires, and 34 students at a 
Swedish university participated. The function conceptions of the students have been 
classified according to modified versions of models presented by Vinner and Dreyfus, 
Sfard, and DeMarois and Tall. The study shows that the students primarily have oper-
ational conceptions, with only a couple of students having structural conceptions. The 
study also shows distinct differences between prospective compulsory school teachers 
and engineering students, where the former have less developed functional conceptions. 

Theoretical framework 
Different approaches have been developed to explain the mechanisms governing 
concept acquisition. For example, in mathematics education there has been con-
siderable discussion concerning the distinction between concept definition and 
concept image, the concept definition being the formal mathematical definition, 
while the concept image is a much wider concept, representing “the total cogni-
tive structure that is associated with the concept, which includes all the mental 
pictures and associated properties and processes.” (Tall & Vinner, 1981, p. 152). 

Regarding the concepts themselves, Sfard (1991, 1992) speaks of the duality 
of mathematical concepts, in that they can be regarded both as processes and as 
objects. While “there is a deep ontological gap between operational and struc-
tural conceptions” (Sfard, 1991, p. 4), the two are not mutually exclusive, but 
rather complementary. Sfard (1991) has also formulated an influential theory of 
concept formation. According to this model, concept formation consists of three 
consecutive stages: interiorization, where you get acquainted with the processes 
behind the concept by performing operations on already familiar mathematical 
objects; condensation, where you get more familiar with the concept, gaining 
increasing capability to switch between different representations of it; and reifi-
cation, where you gain the ability to view the concept as an object in its own 
right. For Sfard, this last step is qualitatively different from the first two. 

Previous results on the concept of function 
The process of reification is by no means an easy one. Several studies (e.g. Hans-
son, 2006; Norman, 1992; Sfard, 1992; Even, 1990; Vinner & Dreyfus, 1989) 
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show that even students who have come far in their studies, and in some cases  
practicing teachers, do not have a reified, but rather a process-oriented, view of 
the function concept. Sfard claims that this needs to have consequences for the 
teaching of mathematics. One should not introduce structural descriptions of 
concepts until they are needed, and, more specifically, one should never intro-
duce new concepts in structural terms (Sfard, 1992). 

When students first encounter the definition of a concept, more often than 
not they already have concept images, which may be more or less developed. Of 
course the concept definition will influence the concept image, but when the con-
cept is used in practice, it is almost always the concept image which is evoked. 
(See e.g. Attorps, 2006; Hansson, 2006). Earlier studies (e.g. Akkoç & Tall, 
2002; Tall & Bakar, 1991) indicate that prototypes, that is, standard examples of 
the concept used for a pedagogical purpose, tend to contribute strongly to the 
concept image, even though they are often chosen in order to highlight just one 
particular aspect of the concept. Hence different aspects of the concept image 
may very well be contradictory, since different aspects of the concept image are 
used in different contexts. This is called compartmentalization, and has been de-
tected in several studies (e.g. Eisenberg, 1992; Vinner, 1992; Vinner & Dreyfus, 
1989). Moreover, many studies (e.g. Akkoç & Tall, 2002; Meel, 2000; Vinner & 
Dreyfus, 1989) have shown considerable discrepancies between students’ con-
cept definitions and concept images. 

The study 
Research questions 
Although students’ understanding of the function concept has been studied by 
quite a number of researchers internationally (e.g. Akkoç & Tall, 2002; Meel, 
2000; Even, 1993; Tall & Bakar, 1991; Vinner & Dreyfus, 1989), not that much 
research on the subject has been done in Sweden. Therefore, one of the aims of 
this study is to investigate what the participating students’ conceptions of the 
function concept look like, and, if possible, to compare this with the results of 
studies conducted elsewhere. Hence, the first research question posed in this 
study is: What is the students’ understanding of the function concept? More spe-
cifically: How do the students define the concept of function? What do their con-
cept images for the function concept look like? 

In my opinion a good conceptual understanding of mathematics is of special 
importance for prospective teachers. Therefore I have chosen to conduct my 
study on a group of student teachers, and to compare these students with a group 
of engineering students. These students also study quite a lot of mathematics, but 
their goals are different, and more aimed at the use of mathematics in a practical 
setting. The second research question posed in this study is: What are the differ-
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ences in the understanding of the function concept between the teacher students 
and engineering students in the study? 

Methodology 
The study was conducted at a Swedish university, and the participants were stu-
dent teachers currently attending a course in calculus (14 students), and first-
semester 5-year engineering students, also attending a course in calculus (20 stu-
dents). The student teachers had taken more than one semester of mathematics 
(except for the 3 students aiming at upper secondary school, who had only taken 
a course in algebra), while the engineering students had only taken a course in 
algebra.  

The data were gathered by questionnaires. The students were asked to asso-
ciate freely regarding the concept of function, and to construct a “mind map”. 
They were then presented with a number of mathematical expressions and fig-
ures, and were asked to determine which of these represented functions and to 
rate the degree of certainty of their answers. Furthermore, they were asked for 
their opinion on the possibility of constructing a function with certain given 
characteristics, and finally they were asked to state their own definition of the 
concept of function. When classifying the answers, use has been made of cate-
gorizations presented by Vinner and Dreyfus (1989), Sfard (1991), and DeMarois 
and Tall (1996). 

Results 
The first research question deals firstly with the students’ definitions of the func-
tion concept. Classifying the definitions according to a modified version of a 
categorization developed by Vinner and Dreyfus (1989), it was found that most 
students gave definitions that could be described as process-oriented, and that 
only a small minority gave structural definitions. Furthermore, nearly a third of 
the students failed to provide any meaningful definition whatsoever. 

The classification makes use of the following eight categories, of which 
category 3 is not used by Vinner and Dreyfus. One is a “no answer”-category, 
and the order of the other seven categories more or less traces the historical de-
velopment of the function concept (see e.g Kleiner, 1989). The categories are the 
following (each followed by an example from the questionnaires, where T refers 
to student teachers and E to engineering students): 

1. Correspondence. A function is any correspondence between two sets that 
assigns to each element in the first set exactly one element in the other set. 

 A function always gives just one value when you insert a value. If you 
have one set which is the domain and insert one of those values into the 
function you get one of the values in the range. (T2) 

2. Dependence relation. A function is a dependence relation between two 
variables. 
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 A function depends on a variable. Depending on what value the variable 
has you get a unique value of the function. (E11) 

3. Machine. A function is a “machine” that transforms variables (which 
need not be numbers) into new variables. In this case no explicit mention 
of domain and range is made. 

 A ‘machine’ which to any input-variable assigns a specific number or 
something similar. (E5) 

4. Rule. A function is a rule. The difference from 3. is that a regular behav-
iour is expected, whereas the machine could conceivably perform totally 
different transformations of different elements. 

  A description of a pattern, which varies depending on different variables. 
(E7) 

5: Operation. A function is an operation or manipulation. Here the input 
values are assumed to be numbers, on which mathematical operations are 
performed to yield the output value. 

 A set of operations giving the same result if you insert the same value. 
(E17) 

6: Formula. A function is a formula, an algebraic expression or an equation. 
 A function is a formula for which value y assumes for any given value of 

x. (T1) 

7: Representation. The function is identified, in a possibly meaningless way, 
with one of its representations. 

 A curve where one x-value has one y-value. (T3) 

8: No answer or a meaningless answer. 
 A function is an explanation of how something works. (E4) 

It is worth noting here, that the definition given in the textbook used by the stu-
dent teachers (Rodhe & Sigstam, 2000, p. 88) is of category 2, while the textbook 
used by the engineering students (Adams, 2006, p. 24) gives a definition of type 
4 (but with explicit mention of domain and range). 

Table 1. The number of students’ answers in the eight categories 

Category 1 2 3 4 5 6 7 8 

Number of students 1 1 6 2 8 6 6 4 

Two students fall into categories 1 or 2, the categories that resemble the struc-
tural definition of function, while 10 students end up in categories 7 or 8, failing 
to give a useful definition. 



Viirman 

 101 

The second part of the first research question concerns the students’ concept 
images for the function concept. According to Even (1990) the essential features 
of the concept of function in the modern sense are arbitrariness and univalence. 
Arbitrariness means that the value of a function at any given point is independent 
of the value at other points, but also that the domain and range can be arbitrary 
sets; specifically they need not be sets of numbers. Univalence simply means that 
for each element in the domain there is a unique element in the range.  

In classifying the students’ conceptions of the function concept, a model con-
structed using elements from the classifications of Sfard (1991) and DeMarois 
and Tall (1996) has been used. The students’ conceptions of the function concept 
have been ordered into pre-operational, operational and structural conceptions. A 
student with a pre-operational conception has a rudimentary and inconsistent 
concept image. A students’ conception of function is operational if she clearly 
views a function as a process, and structural if she is also able to view the func-
tion as an object in its own right. Using this classification it was found that 12 
students had pre-operational and that 20 students had operational conceptions of 
the function concept. Two students had something resembling a structural con-
ception. In the following, some interesting aspects of the answers to the ques-
tionnaire, and their implications regarding the concept images of the students, 
will be noted. 

The most common concept to appear in the mind maps (20 students) was the 
concept of graph or curve. Yet only one student mentions the vertical line test. 
Common are also such calculus concepts as derivative and integral, as well as the 
function machine and terms like formula, expression and operation. As for the 
essential features mentioned above, 8 students mention domain/range, and 4 
mention univalence. Notable by their absence are such concepts as inverse func-
tion and composite function, as well as examples of standard functions. Only a 
handful of students mention any of these concepts in their maps. The students 
were also asked to determine whether a number of expressions and graphs could 
be said to represent y as a function of x. Some of these expressions, together with 
the distribution of Yes and No answers, are presented in Table 2 below. 

Table 2. The distribution of students’ Yes and No answers concerning certain 
of the expressions 
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We see that a majority of the students consider both of the first two expressions 
as being functions y(x), despite the fact that such “functions” would not be univa-
lent. Also, a substantial number of students reject constant functions. Finally, an 
overwhelming majority of the students accept split domain functions. Here, some 
interesting inconsistencies appear. For example, the function 
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y x  

is constant on part of its domain, but is still accepted as a function by more than 
twice as many students as the function 3=y . It is also interesting to compare this 
with another question in the questionnaire, where the students were asked about 
the possibility of constructing a function which is integer-valued for all non-
integers, and non-integer-valued for all integers (this example was found in Vin-
ner & Dreyfus, 1989). About half of the students accept the existence of such a 
function, and 12 students construct one. But quite a few of those who reject it, do 
so based on an assumption that a function must be defined by one formula on the 
whole of its domain, despite having had no problem accepting the piecewise de-
fined function above. On the other hand, of the students who accept this type of 
function, only two reject the Dirichlet function, so the students who have grasped 
the idea of arbitrariness appear to have done so in a consistent manner. 

The second research question concerns the differences in the understanding 
of the function concept between engineering and teacher students in the study. 
The following table (Table 3) shows the distribution of the students’ definitions, 
divided according to student category. 

Table 3. The number of students’ answers in the eight categories, split accord-
ing to student category (teachers: 14 students; engineers: 20 students) 

Category 1 2 3 4 5 6 7 8 

Student teachers 1  1  1 3 6 2 

Engineering students  1 5 2 7 3  2 

We note that of the student teachers, 8 end up in the two last categories, that is, 
fail to provide a useful definition. This percentage becomes even larger if the 
three student teachers aiming for upper secondary school are discounted. They 
end up one in category 1 and two in category 6. Hence 8 out of 11 prospective 
compulsory school teachers cannot give a useful definition of the function con-
cept. Of the engineering students, only two fail at this. Conversely, only two stu-
dent teachers end up in the three operational categories 3, 4 and 5, whereas 14 of 
the 20 engineering students do so. However, when it comes to applying the func-
tion concept, few obvious differences between the two groups can be seen. The 
student teachers tend to be less confident about their answers, and there are those 
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among the student teachers who give incorrect answers even to the most straight-
forward examples. But on certain examples, for instance those concerning univa-
lence, the student teachers perform better than the engineering students.  

Instead, the most striking difference is seen in how the students handle the 
construction of the integer/non-integer function mentioned above. None of the 
prospective compulsory school teachers are able to give an answer. Indeed, only 
one student even tries. The rest just answer “I don’t know”, and several claim not 
to have understood the question. On the other hand, all of the prospective upper 
secondary school teachers, and most of the engineering students, have given a 
correct construction, and even those who believe no such function can exist have 
provided some kind of argument in favour of this view. 

Finally, looking at the classification of the students’ conceptions of the func-
tion concept, obvious differences are seen. Of the student teachers, one has a 
structural, 4 operational and 9 pre-operational conceptions of function. Among 
the engineering students one has a function conception which is approaching the 
structural, 16 have operational and only 3 have pre-operational conceptions of 
the function concept. If we discount the prospective upper secondary school 
teachers, the tendency is even clearer. Among the prospective compulsory school 
teachers, 9 have pre-operational and only 2 have operational conceptions. So it 
seems fair to say, that the prospective compulsory school teachers in the study 
have less developed conceptions of the function concept than the engineering 
students. There also appears to be a difference between different types of teacher 
students, but the number of prospective upper secondary school teachers partici-
pating in the study is too small for me to dare draw any such conclusions. What 
can be said, however, is that while even the prospective compulsory school 
teachers with the most developed conceptions of the function concept still have 
rather inadequate conceptions, the function conceptions of the prospective upper 
secondary school teachers are among the richest in the study. 

Discussion 
This study shows that the participating students primarily have operational, and 
in some cases pre-operational conceptions of function. This agrees well with 
earlier research on the subject, which has indicated that a reified concept of func-
tion is rare among students of mathematics. But, contrary to several earlier stud-
ies (e.g. Akkoç & Tall, 2005; Meel, 2000; Vinner & Dreyfus, 1989), the students 
in this study show no great discrepancies between their definitions and concept 
images of the function concept. A probable reason for this is the definitions they 
have encountered during their studies. It is explicitly stated in (Akkoç & Tall, 
2005), and implied in (Vinner & Dreyfus, 1989), that in Turkey and Israel (where 
the respective studies were conducted) the structural Bourbaki definition of func-
tion is used in schools, something which is not at all the case in Sweden. 
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But even though the students’ concept images tend to agree rather well with 
their concept definitions, their concept images are not very rich, something which 
agrees with (Hansson, 2006), where it is shown that the function concept is not 
so well integrated into the general conceptual structure of the students. The lack 
of more specific concepts, and examples of standard functions, mentioned earlier 
could be seen as contradicting earlier results regarding the importance of proto-
types on the formation of concept images (e.g. Akkoç & Tall, 2002; Tall & 
Bakar, 1991), but it could just as well reflect an attempt at generality on the part 
of the students. Furthermore, several examples of compartmentalization were 
found. For example almost all students stated that the diagram showing a curve 
with a loop did not represent a function, but at the same time a majority of the 
students claimed that it represented a function. Here it should also be noted that I 
make no claim to generality regarding my results. I am well aware that the va-
lidity of my study could be greatly enhanced by for example increasing the num-
ber of participating students, and also by including interviews with students.  

As noted above, several distinct differences between the engineering students 
and the prospective compulsory school teachers in the study were found, regard-
ing both the function conceptions and the answers to certain of the questions in 
the questionnaire. Before beginning the study, I had some preconceptions about 
this. Since mathematically interested and gifted students in Sweden tend to study 
to become engineers rather than teachers, I had expected differences in math-
ematical ability. But I had expected the student teachers to show greater interest 
and ability regarding conceptual understanding and expressing mathematical 
ideas in words, since these are important abilities for the teaching of mathemat-
ics. When it turned out that most of the student teachers had taken quite a lot of 
mathematics at a university level, my hopes were raised further.  

But, contrary to these expectations, the conceptual understanding of the 
prospective compulsory school teachers was less developed than that of the engi-
neering students. Also, their general attitude and low self confidence is cause for 
concern. A few of them include words like “hard” and “difficult” in their mind 
maps, and rate their level of certainty below average on all statements. Asked to 
define the function concept, one student writes: “Is part of a graph over a coordi-
nate system. Eeeh… I can’t explain it.” (T6) This is a problematic answer, com-
ing from a prospective teacher. This uncertainty was most apparent in their an-
swers to the question about the integer/non-integer function. Almost none of the 
prospective compulsory school teachers even tried to answer this question. 
Among the answers were these: “Firstly, I had to read the question about five 
times before I understood a little. Then, when I understood a little, I couldn’t pic-
ture this function in my head.” (T4) and “I have no idea. I won’t even think about 
it, since I don’t intend to study functions in any detail.” (T13) This last answer I 
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find especially troubling, since it displays an attitude which I have a hard time 
reconciling with wanting to become a teacher.  

One last point I want to make concerns the difference between the prospec-
tive upper secondary school and compulsory school teachers. Although the num-
ber of prospective upper secondary school teachers participating was very small, 
and no real conclusions may therefore be drawn about them, I still find the dif-
ference between them and the rest of the prospective teachers in the study strik-
ing. One thing worth noting is that, at the university where the study was con-
ducted, they take the same classes as mathematics students and engineering stu-
dents, while the rest of the prospective teachers take classes specially designed 
for student teachers. One would expect such classes to be more focused on con-
ceptual understanding, for example, but in the light of this study one has to won-
der whether these classes are appropriately designed. I find it problematic that 
future teachers, having taken more than half of the mathematics classes required, 
have such low mathematical self confidence, such undeveloped conceptual 
understanding, and such a hard time expressing themselves mathematically. 
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Different Versions of the ‘Same’ Task: 
Continuous Being and Discrete Action 
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Introduction 
In this paper I probe subtle differences in lessons which are based around similar 
tasks, by analysing the experiences they afford students, and identifying what is 
available for students to construct from these experiences. This provides a new lens 
for looking at mathematical activity in lessons, and at how teachers’ own mathe-
matical senses act out to afford different mathematical experiences for learners. 

There is a resurgence of interest in task design as an important factor in mathe-
matics teaching (Sierpinska, 2004; Burkhardt & Schoenfeld, 2003). An international 
society has been founded and a number of publications show that design has to be 
taken seriously not only for extended, multi-stage, authentic and assessment tasks 
(as described by, for example, Wittman, 1998), but also for the very ordinary things 
we ask students to do day-to-day in classrooms (e.g. Swan, 2006; Mason & 
Johnston-Wilder, 2006; Karp, 2007). Runesson (1999), Emanuelsson (2001) and 
their colleagues offer mathematical variation as a critical feature of the process of 
task design while others (e.g. Watson 2004) focus on the affordances of tasks as 
structures for potential mathematical activity. Variation informs us about 
affordances. 

However, over-reliance on task design as a vehicle for improvement in mathe-
matics teaching is known to be a flawed approach on its own. There is a steady 
history of research which shows how the designers’ intentions become altered as 
their tasks are taken up and used in classrooms when teachers apply their own 
perspectives and local purposes (Stein, Grover, & Henningsen, 1996; Stylianides & 
Stylianides, 2008; Palhares, Gomeros, Carvalho, & Cebolo, 2008). Emphasis on the 
ensuing activity – what is actually done, talked about, learnt, and how this takes 
place – places pedagogy and culture alongside tasks as equally important factors. 

Analysing lessons 
For about ten years I have been developing descriptions of the mathematical and 
pedagogical choices which make a difference to learners’ mathematical experiences. 
Various attempts to do this have been published, and yet whenever I think a parti-
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cular approach is ‘finished’ another arises from my reflections on classroom obser-
vations, and my own mathematical activity, alone or with others. Analysis which 
starts with questions and prompts (Watson & Mason, 1998; Watson, 2007) focuses 
on what learners are asked to do; analysis which starts with examining variation 
among presented examples (Watson and Mason, 2006) focuses on the material from 
which learners can generalise. Both of these are different from analysis which starts 
from comparing mathematical possibilities offered through the teacher’s role in 
interactive sequences (Watson, 2004; David & Watson, 2007); this latter approach 
to analysis tends to focus on how learners’ engagement can be mathematically 
shaped. There are other methods of analysis around, such as categorising different 
epistemological aspects of mathematics which are emphasised during a lesson (e.g. 
Andrews & Sayers, 2005). All these approaches are valuable, but none completely 
capture the full sense of how one lesson is mathematically different from another. 
Mathematical activity appears to be fractal, and to unfold differently depending on 
the starting focus (see also Davis & Sumara, 2006). By unfolding layers of activity 
from one perspective, the folds hide other aspects which might be equally important. 

The nature of mathematical activity 
For this paper I have returned to mathematics itself, and its assumed structures, 
concepts and definitions, to think about differences in lessons. In the TIMSS seven-
nation video study ‘mathematical quality’ was ‘measured’ by a team of well-quali-
fied mathematicians (Hiebert, Gallimore, Garnier, Givvin, Hollingsworth, Jacobs et 
al., 2003) and used as a comparative characteristic. The categorisations were very 
vague, it being assumed that people with strong mathematical qualifications can 
make such judgements. Something more informative is needed for teachers and 
teacher educators whose interpretations of ‘mathematical quality’ are necessarily 
limited by their own mathematical experiences. Variation theory (Marton, Runesson, 
& Tsui, 2004) provides a tool for doing this to some extent, but I am going to show 
that there is more. I do this by looking at ‘the same’ task taught by different 
teachers.  

Rather than looking at tasks to predict activity (using the distinction developed 
by Christiansen & Walther, 1986), I am going to look at the nature of public mathe-
matical activity to find a new lens for seeing task implementation.  

My method is to use classroom observation and video to reflect on the nature of 
classroom mathematics. To focus on ‘public activity’ means to ask the questions: 
‘What is the class supposed to be doing right now? What are they supposed to be 
thinking about? What is being said and done, and by whom, that is shaping and is 
shaped by the activity?’ 
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Using the ‘same’ tasks 
Several teachers in the same school were teaching groups of 12 year-olds who were 
more or less similar in previous attainment.1. All teachers agreed to use a similar 
approach to teaching loci using a combination of straight-edge-and-compass 
constructions and the physical whole class activity of acting out loci by following 
instructions to ‘find a place to stand so that ….’ (e.g. ‘find a place to stand so that 
you are the same distance from these two points’; or ’… all two metres from this 
point’; etc.). All classes constructed circles, perpendicular bisectors of line 
segments, and angle bisectors and some other loci. An indoor open space was 
available to do the physical task, and teachers chose to do this at different points 
during their lessons. Students were intended to relate their physical experience of 
standing according to such rules to the processes of geometrical construction. This 
kind of connection, enabling shifts between three very different representations 
(words, actions and diagrams), is one of the characteristics noticed by Krutetskii 
(1976) as typical in gifted mathematics students. The problem for teachers is, 
therefore: how can all students be helped to make the connections that the highest 
achieving students are expected to make for themselves? This problem is exacer-
bated by the affordances of the physical task: it is possible to take a ‘gap-filling’ role 
without constructing a personal interpretation of the instructions, and hence not to 
have an experience of being a point in relation to other points to refer to when 
reproducing the locus on paper. It is also worth mentioning that these students had 
little experience of geometry beyond some knowledge of angles, and the naming of 
polygons. 

The five lessons were compared qualitatively in a variety of ways. I looked at 
the nature and amount of variation offered in the task, the questions and prompts 
used by teachers, whether teachers worked with whole classes or small groups, 
interaction patterns, combinations of ‘doing’ and ‘thinking’ prompts, the emphasis 
on reasoning, and whether teachers simplified their questioning when students could 
not, at first, answer. These foci for analysis were selected on an underlying theory 
that students can only respond to what is made available to them in the words, 
actions and artefacts of the lesson. In other words, the mediational devices and 
instructions used by the teacher and other students, whether intentional or not, shape 
the learners’ experience of the lesson. In these five lessons, this shaping turned out 
to be mathematically different even though the actions and artefacts were similar. 
The details of the data are omitted here in order to focus more quickly on what I 

                                                 
1 The data on which this analysis is based was collected by my colleague Els De Geest during work 
on a joint project funded by Esmee Fairbairn Foundation (05-1638); the analysis is my own 
responsibility and the school context is disguised. 
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claim to be essential differences, these having been arrived at by comparing features 
of lessons under the categories described above. 

There were strong similarities between the lessons: all teachers used a mixture 
of asking, prompting, telling, showing, referring students to other students’ work 
and so on. All teachers focused on getting students to explain their choices and 
actions. All students had to work out as much as they could themselves about how to 
do the constructions, either by reasoning or by listening to others’ reasons in whole 
class discussion. The tasks were presented in remarkably similar ways and, in varia-
tion theory terms, offered similar variation in similar ways due to the mathematical 
structures being taught and the choice of loci with which to work, which had been 
agreed by the team. Teachers’ intentions were similar, and all of them praised 
accuracy and sought for reasoned action. Written work was similar, and students 
might report similar experiences after the lessons. Analyses in terms of variation and 
affordances and constraints, and situational norms, and the nature of questions and 
prompts, and the kinds of demands made on learners provided very similar results. 
None of the dichotomies used in the literature to compare lessons superficially 
(open/closed; teacher-centred/learner-centred; traditional/reform) were helpful in 
identifying difference, yet as a mathematical observer I know that the mathematical 
affordances of the lessons varied. They provided different kinds of intellectual and 
mathematical engagement. The components of the tasks were offered in different 
orders by different teachers; teachers said different things to students at different 
times; there was a range of different patterns of participation for individual students 
in each lesson; the various possible constructions were offered in different orders.  

To express these different kinds of engagement I shall draw on the five observed 
lessons to present phenomenographic constructions of three possible lessons to show 
that different mathematical learning experiences can arise from lessons which are 
very similar. As a way of presenting research this is valid because everything that is 
included is from an actual lesson, and hence has authenticity and credibility in the 
field.  

Lesson one 
The lesson started with students working as a class, with guidance from the teacher, 
working out how to use a pair of compasses to construct circles, a locus with 
constant distance from a straight-line segment, perpendicular bisectors and angle 
bisectors. The teacher repeatedly referred to compasses as the tool for reproducing 
equal lengths: he said this himself, and also asked students ‘what can we use to get 
equal lengths?’ and ‘what do compasses do for us?’ and ‘why would I use the 
compasses?’ Students were then asked to compare the perpendicular bisector and 
angle bisector constructions, and to identify the role of compasses within these. The 
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words ‘same distance’ and ’equidistant’ were used frequently throughout the lesson. 
The teacher invited students to demonstrate their ideas on the board, and also used 
the strategy of placing ‘wrong’ points to encourage students to understand the role 
of constraints. The physical activity took place at the end of the lesson, and was 
treated briefly as a summary of the rest of the lesson.  

The focus on the power of the tool was reinforced by comparing its role in 
constructing the two different bisectors, so that students were looking at the 
positions of, and relationships between, the equal lengths are in the constructions. 
By taking this approach, learners were able to talk about relationships within the 
diagrams as if they were caused by the equal lengths, rather than equal lengths 
merely being a drawing method. It was made possible for them, by this focus, to get 
a sense of classical geometrical tradition. The physical activity used the same 
language of ‘equal lengths’ in instructions and descriptively where necessary and 
offered no further public engagement of mathematical thinking, merely rehearsal in 
a different context, using a different representation, with nothing said about how to 
make equal lengths in physical action. 

Lesson two 
In this lesson, students were asked to locate points which fulfilled certain rules: 
points which are all the same distance from another point, two points, two lines and 
so on. This was done on the whiteboard with discussion, and also on paper, the 
initial approach being consisting of rough diagram and reasoning, and compasses 
being introduced later as a way of joining up the points for the circle and locating 
particular points. The emphasis was on how to use them, rather than why they 
worked. The predominant language was about points which ‘obey rules’. The word 
‘locus’ was introduced during discussion of where all such points would be. During 
the second part of the lesson students took part in the physical representation of loci 
in response to the same language as was used to find points. Students were expected 
to link the different parts of the lesson (pencil and paper construction, whiteboard 
drawing and physical activity) through the use of the same language to express the 
same ‘rules’ for placing points and people, and an increasing use of the word 
‘locus’. One student called out: ‘this is what we have just done!’ 

In each case the emphasis was on collections of points, each of which has a 
particular property, and on joining up the points. The role of the compasses was not 
emphasised; they were treated as a means to join up points which are equidistant 
from other points. Verbal instructions about finding individual points with properties 
were the most repeated sound of the lesson. 
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Lesson three 
In the third lesson, the physical activity took place first, and the teacher offered a 
story to encourage visualisation: standing the same distance from two trees; steering 
a ship between two icebergs. Students then returned to the classroom and were asked 
to construct the same loci.  

The physical activity happened first so that students were expected to have some 
memory to draw on when they came to make constructions in pencil and paper. No 
public instructions for constructing were given, instead students were asked to work 
out how to do them using their memories. The teacher worked hard with small 
groups of students asking them what they remembered and how they could 
reproduce it. In general she said ‘you can use the compasses’ when equal lengths 
were needed, sometimes showing them how to do it and then asking them to do it 
again for themselves. A significant amount of time was given at the end of the 
lesson to the task of developing statements that linked the physical activity to the 
pencil-and-paper constructions. Students had to express the isomorphisms between 
the situations. 

Discussion  
The three lesson possibilities are likely to have left different traces in students’ 
minds about what the key ideas were about loci:  

• trajectories derived from relationships between equal lengths;  
• sets of points which have certain properties;  
• reproductive constructions of physical situations.  

From a mathematical viewpoint these are equivalent in terms of relationships and 
properties, but in terms of learning experience they are different and memory of the 
lesson content is likely to be triggered by different stimuli in future. I am reluctant to 
arrange these in any sort of hierarchy of mathematical challenge: each invites 
learners to shift from obvious, intuitive visual and physical responses to the more 
formal, ‘scientific’, responses required for mathematics. In each of these lessons 
there are emphases on relationships between variables, properties, reasoning about 
properties and relationships among properties, so available hierarchies based on 
assumptions about cognitive challenge and ways of seeing (e.g. van Hiele 1959) do 
not identify difference – and yet different mathematics is learnt – or at least the 
‘same’ mathematics seen, described, and triggered in different ways. It is important 
to sustain the delicacy of these differences in mathematical terms, rather than to dive 
into pedagogic differences between the lessons (e.g. how much groupwork, what 
sort of questions, patterns if interaction etc.) which will give less information about 
mathematical didactic structure. 
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Task differences 
In each of the lessons above, interpretations of the task have been made by indivi-
dual teachers, after team planning. In these lessons we do not see any reduction of 
challenge as is reported about adoption of published tasks. The teachers have 
discussed common approaches, which loci should be used, and how lesson should 
be resourced in terms of space and equipment. Overt activity is similar; a more 
casual observer might say they were the same lesson. The effects of tool use on 
drawn diagrams were the same, although the sense of appropriation might be 
different, and the mathematical content was equivalent. 

What differed was what was emphasised by the teacher, but I am not saying that 
this was merely talk. Rather, the difference was, I claim, due to the underlying 
general relationships within which the teacher saw the task as being embedded. 
Because teachers see these differently they therefore use different language, diffe-
rent sequencing and different emphases so that different comparisons and connec-
tions can be made – yet all of these are equally mathematical. 

In each lesson such differences were continuous. Each lesson was coherent 
throughout in the relationships among its tasks, language, emphases, prompts and 
other components. Each lesson was an expression of how the teachers saw the links 
between the tasks, tools and learners within their understanding of what loci 
generally entailed. 

This realisation releases me from attempts to describe good mathematics 
teaching as a collection of actions, utterances, tasks, and examples, and instead leads 
me to look for the continuous threads of mathematical awareness the teacher is 
revealing by her/his actions and decisions. We can then see teaching mathematics as 
the more-or-less fluent expression of an understanding of a mathematical context for 
the current work.  

The implications of this insight are that we can see mathematics teaching as a 
way of being mathematical, and the education of mathematics teachers as a 
mathematical experience. 
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This paper discusses the ongoing project in mathematics education at University 
of Gävle. The aim of the project is to develop and test methods that refer to 
improve learning in mathematics from school to university level. Furthermore, 
the aim is to develop a research environment for learning in mathematics that can 
serve as a platform for the development of teachers´ competence in mathematics 
education. Fundamental for this project is that it combines as well student’s 
learning, teacher's learning as researcher’s learning.  

The project will promote the research question, which has to do both with the 
theory and practice. The overall research question is: Does the teacher’s way to 
handle the object of learning (e.g. the fraction concept, equation concept, 
function concept, etc.) in the classroom influence on pupils’/students’ learning?  
What are the critical aspects for pupils’/students’ learning? 

As a theoretical framework we use the Learning Study model designed by 
Marton and Tsui (2004). The model is based on the variation theory (ibid.), 
which originates from the phenomenographic research tradition carried out in 
Sweden in the later 1960s and early 1970s. The variation theory has two 
fundamentals; learning always has an object and the object of learning is 
experienced and apprehended on different ways. According to this theory the 
most powerful factor concerning pupils’ learning is how the object of learning is  
handled in teaching situation; what aspects are in focus - what aspects are variant 
and what are invariant.  

Our ongoing study is three years research project. During the spring time 
2007 we have done a preliminary investigation in a compulsory school. Our 
study deals with the fraction concept and how it is handled in the lesson. In this 
study one compulsory school teacher together with university teachers planned 
two lessons of the fraction concept for two classes in grade eight. The pupils 
were tested before and after the lessons and the lessons were video-recorded. The 
test-results for each class, before and after the lesson, were compared. The results 
from our preliminary investigation indicate that pupils have poor-developed 
conceptions about fraction concept. Especially, they have difficulties with 
addition and subtraction of fractions with different denominators. In order to 
increase the pupils’ understanding of fractions, we propose a number of actions 
for future planning of learning studies. Autumn 2007 we have started our 
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learning studies in upper secondary school and preschool. Two upper secondary 
teachers and one student teacher and one preschool teacher are involved. Year 
2008 we are going to extend our project to other schools and districts. We have 
also planned to test Learning Study-model on studies on university level and to 
develop methods for distance learning in mathematics. The whole project will be 
evaluated and documented during 2009. Based on experiences from the study a 
new plan for future research is created. 

Reference 
Marton, F & Tsui, A. B. M. (2004). Classroom discourse and the space of learning. 

Mahwah. New Jersey. London. 
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On the Equivalence Relation in Students’ 
Concept Image of Equation 

Iiris Attorps, University of Gävle 
Timo Tossavainen, University of Joensuu, Finland 

The concept of equation is, in principle, very elementary in mathematics. One 
can say that any mathematical expression of the form A = B , where A and B are 
relevant mathematical objects belonging to the same category, is an equation. 
However, a large variety of vague and incorrect conceptions about equation exist 
among mathematics teachers and student teachers. Only a minority of students 
can state a mathematically satisfactory definition for equation (Attorps & 
Tossavainen, 2007a, 2007b). 

Seen from the point of view of mathematics and the language of mathe-
matics, a student’s concept definition of equation can be wrong basically for 
three different reasons: failure of understanding the equivalence relation = ; 
misconceptions related to the truth value of the statement including the equality 
sign; or the confusion about choosing A and B from incompatible mathematical 
categories. With respect to mathematics at school, the latest reason is, never-
theless, only marginal. 

We have reported elsewhere on our preliminary results on how teachers’ and 
students’ misconceptions related to the understanding of the properties of the 
equivalence relation are related to the misconceptions that teachers and students 
possess about equation and that the belief that the equation must always convey a 
true statement strongly affects how students themselves define equation (Attorps 
& Tossavainen, 2007a, 2007b).  

Since our original questionnaire did not completely reveal the relationship 
between the understanding of the mathematical properties of the equality relation 
and the concept of equation, we have collected new and larger data from Finland 
and Sweden (N=64) using a newly developed questionnaire to study this 
relationship and further to understand what kind of concept definitions students 
possess about equation. As in the previous cases, we use a phenomenographic 
research method in our analysis of the data (e.g. Marton & Booth, 1997). We also 
acknowledge the dual nature of mathematical concepts (e.g. Sfard 1991), the 
distinction of mathematical knowledge to the procedural and conceptual 
components (Haapasalo & Kadijevich, 2000), and the APOS theory (e.g. Asiala 
et al., 1997) when we classify students’ concept definitions of equation and 
estimate how mature they are in a mathematical sense. 
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Students’ conceptions of the notion of equation are often based on the exist-
ence of a variable to be solved out and, generally, dominated by the operational/ 
procedural view of the concept. Also, the expectation that an equation must 
always be a true statement was clearly revealed from our data. These conclusions 
are indicated e.g. by the fact that even 88% of the students claimed that  
is not an equation. 

By our analysis, it appears that at least one third of the students do not 
understand the reflexivity of the equality. For example, 39% of students claimed 
that  is not an equation. Also the failure of understanding symmetry of the 
equality is common. Half of all the students think that  is not an equation 
but merely “an answer to an equation”, e.g. to . The classification of 
equations and their answers to different categories raises an immediate question: 
how well do these students understand the logic and the language of mathematics 
if they write ? The same phenomenon appears with the transitive 
property and with the similar generality: For example, 55% of the students 
claimed that  is an equation and only a few of those who answered 
correctly motivated their answers by pointing out that there are several equations 
in the expression. 

All in all, the misconceptions about equations which are related to the pro-
perties of the equivalence relation are surprisingly common among mathematics 
student teachers.  
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Detecting Mathematical Abilities in Students’ 
Solutions of Mathematical Problems 

Thomas Dahl, Kristianstad University College 
Thomas Biro, Växjö University 

Mathematical talent appears to be constituted by a spectrum of abilities that each 
individual displays in different degrees. Identifying and classifying the 
mathematical abilities is a major task, and V.A. Krutetskii has done a thorough 
study in this field in the Soviet Union in the middle of the last century 
(Krutetskii, 1976). Krutetskii claimed that mathematical ability could be looked 
upon as divided into seven categories. Those abilities are shown to be more 
abundant in capable students than in others. His technique was to design 
mathematical test items addressing these abilities one by one, and use factor 
analysis on the students’ responses to justify his claim.  

While Krutetskii uses different sets of problems to address the specific 
abilities and thereby justifying his system of abilities, we will do it the other way 
around. Our purpose is to give the student a set of rich mathematical problems, 
and by analysis of written solutions and interviews of the students, we try to 
detect what abilities the students display.  

The design of problems is of crucial importance for our study. To meet 
Krutetskii’s categories of abilities our problems must apply to the students’ 
creativity and flexibility in thinking, and also give them good opportunities to 
express generality in their reasoning. This leads us to look at so called rich 
mathematical problems as candidates for our test problems. Different researchers 
have used the term “rich mathematical problems” in a partly different meaning, 
but we have found Hedrén’s et al. definition close to our demands (see Hedrén, 
Hagland, & Taflin, 2005; Taflin, 2007). Tasks that are supposed to stimulate 
students to formulate generalizations can be found in various works treating 
mathematical problem solving. One such work is Mason, Burton, and Stacey 
(1985).  

To collect data, an extended task sheet with three or four selected problems is 
used. These problems are of two types:  

1. Problems to be worked out individually by the students in the classroom 
during a limited amount of time.  

2. More complicated problems to be mulled over during a period of two or 
three weeks.  

To promote the reliability of the investigation, data from this latter type of 
problems is supplemented by a clinical interview with the problem solver. 
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Classroom tasks have been made for full classes on five occasions, both with 
upper secondary school students and first year mathematics student teachers. A 
few of these students also have completed the long-term tasks, but this far no 
interviews have been conducted. We expect, however, more students to complete 
the long-term tasks in the near future.  

The research question in focus is: 

By looking at the outcome from students’ solving of rich mathematical 
problems, which of Krutetskii’s mathematical abilities can be identified, 
and how are these abilities revealed? 

In the analysis of the results we first look at each problem in the light of the 
Krutetskian scheme and make our own interpretation of that in the context of that 
specific problem. We then look at the students’ solutions in order to detect which 
of these abilities they use in solving the problem.  

It is a well-known fact that working with challenging problems foremost 
attracts high achieving students. For these students problem-solving activities 
might meet their needs of more adequate education in mathematics. We believe, 
however, that with properly designed tasks, it is possible to fruitfully work with 
problem solving in a mixed-ability classroom. 

Knowledge about the abilities that a certain problem might reveal can be 
used as a parameter when classifying problems into some kind of taxonomy.  It 
may also increase our understanding of the nature of mathematical talent.  
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En bro mellan forskning och skolvärld för vuxnas 
matematiklärande – ett nordiskt samarbetsprojekt 

Hans Melén (med flera) 
Åsö gymnasium 

Hur förs didaktiska forskningsresultat ut till skolvärlden? Hur kommer de den 
vuxenstuderande till godo? Hur kan lärare synliggöra för praktiken intressanta 
forskningsområden? Hur kan dialogen mellan lärare och forskare utvecklas?  

Den matematikdidaktiska forskningen i Norden är i kraftig utveckling men 
dialogen mellan forskare och praktiker är, enligt våra erfarenheter, begränsad. Detta 
har vi, projektdeltagarna, upplevt i egenskap av lärare, forskarstuderande, forskare, 
skolledare och studievägledare. Därför kartlägger vi vilka etablerade kontakter, vilka 
behov och vilka utvecklingsmöjligheter som finns. Vår utgångspunkt är alltså 
personliga erfarenheter från våra olika yrkeskategorier i Sverige, Norge och 
Danmark. 

Vi undersöker hur matematikdidaktiska forskare för ut sina resultat och rön till 
matematiklärare inom vuxenutbildningen. Det är i detta sammanhang av intresse att 
undersöka om detta sker på ett sådant sätt att de påverkar undervisningspraktiken. 
Vidare undersöker vi huruvida kommunikationen även sker i motsatt riktning, dvs. 
att lärare formulerar undervisningsproblem som bör beforskas. Är det möjligt att 
formulera forskningsprojekt där både forskare och problemformulerande lärare sam-
arbetar? 

Som ett hjälpmedel i vår kartläggning har vi en webbplats1 för fortlöpande 
dokumentation och kommunikation med organisationer och aktörer utanför projek-
tet. Vår metod utgörs i huvudsak av att vi använder enkäter, riktade till främst lärare, 
forskare och skolledare. Ytterligare viktiga inslag är artiklar och seminarier, där vi 
har för avsikt att öka förutsättningarna för erfarenhetsutbyte och informations-
spridning. Exempelvis planerar vi ett stort seminarium i Oslo i början av juni. 

Projektet är inte ett forskningsprojekt i formell mening utan snarare ett kart-
läggningsprojekt med en kvalitativ utgångspunkt. Med detta menas att vi inte är ute 
efter att med statistisk säkerhet presentera representativa slutsatser. Snarare vill vi 
fånga upp intressanta tankar och idéer och, i förlängningen, utgöra en utgångspunkt 
för framtida projekt. 

                                              
1 Se  http://www.cormea.org/  
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I den här föreläsningen presenterade vi projektets visioner och delresultat av vår 
kartläggning. Projektet (Connecting Research and Mathematics Education for 
Adults, CORMEA) finansieras med hjälp av Nordplus Voksen och är ett samarbete 
mellan: 

Centrum för Flexibelt Lärande i Söderhamn 
Danmarks Pædagogiske Universitetsskole, Aarhus Universitet (Köpenhamn) 
Københavns VoksenUddannelseCenter, KVUC 
VoksenUddannelseCenter Thy-Mors 
Vox – nasjonalt senter for læring i arbeidslivet (Oslo) 
Vuxenutbildningen Nordanstig 
Vuxenutbildningen Skellefteå 
Vuxenutbildningen Östhammars kommun 
Åsö Vuxengymnasium (Stockholm) 

Föreläsare är Per Bengtson, Niklas Bremler, Johan Forssell, Mikael Gehlin, Dan 
Jonsson, Svein Kvalø, Hans Lagenius, Lena Lindenskov, Hans Melén, Søren 
Mielche, Sven Qviberg och Knud Søgaard. 
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Mathematics Education:  
Discourse, Knowledge and Power 

Eva Norén 
Stockholm University 

I am working on a doctoral thesis concerning multilingual students and mathematics 
education. This is a short presentation discussing the possibility of using certain post-
modern theories in mathematics education research. In my analyses of the empirical 
data I whish to try to use Foucault’s conceptions of knowledge and, power, but also his 
concept of discourse according to Gee, can it be possible? 

Introduction 
I am working on a study concerning minority students in bilingual mathematics 
classrooms in Sweden. For almost two years I have followed bilingual teachers 
and students in mathematics classrooms. The mathematics teaching and learning 
were going on in Swedish and Arabic. In this short presentation I would like to 
consider theoretical perspectives, how and what usefulness they may have. It also 
brings methodological consequences. A theory I wish to try as a thinking lens 
derives from Michel Foucault. Foucault’s work is by some commentators looked 
upon as a paradigmatic example of ‘post modern’ thought. Mathematics educa-
tion and postmodernism yet have rarely addressed each other (Walshaw, 2004). 

Theoretical perspectives 
Within my study sociocultural influences are important, but as I find discourses 
(Gee, 1999), and structures of power as well as concepts of knowledge present in 
the bilingual mathematics classrooms context I look for different ways of analys-
ing empirical data. Foucault’s thinking includes three key concepts: discourse, 
power and knowledge (Walshaw, 2007). With his theory it might be possible to 
track historical, cultural and social circumstances as a way of understanding 
events in the mathematics classrooms. 

Thoughts about my study 
Students’ differences in mathematics achievement have become wider and there 
are concerns about minority students’ marginal performance in mathematics in 
Swedish mathematics classrooms (PISA, 2006; Skolverket, 2007). Often stu-
dents’ low performances in mathematics refer to deficiencies that call for 
remediation in the students, in their languages or cultural backgrounds. One ex-
ample is their “lack of Swedish-ness” (Parszyk, 1999; Runfors, 2003).      
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Instead of looking at deficiencies it is possible to view the languages and cul-
tural backgrounds of the students as resources for learning mathematics and as a 
potential for their future lives. Apple (1996) said about education: 

Education is deeply implicated in the politics of culture. The curriculum is 
never simply a neutral assemblage of knowledge, somehow appearing in the 
texts and classrooms of a notion. It is always part of a selective tradition, 
someone’s selection, some group’s vision of legitimate knowledge. It is pro-
duced out of the cultural, political, and economic conflicts, tensions, and com-
promises that organize and disorganize a people (p. 22). 

If mathematical knowledge is to be looked upon as socially constructed rather 
than found, mathematical knowledge and meanings has to be located in social 
practices – in discoursers of mathematical communities as in a mathematics 
classroom. Learning then occurs collaboratively in the context of shared events 
and as each ones experiences, languages and cultural backgrounds are valued as 
resources for learning mathematics – students become empowered (Cummins, 
2000). Walshaw (2007) refers to Foucault’s concept of power and says it is con-
stituted through discourses and that power circulates in practices. She writes: 

In the course of Foucault’s work, power came to be considered as something 
quite different from coercion, prohibition, or domination over others by an in-
dividual or a group. He took issue with analyses that express power merely in 
centralised and institutionalised forms in which an individual or group deliber-
ately imposes will on others. … As it turns out, Foucault maintained that power 
underlies all social relations from the institutional to the intersubjective (p. 20, 
22). 

Knowledge and power 
It is difficult to separate power from knowledge – there is no power relation 
without a field of knowledge being constituted. Foucault is redefining power as 
coextensive with knowledge (Walshaw, 2007).  

In one of her articles Setati (2005), a South African Mathematics Education 
researcher, claims that language is always political, and language is a symbolic 
resource in educational as well as social and employment markets (Bourdieu, 
1991). Setati asked what language and discourse practices teachers used in multi-
lingual mathematics classrooms. She found that two categories of mathematical 
discourser emerged; procedural and conceptual. At a micro level of the class-
room interaction language was political, as power relations existed in the class-
room. The mathematics teacher projected herself as a certain kind of person in a 
certain kind of activity. English was used in procedural discourse, which accord-
ing to Setati highlighted the political tension in the multilingual classroom. Eng-
lish was also used as the language of regulation and assessment - the language of 
authority. Students’ (and teachers’) mother tongue – Setswana – was used as a 
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language of solidarity and contextual discourse. Setswana also functioned as the 
language of conceptual discourse. The teacher’s personal experience made her 
struggle with the tensions between her identities as an African and as a math-
ematics teacher. It was evident in the way she used languages but also in the dis-
courses she used during teaching. She was “aware of the political role of lan-
guage during apartheid in South Africa and the power of English in enabling 
learners to gain access to educational and socioeconomic resources in South 
Africa” (p. 460).  

Remarks  
It is not possible to simply transform South African research findings to a Swed-
ish context. But it might be useful to analyse empirical data from multilingual 
mathematics classrooms with inspiration from theories as that of “Knowledge 
can’t be separated from power”, “language is always political” and “power rela-
tions exist in multilingual mathematics classrooms”.  

Sjögren (1997), referring to Hyltenstam (1996), wrote:  

In Sweden the principle of home-language teaching as a way to provide stu-
dents with an academically sound bilingualism has been accepted for more than 
twenty years, but still has great difficulties in becoming incorporated as a basic 
element into the school curriculum. (p. 7) 

Since 1997 the view on students home-languages or mother tongues have 
changed. There has also been a shift in official policy which language to use for 
instruction in mathematics education. The Stockholm Mother-tongue teaching of 
mathematics project enacts an example. But still there are hesitations among 
teachers, politicians and administrators. Sjögren (2002) writes: 

It’s not so much Swedes themselves who are ‘Swedish,’ but institutions-the 
Swedish schools, parliament, police, press, and so on. And being institutions, 
they are extremely slow to change. They support the existing ideology and way 
of thinking. (p. 16) 

Concluding questions 
This takes me back to Foucault. Is it possible to use his theory, connecting know-
ledge, power and discourses, as a way of understanding teaching and learning in 
bilingual mathematics classrooms in Sweden? What does it implicate to be a bi-
lingual student in a bilingual mathematics classroom in Sweden? What Dis-
courses, mathematical and others are used? How do bilingual teachers use the 
languages, in what Discourses?   
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Förskolebarns utveckling av ”pre-matematik” 
Maria Reis 

Högskolan i Borås 

Denna presentation fokuserar mitt avhandlingsarbete. Avsikten är att problema-
tisera analysen av en videofilmad episod samt diskutera möjligheter och hinder 
med studien. Som verksam förskollärare och lärarutbildare är jag intresserad av 
hur yngre barn (1-3 år) lär matematik och på olika sätt löser matematiska 
problem. Mitt forskningsarbete syftar till att synliggöra yngre barns matematiska 
aktiviteter i interaktion och socialt samspel med kamrater och vuxna. En möjlig 
utveckling av studien är att också studera något äldre barn (5-7 år) för att kunna 
införa en kontrast och genom en tvärsnittsstudie belysa barns utveckling av tidig 
matematik. Det övergripande syftet med studien är att försöka beskriva hur barn 
i förskolan utvecklar begynnande matematisk förståelse.  

Som en grund för min avhandlingsstudie finns följande frågeställning: Hur 
kan de yngsta barnens utvecklande av begynnande matematisk förståelse i lek 
och i eget valda eller styrda aktiviteter identifieras, beskrivas och förstås?  

Forskningsfrågorna utgår ifrån antagandet att yngre barn utvecklar och lär sig 
matematik genom eget agerande i lek och andra situationer.  

Avsikten med studien är att studera variationen av barns agerande och 
lärande samt att synliggöra variation av de pre-matematiska aspekter som barn 
möter och urskiljer. Forskningsansatsen som inspirerar mig är variationsteorin 
(Marton & Booth, 1997; Marton, Runesson, & Tsui, 2004). 

Hur barn lär matematik är ett område som är välstuderat. Många forskare har 
tagit utgångspunkt i Piagets teorier och försökt att utveckla eller motbevisa hans 
forskning om hur barn skapar egen matematisk förståelse och hur barns 
begreppsbildning utvecklas (t.ex. Gelman & Gallistel, 1978; Baroody, 1987; 
Fuson, 1992; Gelman & Meck, 1992). 

Jag använder följande tentativa definition av ”pre-matematik”1: barns 
strukturerande och systematiserande och försök att erhålla symmetri/asymmetri 
eller annan ordning utifrån de ”matematiska normer” som vi har skapat i vår 
kultur.  

Yngre barn kan sägas lösa dilemman med matematisk innebörd utifrån de 
meningserbjudanden/handlingserbjudanden (Gibson & Pick, 2000) de själva/ 
andra barn, materialet/aktiviteten och sammanhanget erbjuder dem. Barns 
utveckling av pre-matematiskt kunnande är en aktiv, skapande process som beror 
på egna erfarenheter och vad vuxna genom kultur och sociala normer definierar 

                                              
1 Detta är min egen definition. 
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som matematik. Barn möter till exempel föremål som kan beskrivas med 
geometriska uttryck, antal eller symboler. De agerar på olika sätt beroende på 
situationen eller sammanhanget och sin egen och kamraters förmåga. 

Med utgångspunkt i ovanstående kommer jag att redogöra för en första 
analys av en filmsekvens där tre barn (mellan 2 år och 2 år, 3 mån.) interagerar 
med varandra samt med en så kallad ”plockbox”2 i byggrummet på en förskola. 
Episoden är tagen från en pilotstudie till avhandlingsarbetet. Aspekter som jag 
vill diskutera och synliggöra i min analys kan relateras till pre-matematisk 
förståelse/lärande, interaktion och socialt samspel. 
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2 En burk med hål i locket i vilket man kan stoppa olika objekt (i detta fall kuber, cylindrar, 
trekanter och stjärnformade klossar). Plockboxen ger ett visst handlings/meningserbjudande då 
det finns ett ”rätt” sätt att använda den. Barnen ska strukturera och systematisera sitt handlande 
utifrån de geometriska objektens egenskaper och de hål/mönster som finns i locket.  
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Mathematical Problems in School Context 
Research – a Teacher Perspective 

Eva Taflin 
Högskolan Dalarna, Sweden 

The purpose of this paper is to discuss the teachers’ reflections when taking part in a 
research project. Research methods have included video- and audio recordings, 
stimulated recall with the teachers and interviews. One result was that the teachers 
found that all pupils could work with the problem and achieved better than expected. At 
the same time they displayed job satisfaction. Another result was that the teachers 
started to formulate their own research questions as a consequence of taking part in the 
research project. A third result is that even if the problems implied another way of 
teaching, the teachers intend to continue as usual. 

Introduction 
This study is a part of a larger project that is called RIMA (Rich Mathematical 
Problems), where 4 classes (pupils aged 13 – 16 years) and their teachers worked 
with 10 rich problems during their lessons in mathematics for three years. ´Rich 
problems’ are defined as problems which are especially constructed for 
mathematics education in a school context. Seven specific criteria for ´rich 
problems’ will also be formulated.  

Background and aim 
In a research project, Cooney (1999) states that teachers are traditional in their 
instruction and have difficulties formulating more complex questions. Boaler 
(2003) describes the connection between theory and practice: “What it means to 
have broad conception of knowing – for research and for mathematics”. She 
stresses the necessity to develop new knowledge about the practice of school. In 
an earlier study Boaler (1997) points out that pupils acquire poor conceptual 
understanding in traditional teacher directed instruction. Teachers have few 
possibilities to develop their practice into research. One reason for this might be 
that there is a great difference between teaching and research (Jaworski 2003). 

From the perspective of this background, the present project set up to study 
the following research question: What influences the teachers when working with 
a RIMA problem?   

Result and discussion 
The teachers gained knowledge by taking part in the research project. One 
teacher said: “Then it would be interesting, too, to compare with a common 
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lesson ... and see on what occasion they learn best”. He continued with the 
following thoughts, as his own instruction with the text book was compared with 
the RIMA problems: “If this is not better our way […] to have a great problem?  
Then it is better, anyhow, to do a little variation”. One teacher said at the post 
interview: “what activity, you know, it is quite incredible”. The same teacher 
explained in the post interview: “You know, I have, I follow my book pretty well 
and I'll continue to do that […] and now I have some tasks that I know I can 
run”.  

If we want teachers to do research, courses implying that the teachers do 
their own studies in their own practice, in the way Jaworski (2003) describes it, 
will be necessary. Several teachers thought that they worked in another way on 
the problem solving occasions. But these teachers, too, considered working with 
the textbook to be the way in which their pupils learn mathematics. The teachers 
formulated their own research questions as a consequence of taking part in this 
research project. Even if the RIMA problems implied another way of teaching, 
the teachers intend to continue as usual. 
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Epistemological Beliefs and Communication in 
Mathematics Education at Upper Secondary 

and University Levels 
Magnus Österholm 
Linköping University 

This short report presents the outline for a project that will commence in 2008. 
Beliefs of many kinds, and perhaps especially epistemological beliefs, are 

often described as an important factor in relation to learning – both from a more 
general perspective and also in particular when it comes to learning mathematics. 
However, the study of people’s beliefs is not a trivial matter. McLeod and 
McLeod (2002) note several different types of definitions of the term belief that 
are being used within the research community, but they also see a “general agree-
ment on the core commonalities of the construct” (p. 115). In order to discuss 
methodological problems one needs a more in-depth discussion about the 
definition of beliefs. As an example, if we limit ourselves to a cognitive perspec-
tive, we can on the one hand distinguish between knowledge and beliefs 
(Abelson, 1979), where beliefs are of a more subjective nature, for example that 
you are aware that different persons can have different beliefs about the same 
matter, while knowledge is something that is more collectively in common. On 
the other hand, we can focus on similarities between beliefs and knowledge, for 
example that both can affect how you express yourself when communicating 
with others or how you interpret situations you are faced with. Using this latter 
perspective, my study about students’ interpretations of mathematical texts yiel-
ded complex relationships between beliefs, prior knowledge and reading compre-
hension, where beliefs did not have a clear and independent effect on reading 
comprehension (Österholm, 2006). 

This project will study the communication in mathematics education at upper 
secondary and tertiary levels, where focus is on epistemological beliefs. Thereby, 
the mathematical content in itself is not primarily in focus, but the questions 
focus on how the mathematical content is treated, from an epistemological per-
spective. Regarding epistemological beliefs and communication, the following 
perspectives will be studied: 

• How epistemological beliefs can be seen as a part of communication; what 
types of beliefs are mediated in different situations? 
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• How epistemological beliefs can affect communication; how can beliefs 
affect how you express yourself and how you interpret what others have 
expressed? 

• How epistemological beliefs can be affected by communication; how can 
beliefs be affected by how someone expresses oneself and how you 
interpret this? 

Existing differences between upper secondary level and university level 
regarding mathematics education have been attended to in research, both inter-
nationally and also specifically for Sweden. Thunberg and Filipsson (2005) noted 
a gap between the content that is covered at the different levels in Sweden, and 
also a kind of cultural gap was noted (e.g., regarding the use of calculators). 
Whether such differences stem from differences in epistemological beliefs is 
unclear, and also if and how these differences affect the students’ epistemo-
logical beliefs. 

Regarding mathematics education at the university level, the teacher edu-
cation could be of special interest to study, since student teachers not only go 
through the transition from upper secondary to university level, but also go 
through a transition from being a student to becoming a teacher. Therefore, 
student teachers can be exposed to different epistemological perspectives through 
different kinds of courses; content courses focusing on the students’ own learning 
of mathematics and didactical courses focusing on their development as future 
teachers of mathematics.  

The perspectives and questions mentioned above will be studied at different 
educational levels: 

• At university level, the variation of communicational situations that the 
students face will be studied; the communication between students and 
other persons (such as lecturers, teachers, and tutors) and the communi-
cation in different types of courses within teacher education (such as 
content courses and didactical courses). 

• Upper secondary level is studied for comparison with university level. 

This project aims at producing results that are of interest from different 
perspectives: 

• Theory: To deepen the knowledge about beliefs, in order to create more 
in-depth models about how beliefs can affect or are affected by different 
educational situations. 

• Methodology: To develop existing methods for studying beliefs. 
• Practice: To deepen the knowledge about possible differences between 

upper secondary and university levels. To gain knowledge about possible 
variations within teacher education programmes and how these can affect 
students. 
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