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Preface

This volume contains the proceedings of MADIF 3, the Third Swedish Mathema-
tics Education Research Seminar, with an introduction by Christer Bergsten. The
seminar, which took place in Norrköping in January 23-25, 2002, was arranged
by SMDF, The Swedish Society for Research in Mathematics Education, in co-
operation with NCM, the National Center for Mathematics Education. The
members of the programme committee were Christer Bergsten, Barbro
Grevholm, Rolf Hedrén, Lisbeth Lindberg, and Anna Löthman. The local
organisers were Carina Appelskog and Christer Bergsten at the Department of
Mathematics at Linköpings universitet.

The programme included three plenary lectures, one plenary panel, two
theme groups, eight paper presentations, and a special forum for young
researchers. We want to thank the authors for their interesting contributions. The
papers have been reviewed by the editors, and some minor editorial changes have
been made without noticing the authors. The authors are responsible for the
content of their papers.

We wish to thank the members of the programme committee for their work
to create an interesting programme for the conference, and Carina Appelskog for
her valuable help with the preparation and administration of the seminar. We also
want to express our gratitude to the organiser of Matematikbiennalen 2002 for its
valuable financial support. Finally we want to thank all the participants at
MADIF 3 for creating such an open, positive and friendly atmosphere, contri-
buting to the success of the conference.

Christer Bergsten, Barbro Grevholm
Editors
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Challenges in Mathematics Education

Christer Bergsten
Linköpings universitet

In his opening plenary lecture Mathematics education in Sweden: A review of
research and developmental work, Ole Björkqvist reported from his overview
of research in mathematics didactics in Sweden, based mainly on questionnaires
sent to institutions of mathematics, pedagogy and teacher training at universities
and university colleges in Sweden. The aim was to provide a picture of the
current state of the field, its formal structure as well as the substance of research,
including its strengths and weaknesses, and suggestions for improvement. New
in Sweden is the increased participation of mathematics departments in this kind
of research, which does not only help spreading the research efforts more evenly
across the country, but also giving more focus to new areas of research.
However, considering the need to build new research efforts on previous
knowledge, it is important not to create gaps to the long and strong traditions of
research at the pedagogy and teacher training departments. There is a risk that
the maths departments do not develop this discipline to a specialty, and that
departments of education in this process become more hesitant to specialise in
the field. One strength in mathematics education in Sweden is the amount of
developmental work taking place at different arenas, and Björkqvist stresses the
importance that this work would channel itself into a developmental research
status, using the paradigm of a design or construction science. Another strength
is the noted willingness of cooperation between institutions. It is indeed a
challenge for the Swedish mathematics education research community to find
productive ways to channel the apparent strong interest and efforts as described
and analysed by Björkqvist.

Jan de Lange contrasted, in his plenary presentation, the New Math
movement with the Dutch Realistic Mathematics Education approach, linking it
to the present focus on mathematical literacy or proficiency as one of the main
general goals for mathematical education. In his paper Evolving assessment
practices: An international perspective, the focus is on how to accomplish the
difficult challenge of designing new ways to assess mathematics more as a
constructive, reasoning and insightful activity than merely reproductive. Nine
principles for assessment are outlined, based on the NCTM assessment
standards, and three competency levels are identified for successful implemen-
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tation of assessment designs. The first level concerns the handling of procedures
and concepts, the second is about connections between different domains and
representations of mathematics, and the highest level focus on mathematization,
generalization and argumentation. An interesting model, called the Assessment
Pyramid, integrates this three steps competency dimension with the dimensions
of mathematical domains and of difficulty of questions posed. De Lange claims
that a complete assessment program should cover all parts of this pyramid. He
also gives examples of students’ work with assessment questions within this
framework.

A common view of looking at the learning and teaching of mathematics is
that the conceptual content should be taught/understood before the standard
symbolism connected to it is introduced and trained. In her plenary address,
There is more to discourse than meets the ears: Looking at thinking as
communicating to learn about mathematical learning, Anna Sfard challenged
this view. Her focus is on the communicational approach to learning, according
to which the process of learning mathematics is a process of developing a new
discourse, i.e. new ways of communicating (with others or with oneself) about
mathematical terms. By the use of examples of interview protocols, Sfard shows
that for the student this means developing new vocabulary, new mediators for
communicating, and new meta-discursive rules. For the educator it is crucial to
know how such new discursive tools are created. The focus is then on the
learner’s use of these tools within the discourse. The rationale behind this view
rests on the fact that to learn new mathematical concepts or procedures one by
necessity must, in some way, communicate about these constructs. To overcome
this kind of learning paradox that words or expressions not yet understood must
be used in order to be understood, old discursive habits must be recycled in the
light of new meta-discursive rules.

In the panel discussion on The relationship between theory and practice in
mathematics education research, chaired by Rudolf Strässer, Morten Blomhøj
chose mathematical modelling as an example of interplay between theory and
practice, and identifies, from his experience of the practice of modelling work in
education, key objectives for relating theory to practice and vice versa. For
example, he notes that theories “need to be personalized and made concrete by
the teacher to be of use in practice”. Barbro Grevholm offers one example, on
the use of a computer program in elementary arithmetic, of how practice can lead
to theory, and one example of how theory can inform practice, on co-learning
partnerships between different actors in teaching and research. As one reason
why we need theories she mentions that out of our practice we have a need to
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reflect on our experiences in a systematic way. Thus, as an important object of
study she identifies teachers’ hidden theories on issues within mathematics
education. John Mason, in describing his own practices as a researcher, offers a
number of intriguing distinctions, principles and assumptions on the issue under
debate, such as the danger of mistaking the jargon of a rich practice for theory,
that a reactive-responsive practice is hard to communicate to others, and that
detailed descriptions of practices are more likely to lead to reproduction of
behaviour than to an awareness informing behaviour. In conclusion of the panel
discussion, the difficulty of framing practice is seen as one of the reasons to why
we need theory.

The seminar included two discussion groups in parallel sessions, one on the
topic Mathematical thinking and emotion, chaired by Jeff Evans, the other on
Mathematical thinking and achievement, chaired by Anne Watson.

In his introduction to the first topic, Jeff Evans notes that ideas of affect and
emotion in mathematics education research have developed from a focus on
individual characteristics to aspects of interactive processes of problem-solving,
seeing emotions more as social phenomena. The background paper by Thomas
Lingefjärd, To study mathematics in an engineering program, presents results
from a study on how students comprehend a reformed linear algebra course,
aimed at promoting collaboration and increased self monitoring by continuous
examination and journal writing, with a focus on understanding. Using survey
questionnaires and interviews as data, it was found, however, that fewer
students after the course than during the course were convinced that the course
improved their generic skills, and that the self confidence of students was low.
Examples from interview data indicate disappointing results as regards emotions
and attitudes towards the studies in the course.

In her background paper, Mathematical thinking and achievement:
Research issues, Anne Watson explores the notions of mathematical achieve-
ment and mathematical thinking, their multi-meaning character and possible
connections, in the light of recent research and debate. What are the necessary
components of successful learners? Are the characteristics of advanced
mathematical thinking related to all levels of doing/learning mathematics? The
discussion leads to one major research question, to be studied within context
and with careful definition: Does the development of mathematical thinking
improve mathematics achievement?

The seminar had a special forum for young researchers, titled New
directions, problems and solutions, chaired by Gilah Leder, who gives a short
report from the activities that took place.
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Eight submitted papers were presented and discussed in the two parallel
paper sessions, where to each paper one reactor had read the paper in advance
and opened up the discussions.

There has been an increased impact of semiotics on mathematics education
research during the last decade. It is in this vein that Arne Engström in his paper
Semiotik och matematikdidaktik (in Swedish; Semiotics and the didactics of
matehematics) gives an outline of some basic components and challenging
questions from the discipline of signs.

The results of mathematics teacher education is an area rarely studied in
Sweden. In her presentation Teachers’ work in the mathematics classroom and
their education - What is the connection?, Barbro Grevholm offers a contribu-
tion to this field as a part of an ongoing longitudinal study. By following up
what the former teacher students’ actual teaching look like when they work as
professional teachers, and relating this to their pre-service training, many
interesting issues concerning the relationships teacher-pupil, educator-teacher,
and researcher-educator-teacher are challenged. Examples from the study
illustrate the kinds of problems new teachers face in complex classroom
situations and how they sometimes manage and sometimes have problems to
take advantage of the relevant parts from their pre-service teacher training.

In the presentation The beginnings of algebraic thinking by Milan Hejny
and Graham Littler, a learning model for the arithmetic-algebra development is
described and illustrated by data from their experimental teaching. Of crucial
importance in this development are the steps from knowledge in action into
knowledge in words, and from the latter into symbolic language knowledge.
The model, which is based on a constructivist approach, emphasises that this
development is a long term process, and that it is a challenge to mathematics
educators to change established teachers’ traditional views on the teaching of
algebra.

Marj Horne and Doug Clarke report in Making a difference in the early
years from the extensive three years research and developmental project ENRP
(The Early Numeracy Research Project) in Australia, which involved 35 trial
schools and 35 reference schools with students from pre-school to the second
school year and their teachers. Focus was an a professional development
program on student numeracy. A six-points growth scale was developed to
assess students’ numeracy competence within different domains and be used in
the professional development of teachers, which took place on many different
levels. Results showed a significant advantage to the trial classes on long term
development of students’ growth points, and a documented teacher change.
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In his presentation Numerical skills and arithmetic performance, Bo
Johansson investigates the relationship between the ability to correctly write
numerals and perform arithmetic tasks. It is often stated that early practices to
write numerals may interfere with the learning of the number concept and
arithmetic skill. This view is questioned by Johansson, in agreement with some
early Swedish mathematics educators, and tested empirically by a series of
studies with young children. The results suggest that knowing to write numerals
concur with the development of the number concept, numerals providing a
means for handling numbers mentally.

The use of projects is challenging traditional mathematics teaching in
dimensions of role of the teacher, student motivation, and independent student
work developing learning strategies. The presentation Projects as an educa-
tional strategy by Marie Kubinova describes and discusses the rationale of
project work and outcomes of three projects for grades 6, 8 and 9. Student work
took place both inside and outside school, their spontaneous interest in the
projects created a working climate favouring a constructivist approach to
teaching.

One line of educational research has put the variation of the object of study
as critical for learning. In her presentation Learning velocity graphs - The case
of Laura and Fiona, Ulla Runesson illustrates how learning is dependent on the
pattern of variation - such as what is varying, what is invariant, what is left out
or taken for granted. For example, by changing one essential feature of a
demonstration, the teacher may insert one necessary dimension of variation but
take another one for granted. In the case shown in the paper the bi-directional
property of a velocity was kept invariant but the variation of the horizontal-
vertical dimension of movement was taken for granted, thus causing learning
problems.

That the process of completing a substantial diploma thesis may be a crucial
component of a teacher training program is well illustrated in the contribution
by Nada Stehlíková and Darina Jirotková, Process oriented research and its
reflection in pre-service mathematics teacher education - A case of diploma
thesis. The authors challenge the traditional content oriented diploma thesis at
their university by introducing a process-oriented way of working. The latter is
characterised by a long-term elaboration, student’s own experiments and intro-
spection, creating a mutual influence between student and supervisor, involve-
ment of supervisor in the topic, and a deliberate focus on the change of roles of
pupil, teacher, researcher, and expert during the process. Two cases are
described to illustrate the successful framework.
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Aspects of problem solving in mathematics education such as its rationale
and planning, from the teachers’ point of view, students’ conceptualisations and
their opportunities to learn from problem solving, are less studied in research
than student strategies and cognitive abilities in problem solving activities, but
are in focus in a longitudinal study by Eva Taflin, Kerstin Hagland, and Rolf
Hedrén. In their contribution Vad lär lärare och elever i år 7-9 via rika
problem? (in Swedish; What do teachers and grades 7-9 students learn from
working on rich problems?), examples of data from this study are presented and
discussed, which indicate the crucial role of the teacher on the educational value
of classroom work on working with rich problems. Critical factors seem to be
teacher beliefs on the aims of problem solving, problem presentation and the
follow-up of student solutions.

To learn, teach, and do mathematics is a complex human endeavour, as
witnessed by many observed problems in mathematics education worldwide, as
well as an abundance of joy and excitement. Mathematics education is a field
with long and strong traditions, and it is important to build on those experiences
that have proved viable. However, self criticism and change are key concerns
for a field to grow along with the needs and development of society at large. For
this purpose alternatives to common standards and views play a vital role. It is in
this vein the different chapters of this volume challenge the ways to look at the
learning, teaching, and assessment of mathematics, in general terms as well as
within specific areas such as arithmetic, algebra, problem solving, and teacher
education. We hope that this book will also inspire the readers to seek new
challenges in their own thinking and practice in this rich field.
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Mathematics Education in Sweden:
A Review of Research and Developmental Work

Ole Björkqvist
Åbo Akademi, Vasa, Finland

I have been commissioned by the Swedish Committee for Mathematics
Education and the National Center for Mathematics Education to register,
analyse and describe the current state of Swedish research and development in
mathematics didactics. An integral part of the task is putting emphasis on the
strengths and weaknesses of the enterprise as well as providing suggestions for
improvement.  Let me start by stating that the task clearly would require insights
that exceed what I have. I feel humble, and at the same time honored that my
analysis, which must remain far from exhaustive, is valued by those who have
given me the task.

This presentation describes some key characteristics of Swedish research in
mathematics didactics as of today. As I consider it inseparable from traditional
Swedish research and developmental work in mathematics education, I will try to
avoid the pitfalls that come from too sharp a distinction between research in
mathematics didactics and research in mathematics education. Let it suffice, at
this moment, to see the use of the word didactics as primarily motivated by
central European usage, and also as an indication of academic status, as com-
pared with the broader connotations of the word education. Defining mathema-
tics didactics may lead to slightly different results if you approach it from the
discipline of pedagogy or from the discipline of mathematics.

I will try to give, at the same time, both national and international perspec-
tives. Whenever there is a discussion of change – development of new patterns
that can be discerned – the changes are seen with respect to the national
circumstances. But Swedish research and developmental work in mathematics
education is of course very much influenced by, and in continuous interaction
with, the international community of researchers in mathematics education.
From an international perspective, my position as a Nordic colleague will make
me emphasize such characteristics of Swedish research as reflect shared Nordic
values and needs. Sharing the Swedish language, too, I feel at the same time
inside and outside that which I am to analyze.

There will be a follow-up seminar in Swedish during which there will be a
chance to go into more detail than I do today. It is primarily intended as a chance
for others to bring forward complementing views of the situation regarding re-
search in mathematics education in Sweden today. These views will be carefully
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noted, and taken into account when my work goes into its next stage,
documenting the findings in a written report. The final report will be presented
later in the spring. I hope many of you will have a chance to participate in the
seminar and in that way help me eliminate misunderstandings that I may have
arrived at and add important facts that have escaped me to the final report. I
would appreciate that kind of help in my work.

When I was given instructions by my commissioning agencies, it was agreed
that a substantial part of the analysis would be based on the responses to two
questionnaires that their representatives, Bengt Johansson and Gerd Brandell,
and I worked out together. In addition, I was supplied with material collected by
the National Center for Mathematics Education. I was not to collect research
papers, nor to solicitate information beyond the scope of the questions in the
questionnaires. Thus my analysis is largely based on self-reported facts, con-
trasted with material given to me and my previous general knowledge of
Swedish research. The possibility of including a follow-up seminar was also
visualized.

One of the questionnaires was directed to heads of academic departments,
such as departments of teacher education, or similar departments within faculties
of education, and departments of mathematics. Minor institutions of higher
education, not having the status of university, also received the questionnaires.
Lacking a specific academic department, such a regional college or institution of
higher education still might have research or developmental work in mathematics
education going on, and it was deemed important to learn as much as possible
about its status within the college or institution through the questionnaire. It must
be noted that the heads of department in most cases were people who did not
work in mathematics education themselves. They were able to answer general
questions regarding the present situation – if there are formal graduate programs,
what kinds of financial support the department can offer, resources available, and
plans for the future. They were not expected to answer more specific questions,
and in some cases they seemed to have to rely completely on somebody else to
answer most of the questions.

Another questionnaire was directed to individuals or groups of individuals
within the departments, or individuals connected with the departments without
being formally tied to them. This questionnaire probed the substance of research
– themes and metods, the significance of it for society, national and international
coworkers, etc. It was left open to the respondents to answer individually or to let
the leader answer for the whole group.

In this way the two questionnaires, taken together, were expected to locate
most of the people considering themselves as doing research, or planning to do
research, in mathematics didactics. In addition, one would be able to identify
what kind of networking there is within departments and between different
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departments in Sweden. This networking is sometimes described in terms of
different "research environments" existing in parallel at different places in
Sweden. These research environments may have come into existence through the
influence of one or two prominent researchers, who have attracted newcomers to
the field or made their colleagues interested in research. The word "research
group" is not always applicable, as they vary in size and as within one research
environment there might exist more than one group – and individuals only
vaguely connected with each other. We might speak of groups of different order.

The questionnaires also give information about the degree of institutiona-
lization of research in mathematics didactics – to what extent the departments
explicitly state their intentions with respect to mathematics didactics, to what
extent they plan to start graduate programs or participate in collaborations with
other departments, etc. This aspect is of course central for mathematics didactics
as an academic field, and it is something else than the existence of groups of
researchers kept together by their specific research interests. Institutionalization
based on financial support through public funds also is a sanction of the need for
this particular kind of research, as society sees it.

There are difficulties connected with the interpretation of the answers to the
questions in the questionnaires. The most important difference is that of scaling.
What is seen as a research project by one respondent might be viewed as a minor
study by another. Cooperation might mean anything from meeting three times a
year to discussing common matters on a daily basis. People also differ in their
estimates of what is possible to achieve. Overestimates might indicate optimism
– in itself a positive trait that contributes to a good prognosis – but a coupling to
realism seems necessary. My solution to these problems of interpretation has
been recording the data as given by the respondents and using them as such. In
summing up the situation for the whole country, there are adjustments as I
implicitly give the responses different weight. Doing that is not a way of
discrediting anybody´s answers – it is an attempt to rescale everything question
by question, in order to increase the overall reliability of the analysis.

There is also a problem with cases of missing responses. It is easy for a
questionnaire to get misplaced among the papers on the desk of a head of depart-
ment, and it is also common for researchers to be so busy with their own work
that they postpone their replies to questionnaires for a very long time.
Reminders sometimes work. The last responses arrived as late as in December.
And even so, there are a few institutions that are known to have important
research in mathematics education which have not reported it themselves. In
such cases, they have been taken into account via the other kinds of material
available to me.

The most remarkable single fact, which in itself affects many of the
responses, is the entry of the departments of mathematics into the field of
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research in mathematics didactics. Whereas didactics previously was, and still is,
considered an integral part of the scientific discipline of pedagogy, those
departments of mathematics who have entered the field of mathematics didactics
see themselves able to do so without too much concern. This process has been
speeded up significantly by a substantial grant from Riksbankens Jubileumsfond
to start a national graduate school (or a "researcher school") in mathematics
didactics. With money available to departments of mathematics, it was compara-
tively easy to find interest in the project, and the national graduate school is now
well on its way. With some support from various other sources, added to the
original grant to make it possible for even more students to participate, it will be
an important factor in the next years to come.

Another source of public support for the whole sector of mathematics
education is to be found in the establishment of the National Center for
Mathematics Education in Göteborg. In this case it was not the result of a sudden
turn of events, but rather a structure that was built upon previous work within the
Göteborg mathematics education environment. My intention is not here to
describe all the positive effects it is likely to have – but to emphasize that the
image of mathematics didactics research in Sweden continues to be determined,
at least partially, by the image teachers have of the results of the research. The
National Center for Mathematics Education is an important agency in the
dissemination of research results, and it also has the resources to bring in
prominent foreign researchers with specialties not to be found in Sweden.

My point with respect to this is more general than that. On a national level,
evaluating educational research cannot be separated completely from its  possible
connections to developmental work, and evaluating developmental work cannot
be separated from the reality of the schools in the country. This goes for research
in mathematics didactics, too. It has to find its channels for filtering into schools,
and to do so it needs to be institutionalized in a way that establishes the neces-
sary connections.

It is no secret that a great amount of research in mathematics education has
been performed by academic teachers whose main occupation really is not
research. The questionnaires bear out the fact that it continues to be so.
Lecturers report doing research on a less than half-time basis, and there are very
few positions that are principally intended for advanced research at the post-
doctoral level. I see part-time research as no problem, provided the person is
involved in other activities that promote the dissemination of research results or,
e.g., acts as a mentor for younger researchers. In short, research in mathematics
didactics cannot be a hobby that you do as long as you are specifically paid for it
– it needs involvement of the kind that people have in most any other career.
With many young people now preparing themselves in a systematic way, it is to
be hoped that there actually will be careers available to them, when they reach
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their doctor´s degree. This is the time for some serious thinking about the need
for professorships in mathematics didactics.

At the same time, I hope there will be no great reduction in the number of
people doing research on a part-time basis. I motivate this with the previous
argument – part-time involvement in research combined with part-time teacher
education or part-time in-service training of teachers is a very strong combina-
tion. A country like Sweden will also need continuity in the production of
textbooks for schools, and having researchers involved in that work is beneficial.
All of this, taken together as a balance between actors in different roles, is a very
well-functioning aspect of mathematics education in Sweden. In fact, the
proportion of teachers coming into contact with modern research in mathematics
didactics is probably higher in Sweden than in most any other country. The
remarkable success of the Biennials in mathematics is a testimony to that – many
of the lectures there are given by part-time researchers – and so is, particularly,
the high proportion of elementary school teachers taking part in the Biennials.
On the whole, if one is to mention one single area of strength in the Swedish
mathematics education system, I would single out the outstanding participation
in a common enterprise that involves both theory and practice. The challenge for
research in mathematics didactics is to contribute to it in new ways without
losing the power of the system as it is now.

I will mention one way of doing that. Turning the focus to developmental
work, we notice that many individuals report developmental work as something
they are involved in, and they are not really sure if it counts as research or not.
This situation is found not only in Sweden. However, within the last fifteen years
or so there have been formulated research paradigms that address exactly this
problem (e.g. in the Netherlands, Germany and France). Typically this includes
seeing mathematics didactics as a construction science, for which the products
and their efficiency carry special importance. Adopting such a research paradigm
retains the scientific respectability of the activity and justifies calling it develop-
mental research.

The responses to the questionnaires also carefully avoid the term
"matematikmetodik" (mathematics teaching methodology, as in mathematics
methods courses). It seems evident that this nowadays is associated with an
outdated approach to teacher education in mathematics, whereas mathematics
didactics is the scientific approach. I see a problem with that. There is a certain
risk that avoiding the term "methods" altogether might lead to a neglect of
research that concerns teaching methods in mathematics. In fact, in the answers
to the questionnaires there is no strong evidence for research that concerns the
"how to do it" component of mathematics didactics, especially in situations that
deal with typical large-size classrooms with a heterogeneous composition of
students. That would be much needed research. But perhaps this is not a problem
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for Sweden alone. Research interests elsewhere follow trends, too, and presently
there is an international emphasis on research focussing on, e.g., understanding
the beliefs of students and teachers, individual behavior in problem solving
situations, and descriptive studies of what is going on socially in classrooms.

The different themes for the research projects mentioned by the Swedish
researchers in mathematics didactics vary quite a lot. Like Bergsten (2000), in a
previous review of mathematics education research in Sweden, I find no clearly
Swedish brand of mathematics didactics research. However, if one tries to take
into account what is going on elsewhere in the world, it is comparatively easy to
see that there are some areas in which Swedish researchers have reached some
prominence. Among those I would like to mention the following

- Gender issues
- Qualities of learning under specific circumstances
- Phenomenographic analyses of mathematical conceptions

In addition, Swedish researchers have played a significant role in international
collaborations concerning

- Mathematics education and democracy
- The history of mathematics and mathematics education

Some of these lines of research are still evident in the responses to the
questionnaires. That kind of continuity is helpful to new researchers who want to
reach the frontiers of research as quickly as possible. There are also indications
that other fields of interests might be competitive in the near future. I would like
to single out

- Computer-assisted learning and assessment
- Mathematical problem-solving behavior in upper secondary schools
- Symbol sense and the learning of the mathematical language

In accordance with my previous comments regarding the high quality of Swedish
developmental work and the importance of developmental research there is also
good reason to mention the development of

- New types of (national) tests in mathematics

The list of recent and promising areas of strength is by no means compre-
hensive. Beside the themes that have been listed one will find several lines of
research pursued by individuals. They are doing high-quality work – not
necessarily in cooperation with other researchers in Sweden, but rather in contact
with people having similar interests abroad.

I would also like to mention that the former dominance of research on young
children´s mathematics learning over secondary and tertiary mathematics
learning appears to be changing. This is, of course, related to the kind of
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mathematical background that new researchers have. As long as this balance
does not turn over completely, it is even to be welcomed. The diminished interest
in research aimed at the lower ages is, however, a potential cause for some
concern.

Among the reported themes of research, there are so far not many that take
their starting point in a specific mathematical concept or procedure. The learning
and teaching of mathematical topics that often cause difficulties is something one
might expect research in mathematics didactics to deal with. This situation, in
conjunction with my previous remark regarding the need for more research on
the "how to do it" component of mathematics didactics, is an indication of an
ever-so-slight tendency to avoid difficult research problems (even if they are
important) in favor of research problems that are more easily tackled. This
reminds me of an old piece of advice – if a problem is a real challenge, some-
thing that needs to be solved, it is always worth an effort, even if the tools that
you have at your disposal to tackle it with are not yet as good as you wish they
were.

I will now add some comments regarding the institutionalization of research
in mathematics didactics in Sweden.

There were responses to the questionnaires from departments within the big
universities, and at the other end there were reponses from very small regional
institutions. In one or two cases the basic message was, "We have not developed
mathematics didactics as a specialty within our department". Looking at the
distribution over Sweden, the positive answers were approximately evenly
distributed. This means, in itself, a northward shift, since earlier research in
mathematics education generally has taken place farther south.

The effect of the grant from Riksbankens Jubileumsfond is clearly evident.
The departments of mathematics within the universities prove to have the
greatest readiness for doctoral programs in "mathematics with an orientation
towards mathematics didactics". This should be contrasted with the the kind of
departments that have produced dissertations in previous years – very often
departments of pedagogy or departments of teacher education. Those depart-
ments now appear to be more hesitant to have mathematics didactics as a
specialty. Yet that is something worth hoping for – at least one department of
teacher education with a strong profile in mathematics didactics. This would
make it possible for persons with a background in education to enter research in
mathematics didactics in a natural way – perhaps with lower requirements in the
form of courses in mathematics, but with a stronger background in appropriate
research methods, and most likely with a research interest that relates to younger
children.

It would be a pity if the departments that produce degrees in education are
alienated from the process that is now taking place. To a very large extent they
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are the carriers of traditions, they are more knowledgeable with respect to
methods of research, and they do have better resources in the form of libraries,
which is evident from the answers to the questionnaires.

Another significant feature today is a remarkable willingness between
departments to enter explicit collaborations in their development of mathematics
didactics as a field of research. Even the big universities seem to be finding
strength in this, and for the smaller regional colleges or institutions of higher
education this is really the only way to become part of a formal doctoral
program. The collaborations seem to be based partly on personal relationships,
partly on geographical vicinity. A further kind of support system that several
departments rely on is having foreign associated researcher colleagues.

In one of the most direct questions in the questionnaire, the departments
were to rate their stage of development as a mathematics didactics environment.
It is interesting to notice that the answers were very homogeneous. The majority
of the responders chose the alternative "an environment that is being built up".
This indicates that it might be appropriate to conclude that mathematics didactics
in Sweden is indeed in a build-up stage, at least with respect to institutiona-
lization.

The whole picture, however, is not that simple. My analysis has shown quite
a bit of variety, the source of which is, of course, the individuals that do the
work. I have seen a lot of enterprising spirit, a few cases of top-level inter-
national cooperation, but also departments without prospects of development
within this particular field, at least at the moment.

From what I have brought forward, it must be clear that I do not fully accept
the idea of a build-up stage that implies starting from nothing. Scientific know-
ledge always builds on previous knowledge, and part of the academic culture is
acknowledging the wisdom that we use as guidance in our own search. Swedish
research in mathematics didactics needs to do that, too. It should also constantly
remember that a major condition for its survival is that it remains an organic part
of the society that feeds it. That means being sensitive to the expectations of
society and doing one´s best to meet those expectations.
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Introduction
We start with an assessment question for our readers. It is an extended response
open-ended question format, and will be scored with partial credits by multiple
marking: “Each country will have its own way of making the reform of
introducing new material, of organizing the sequential study and of experi-
menting with possible programs. Channels should be provided for commu-
nicating the results of these programs and experiments between all of our
countries, so as to enable us to use the best thinking of all countries in stimu-
lating new ideas. The aim of all theses programs is twofold: firstly, to provide a
better preparation for university study; secondly, to give to all students an
instrument for use in daily life.

1. When was this recommendation made, and by whom?
2. Why did this recommendation lead to disaster?
3. What did we learn from this?

We will give only hints of answers, and as such not design a complete scoring
rubric.”

The above sensible sounding recommendation was made a long time ago, in
1959 during the Royaumont seminar held by the Organization for European
Economic Cooperation OEEC (Fehr, 1961). The recommendations had wide-
spread effect all over the western world, in many cases leading to completely
new curricula, called Modern Mathematics, based on set theory.

In retrospect, the Royaumant conference, dominated by research mathema-
ticians (Bourbaki), was the starting point of a road leading to nowhere, as far as
kids were concerned. The background philosophy, according to the Belgian
mathematician Servais, was that we must “rebuild the whole edifice from the
foundations and erected in accordance with modern ideas. The modern ideas are
mainly set theory” (Servais, 1968).

The fact that pedagogical principles had been ignored, was recognized by the
American Beberman in the early sixties already. “I think in some cases we have
tried to answer questions that students never raise and to resolve doubts they
never had, but in effect we have answered our own questions and resolved our
own doubts as adults and teachers” (Beberman, 1962). Or as an ardent supporter
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of the New Math, the Dutch math educator Vredenduin reflected many years
later: “A beautiful edifice, but I do not think there was one student who shared
that opinion” (Goffree, 1985).

Well, Modern Mathematics or New Math is something of the past now, even
in Belgium where its most thoughtful supporters dominated the curricula until
very recently. New mathematics has been replaced by New New-Math or Fuzzy
Math, and the discussion of the fifties and sixties has been and still is being
carefully reconstructed, using the same words and arguments and ignoring
history and reason.

Changing Goals
Let’s return to the 1959 recommendation. The aim of all theses programs is
twofold: firstly, to provide a better preparation for university study; secondly, to
give to all students an instrument for use in daily life.

Living in the zero’s (2000) we can notice at least the shift in the order of
recommendations: firstly, to give all students an instrument for use in daily life;
secondly, to provide a better preparation for university study.

But most countries are now following a track that was indicated by the
Cockroft Report in 1982 (Cockroft, 1982): firstly to become an intelligent citizen
(mathematical literacy); secondly to prepare for the workplace and future
education; thirdly to understand mathematics as a discipline.

It is interesting to note that the whole New Math movement has forced many
people to rethink mathematics education – and not only along the line of
Beberman’s critique. In the Netherlands for instance the recommendations were
not accepted: what students need is students’ mathematics and not mathema-
ticians’ mathematics. As Freudenthal put it: “Mathematics should never be
presented to the students as a ready-made product (‘the edifice’). The opposite of
ready-made, ‘dehumanised’ mathematics is human mathematics in statu
nascendi” (Freudenthal, 1973). According to Freudenthal’s view one should
recognize that the learner is entitled to recapitulate the learning process of
mankind. This means an instruction not starting with the formal system, which in
fact is the final product, nor with the embodiments, nor with structural games.

This philosophy has resulted in a theory of realistic mathematics education
(RME) that has as key characteristics:

1. Starting in the real world to develop mathematical concepts.
2. Using the real world also as an area of applications.
3. Broad attention to mathematization, schematization, situation models etc.
4. Student construction and re-invention.
5. Student interaction.
6. Intertwining and integration of learning strands.
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But in many countries, after struggling with the pitfalls of New Math, similar
developments took place. Especially it was clear that problem solving in a real
world context was a desired and necessary component of any math curriculum.
And the goal of mathematical literacy became more and more prominent. In 1999
the Organization for Economic Co-operation and Development (OECD)
published ‘Measuring Student Knowledge and Skills’ (OECD, 1999). This is a
publication as part of a wide study in which the main goal is the assessment of
reading, and mathematical and scientific literacy.

Mathematical Literacy
It is indeed striking to see and compare the 1959 report and this present OECD
publication, and to reconstruct the shift in thinking about mathematics education.

We will follow this publication in defining Mathematical Literacy and then
move on to the problems and consequences related to measuring the competen-
cies related to mathematical literacy.

By mathematical literacy we understand an individual’s ability to identify, to
understand, to exert well-founded judgment about, and to act towards the roles
that mathematics plays in dealing with the world (i.e. nature, society and culture),
as needed for that individual’s current and future private life, occupational life,
social life with peers and relatives, and life as a constructive, concerned, and
reflective citizen.

It will be clear that the shift from reproduction skills to process- and
production skills – essential for real world problem solving as part of mathe-
matical literacy – makes assessment a key variable. And even a very complex
one. This became very clear when the Netherlands adopted an application rich
curriculum for secondary school students in the mid-eighties. The processes like
mathematization and modeling, not to speak about reflection and communication,
forced designers, teachers, students and decision makers to rethink their own
mental framework for mathematics assessment. (See details in De Lange, 1987).
This forced rethinking process made clear that assessment was less a trivial
variable in the process than was commonly thought with the more traditional
curricula. And more than anything else the integration and alignment of the
teaching-learning process and assessment became the focal point.

The principle that the first and main purpose of testing is to improve learning
(Gronlund, 1968; De Lange, 1987) is widely and easily underestimated in the
teaching/learning process. The reasons are multiple: design of fair, rich, open and
creative tasks is very difficult, the way the feedback mechanism operates, the
organization and logistics of an opportunity rich classroom etc.

But the publication ‘Assessment and Classroom Learning’ (Black and
Wiliam, 1998), a literature study on classroom, states very clearly that improve-
ment in classroom assessment will make a strong contribution to the improve-
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ment of learning. Therefore careful attention to the development and design of
appropriate tasks is essential.

Assessment Changes
The NCTM Standards (1989) had a great influence in the discussion on reform in
the US, and the NCTM recognized that ‘Assessment Standards’ were needed as
well (1995). But Standards will not be enough: a focus on Standards and
accountability that ignores the processes of teaching and learning in classrooms
will not provide the directions that teachers need in their quest to improve.
Nevertheless the NCTM Assessment Standards offer an excellent starting point
for a discussion on principles and standards in (classroom) assessment. The
Standards are about the mathematics, the learning of mathematics, equity and
opportunity, openness, inferences and coherence, and represent quite a bit of the
present common thinking internationally:

Standard 1. Mathematics
Few would argue with the assertion that useful mathematics assessments must
focus on important mathematics. Yet the trend toward broader conceptions of
mathematics and mathematical abilities, raises serious questions about the
appropriateness of the mathematics reflected in most traditional tests since that
mathematics is generally far removed from the mathematics actually used in
real-world problem solving. Nevertheless, there is still much debate over how
to define important mathematics and who should be responsible for doing so.

This, of course, is a key issue. School mathematics is defined by long traditions
resulting in a set of separate and often disconnected sub-areas that have little
relation with the phenomenology of mathematics. Not only is that subdivision in
strands rather arbitrarily but also the timing of each of them in the learning
process without any reasonable argument. Furthermore we do not attempt to give
a full picture of mathematics by any standard but there is no discussion which
subject in school mathematics should be covered: take the long discussion and
the slow progress for instance on the introduction of discrete mathematics in
school curricula. Traditional assessment practices have emphasized this
compartmentalization of school-mathematics. Common features of teacher’s
formative assessment focuses on superficial and rote learning, concentrating on
recall of isolated details, usually items of knowledge that students soon forget
(Crooks (1988) and Black (1993) as summarized by Black and Wiliam, 1998). It
is for this reason that PISA (OECD, 1999) has chosen to focus on ‘Big Ideas’ in
mathematics: a cluster of related fundamental mathematical concepts ignoring
the school curricula compartmentalization and that we try to assess broader
mathematical ideas and processes.

Standard 2. Learning
New views of assessment call for tasks that are embedded in the curriculum,
the notion being that assessment should be an integral part of the learning
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process rather than an interruption of it. This raises the issue of who should be
responsible for the development, implementation and interpretation of student
assessments. Traditionally both standardized and classroom tests were
designed using a psychometric model to be as objective as possible. By
contrast, the alternative assessment movement affords teachers much more
responsibility and subjectivity in the assessment process. It assumes that
teachers know their students best because teachers have multiple, diverse
opportunities for examining student work performed under various conditions
and presented in a variety of modes. When teachers have more responsibility
for assessment, assessment can truly become almost seamless with instruction
(Lesh & Lamon, 1992).

It will be clear that we see assessment as an integral part of the teaching/learning
process. It is actually so trivial that one is surprised to see that the actual practice
is so different. The main cause for this situation is the standardized test system.
The ironic and unfortunate result of this system is that teachers resist formal
evaluation of all kinds, given the intellectual sterility and rigidity of most
generic, indirect and external testing systems. But because of that resistance,
local assessment practices are increasingly unable to withstand technical
scrutiny: teacher tests are rarely valid and reliable and ‘assessment’ is reduced to
averaging scores out (Wiggins, 1992).

We should offer teachers a wide array of instruments and opportunities for
examining work performed under various conditions. Teachers need to be aware
about the connections between the tests tools and the curricular goals and how to
generate relevant feedback from the test results.

Standard 3. Equity and Opportunity
Ideally, assessments should give every student optimal opportunity to
demonstrate mathematical power. In practice, however, traditional
standardized tests have sometimes been biased against students of particular
backgrounds, socioeconomic classes, ethnic groups or gender. Equity becomes
even more of an issue when assessment results are used to label students or
deny them access to courses, programs or jobs. More teacher responsibility
means more pressure on teachers to be evenhanded and unbiased in their
judgment. Ironically, the trend toward more complex and realistic assessment
tasks and more elaborated written responses can raise serious equity concerns,
since reading comprehension, writing ability and familiarity with contexts may
confound results for certain groups.

It is clear that the teacher has a very complex task here. Because we do not assess
objectively a person, but we assess how a person acts in a certain setting. Certain
formats favor boys more than girls, others are more equal, boys do better under
time pressure than girls (De Lange, 1987), girls seem to fare better when there is
more language involved, certain contexts are more suited for boys, others for
girls (Van den Heuvel & Vermeer, 1999), cultural differences should be taken
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into account. It is for these reasons that we need to discuss the role of context in
some detail, the effect of different formats and the need to use at least several of
them, that we should discuss the need for a variety of representations, that we
advocate individual and group work and restricted timed test and unrestricted
time test. Only if we offer that wide variety do we have a chance to have ‘fair’
classroom assessment.

Standard 4. Openness
Testing has traditionally been quite a secretive process, in that test questions
and answers were carefully guarded and criteria for judging performance were
generally set behind the scenes by unidentified authorities. By contrast, many
today believe that students are best served by open and dynamic assessment –
assessment where expectations and scoring procedures are openly discussed
and jointly negotiated.

This is an almost trivial standard for assessment. Students need to know what the
teachers expect from them and teachers should have examples of all the different
tests that are possible or to be expected with scoring rubrics and why these tests
are given for what reasons. Again tradition and existing practice have done much
damage. Secrecy was a key issue when testing: secrecy as to the questions being
asked, secrecy as to how the questions will be chosen, secrecy as to how the
results will be scored, secrecy as to what the scores mean, secrecy as to how the
results will be used (Wiggins, 1992). According to Schwarz (1992) standardized
tests can be done on a widespread scale only if secrecy can be maintained since
this testing technology requires a very large number of questions that are expen-
sive and difficult to generate. But according to Schwarz this is an undesirable
situation. He proposes new approaches to the filing, indexing, and retrieving of
previously used problems. Publicly available, richly indexed databases of
problems and projects provide opportunity for scrutiny, discussion, and debate
about the quality and correctness of questions and answers. It seems that we have
a long way to go, but openness and clarity are prerequisites for any proper
classroom assessment system.

Standard 5. Inferences
Changes in assessment have resulted in new ways of thinking about reliability
and validity as they apply to mathematics assessment. For example, when
assessment is embedded within instruction, it becomes unreasonable to expect
a standard notion of reliability to apply (that a student’s achievement on
similar tasks at different points in time should be similar), since it is actually
expected that students will learn throughout the assessment. Similarly, new
forms of assessment prompt a re-examination of traditional notions of validity.
Many argue that it is more appropriate to judge validity by examining the
inferences made from an assessment than to view it as an inherent
characteristic of the assessment itself. Nevertheless, it is difficult to know how
new types of assessment (e.g. student projects or portfolios) can be used for
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decision making without either collapsing them into a single score (thereby
losing all their conceptual richness) or leaving them in their raw, unsimplified,
difficult-to-interpret form.

Reliability and validity are concepts from an era when psychometricians ruled
the waves. They have gotten a specific and narrow meaning and have caused
much damage to the students and society and more specifically have skewed the
perception of what constitutes good school mathematics. More important,
especially in classroom assessment, is authenticity of the tasks, that is: the
performance is faithful to criterion situations. Authentic means that the problems
are ‘worthy’ and relate to the real world, non-routine, have ‘construction’
possibilities for students, relates to clear criteria, ask for explanation of strategies,
offer possibilities to discuss grading.

In order to do justice to the students (which means free of distortion and let
the object speak (Smaling, 1992)) and in a sense add validity in the traditional
sense we need a sample of authentic tasks to get a valid picture. And, indeed,
reliability in the traditional sense is something to be avoided at all times if we
really want assessment as part of the teaching learning process. If we offer the
students the same tests at different moments we should note differences in levels
of formality, different strategies, different answers even in some cases. If the
tests would yield the same results (and thus be reliable) our teaching has failed. It
is exactly for this reason that a longitudinal study on the effects of a new middle
school curriculum has four different operationalizations of the ‘same’ problem to
find out about students growth over time in grades 5, 6, 7 and 8. (Shafer and
Romberg, 1999). Smaling (1992) defined reliability in a more ecological way:
reliability refers to the absence of accidental errors and is often defined as
reproducability. But here it means virtual replicability. The emphasis is on virtual
because it is important that the result is reported in such a way that others can
reconstruct it. What is meant by this is aptly expressed by the term ‘trackability’,
which, according to Gravemeijer (1994), is highly compatible with Freudenthal’s
conception of developmental research. This is because ‘trackability’ can be
established by reporting on ‘failures and successes’, on the procedures followed,
on the conceptual framework and on the reasons for the choices made.

Standard 6. Coherence
The coherence standard emphasizes the importance of ensuring that each
assessment is appropriate for the purpose for which it is used. As noted earlier,
assessment data can be used for monitoring student progress, making
instructional decisions, evaluating achievement, or program evaluation.
However the types of data appropriate for each purpose may be very different.
Policy makers and assessment experts often disagree on this issue. The former
may have multiple agendas in mind and expect that they can all be
accomplished by using a single assessment, while the latter warn against using
an assessment for purposes for which it was never intended.
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Coherence in classroom assessment can be accomplished quite simple if the
teaching/learning process is coherent and the assessment is an integral part of it.
Teachers have a wide variety of techniques and tools to their disposal to ‘design’
their own classroom assessment system that fits with the didactical contract they
have with the classroom. Depending on their teaching/learning practice and style,
they will present the students with their ‘balance’ within the classroom assess-
ment system. Coherence with colleagues will be achieved by sharing the same
criteria and possibly by including the same ‘end-of-the-year test’. Thus ‘fairness’
for all students in the same year and over the years is ensured as the end-of-the-
year tests are not secret, but just change over the years.

Principles for assessment
Reflecting on these Standards and the existing literature we make the following
list of Principles for (Classroom) Assessment:

1. The main purpose of classroom assessment is to improve learning
(Gronlund, 1968; De Lange, 1987; Black & Wiliam, 1998, and
others).

2. The mathematics is embedded in worthwhile (engaging, educative,
authentic) problems that are part of the students real world.

3. Methods of assessment should be such that they enable students to
show what they know rather than what they do not know (Cockroft,
1982).

4. Multiple and varied opportunities (formats) for students to display and
document their achievement (Wiggins, 1992).

5. Tasks should operationalize all the goals of a curriculum (not just the
‘lower’ ones). Helpful tools to achieve this are performance standards,
including indications of the different levels of mathematical thinking
(De Lange, 1987).

6 . Grading criteria are published and consistently applied; including
examples of earlier grading showing exemplary work and less than
exemplary work.

7. Minimal secrecy in testing and grading.
8. Genuine feedback to students.
9. The quality of a task is not defined by its accessibility to objective

scoring, reliability or validity in the traditional sense, but by its
authenticity, fairness and meeting of the above principles (De Lange,
1987).

These principles form a ‘checklist’ for teachers taking their classroom assess-
ment seriously. But from principles to practice can be a long way. So we will
now turn to a discussion about several key issues in designing and implementing
a classroom assessment system.
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Competency Levels
One of the key issues that has been proven successful when implemented, is
classification of competence levels in mathematics.

They were successfully operationalized in the National Dutch option of
TIMMS (De Lange & Boertien, 1994; Kuiper, Bos & Plomp, 1997) and the
ongoing longitudinal study on the effects of a middle school curriculum (Shafer
& Romberg, 1999) and also have been adapted for the earlier mentioned OECD
study. The three levels are:

• Reproduction, Procedures, Concepts and Definition.
• Connections and Integration for Problem Solving.
• Mathematization, Mathematical Thinking, Generalization and Insight.

We will elaborate on these levels next:

Level 1: Reproduction, Procedures, Concepts and Definition.
At this level we deal in the first place with the matter dealt with in many
standardized tests, as well in comparative international studies, operationalized
mainly in multiple-choice format. It concerns knowledge of facts, representing,
recognizing equivalents, recalling mathematical objects and properties, perfor-
ming routine procedures, applying standard algorithms and developing technical
skills. Also the dealing and operating with statements and expressions containing
symbols and formulas in ‘standard’ form relates to this level.

Not seldom items at this level are multiple-choice, fill in the blank, matching
or (restricted) open ended questions format.

Level 2: Connections and Integration for Problem Solving.
At this level we start making connections between the different strands and
domains in mathematics: integrating information in order to solve simple
problems, where students have a choice of strategies and a choice in the use of
mathematical tools. Although the problems are supposedly non-routine, they
require relative minor mathematization.

At this level, students are also expected to handle different ways of
representation, according to situation and purpose. The connections aspect also
requires students to be able to distinguish and relate different statements like
definitions, claims, examples, conditioned assertions and proof.

From the mathematical language point-of-view decoding and interpreting
symbolic and formal language and understanding its relations to natural language
forms another aspect at this level.

Items at this level are often placed within a context, and engage students in
mathematical decision-making.

Level 3: Mathematization, Mathematical Thinking, Generalization and Insight.
At this level students are asked to mathematize situations: recognize and extract
the mathematics embedded in the situation and use mathematics to solve the
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problem. Analyze, interpret, develop own models and strategies, and make
mathematical arguments, including proofs, and generalizations. These compe-
tencies include a critical component and analysis of the model and reflection on
the process. Students should not only be able to solve problems but also to pose
problems.

All these competencies function only well if the students are able to commu-
nicate properly in different ways: orally, written, visualizations etc. Communi-
cation is meant as a two-way process: students should also be able to understand
communication with a mathematical component by others. Finally we would like
to stress that students need also insight competencies. Insight in the nature of
mathematics as a science, including the cultural historical aspect and under-
standing of the use of mathematics in other subjects as brought about through
mathematical modeling.

The competencies at this level quite often incorporate skills and com-
petencies at different levels. This is almost evident, like the fact that the whole
exercise of defining the three levels is a somewhat arbitrary activity. There is no
clear distinction between the different levels, and higher levels not seldom play
out at different levels.

This level, which goes to the heart of mathematics and mathematical literacy,
is difficult to test. Multiple-choice is definitely not the format of choice here.
Extended response questions with multiple answers (with (super-) items or
without increasing level of complexity) are more likely to be promising formats.
But both the design and the judgment of student answers are very, if not
extremely difficult.

The three levels can be visually represented in a pyramid (De Lange, 1995).
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This pyramid has three dimensions or aspects: the first is the content or domains
of mathematics, the second contains three levels of mathematical thinking and
understanding (along the lines defined here fore) and the third aspect is from
simple to complex. The dimensions are not meant to be orthogonal and the fact
that the pyramid is used as a means of visualization, tries to indicate the relative
number of items required to give a fair image of a student’s understanding of
mathematics. As we need only simple items for the lower levels, we can use
more of them in a short amount of time. For the higher levels we need only a few
items, as it will take some time for the students to solve the problems.

The simple to complex dimension can be extended to include a dimension
that takes into account the variation from informal to formal.

All assessment questions can be located in the pyramid according to the level
of thinking called for, mathematical content or big ideas domain, and for degree
of difficulty. Because assessment needs to measure and describe a student’s
growth in all domains of mathematics and at all three levels of thinking,
questions in a complete assessment program should fill the pyramid. There
should be questions at all levels of thinking, of varying degrees of difficulty, and
in all content domains.

As an example of a Competency Class 2 problem we show a released item of
the PISA project (OECD, 2000):

You are asked to design a new set of coins. All coins will be circular and colored
silver, but of different diameters.
Researchers have found out that an ideal coin system meets the following
requirements:

• Diameters of coins should not be smaller that 15 mm and not be larger than
45 mm.

• Given a coin, the diameter of the next coin must be at least 30% larger.
• The minting machinery can only produce coins with diameters of a whole

number of millimeters (e.g. 17 mm is allowed, 17.3 is not).

Design a set of coins that satisfy the above requirements. You should start with a
15 mm coin and your set should contain as many coins as possible.

According to the OECD publication this is a class 2 problem, that shows the
constructive and finite use of mathematics. Some degree of modeling and
argumentation, and symbolic, formal and technical skills are required, although
the calculation skills required are definitely of the lowest competency level.
Mathematization is called for in order to translate the problem from natural
language into more mathematical language.

The format adapted is that of an open-constructed response item, a format
that has become increasingly popular because of its possibilities for relative
simple construction and accessibility to partial credit scoring and insight into
students’ reasoning.
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The design of open-constructed response items (also called open-open
questions) might be relatively simple in relation to more complex problem
solving tasks; it is still a challenging and sensible process. We conclude this
article with a concrete example of the design process.

The challenges of designing open-open assessment

(Examples from the MiC algebra unit Expressions and Formulas)

In the times of traditional mathematics instruction, designing a test was not a
major challenge for a teacher. Look at the exercises in the textbook, take some
simple, intermediate and difficult problems, change the coefficients and/or signs,
and there you go. Those rules are not valid anymore in real world oriented,
context rich mathematics instruction that builds on students’ present knowledge
and follows a path from informal to formal mathematical concepts. It is not
always obvious for teachers or for students that the rules have changed.

In earlier experiments in The Netherlands, teachers were asked to design
tests with a unit (on matrices) that was designed with the philosophy of Realistic
Mathematics Education in mind (De Lange, 1987). It was noted that eighty
percent of the problems designed, were either without context at all (and
representing the traditional view on mathematics) or very similar to the problems
in the unit of instruction, both in context and content. Only one out of every six
problems was ‘different’ from the problems in the unit and tried to operationalize
the more process-oriented goals and transfer from one context to another.

Sometimes the results are very confusing and deceiving when one follows
the old ‘rules’ in the new situation, using a reformed curriculum. For example,
one of the teachers used a beautiful problem on the growth of rat populations
from the unit (to be solved with matrices) and changed it somewhat to make it
into an assessment problem: the rats were changed into rabbits, and the numbers
were changed slightly. The ‘build-up’ of the assessment problem was almost the
same as in the original problem. Although the original rat problem was con-
sidered quite complex and difficult, the results on the test were astonishingly
good: one student did not write down anything at all, one student got a six (out of
ten) and all other students scored eight or higher, six students even a perfect ten.

Of course the meaning of these scores has to be considered marginal: the
students just ‘recognized’ the problem and were able to ‘reproduce’ the solution,
maybe even understanding their solution.

In a more recent experiment in an inner city school in the US, a teacher
designed an assessment problem to go with the Mathematics in Context-unit
‘Expressions and Formulas’ (WCER & Freudenthal, 1997). The difference with
the teachers in the Dutch experiments was that this teacher did not copy the
‘build-up’, but concentrated on the final, more formal questions. An assumption
that the teacher made was that the information could be rather scant and that
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pictures could be left out, as the students would recognize the problem from
similar problems from the unit. The results of the assessment problem were
rather disastrous. Quite a number of the lower achievers did not even try to start
solving the problem and only the very best were able to solve the assessment
problem successfully. A classroom discussion afterward revealed the difficulties
the weaker students (including ESL) had had with the assessment: they did not
(try to) understand the problem since it was too mathematical and complex.

Following the disappointing experience described above the teacher, together
with the designers of the curriculum, redesigned the assessment problem. The
new problem can be characterized as follows: it consists of one single, rather
simple question in plain English, supported and illustrated appropriately for those
students that are more visually oriented or have problems with the English
language. The new problem is shown in the following picture:

Regrettably the teacher made a small error in the layout in the version as it was
presented to the students: the illustration followed the text instead of being
inserted in the text.
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Although the error made the results of the assessment as such without much
value, it shows how students are trained for tests. The moment they see an open
space, many students start writing down answers even though no questions are
asked at that point. An example of student work to illustrate this phenomenon is
shown in the picture below.
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It may come as no surprise that some of the students’ work led to the teacher’s
reaction: “I don’t understand your work.” That is exactly what these students
must have thought when looking at the problem.
Nevertheless, many students were successful in tackling the problem. All
students at least tried to solve the problem (unless they were put on the wrong
track by the layout error) the reasons for this being the use of plain English and
the use of a supporting picture. It was also helpful that the picture provided was
similar to pictures students had seen before in the unit. Although the assessment
problem consisted of only one very straightforward question, students’ solutions
were not so straightforward.

Students who solved the problem more or less successfully demonstrated at
least four distinct strategies. The most informal solution is based on drawing. A
second strategy is of a very arithmetic nature. Finally students used two strategies
that can be qualified as being of a pre-algebra nature: using arrow language and
using the tree representation. Examples of each of these strategies are shown in
the following figures.
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The test was considered a success by designers, teacher and students alike. All
students engaged in the problem, and the openness of the question resulted in a
variety of successful strategies. These strategies gave rise to very valuable
feedback to the students, which in turn supported and enriched their learning
process. Reflecting on the design process, the strong points of the assessment
problem are: plain English language; visual support; straightforward question and
the possibility of solving by ‘common sense’ but not limited to common sense.
On the contrary, interesting pre-algebra solutions gave rise to a new learning
experience. Which shows how assessment can be a part of the students’ learning
process.

Conclusion: for active, constructing assessment expertise the challenge is to
develop judgment about what makes a test: accessible, understandable, fair in the
use of representations and open to more strategies. (See also Feijs & De Lange,
2000).

Reflection
We started our short discussion in 1959 and compared an important and
influential report with the present situation and trends that, in our opinion, are
somewhat paradigmatically reflected in the 1999 OECD report on mathematical
literacy. Goals have changed from mathematics as a discipline towards the
functionality of mathematics in society, skills have moved from reproduction to
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construction, reasoning and (some) insight. These changes have put great
emphasis on new ways to assess mathematics. The road has confronted us with
major bumps and hurdles, but with even more exciting promises.
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There Is More to Discourse
Than Meets the Ears:

Looking at Thinking as Communicating
to Learn About Mathematical Learning1

Anna Sfard
The University of Haifa

Posing the question:
What is it that changes when one learns mathematics?
In a weekly commentary that appeared in one of the American newspapers
toward the opening of the current school year, the commentator, Crispin Sart-
well, alerted parents to the dangers of the school, the most serious of them being
the study of mathematics. He stated:

“Mathematics is a sort of … pagan religion. It has no basis in fact or in theory.
It is concerned entirely with entities of which it has no clear conception.”

After this, his conclusion does not come as a surprise:

“To expose kids to mathematics is the height of irresponsibility.”

In this talk I hope to be able to show where beliefs such as those expressed by
Sartwell come from and how a good teaching may help to show them wrong.

But all this in a due time. Let me first say a few general words on the topic of
this talk. These days, the terms discourse and communication seem to be on
everybody’s lips. They feature prominently in research papers, they can be heard
in teacher preparation courses, and they appear time and again in a variety of
programmatic documents that purport to establish instructional policies (see e.g.
Principles and standards for school mathematics, NCTM, 2000). All this could
be interpreted as showing merely that we became as aware as ever of the
importance of classroom conversation for the success of learning. In this talk, I
will try to show that there is more to discourse than meets the ears, and that
putting communication at the heart of education is likely to change not only the
way we teach but also the way we think about learning. Above all, I will be
arguing that communication should be viewed not as a mere aid to thinking, but

1 This is a slightly modified version of the talk given at Psychology of Mathematical Education – North
American Chapter 2001 annual meeting and published in Speiser, R., Maher, C.A., & Walter, C.N., Eds.
(2001), Proceedings of the 23rd Annual Meeting of PME-N, vol. 1, 23-45. Columbus, OH: ERIC,
Clearing House for Science, Mathematics, and Environmental Education. The modified text appears here
with the permission of the PME-NA proceedings editors.
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as almost tantamount to the thinking itself. The communicational approach to
cognition, which is under scrutiny in this talk, is built around this basic theore-
tical principle.

To begin with, let us pay a brief visit to two classrooms where learning of a
new mathematical topic has just started. The first class is being introduced to the
concept of negative number. The teacher takes her place in the front of the group
of twelve-year old seven graders and initiates the conversation.

Episode 1: The first lesson on negative numbers (from the study with Sharon Avgil)

[N1] Teacher: Have you ever heard about negative numbers? Like
in temperatures, for example?

[N2] Omri: Minus!
[N3] Teacher: What is minus?
[N4] Roi: Below zero.
[N5] Teacher: Temperature below zero?
[N6] Sophie: Below zero… it can be minus five, minus seven…

Any number.
[N7] Teacher: Where else have you seen positive and negative

numbers?
[N8] Omri: In the bank.
[N9] Teacher: And do you remember the subject “Altitude”? What

is sea level?
[N10] Yaron: Zero
[N11] Teacher: And above sea level? More than zero?
[N12] Yaron: From one meter up.

Since we are interested in learning, and learning means change, we may analyze
this episode by trying to describe the modifications that have yet to occur in the
children’s ways of dealing with the negative numbers. At the first sight, this
future learning is not just a matter of  a change; rather, it requires creating some-
thing completely new. The children, although not entirely ignorant of negative
numbers, can do little more at the moment than associate the topic with certain
characteristic terms, such as minus or below zero. It seems, therefore, that they
will have to work on the subject almost from scratch. To put it in the traditional
language, we may say that the children are yet to acquire the concept of negative
number or to construct this concept for themselves.

Let me now turn to another episode, in which two first graders, Shira and
Eynat, begin learning some basic geometry. The girls are first shown a number of
geometrical figures, three of which are presented in Figure 1 below, and are
asked by the teacher to mark those that can be called triangles. Once the task is
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completed, the following conversation between the girls and the teacher takes
place2.

A B C

Figure 1. Which of these shapes is triangle? None of these shapes
           was marked by the girls as being a triangle.

Episode 2: The first meeting about triangles
                  (from the study conducted with Orit Shalit-Admoni and Pnina Shavit)

[T1] Eynat: [Pointing to shape A] This is a triangle but it also has
other lines.

[T2] Teacher: Well, Eynat, how do you know that triangle is indeed a
triangle?

[T3] Eynat: Because it has three..aah…three… well.. lines.
……. …….
[T22] Teacher: [Pointing to shape B] This one also: one, two three..
[T23] The girls: Yes
[T24] Teacher: So, is it a triangle? Why didn’t you mark it in the

beginning?
[T25] Eynat: ‘Cause then… I did not exactly see it.. I wasn’t sure

[While saying this, Eynat starts putting a circle also
around shape C]

……. ……….
[T28] Shira: [Looking at shape C that Eynat is marking] Hey, this is

not a triangle. Triangle is wide and this one is thin.
[T29] Eynat: So what? [but while saying this, she stops drawing the

circle]
 [T30] Teacher: Why? Why isn’t this a triangle [points to shape C]? Shira

said it is too thin. But haven’t we said…
[T31] Eynat: There is no such thing as too thin. [but while saying this,

she erases the circle around shape C]
[T32] Teacher: Triangle -- must it be of a certain size?
[T33] Shira: Hmmmm…Yes, a little bit… It must be wide. What’s

that? This is not like a triangle – this is a stick!

�

These data are from a study conducted with Orit Shalit-Admoni and Pnina Shavit.
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Here, unlike in the case of negative numbers, the students are already well
acquainted with the mathematical objects in question, the triangles. And yet,
neither the way they speak about these shapes nor the manner in which they act
with them are fully satisfactory from the teacher’s point of view. In her search for
triangles, Shira disqualifies any shape that seems to her too thin. Eynat, even
though apparently convinced that “there is no such thing as too thin”, still cannot
decide whether the stick-like shape in the picture is a triangle or not. The teacher
will be eager to induce some changes in the ways the children think. Like before,
we can describe this new change in terms of concept acquisition and conceptual
change: We can say that the children face the formidable task of overcoming
their misconceptions about triangles.3

In this talk, I reformulate this last statement after introducing a somewhat
different way of talking about learning. My preference for the framework that
will be called communicational stems mainly from the conviction that theories
which conceptualize learning as personal acquisitions can tell us only so much
about the complex phenomenon of learning. The acquisitionist approach relies
heavily on the idea of cognitive invariants that cross cultural and situational
borders. And yet, as has been convincingly argued by many scholars (e.g. Lave,
1988; Cole, 1996), human learning is too sensitive to its social, historical,
cultural and situational context to be fully captured in a set of very general uni-
versal rules. In fact, my point of departure in this talk is that most of our learning
is nothing else than a special kind of social interaction, aimed at modification of
other social interactions and practices. Thus, rather than looking for those perso-
nal properties that can be held responsible for the constancy of an individual
behavior, I am opting for a framework that allows me to stay tuned to the
interactions from which the change arises. Let me add however, that my choice
of the framework should not be interpreted as a rejection of the long-standing
acquisition metaphor, but rather as an attempt to complement it while, at the
same time, making explicit the metaphorical status of any theory.

Communicational approach to learning
Let me go back to the two episodes we have just seen in an attempt to be clearer
about the change we expect to occur as a result of learning. While listening to the
two brief conversations between the children and their teachers we had good
reasons to wonder about the quality of the communication that was taking place.
In the first scene, although it was obvious that the children were already familiar
with the key term negative number, it was also clear that they could not say much
about the topic of the exchange. They could not even formulate a proper
sentence. We can say that at this point, the students could identify the discourse

�

Alternatively, in this latter case we may say, inspired by Vygotsky (1987), that the teacher tries to help
children in making the transition from spontaneous to scientific concept of triangle.
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on negative numbers when they heard it, but they were not yet able to take a part
in it. In the second episode the situation, although different, still asked for a
change. True, the children eagerly participated in the discourse on triangles; and
yet, the way they did this was unlike that of their teacher.

It is important to note that while introducing children to new ways of
communicating seems to be the teacher’s principal goal, the work never starts
from zero. Whether the discourse to be taught is on negative numbers or on
triangles, it will be developed out of the discourses in which the children are
already fluent.

If so, we can define learning as the process of changing one’s discursive
ways in a certain well-defined manner. More specifically, a person who learns
about triangles or negative numbers alters and extends her discursive skills so as
to become able to communicate on these topics with expert interlocutors. The
new discourse may be expected to make it possible to solve problems that could
not be solved in the past.

At this point somebody may object and say that there is more to learning than
modifying communication. Learning, the critic would say, is first and foremost
about changing the ways we think, and the issue of how we communicate this
thinking, although important, is still of only secondary significance. Let me then
argue that thinking has not been excluded from my communicational account of
learning. This point becomes immediately clear when we realize that the split
between thinking and communicating is deceptive, and that thinking is a special
case of the activity of communicating4.  Indeed, a person who thinks can be seen
as communicating with herself. This is true whether the thinking is in words or in
images. Our thinking is clearly a dialogical endeavor, where we inform our-
selves, we argue, we ask questions, and we wait for our own responses. If so,
becoming a participant in a mathematical discourse is tantamount to learning to
think in mathematical ways.

Asking what the children have yet to learn is now equivalent to inquiring
how students’ way of communicating should change if they are to become skilful
participants of mathematical discourse on triangles and negative numbers.
Clearly, our younger students Eynat and Shira have to modify their use of the
keyword triangle. As I will be trying to show later, this seemingly superficial
change is, in fact, quite profound and by no means easy to implement. The
change of word use depends on modification of certain deeply rooted discursive
habits.

In the case of negative numbers, even more far-reaching changes are
required. The students will have to extend their vocabulary and to learn to
operate with such new terms as “negative two” or “negative three and a half”.

�

The communicational approach presented in this talk is similar to, although not identical with, the
discursive psychology promoted, among others, by Harre & Gillett (1994) and by Edwards (1997).
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Unlike in the case of triangles, where one can identify the object of talk with the
help of pictures, the students will now need a new, specially designed visual
means to mediate the communication. Some special symbols and geometric
models will soon be introduced. Like in the case of triangles, a change will also
be required at the meta-discursive level5.

Let me generalize the above observations. The analysis of the two episodes
has shown that in both cases the children’s present discourse differs from typical
school discourse along at least three dimensions:

- its vocabulary, that is, words and their discursive use
- mediators, that is the visual means by which the communication

is mediated
- the meta-discursive rules that navigate the flow of communication

and tacitly tell the participants what kind of discursive moves would
count as suitable for this particular discourse, and in what situations
this discourse would be applicable and helpful.

Thus, if learning mathematics is conceptualized as a development of a
mathematical discourse, to investigate learning means getting to know the ways
in which children modify their discursive actions in these three respects. In the
rest of this talk I will be analyzing the manner in which the required change can
take place. While doing this I hope to show that adoption of the communicational
approach to cognition is not an idle intellectual game and that it influences both
our understanding of what happens when children learn and our ideas about what
could be done to help students in this endeavor.

How do we create new uses of words and mediators?
According to the popular, commonsensical vision of the sequence of events that
take place in the course of learning, the student must first have an idea of a new
mathematical object, then give this idea a name and, eventually, he or she must
also practice its use. This picture of learning may well be the one that underlies
the popular pedagogical belief in the primacy of conceptual understanding over
symbolization and skill (see e.g. Hiebert & Carpenter, 1992).

Conceptualization of learning as an introduction to a discourse leads me to
doubt this popular model and makes the case for a different course of learning.

�

Note that my present description of the required change is quite similar – one can say isomorphic – to
the one that could be given based on the van Hiele theory of the development of geometrical thinking
(van Hiele 1985). Still, the two descriptions are put apart by their different epistemological/ontological
underpinnings: While van Hiele’s analysis, firmly rooted in the Piagetean framework, would produce a
story of mental schemes, the present description is the description of students’ ways of communicating.
What makes the latter version qualitatively different from the former one is that it presents the develop-
ment of a child’s geometrical thinking as a part and parcel of the development of her communicational
skills, and thus makes salient the principal role of language, of contextual factors and of social inter-
action.
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Let us take the learning of negative numbers as an example. I will be arguing
now that introduction of new names and new signifiers is the beginning rather
than the end of the story. First, let me show the virtual impossibility of teaching a
new discourse without actually speaking about its objects from the very first
moment. Let us have a look at the way in which negative numbers are introduced
in a school textbook.

Let's choose a point on a straight line and name it "zero."  Let's choose a segment
and call it "the unit of length."  Let's place the unit head-to-tail repeatedly on the
line to the right of the point "zero."  The points made this way will be denoted by
1, 2, 3 and so on …

                               -3    -2     -1     0      1     2     3      4      5      6
 To the left of the point "zero," we put the unit segment head-to-tail again and
denote the points obtained in this way with numbers -1, -2, -3,...  The set of
numbers created in this way is called the set of negative numbers.

Figure 2. From a school textbook  (Mashler, M., 1976,  Algebra for 7th grade).
            Translated from Hebrew.

You don’t have to read all that is written here to realize that the crux of this
definition is in the interesting conceptual twist: points on the number line are
marked with decimal numerals preceded by dash and, subsequently, they are
called negative numbers. One may wonder how this verbal acrobatics – giving
new names to points and saying these are numbers – can enable the child an
access to a discourse on the negatives. At the first sight, the learning sequence
that begins with giving a new name to an old thing seems somehow implausible.
And yet, such order of things may be inevitable, and it may also be more
effective than we tend to think.

It is inevitable because if we wish to initiate children to a discourse on new
objects, we already have to use this discourse. The objects of the discourse must
thus be identified in one way or another, in words or symbols. This is probably
why the teacher in the first episode could not refrain from using words like
“negative numbers”, “minus two”, etc. while introducing the topic for the first
time.  Clearly, she felt compelled to do it in spite of the fact that the children had
little idea abut the uses to which these words can be put.

The proposed order of things in the process of learning is also more effective
than we tend to think because of the simple fact that the new objects – the
negatives – have been associated, and introduced with, the word number. The
familiar notion evokes in the student expectations with respect to the possible
uses of the new signifiers. For better or worse, the children seem to know quite a
lot about this something to which they might have been exposed through a single
sentence.
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To see the workings of the former discursive experience in a new context, let
us return to our seven graders learning about the negative numbers. In the new
classroom scene that follows, we can see how the expectations evoked by he
word number help the students find their way into the new discourse. At the
present stage, three weeks and sixteen one-hour meetings later, the children
already know how to add signed numbers and are trying to figure out for them-
selves how to multiply a positive by a negative. First, they do it in small groups.
In one of these groups, the following exchange takes place after the teacher asked
what 2·(-5) could be equal to:

Episode 3: The teacher asked what 2·(-5) could be equal to.

[N13] Sophie: Positive two times negative five…
[N14] Adva: Two times negative five..
[N15] Sophie: Aha, hold on… hold on… It’s as if you said

negative five multiplied two times…. So,
negative five multiplied two times –  it’s
negative ten…

So far, so good. By projecting in a metaphorical manner from their former dis-
cursive experience, the children discovered for themselves the rule which is,
indeed, generally accepted. I will now show that this is not always the case.
During the classroom discussion that took place after the work in pairs was
completed, the following exchange takes place in response to the same question
as in episode 3:

Episode 4: In response to the question, “What 2·(-5) could be equal to?”

[N16] Roi: Negative ten.
[N17] Teacher: Why?
[N18] Roi: We simply did… two times negative five

equals negative ten because five is the bigger
number, and thus… uhmm… It’s like two
times five is ten, but [it’s] negative ten because
it is negative five.

……
[N42] Noah: And if it was the positive seven instead of

positive two?
[N43] Yoash: Then it will be positive thirty five
[N44] Sophie: Why?
[N45] Yoash: Because the plus [the positive mutplier] is

bigger.

On the first sight, Roi’s idea may sound somehow surprising. On the closer look,
it is as justified as the one proposed by Sophie: like the girl before him, Roi
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draws on previously developed discursive habits, except that this time the choice
does not fit with the one made along history by the mathematical community.

Sophie’s successful try:  substitution into the discursive template

        2 · b  = b + b

Roi’s unsuccessful try: substitution into the discursive template

   |a - b|            if a > b
(+a) + (-b) = 

-  |a - b|    if a ≤ b

in which a and b are “unsigned” and both + and – are substituted with ·

Figure 3. Recycling old discursive templates in the new context

Indeed, in the first case, the children substitute the new numbers for old numbers:
The negatives slide into the slot of the second multiplier, occupied so far
exclusively by unsigned numbers. In the second case, the students substitute
operation for operation: The multiplication of signed numbers is obtained from
the multiplication of unsigned number more or less in the way in which the
addition of signed numbers was previously obtained from the subtraction of the
unsigned. As already noted, while the choice of the first group may be deemed
successful because it happens to adhere to what counts as proper in the official
mathematical discourse, the choice of the other group fails to meet the standards.
This difference notwithstanding, the two cases have a very important trait in
common: in both episodes the students are trying to incorporate the newly
encountered negatives into the discourse on numbers, and in both episodes they
do it by using old discursive templates for the new signifiers.

Turning to old discursive habits may be the only way to deal with the
somewhat paradoxical nature of learning. At a closer look, the process of exten-
ding the discourse turns out to be inherently circular: If new objects, such as
negative numbers, are discursive constructions, we have to talk about them in
order to bring them into being. On the other hand, how can we talk about
something that does not yet exist for us? (See also Sfard, 2000a, 2000b, 2000c)

This circularity, a distant cousin of some other, better known quandaries,
such as hermeneutic circle or Meno’s learning paradox, may well be the reason
for yet another complaint by the journalist whom I quoted at the beginning of this
talk:.

 “Perhaps you are thinking that you know quite clearly what seven means, and
you are even now in a rather irritated way counting out fingers or something.
However, it is easy to see that seven does not actually refer to anything in the
world.”
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How do we create new meta-discursive rules and turn them our own?
So far, we have been focusing on discursive changes that take place following a
change in vocabulary or in mediators. We will now see that along with all these,
yet another change, this time on the meta-discursive level, has to take place.

Such change must certainly happen in children’s discourse on numbers if
they are to be able to decide which of the two ways of multiplying positive by
negative – the one offered by Sophie or the one designed by Roi – should be
accepted as the proper one. Without going into details, let me state that the only
justification of the rules that govern the operations on negative numbers is these
operations’ consistency with certain properties of the sets of numbers that is
being extended. And yet, this argument is far removed from anything that counts
as convincing in everyday discourse, which is the only discourse the students
know so far: Instead of pointing to mind-independent, extra-discursive reasons,
as is the case with colloquial discourses, the justification rests, this time, on the
assumption that all that counts is the inner consistency of the discourse itself.
One thus cannot expect students to accept this justification easily, let alone to
reinvent it for themselves.

This inherent difficulty may well be the reason why the teaching of negative
numbers has been grounded for ages in the didactic principle epitomized in this
unforgettable rhyme: “Minus times minus is plus, the reason for this we need not
discuss” (W.H. Auden, quoted in Cline, 1980).

The teacher of our seven-graders did not, however, listen to this advice and,
in the spirit of learning with understanding, did venture a discussion of the rule.
To see the outcomes, let us go back to the class whom we left puzzling over the
question what should be the result of multiplying a positive by negative. The
debate went on for two full periods and the class got eventually convinced by Roi
who claimed that the sign should be like that of the multiplier with the bigger
absolute value. The teacher seemed quite desperate.

Episode 5: Why choose one template rather than another?

[N46] Teacher: You keep repeating what Roi said and I want to know why.
[N47] Yoaz: Because this is what Roi said.
[N48] Teacher: But Roi himself didn’t explain why it is the magnitude that

counts.
[N49] Roi: Because there must be a law, one rule or another.
[N50] Teacher: There must be some rule, fine. But does this mean that we

should do it according to the magnitude?
[N51] Leegal: The bigger is the one to decide.
………..
[N83] Teacher: Six times negative two is negative twelve – is this too

complicated?
[N84] Roi: But I am more charismatic… I managed to influence them

all.
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The picture we get from here may be described as follows: The children know
that if they deal with numbers, there must be rules; and yet, they have no idea
where these rules should come from. Their helplessness finds its expression in
Roi’s truly postmodern declaration that popularity and consensus are as good a
reason for the acceptance of a mathematical definition as any other.

If you think about it, there is nothing rational about these meta-rules and the
children can only arrive at the proper rules by interacting with an expert partici-
pant, at least part of the time. This didactic suggestion sounds pretty straight-
forward. And yet, if we now go back to the first graders who are learning about
triangles, we will see that children do not easily accept changes in meta-
discursive rules even if the initiative comes from a very determined teacher. In
the following episode, the long debate on the status of the stick-like shape
reaches its climax.

Episode 6: Trying to convince Shira that shape C is a triangle

[T35] Teacher: But you told me, and Shira agreed, that in
triangle there must be three lines, right?

[T36] Eynat: Right.
[T37] Teacher: So, come on, tell me how many lines do we have

here? [points to shape C]
[T38] Shira: One, two, three….
[T39] Teacher: So, maybe this is a triangle? Here you said this

one is a triangle [shows another, more
“canonic”  triangle].

[T40] Shira: Because this one is wide and is like a triangle. It
is not thin like a stick [illustrates with hand
movements and laughs]

[T41] Teacher: How do we know that a triangle… whether a
shape is triangle? What did we say? What do we
need in order to say that a shape is a triangle?

[T42] Shira: Three points… three vertices… and…
[T43] Teacher: Three vertices and…?
[T44] Shira: Three sides.
 [T45] Teacher: And three sides. Good. If so, this triangle [!-

points to shape C] fits. Look, one side… and
here I have one long side, and here I have
another long side. So, we have a triangle here.

[T46] Shira: And one vertex, and a second vertex, and a…
point?!

[T47] Teacher: Look here: one vertex, second vertex, third
vertex

[T48] Shira: So it is a triangle?
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Let me analyze the brief conversation while trying to answer a number of
questions.

How do the meta-rules of the children’s discourse have yet to change?
The first meta-rule that has to change is the one that regulates children’s activity
of giving names to geometrical shapes. At present, Eynat and Shira perform the
naming task unreflectively, on the basis of their previous visual experiences.
They recognize triangles and squares the way they recognize people’s faces, that
is, in a direct, non-linguistic way and without giving reasons for their choices
even to themselves. From now on, they will be requested to communicate to
others not only their decisions but also the way these decisions were made. They
will now have to tell their interlocutors how a shape should be scanned before the
decision regarding its name is made. The scanning procedures are mediated by,
and documented in, language. In fact, they are only possible as a part of verbal
communication. When we check whether a shape is a triangle, we have to count
its sides. The counting is a linguistic act and the result of counting is a word
(three, in the case of triangles). The new way of making decisions about the
names of geometrical figures will thus be done by analyzing and comparing
words associated with shapes.

This new meta-discursive rule entails a change of yet another meta-
discursive principle. So far, giving names has been an act of splitting the world
into disjoint sets of objects: This means the meta-rule according to which one
cannot call a shape both triangle and stick, or both square and rectangle. This
will have to change once the naming decisions are based on the results of
linguistically mediated scanning procedures. These verbally mediated procedures
can be ordered according to the relation of inclusion. The hierarchical organi-
zation of the scanning procedures becomes, in turn, a basis for the hierarchical
categorization of geometrical shapes.

How does the teacher try to induce this change?
The transition from the old to new meta-discursive rules must clearly take place
before Eynat and Shira become fully convinced that the stick-like shape is a
triangle. Impatient to see the transition happening, the teacher repeatedly reminds
the criterion which should be used in deciding. Over and over again she initiates
scanning the shapes and counting their elements. Invariably, the words “one, two,
three” are followed with the telling “So..” and, eventually, with the statement
asserting that the shape is a triangle. The word “so” is very effective in sugges-
ting that whatever comes next is an inevitable entailment of the “one, two, three”
sequence.

How successful is the teacher’s effort?
On the face of it, the teacher’s method of repeated use of a certain discursive
sequence works: Shira soon learns to complete the procedure of counting to three
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with the words “So, this is a triangle”. And yet, the fact that in the case of the
stick she utters this conclusion as a question rather than as a firm assertion
signals that she may be declaring a surrender rather than a true conviction. The
lack of certainty can be felt also in Eynat’s contributions. The ultimate evidence
for the fact that old meta-discursive habits die hard will come some time later,
when the children are asked to distinguish between rectangles and other
polygons. Both girls will then adamantly reject the teacher’s suggestion that a
square can also be called rectangle and they will adhere to their version for a long
time in spite of the teacher’s insistence.

One could conjecture that in the case we have been analyzing, the slowness
of learning resulted not so much from the stubbornness of the old discursive
habits as from the ineffectiveness of the teaching method. Moreover, since this
method was based on demonstrating the application of the new meta-rules rather
than on arguing for them explicitly, some people may criticize the teacher for
violating the principle of learning with understanding. This is thus the proper
place to remind ourselves that unlike the object-level rules of mathematics, each
of which is logically connected to all the others, the meta-rules are not dictated
by logical necessity. In consequence, one cannot justify them in a truly convin-
cing, rational way. The children, if they wish to communicate with others, will
have to accept these rules just because they regulate the game played by more
experienced players. They will have to become participants of the new discourse
before they can fully appreciate its advantages. This may be why the mathe-
matician von Neumann has been heard saying to a journalist “One does not
understand mathematics, young man, one just gets used to it”.

Final remarks: How does all this affect the practice?
It is now time for a summary. This can best be done by trying to justify the title
of this talk: “There is more to discourse than meets the ears: Looking at thinking
as communicating to learn about mathematical learning”.

There is more to discourse than meets the ears. Indeed, discourses are activi-
ties in which people do much more than can be heard. Among others, they follow
sets of tacit rules that make the communication possible and of which most of the
time they are not aware. By defining thinking as a case of communication and
school learning as extending and modifying discourses, I have declared that
much more goes into learning than has been taken into account until recently in
the traditional cognitive research. Becoming skillful in modifying tacit meta-
discursive rules is one of the aspects of learning that has yet to be studied.

I also believe that looking at thinking as communicating helps us learn more
about learning, and have been trying to show it throughout this talk. Here are
some of the points I tried to make about the activity of extending and modifying
discourses:
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° First, learning mathematics means new word uses, new mediators, and
new meta-discursive rules;

° Second, the process of discursive change is circular: to be used, new
signifiers must be meaningful, but to be meaningful they have to be
used;

° Third, the way out of this circularity leads through recycling old
discursive habits;

° Fourth, there is nothing rational about most meta-rules, and it is thus
not easy to change them.

Although teaching doesn’t appear in my title, we did talk about it as well. In the
last episode we saw that a teacher may induce changes in a discourse by creating
communicational conflict, that is by exposing children to word uses that are
different from their own. The term communicational conflict brings to mind the
well known idea of cognitive conflict. And yet, there is a difference: Commu-
nicational conflict is a clash between the ways two interlocutors use the same
words and not, as in the case of cognitive conflict, between one persons’ own
contradictory beliefs about the world.

But this is not all. I would like now to claim that the change in the
conceptualization of learning proposed in this talk is bound to affect some of the
most common beliefs on teaching. I could say quite a lot about this, if I had time.
Since I don’t, I will just list some of such beliefs. I am perfectly aware that
without a proper justification, my claims may sound more provocative than I
intend.  On the other hand, why not to end the talk with a bit of provocation?

° The first pedagogical belief that, perhaps, must undergo a revision is
the nowadays popular principle of learning with understanding. This
principle stresses the primacy of conceptual understanding over
symbolization and skill. The foregoing analysis, which has shown the
circularity of the learning process, casts doubt at the very possibility
of this order of things. I am not trying to say that we should
compromise understanding. Rather, I would suggest that we look for a
new understanding of understanding and for a new vision of its
underlying mechanisms. Communicational framework seems to have
much to offer in this respect.

° Another belief that warrants scrutiny is that in learning mathematics,
formalism and skill should be de-emphasized (see e.g. Devlin, 1997).
And yet, as I was trying to show, it is a mistake to think of sym-
bolizing as giving a new “expression” to the “old thought” and of
proficiency as a matter of “finishing touches”. Rather, this is the very
fabric of the mathematical communication. Thus, the decision that
must be made is not whether to teach mathematics without symbolism
and skills, but rather whether to teach mathematics at all.
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° Finally, let me mention the famous constructivist principle according
to which the students are the builders of their own knowledge. In the
communicational language, this would mean that the children are
creators of the discourses in which they are supposed to participate
throughout their lives. And yet, discursive meta-rules are products of
traditions rather than of any extra-discursive need or of logical
necessity. If so, learning these rules cannot occur without an inter-
action with an expert participant.

I cannot end this talk without getting back to the journalist whom I quoted in the
beginning. It’s time to ask whether I managed to answer the challenge with
which he faced us, the educational community. Just to remind you, Sartwell
questioned the idea of school learning, with mathematics being, in his opinion,
the most problematic of subjects. Whether to teach mathematics in school or not
was not the question I was trying to address in this talk. This is a political issue
that must be left in the hands of professional decision makers. I did, however, try
to show Sartwell wrong in the argument he gave for his provocative proposal. As
you may recall, Sartwell’s answer to the question “what is mathematics” was,
more or less, like the one Hamlet gave to Polonius when asked what he was
reading: “Words, words, words.”

Being an adherent of the communicational vision of cognition, I certainly
agree with this. And yet, as I was arguing in this talk, the words of mathematics,
even if not immediately clear, are not doomed to remain empty. More often than
not, what in the beginning is but a word, would eventually be made flesh. In the
end, the words will also become powerful and will do things for us. Our aim is to
fathom the way it happens.
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Panel Discussion on

The Relationship between Theory and Practice
in Mathematics Education Research

Morten Blomhøj, Barbro Grevholm, John Mason, Rudolf Sträßer

Introduction

Rudolf Sträßer, IDM University of Bielefeld

Mathematics education as a research activity must be distinguished from the
actual practice of teaching and learning mathematics. As every research activity,
its fundamental goal is to create, develop and advance knowledge about its object
of study - which can be defined as the teaching and learning of mathematics in all
its respects. This obviously includes research into individual learning processes
of mathematics as well as research into organised learning & teaching of
mathematics in school, at work and in the society at large.

As with every scientific activity, the didactics of mathematics (we use
"mathematics education research" or didactics of mathematics as synonyms)
tends to create its own theory on the subject under study. I offer two well known
examples: The modelling cycle (starting from reality → "real" model →
mathematical model → mathematical treatment/solution → interpretation in
"real" model/reality) is widely used to better understand the application of
mathematics in various contexts - and its teaching and learning (see also the
second section below). The "didactical transposition" (Chevallard, 1985)
provides a way to describe and understand how and why (scientific or other)
knowledge is transformed into teachable knowledge (by means of compart-
mentalisation, sequentialisation ...). More generally: Theory can be thought of as
a textual and/or graphical description in order to better understand activities in
the practice of research or the teaching and learning of mathematics. Scientific
theory ”normally” is or is part of a net of inter-related concepts and relations
used to describe a certain object under study (ad-hoc ”definition”).

As with every scientific activity, the didactics of mathematics tends to create
its own methodology of research or uses methods from other disciplines. I offer
just two extreme examples: Comparative, large scale statistical analyses yield
information about the state of the art of teaching & learning mathematics in a
specific grade, type of school, nation, type of society etc. with hypotheses to be
rejected and/or "confirmed" by means of formal test procedures. Generalisation
is controlled by formal, statistical practices (for example see the recent PISA-
study). Exemplary case studies in an ethno-methodological, participatory style in
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order to (better) understand the special situation under study. Generalisation (if
ever) is only aimed at by means of heuristical argumentation. Hypotheses may
come out of this methodology only "ex post", after the completion of the study.

This description of didactics implies deep links to other scientific disciplines
such as Psychology, Pedagogy (i.e.: the science of education), Sociology, History
and Epistemology/Philosophy – to name only the most important "neighbouring"
disciplines. The didactics of mathematics should develop in close co-operation
with didactics of other subjects – such as the didactics of science and the
didactics of the mother tongue.

Mathematical modelling – interplay between theory and practice

Morten Blomhøj, IMFUFA Roskilde University

During the last fifteen years I have worked with mathematical modelling in a
number of different connections. I have been involved in writing textbooks that
introduce mathematical modelling in the mathematics curriculum at gymnasium
level. Developing and testing courses in mathematical modelling for grades 8 and
9 in close co-operation with mathematics teachers was a central part of my
Ph.D.-study. In recent years supervising students’ projects in mathematical
modelling has been the dominant part of my teaching at Roskilde University. The
study format at Roskilde Uuniversity is project organised and our master
programme includes as a substantial element projects where students are
building, analysing and acting out critique of mathematical models (Niss 2002).
For the time being I am involved in the development and teaching of a new
course in mathematical modelling which is offered to first year students in the
natural science study programme with the aim of developing the students’
mathematical modelling competence (Blomhøj & Højgaard 2002, p. 6). Beside
these teaching related activities I have used the idea of the “theory” of
mathematical modelling as a tool for analysing the role and functioning of
mathematical models in different contexts in society.

In these activities – which partly belong to the practice of mathematics
teaching and partly to mathematics education research – the cyclic process of
mathematical modelling and its possible functioning in mathematics teaching has
played the role of a basic theory. Of course this “theory” has developed con-
siderably during the years. This is true both for my personal understanding of the
modelling process and for what could be considered as the shared understanding
of this “theory” in the mathematics education research community.

To illustrate what the “theory” is about I refer to our latest (graphical) model
of the cyclic process of mathematical modelling (Blomhøj & Højgaard 2002; see
figure 1 below). Here mathematical modelling is depicted as a cyclic process
between six sub-processes, which could be connected in many possible ways. It
should be emphasised that the “theory” is much more than just this model of the
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modelling process. It also includes the justification of mathematical modelling as
a central element in mathematics teaching at different levels of the educational
system, description of the different competencies involved in mathematical
modelling, understanding of the fact that these competencies cannot be acquired
independently – in order to learn mathematical modelling you need to practice
full scale modelling, and as a special but important element the theory also in-
cludes the idea that competence to act out critique of a modelling process does
not automatically follow the competence of performing mathematical modelling.
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Figure 1: A graphic model of the cyclic process of mathematical modelling

Until now I have placed theory in inverted commas (“ ”) to indicate that there is a
separate discussion on criteria to constitute a theory in mathematics education
and to what degree mathematical modelling theory meets this criteria. However,
in this text I assume that it make sense to talk about the theory of mathematical
modelling.

Summarizing, the theory of mathematical modelling can be used as a tool
for:

* analysing authentic modelling processes retrospectively
* identifying the different competencies involved in modelling



Blomhøj, Grevholm, Mason, Strässer

53

* designing tasks and teaching episodes that challenge these com-
petencies

* communicating and discussing the aim of a modelling course with
students & teachers

* teaching the idea of mathematical modelling to students
* analysing students modelling activities

Both in the research process and in the process of developing teaching
practice the interplay between theory and practice is characterised by compli-
cated mutual developments in our understanding of both theory and practice. But
for analytical purposes I will analyse the relationships of theory → practice and
of practice → theory separately.

Theory → Practice
How can or how should theory influence the development of practice?

• The ultimate reason for the development of theory is to improve the
practice of teaching.

Theories tend to live their own life. And so does the theory of mathematical
modelling. Special conferences are organised (ICTMA’s) and special research
questions – which do not always seem relevant for the practices of mathematics
teaching - are addressed (Niss, 1989). However, these activities are important for
the development of the theory, and eventually it may therefore also be of
relevance for the development of practice. Therefore, research should not be tied
too closely to the development of practice. But what is really important is that
researchers feel obliged to reflect on the possible relevance or use of their
theories in relation to the practice of mathematics teaching. In my experience
mathematical modelling theory does generally include reflections on the
relevance for practice.

• Theories can explain (some of) the teaching and learning difficulties
that appear in practice and thereby support design and teaching of
courses that enhances students’ learning.

A result of a conceptual analysis of the mathematical modelling process is that
the challenges that the students meet vary with the degree of pre-structuring the
tasks and situations that form the context for the students’ activity. It is necessary
to spend time on developing the students’ competences related to the inner parts
of the mathematical modelling process (i.e. sub-processes (c), (d) and (e) in
figure 1). Pre-structured tasks that give the students the feeling of “knowing what
the goal is without knowing how to achieve it” are appropriate for this purpose.
In order to develop mathematical modelling competence it is also necessary to
challenge the students on the outer sub-processes and for this purpose one needs
open-ended tasks placing the students in a situation where they feel “perplexity
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due to too many roads to take and no compass given”. The balancing of tasks in
this span is a key issue when developing a mathematical modelling course.

• Theories need to be personalized and made concrete by the teacher to
be of use in practice.

Mathematical modelling theory cannot be directly transformed into teaching
practice. In order to teach mathematical modelling properly you need to believe
in the theory. And for many teachers this requires experience in their own
teaching showing that it is actually possible and worthwhile to get students
involved in modelling activities. This aspect of the theory-practice relation does
actually form a serious obstacle for the development of the practice of teaching
mathematical modelling and for the development of mathematics teaching in
general.

• Theories are often “soft” and very difficult to falsify through practice.

This could of course be considered a weakness of a theory. But I think this
weakness is unavoidable. Theories in mathematics education should not be
expected to meet the same criteria as theories in natural science. Theories in
mathematics education must consider the complexity of the teaching and learning
process. Theories in mathematics education should be validated through their
long-term influence on research and of the practices on mathematics teaching.

Practice → Theory
How is practice influencing theory? (or how should practice influence theory?)

• The key object of mathematics education research is the actual and
potential practices of mathematics teaching.

In order for research to develop theory, relevant for the development of practice,
it must – although not always – be based on problems appearing in practice or in
the excellency of a particular form of practice. Research must be sensitive to the
development of practice. In my opinion the theory of mathematical modelling is
an example of a theory in mathematics education that has developed on the basis
of reflections on different forms of practice in mathematics teaching.

• Practice may give new meaning to theory and thereby support new
theoretical developments.

The importance of practice for further development of theory ought to be
recognised in mathematics education research. This is really important for the
possibility of forming fruitful forms of co-operation between researchers and
teachers. Of course the practice of mathematics teaching is not always relevant
for the development of theory.
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• Practice sometimes needs to be arranged in order to be of relevance
for the development of theory.

The practices of mathematics teaching are bound by official regulations and by
tradition. Therefore it is really important that research in mathematics education
can arrange teaching situations where boundaries are crossed. In connection with
mathematical modelling it is often necessary to establish special teaching
conditions in order to study the students’ work with the entire process of
mathematical modelling.

• Developing practice and theory may be considered as two sides of the
same process.

However, it is also important to recognise that the practices of mathematics
teaching and mathematics education research are embedded in different socio-
logical contexts. That is one explanation of why some teachers who have been
very enthusiastic about teaching mathematical modelling in developmental
programmes return to more traditional ways of teaching after ending such
projects.

The relationship between theory and practice in mathematics
education research

Barbro Grevholm, Luleå University of Technology

In his book Vetenskapsfilosofi (Philosophy of science) Molander gives a defini-
tion of theory: A system of propositions, some of which are seen as laws, that in
a unified and coherent (consistent) way describes and explains phenomena in a
certain area of investigations. (Translated from Molander, 1988)

I would rather express it like this: A theory is a model that can be used on
specific phenomena or areas to interpret, explain or understand the phenomenon
or area and to be able to forecast or predict what can be expected in certain
situations where the phenomenon can take place or in the area in question.

What is practice in mathematics education research? Presumably most
teachers and researchers would refer to the actual practice in the mathematics
classroom or practice of teaching and learning. The object of research often is the
interactions in the classrooms, what teachers do, what pupils do and the co-
operation between them. But it can also be a single pupil in a learning situation
or one or several teachers in an instructional situation or discussion. The actual
practice of research could also be referred to, that is what the researcher
undertakes in his studies.
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My example of a situation where practice leads to theory is about Counting
cave, a computer program with the aim of improving the pupils’ number sense
(see Grevholm, 1989; 1991a/b). In this program the pupil takes the role of a
number and investigates a mysterious cave that contains number rooms. In a
developmental study I investigated how pupils use this program. Observing,
videoing and tape-recording pupils finally led to a model of how pupils build up
and use their knowledge about number, such as number facts and operations. As I
observed the pupils working with the program I imagined the elements of
knowledge as points in a multidimensional
spider web and the associations pupils used to
develop new knowledge as the web itself. It
was obvious how pupils could take departure
in one element of number facts and step by
step from this walk along the web and create
new knowledge.

A conversation like this could take place:

- How do we get 72 by the help of 6?
- I know that it is not 9 because 9 times 6 is
54.
- But I know that 9 times 4 is 36.
- Yes and 36 is also 6 times 6.
- If we take 36 two times we get 72.
- So then we know that 2 times 6 times 6 is
72 and we have 12 times 6 is 72. It is 12 we
are looking for.

In my imagination I saw how pupils jumped from one point to another in the
spider web of number knowledge and then ended up with the result of new
knowledge that could be included in the web. Many years later I found out that
other researchers had described similar models for how structures of knowledge
develop and are organised. Novak (1998) among others have made this picture
concrete through his concept maps.

The second example is about how theory can inform practice. Jaworski
(2002, p. 52) introduced the diagrammatic picture of a co-learning partnership
shown in figure 1, page 105 in this volume. In her theoretical model I can
understand the research study I have been carrying through since 1996 with a
group of student-teachers who are now working as teachers of mathematics and
science. The model explains the dependence between students, teachers and
researchers that I have experienced in the practice of my research and made me
more aware of the learning that takes place in all of the groups included and
especially of my own learning as researcher.

Figure 2: Counting cave
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The relationship between theory and practice is a complex one and has to be
problematised for many reasons. First of all we have a gap between researchers
and practitioners, teachers. According to Mogens Niss this gap seems to be
widening:

One observation that a mathematics educator can hardly avoid to make is that
there is a widening gap between researchers and practitioners in mathematics
education. The very existence of such a gap is neither surprising nor worrying in
itself. The cause for concern lies in the fact that it is widening.[... ]..what we can
do is to reduce the sociological gap between teachers and researchers. This can
be done by creating meeting points and fora for concrete collaboration between
teachers and researchers, by making the demarcation lines between the two pro-
fessions less rigid, by giving teachers opportunities to take part in research from
time to time, and by having researchers never be completely out of touch with
the practice of teaching mathematics (cf. Niss in press).

Do we need theories? Do teachers need theories? John Mason has pointed out
that not all theories are practice based. This then depends on what we mean by
practice.
      Teachers would probably expect the theories they find useful to be related to
their practice. They would also try to understand the theories in the light of the
experience they have in practice. Carlgren and Marton (2001) claim that the
professional object of teachers is learning. I would claim that the professional
object is teaching with the aim of creating a situation for student learning. This
necessarily includes that the teacher becomes a learner herself (cf. Jaworski,
2002).

Why do we need theories then? One reason is that we have practice and to be
able to overlook it and systematise our experiences from it we need theories. An
interesting object of study would be to find out what open or hidden theories
teachers have about mathematics education, about what knowledge is, about how
pupils learn, about how teaching should take place and about how and what
learning can take place in specific situations and under given conditions. Even if
we have some findings about these questions most of it is still unexplored. Such
research could enlighten the complex relationship between theory and practice.

Theory and Practice

John Mason, Open University Milton Keynes UK

Theory and Practice have been in tension ever since humanoids started to think
about and reflect upon what they were doing. Each has an important role to
play in the transformation of individuals as they mature and grow wise, and in
the transformation of  societies as they evolve. With two impulses in tension
there is the potential for release of energy. There is also the potential for
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acceding to desire to reduce tension by migrating to one extreme or the other.
But the potential is held by balancing the two, and by transcending them
through action, that is, through permitting a third impulse to mediate between
and to hold the two together. I hope that my examples will illustrate this at least
to some extent, for as Newton said, … since skills are more easily learned by
example than precept …
(Isaac Newton: see Whiteside 1972 p. 129-157).

Examples: Practice leading To theory

•  I try to preach what I practice, not the other way round, which itself is
a practice which contributes to my theories about how professional
development is most effectively supported.

Having found myself working with experienced school teachers and not having
that same experience in schools, I based my approach on speaking to their
experience by concentrating on and being aware of my own experience, but cast
in a form which others could immediately enter, through mathematical activities
and through speaking from my experience to their experience.

• Whenever I am faced with a question in mathematics education I
begin by trying to locate an example (possibly analogous) in my own
experience, and to generate a new similar experience. I then try to
construct a task-exercise for others in order to generate similar
experience.

This is a component of the use of the Discipline of Noticing in what I call resear-
ching from the inside (Mason 1992, 2002). It arises as a necessity from the first
example, and provides the basis for that practice to be effective.

Examples: Theory used in practice

• The theoretical position that learners learn better when they are
actively engaged cognitively, affectively, and physically (even if
virtually mentally), and specifically, that asking learners to construct
their own examples of mathematical objects meeting certain
constraints entices them into active engagement with mathematics,
informs my choice of tasks in workshops that I lead.

My wife, Anne Watson and I are assembling everything we can about this
particular practice, building a theory about it, and using that theory to refine the
practices we have encountered and use ourselves. I currently make this a feature
of most task-exercises I suggest to participants in workshops.

• The theoretical construct of transposition didactique informs my
reading of research reports which claim that certain tasks 'worked'
with certain learners.
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It reminds me to ask questions about possible differences between the intended,
activated and experienced task, and about the inner and outer aspects of the task
(Tahta, 1981; Mason, 1993). These theoretical ‘frameworks’ consisting of potent
distinctions have proved fruitful in the past and continue to prove fruitful in task
design and in reading research reports.

• The theoretical notion of distinction making as the basis for sensitivity
and noticing, lies at the heart of my 'theoretical' description of how I,
and I suspect others, actually function.

The notion of distinction making is richly embedded in my functioning, trigge-
ring access to a variety of distinctions which then inform my practice (Mason
2002). It is related to ideas concerning the role of disturbance and distinction
making in learning to be found in many places such as Varela, Thompson &
Rosch (1992), van Hiele (1986), Maturana & Varela (1972), Bennett (1966),
Heidegger (1927), Festinger (1957) and at least implicitly in Plato.

Principles & Assumptions
In preparing for this panel, I found myself led to ennunciate some principles in
case there might be opportunity to discuss them and others related to them.

• Every rich practice (e.g. didactics of mathematics, teaching of mathematics
in a given culture at a specified level) develops its own technical language, which
outsiders call jargon and which can be mistaken for, or may in fact indicate, a
theoretical basis.

• The test for empty, obscurantist jargon is whether the same thing can
actually be said in other words but at greater length so that others can recognise
what is being said and test it in their own experience (a modified Popperianism),
or whether more words merely compound abstractions and obscurity.

• Whenever an abstraction or generality is encountered (such as this one), it
is natural and useful to test it within one's own experience (past, present and
future), that is, to specialise the generality through making use of the power of
mental imagery and the resonance mechanisms of memory, and to seek
confirmation or contradiction in future experience.

• Practice which is entirely reactive-responsive without being abstracted or
generalised is fine for the individual, but is not easily communicated to others
(simply showing has all sorts of pitfalls when the learner mistakes what is
irrelevant for what is important, and vice versa) and is not easily developed;
practice which is formalised through explicit description is unlikely to be fruitful
for others, since the more explicitly and precisely the practice is stated, the more
likely it is that people will try to reproduce the behaviour, without the awareness
which informs and directs that behaviour (see for example Mason 1998).

• Not all theory is practice based! Is all practice theory-based, even if not
explicitly articulated? Some argue that it must be, but others argue that theory
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derived from observing the practice of others is as much an indicator of the
describer’s sensitivity and need to encapsulate in language as it is a theory which
drives behaviour. Indeed some would argue that behaviour is not driven by
theory but by habit.

• Theoretical studies can locate useful distinctions which can sensitise practi-
tioners to notice what they previously did not discern; they can develop practices
which practitioners do not have the time and energy to refine. I am less certain
that they can validate distinctions and practices, since these must be in ecological
balance with the psycho-socio-cultural propensities of the individual and their
context.

• Since the only thing I can actually change is myself, a suitable focus of
attention for study is myself: myself (including my claimed past experience) as
litmus for testing assertions;  myself as locus of significant action (converting
some habitual reactions into sensitively considered responses); my own
awareness as constituting the world in which I operate; my own practices as
constituting my presence in the material world which we all apparently share.

• The more precisely I try to describe some incident concerned with teaching
and learning, the more I learn about the describer (an educational-researcher
Heisenberg theorem); the more tightly I define details of a practice, the less
useful that practice becomes and the less likely I am to locate an opportunity to
use it (an educational-practitioner Heisenbergian theorem).

Concluding Remarks

M. Blomhøj, B. Grevholm, J. Mason & R. Sträßer

Looking back to what was presented during the panel presentations and
discussion, some salient features emerge. The most obvious observation seems
to: Actual practice is not usually as well analysed and understood as the theory.
The introduction focused totally on theory - and the panelists had less trouble
describing the role of theory than coping with the diversities of practice. Practice
may not be describable in words. Closer inspection reveals that one can even
distinguish two types of practice: There is the practice of the researcher – and
John Mason in his presentation gave an elaborated description of how he himself
sees his practice as a researcher trying to co-operate with practitioners such as
teachers, based on his study of his practices in learning and doing mathematics.
On the other hand, there is the practice of teaching and learning mathematics
which is the unquestioned object of study of didactics of mathematics (or
research in mathematics education). In her presentation, Barbro Grevholm
pointed to a theoretical perspective on the co-operation and co-learning of
researchers, teachers and students. In addition to that, she gave a nice example of
how a developmental practice gave rise to a piece of theory without being
noticed as theory at first. It was only later and with the explicit identification as
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theory by a different researcher that she came to realise that practice made her
develop a piece of theory.

Morten Blomhøj reminded us of the tension inherent in these two "cultures"
of theory and practice: while he sees development of the practice of teaching and
learning as the ultimate goal of didactical theory, he nevertheless spoke of the
(relative?) autonomy of theory which sometimes should not be tied too closely to
the development of practice and must be developed in not too close a relation to
the actual practice of teaching and learning. John Mason (in his "principles &
assumptions") added that "not all theory is practice based". One must not go as
far as taking a philosophical perspective (like platonism or Kantian a-priori) to
defend the possibility, if not necessity of a theoretical stance to do research in
mathematics education. This must not stop a researcher from realising that –  as
Barbro Grevholm put it – we have practice and theory enables us to reflect upon
it and systematise our experiences. Consequently, there are good practical
reasons for why we need theories.
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Mathematical Thinking and Emotion

Jeff Evans
Middlesex University, London

An examination of the development of concepts of affect in mathematics
education can begin usefully with McLeod’s (1992) spectrum of forms of affect,
from beliefs (more stable, ‘cooler’) over to emotions (more transient, ‘hotter’),
with attitudes intermediate. Early research focused on more stable aspects of
affect, using surveys to study dimensionality, and correlations with performance.
Further, ‘mathematics anxiety’ was used to provide a non-cognitive explanation
for any gender differences in performance. Recent research also focuses on emo-
tions, using process-oriented research methods (e.g. semi-structured interviews).
Thus, over time, the conceptions of affect and emotions have changed from those
of individual ‘traits’, to aspects of an interactive process of problem-solving.
Developments using discursive perspectives emphasise language use (e.g.
metaphor) and display emotions as cultural and social phenomena.

The discussion in this session picked up on Thomas Lingefjärd’s emphasis of
the urgency of studying the affective and emotional reactions of students towards
mathematics, because of the pressing problem of dropout of students from
science and engineering courses, even in Sweden’s best Universities. This
problem was echoed by other participants, from other institutions and other
specialisms. It is also pressing in general, in other countries, such as the UK
(Furedi, 2002).
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To Study Mathematics
in an Engineering Program

Thomas Lingefjärd
Chalmers University of Technology & Göteborg University

Introduction
During the last 10-15 years, there has been an increasing interest in studying how
students experience, learn, understand or demonstrate advanced mathematical
thinking, a categorization of thinking that most often refer to upper secondary or
university students’ learning of mathematics. This is a report from a study of how
first year students in the Chalmers University of Technology program of Mecha-
nical engineering comprehend linear algebra and real analysis, but there are many
similarities to how younger students learn mathematics as well.

Humankind is a learning creature; it is one of her most dominant charac-
teristics. But learning is not possible to define in one definite way or another; it is
a multidimensional process. We learn collectively and individually, alone and
together with others, inside and outside school or institutions, at work and at
home. Contrary to past views of learning, the cognitive psychology of today
(Marton & Booth, 1997; Säljö, 2000) suggests that learning is not linear but
proceeds in many directions at once and at an uneven pace. People of all ages
and ability levels constantly use and refine concepts. Furthermore, there is tre-
mendous variety in the modes and speed with which people acquire knowledge,
in the attention and memory capabilities they can apply to knowledge acquisition
and performance, and in the ways in which they can demonstrate the personal
meaning they have created.

Several authors have been trying to categorize advanced mathematical thin-
king. Robert and Schwarzenberger (1991) describe in the following statement
how learning in advanced mathematics is different from learning in elementary
mathematics.

There is a quantitative change: more concepts, less time, the need for greater
power of reflection, greater abstraction, fewer meaningful problems, more
emphasis on proof, greater need for versatile learning, greater need for personal
control over learning. The confusion caused by new definitions coincides with
the need for more abstract deductive thought. Taken together these quantitative
changes engender a qualitative change, which characterizes the transition to
advanced mathematical thinking. (p. 133)

It is unclear from this statement how much of the difference that is due to the
mathematical content itself rather than to the way the courses are taught. So far,
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there seems to be no agreement in the community of mathematics and mathe-
matics education on what advanced or elementary mathematical thinking really
is. In The Nature of Mathematical Thinking (Sternberg & Ben-Zeev, 1996),
Sternberg wrote in the culminating chapter, “In reading through the chapters of
this volume, it becomes clear that there is no consensus on what mathematical
thinking is, nor even on the abilities or predispositions that underlie it” (p. 303).

The algebra course
The algebra course in the Mechanical engineering program is built around the
common core of linear algebra, such as concepts like vectors, matrixes, deter-
minants, complex numbers, polynomials and algebraic equations. The course is
organized in what is called “theme weeks” as follows:

• Day 1: An introductory lecture for 2 hours with an introduction to the
theme, the area of the following week, objectives and goals, examples,
important theorems and relations.
• Day 2 & 3: The students work in small groups of 4 with a total
“class” of about 30 students and with one teaching assistant. The
teaching assistant serves as a coach but can also demonstrate further
examples within the content area for the whole class. So-called huge
questions are left for the after-lecture.
• Day 4: The students are examined on that week’s work.
• Day 5: A concluding after-lecture for all students.
• Note: Day 1 is a Thursday throughout the algebra course.

An important idea with the organization is that the student should work in
groups of 4, thereby allowing discussions and according to the examiner prepare
for “learning by explaining for someone else” but also for stimulating group
discussions. Another important idea is every week’s 2 assignments, larger
problems on which the students are examined day 4, both orally and in written
form. The students are also encouraged to write a journal over each theme week
in order to reflect over their learning. The journal is also valued in the exami-
nation. The 14 homework problems and the 6 journal writings can altogether give
maximum 20 points, and every student need to have at least 12 points from this
part of the examination to pass. In addition, the students need to get at least 12
points of the final exam’s 30 points.

As a part of the coursework assessment can play different roles and fulfill a
range of purposes. Purposes of assessment could either be formative or summa-
tive. Formative assessment could be seen as a help to form and develop student
learning and summative assessment as a way to sum up what has already been
achieved. When the two components are well integrated, it is also more likely to
prompt deep and relevant learning (Morgan & O’Reilly, 1999). If the teaching
and assessment are structured so that one assignment builds upon the next, with
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formative feedback from the first promoting to the next, and so on, it could be a
strategically important way to maximize learning. All graded assignments taken
together can form a final grade but also an end-of-the-course examination might
be included, the last one with a summative function only. Unfortunately, this
mixture of an ongoing examination with different types of assignments from the
first week and a final exam at the last week was hard to see through and master
for the students.

Students
In the fall of 2001, 189 students were admitted to the program of Mechanical
Engineering at Chalmers. They ranged in age from 19 to 33, with a median age
of 22 and a mode of 20. The median value of their gymnasium grade was VG
(well passed) or 4. Thirty-two were women, and 157 were men. They all began
their studies in mathematics with the algebra course, which started with an
introduction at September 4 and ended with the final examination at October 25.

Method
The study was conducted with the help of surveys and interviews. The survey
instrument was based on an indicator instrument from Australia, called Course
Experience Questionnaire (CEQ).  The CEQ survey is used annually in Australia
to evaluate how people who have graduated from university programs value the
program afterwards. The instrument uses 25 questions to measure the following
factors or indicators:

•Quality of teaching
•Clear goals and standards
•Appropriate assessment
•Appropriate workload
•Development of generic skills
•Overall satisfaction

The CEQ defines generic skills as if one’s performed studies might lead to
improvement of skills that are useful in a wider context than just university
courses. The generic skills are measured by six questions. The quality factor
corresponds to one question. The remaining 18 questions are of an apparent
process character, which means that the students are asked to judge whether the
teaching has had certain qualities or not. The questions have been copied from
the report of the investigation in 1995 (Johnson, Ainley & Long, 1996).

Following the example of Lander and Larson (1997), some questions and
factors were added in order to improve the survey. Finally, a survey with 44
different questions was constructed, all questions formulated as statements with
which the students could agree or not on a five graded scale. See Appendix for
surveys that were used during and after the algebra course. A number of 141
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students answered to the first survey, while 120 students responded to the second
one. More than 100 students responded to both surveys.

The interviews were all conducted with voluntary students, who responded to
a general request regarding students who would like to sit in together with a re-
searcher for an interview regarding their studies in mathematics. Fifteen students
contacted the researcher and came to interviews, one by the time. The interviews
all started with information about the CDIO project, then with questions about
the reasons for studying at Chalmers, the time spent on studies, the way the
student experienced studying mathematics at this level in general, and so forth.
The interview also included conceptual and technical questions about linear
algebra and finally we talked about the algebra course in a more detailed way.
One supposedly new experience for the students was the writing of a mathe-
matical journal.

For many different subjects, in school as well as at universities, the impor-
tance of fostering the students to write as part of the learning experience is
natural. Subjects like for example English, social science and natural science
regularly use the writing process as part of their teaching. For the last 10 or 15
years there has been a growing concern about how to create and implement
relevant writing assignments also throughout the mathematics curricula. Diffe-
rent reasons such as an increasingly advanced and available technology among
learners of mathematics, a growing interest among teachers of mathematics at all
levels to learn more about what and how their students learn, and a likewise
growing certainty among researchers in mathematics education that assessing
knowledge in mathematics is much more than just a written test at the end of a
course, have all contributed to a strong interest about the use of writing assign-
ments in mathematics.

Results
The total report with the full set of surveys and responses to each item,
interviews and students results is planned to be available at the end of 2002. I
have chosen to present the responses to the category Generic skills in the survey
in this paper. The following questions are interpreted as measuring what the
students think of the course’s effect on their Generic skills, which Johnson,
Ainley and Long (1996) together with Lander and Larson (1997) define as a
quality or characteristic that corresponds to the students’ general ability to sustain
and succeed as university students. When the figures in a line do not add up to
the sum of 141, it depends on the fact that some students did not answer to all the
questions in the survey.

Survey 1
The first survey was given in the middle of the algebra course, which was early
October (n=141).
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Table 1
Question Meaning Responses

Agree Don’t Agree
totally partly know  hardly  not at all
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Figure 1. About 30% were not convinced that their generic skills would improve
 during the course.

Survey 2
The second survey was given after the algebra course was finished, with the
same set of 44 questions (n = 120).

Table 2
Question Meaning Responses

Agree Don’t Agree
totally partly know hardly  not at all
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Figure 2: After the course, the number of students who were not convinced about
the improvement of their generic skills had increased to 40%.

All the results in the study should be seen in relation to each other, but as a single
and isolated result, the decreasing trend concerning the students’ belief in their
generic skills is interesting. Wouldn’t a course with all this emphasis on learning,
on different examinations methods, on group work on larger projects, and so
forth, more likely lead to an increase of the generic skills? Well, maybe it does?
We have to remember that it is just the students’ attitudes, emotions, and feelings
that we are measuring in a survey like this. Nevertheless, the students experience
themselves as less competent problem solvers after the course, which can be seen
as a serious damage to their self-confidence.

Another interesting aspect to measure is the students’ opinion about the
reflective writing (questions 26 & 36). During the course there was a polarization
of students’ opinions about the usefulness of reflective writing. After the course,
a larger number and a larger percentage of the students, expressed the opinion
that they had no benefit whatsoever of reflective writing when learning mathe-
matics. Since the results of the surveys in several respects contradict what the
teachers and planners of the course expected, the next step was to perform
interviews with a group of students.

Interviews
The first interviews took place after the algebra course was finished and after the
final exam and had three different objectives; the social and educational situation
the students come across, their mathematical learning (e. g. do they know what a
singular matrix is?), and how the course had affected them in terms such as
emotion, attitude, and confidence.

One goal of all mathematics education should be for students to take
responsibility for their own learning. This means empowering the students to
read, write and discuss mathematics intelligently and with self-confidence.
Engineering students will also be entering into fields where they will be doing
technical reading, and reading mathematics can help them learn to read difficult
written material. Writing is also the most likely way in which most engineers will
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display their work for public exposition. Discussion is probably the most com-
mon and fastest way of transmitting information between two people, and so
having the ability to describe orally one’s thoughts and concerns becomes a very
important quality, especially when describing technical terms or concepts.

Another very important question for anyone who teaches mathematics is:
“What do I want my students to feel?” Do I want my students to be confident in
their knowledge of the concepts I am teaching? Do I want my students to feel
free to ask questions in class or free to come to my office hours? Do I want my
students to experience the good feeling after having solved a difficult problem?
Several studies have considered the impact of reform efforts on student attitudes
(Tucker & Leitzel, 1995), and Douglas (1987) mentions wanting students to feel
ownership over the material, but little is mentioned in these works about relie-
ving student anxiety or increasing a students’ pleasure in doing mathematics.

The affective part of the interviews revealed many surprising findings,
together with some more expected ones. As with the surveys there is no room
here for reporting from all the interviews. I have selected the following quota-
tions from the students to illustrate some of the differences between the course
objectives and the students’ experiences. I like to underline that we did not speak
explicitly about confidence, emotion or attitude during the interviews; they are
simply artifacts of my selection of different interviews for this particular paper.

Confidence

Student 1: Confidence – I don’t know.., well you know, when you are in 9th grade
you are the best, and when you are in the gymnasium you are one of the
best, but here I’m just one in the crowd of students who doesn’t
understand what the lecture is about…

Student 2: I used to be very open and in the gymnasium class I asked directly when
I didn’t understand but here I’m in a lecture hall with almost 200
students and I don’t know more than 20 of them and I don’t dare to ask
questions that maybe are stupid…I wait and ask someone of my friends
after the lecture

Student 2: My project group consists of three girls and four boys and two of the
boys are very smart and you can bet that they have the solutions to next
week’s project problem already the first day and it really kills my
confidence that they have done it before the rest of us even have
understood what it’s all about…

Emotion

Student: In the beginning of the course people were more relaxed. Now it is like
everybody is so tensed and irritated…you really don’t ask anyone for a
solution of a problem directly any longer, you have to take it slow…

Interviewer: Could you elaborate on that, please?

Student: Well, you know… there is like 10 – 15 students who really can solve the
project problems on their own now and they know it and we know it.  So
there is a hierarchy that everybody is more or less aware of…but if you
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take it slow and act friendly and properly humble, well then you can get
the solution in a couple of hours…

Interviewer: Then what?

Student: Then you share it with the rest of your group…  and then we try to
understand the solution in all details and prepare to write our own
report…

Attitude

Student: I really don’t emphasis on deep understanding any more if you know
what I mean, it has to wait… at first I tried to understand, really to
understand what was going on. Now I focus on technical expertise
instead.

Student: The first one and a half or maybe even the first two years are just
something you have to live through, like something necessary evil – then
you can start study what you really are interested in. I’m really not
interested in or fond of mathematics so I just have to live through it and
“survive” until the fun starts in the third year.

Student: I’m really not interested in the overarching goals of the course, I expect
that the teachers or whoever in charge know what they are doing and I
just keep doing my tasks so to speak…

The interviews also revealed rather surprising gaps in the students’ know-
ledge of linear algebra. Only one third of the students could for instance describe
the concept of rank, while no one was ready to give an answer to the somewhat
challenging questions: “What is linear algebra?” After some time I usually added
the questions: “Is it a formal game?”, “Is it a set of abstract structures?”, “Is it a
language?”, “Is it a tool with which to investigate natural phenomena?” A vast
majority of the students selected the last alternative, but I find it intriguing how
these students miss the opportunity to see an overall picture and merely choose to
study in order to learn facts and procedures.

Conclusions
With all the emphasis from mathematicians and mathematics educators to change
this specific algebra course to a course with more focus on understanding, the
result was of course a real disappointment. Linear algebra is hard to learn, it has
been known for many years as one of the many obstacles that exist within
introductory university mathematics.

During the sixties, at a conference in Zürich, I made the acquaintance of a
charming old man who was none other than Plancherel – of Plancherel’s
theorem – and who, during a very interesting conversation, insisted on the fact
that of all the teaching he had done that of linear algebra seemed to be by far
the most difficult for students to understand. Thirty years later the situation
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does not seem to have changed very much and we can assure Plancherel that he
is in good company. (Revuz, 200, p. xv)

Nevertheless, this is not a satisfactory state of art and we must continuously keep
working on the improvement of teaching, learning, and assessment of linear
algebra to increase its accessibility to more students.
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Appendix

Chalmers Technical University / Göteborg University
Course evaluation 1 Algebra M1/TD1 2001/2002

Please mark with an X that corresponds with your reaction to the suggestions below. Some of the
questions are similar, which is done with intent to increase the validity. Thank you for your assist.

In general – how do you encounter the course?
Agree

(It often says ’the teachers’ but think Agree Don’t  hardly not
’the teacher’ if that is better)  totally partly know at all

1. It is always easy to know the standards of work expected ¥ ¥ ¥ ¥ ¥
2. The course helps me to develop my problem-solving skill ¥ ¥ ¥ ¥ ¥
3. The teaching staff in the course motivates me to do my best¥ ¥ ¥ ¥ ¥
4. The workload is too heavy ¥ ¥ ¥ ¥ ¥
5. This course sharpen my analytical skills ¥ ¥ ¥ ¥ ¥
6. I usually have a clear idea of where I am going and what
    is expected of me in this course ¥ ¥ ¥ ¥ ¥
7. The staff put a lot of time into commenting on my work ¥ ¥ ¥ ¥ ¥
8. You only need a good memory to do well on this course ¥ ¥ ¥ ¥ ¥
9. The course help me develop my ability to work as a
     team-member ¥ ¥ ¥ ¥ ¥
10. As a result of this course, I feel more confident about
      tackling unfamiliar problems ¥ ¥ ¥ ¥ ¥
11. The course improves my skills in written communication ¥ ¥ ¥ ¥ ¥
12. The staff seems more interested in testing what I have
      memorized than what I had understood ¥ ¥ ¥ ¥ ¥
13. It is often hard to discover what is expected of me
      in this course ¥ ¥ ¥ ¥ ¥
14. I am generally given enough time to understand the things
      I have to learn ¥ ¥ ¥ ¥ ¥
15. The staff makes a real effort to understand difficulties
      I might be having in my work ¥ ¥ ¥ ¥ ¥
16. The staff normally gives me helpful feedback on how
      I am going ¥ ¥ ¥ ¥ ¥
17. The teachers are very good in explaining things ¥ ¥ ¥ ¥ ¥
18. There are too many examination tasks on plain facts ¥ ¥ ¥ ¥ ¥
19. The teachers work hard to make the subject interesting ¥ ¥ ¥ ¥ ¥
20. I feel a strong pressure to do well in this course ¥ ¥ ¥ ¥ ¥
21. The course helps me to develop my ability to plan my
      own work ¥ ¥ ¥ ¥ ¥
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In general – how do you encounter the course?
Agree

(It often says ’the teachers’ but think Agree Don’t hardly not
’the teacher’ if that is better)  totally partly know at all

22. It is so much to cover in the course, that there is no way
      that it all could be thoroughly comprehended ¥ ¥ ¥ ¥ ¥
23. The teachers made it clear from right the start what they
      expected from the students ¥ ¥ ¥ ¥ ¥
24. Overall, I am satisfied with the quality of the course ¥ ¥ ¥ ¥ ¥
25. The examination helps me to understand the content better¥ ¥ ¥ ¥ ¥
26. To write a journal is of great importance for my learning
       of mathematics ¥ ¥ ¥ ¥ ¥
27. The teachers encourage us to try our own ideas ¥ ¥ ¥ ¥ ¥
28. The course is far too burdensome ¥ ¥ ¥ ¥ ¥
29. The teachers notice what the students need to get
      further explained in the content ¥ ¥ ¥ ¥ ¥
30. The lectures are effective and clear ¥ ¥ ¥ ¥ ¥
31. The teachers actively try to find why certain topics are
       difficult for us ¥ ¥ ¥ ¥ ¥
32. We are encouraged to find our own solutions to the problems¥ ¥ ¥ ¥ ¥
33. The lectures are clear and distinct ¥ ¥ ¥ ¥ ¥
34. The teachers discusses with us about how we think about
      the problems ¥ ¥ ¥ ¥ ¥
35. The teachers adjust their teaching according to what the
      students find difficult ¥ ¥ ¥ ¥ ¥
36. The journal writing is mainly about information ¥ ¥ ¥ ¥ ¥
37. The course strengthens my ability to discuss with others in a
      trustworthy and reasonable way ¥ ¥ ¥ ¥ ¥
38. The teachers ask us to recapitulate the content and to highlight
      the significance it has ¥ ¥ ¥ ¥ ¥
39. In the examination I am expected not only to show what I
     have learnt, but also to apply my knowledge theoretically or
     practically ¥ ¥ ¥ ¥ ¥
40. The teachers have useful comments on my work in the course¥ ¥ ¥ ¥ ¥
41. The course helps me to become better in explaining to others¥ ¥ ¥ ¥ ¥
42. The teachers encourage us to use our own ideas ¥ ¥ ¥ ¥ ¥
43. The teachers want the examination to show if I can generalize
      my knowledge into new situations ¥ ¥ ¥ ¥ ¥
44. I think this is an interesting and rewarding course ¥ ¥ ¥ ¥ ¥
THANK YOU VERY MUCH FOR YOUR HELP!   Please write your own comments below:
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Appendix

Chalmers Technical University / Göteborg University
Course evaluation 2 Algebra M1/TD1 2001/2002

Please mark with an X that corresponds with your reaction to the suggestions below. Some of the
questions are similar, which is done with intent to increase the validity. Thank you for your assist.

In general – how did you encounter the course?
Agree

(It often says ’the teachers’ but think Agree Don’t hardly not
’the teacher’ if that is better)  totally partly know at all

1. It was always easy to know the standards of work expected ¥ ¥ ¥ ¥ ¥
2. The course helped me to develop my problem-solving skill ¥ ¥ ¥ ¥ ¥
3. The teaching staff in the course motivated me to do my best¥ ¥ ¥ ¥ ¥
4. The workload was too heavy ¥ ¥ ¥ ¥ ¥
5. This course sharpened my analytical skills ¥ ¥ ¥ ¥ ¥
6. I usually had a clear idea of where I was going and what
   was expected of me in the course ¥ ¥ ¥ ¥ ¥
7. The staff put a lot of time into commenting on my work ¥ ¥ ¥ ¥ ¥
8. You only needed a good memory to do well in the course ¥ ¥ ¥ ¥ ¥
9. The course helped me develop my ability to work as a
    team-member ¥ ¥ ¥ ¥ ¥
10. As a result of the course, I feel more confident about
      tackling unfamiliar problems ¥ ¥ ¥ ¥ ¥
11. The course improved my skills in written communication ¥ ¥ ¥ ¥ ¥
12. The staff seemed more interested in testing what I had
      memorized than what I had understood ¥ ¥ ¥ ¥ ¥
13. It was often hard to discover what was expected of me
      in the course ¥ ¥ ¥ ¥ ¥
14. I was generally given enough time to understand the things
      I had to learn ¥ ¥ ¥ ¥ ¥
15. The staff made a real effort to understand the difficulties
      I might have in my work ¥ ¥ ¥ ¥ ¥
16. The teaching staff normally gave me helpful feedback
      on how I was performing ¥ ¥ ¥ ¥ ¥
17. The teachers was very good in explaining things ¥ ¥ ¥ ¥ ¥
18. There were too many examination tasks on plain facts ¥ ¥ ¥ ¥ ¥
19. The teachers worked hard to make the subject interesting ¥ ¥ ¥ ¥ ¥
20. I felt a strong pressure to do well in the course ¥ ¥ ¥ ¥ ¥
21. The course helped me to develop my ability to plan my
own work ¥ ¥ ¥ ¥ ¥
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In general – how did you encounter the course?
Agree

(It often says ’the teachers’ but think Agree Don’t hardly not
’the teacher’ if that is better)  totally partly know at all

22. It was so much to cover in the course, that there was no way
      that it all could be thoroughly comprehended ¥ ¥ ¥ ¥ ¥
23. The teachers made it clear from right the start what they
      expected from the students ¥ ¥ ¥ ¥ ¥
24. Overall, I am satisfied with the quality of the course ¥ ¥ ¥ ¥ ¥
25. The examination helped me to understand the content better¥ ¥ ¥ ¥ ¥
26. To write a journal is of great importance for my learning
      of mathematics ¥ ¥ ¥ ¥ ¥
27. The teachers encouraged us to try our own ideas ¥ ¥ ¥ ¥ ¥
28. The course was far too burdensome ¥ ¥ ¥ ¥ ¥
29. The teachers noticed what of the content the students
      needed to get further explained ¥ ¥ ¥ ¥ ¥
30. The lectures were effective and clear ¥ ¥ ¥ ¥ ¥
31. The teachers actively tried to find why certain topics were
     difficult for us ¥ ¥ ¥ ¥ ¥
32. We were encouraged to find our own solutions to the problems¥ ¥ ¥ ¥ ¥
33. The lectures were clear and distinct ¥ ¥ ¥ ¥ ¥
34. The teachers discussed with us about how we thought about
      the problems ¥ ¥ ¥ ¥ ¥
35. The teachers adjusted their teaching according to what the
      students found difficult ¥ ¥ ¥ ¥ ¥
36. The journal writing was mainly about information ¥ ¥ ¥ ¥ ¥
37. The course strengthened my ability to discuss with others in a
      trustworthy and reasonable way ¥ ¥ ¥ ¥ ¥
38. The teachers asked us to recapitulate the content and to highlight
      the significance it has ¥ ¥ ¥ ¥ ¥
39. In the examination I was expected to show what I had learnt,
      and also to apply this knowledge theoretically or practically¥ ¥ ¥ ¥ ¥
40. The teachers gave useful comments on my work in the course¥ ¥ ¥ ¥ ¥
41. The course helped me to become better in explaining to others¥ ¥ ¥ ¥ ¥
42. The teachers encouraged us to use our own ideas ¥ ¥ ¥ ¥ ¥
43. The teachers wanted the examination to show if I can
      generalize my knowledge into new situations ¥ ¥ ¥ ¥ ¥
44. I think it was an interesting and rewarding course ¥ ¥ ¥ ¥ ¥¦ § ¨ © ª « ¬ ­ ® ¯ ° « ± ­ ² § ³ ¬ ° « ¬ ­ ° § ¯ ´ µ ¶ µ · ¸ ¹ º ¸ » ¼ ½ ¾ ¸ ¿ À Á ¼ À » Â Ã À Ä Ä ¸ Â ¾ º Å ¸ · À » Æ
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Mathematical Thinking and Mathematical
Achievement: Research Issues

Anne Watson
University of Oxford

In this presentation we will identify and discuss some research issues which arise
from considering relationships between mathematical thinking and mathematical
achievement.

During the 80s and 90s several countries reorganised their mathematics
curricula and assessment systems to encourage and reward more creative
thinking, deeper understanding, applications and a problem-solving approach to
mathematics teaching and learning. These developments were only briefly in
place when the TIMMS report triggered something of a backlash towards a ‘back
to basics’ approach (notably in California and other parts of the USA) or a rather
prescriptive ‘numeracy’ curriculum (in the UK). Nevertheless there remains the
desire that learners should understand their mathematics enough to be able to use
it flexibly in a variety of situations, so the phrase ‘mathematical thinking’ is
significant in the education discourse of many countries, alongside the desire for
skills outcomes. In addition, there is also a view (illustrated in the teaching
methods of Phoenix Park school in Boaler’s work (1997)) that if learners are
encouraged to think mathematically they will become better learners of all
mathematics, including the ‘basic’ skills.

Mathematical achievement
Governments’ need for tests and test results with which to monitor achievement
means that, from their point of view, any teaching methods need to be
accountable in some way. Methods which do not lead to improved results, or
which may even depress results, cannot be sustained politically. Hence, if a test
of mathematics achievement involves groupwork on an unseen, unfamiliar
problem but the teaching has been focusing on the rote-learning of replicable,
familiar techniques then something has to change. What is more usual, of course,
is that the test is about selection and performance of techniques and the teaching
has mainly been about preparing for such questions. Unsurprisingly, many
learners become confused by all the different things they have to learn to do, and
may not recognise when it is appropriate to do them anyway.  Further,
accumulation of such confusion means that many lack confidence to approach
problems in any way other than finding and using a semi-recalled technique.
Year after year the same kinds of question lead to the same kinds of wrong
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answer, and examiners’ reports make the same kinds of comments about the
weaknesses of candidates.

So a first research issue might be the questions:

What is mathematical achievement?  How is it measured?

We also need to decide whether to describe what happens currently, or
whether instead to pursue the questions philosophically, epistemologically or
ideologically.

Values
Inevitably we will be talking about value, with the attendant question: value to
whom? One tension we might discuss is whether education is for developing
individuals, introducing them to the most worthwhile things humans can do,
getting them excited about future possibilities and thus helping them become
good citizens, or is about ensuring future workforces have appropriately
marketable skills and can do the things society expects of them, and thus become
good citizens! We could also discuss what values politicians express when they
panic, as most of them did, about international maths comparisons. Also, what
values do university mathematicians bring into play when they complain about
falling standards.

Mathematical thinking
Dalia Aralas (2001), a mathematics educator from Malaysia, points out that many
different kinds of activity can be described as mathematical thinking and there is
no universally agreed definition. She points out that ‘thinking’ could mean:
reasoning, understanding, competence, skills, knowledge, behaviour, intelli-
gence, development, problem solving or disposition.

Typically, researchers refer to Polya (1962), Mason et al (1982) or
Schoenfeld (1985) to find definitions.  However, while Schoenfeld describes a
detailed heuristic for mathematical problem-solving, Polya and Mason write
more about their experience of doing mathematics which might result in no
solutions at all but rather a lot of further questions! This sense of mathematical
experience can also be found in the work of Hadamard (1945), and Davis and
Hersh (1981), but with rather less attention to practical application. It is the
naming of aspects of mathematical thinking which makes them available to be
discussed and thought about and, hence, for pedagogical questions to be posed
about them.

An appropriate question at this point would be:

How can the personal experiences of successful mathematicians inform
us in general about mathematical thinking?
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Successful learners
A further source of descriptions of mathematical thought is Krutetskii (1976),
whose detailed research into the features of successful learners of mathematics
produces the following list of common abilities to:

• Extract formal structures from problems
• Generalise
• Operate symbolically
• Work with spatial concepts
• Reason logically
• Use shortcuts
• Be flexible between approaches
• Reverse chains of thought
• Achieve clarity and economy in argument
• Memorise mathematical knowledge

Of course, we need to ask ourselves whether there is anything absolute about
his description. In other words, was his identification of successful mathema-
ticians something we would all agree with, or did the system select those who
had these characteristics and call them successful mathematicians? I am not
directing this question solely at the old Soviet Union. I can also ask it of any
author who says things like: “the strongest mathematicians were able to self-
correct their work”. Is the relationship causal, and if so which way and how does
it operate, or does our definition of ‘strongest mathematician’ necessarily include
the propensity to self-correct?

If we identify mathematical thinking by looking at those who have achieved
in mathematics, we should also look at what is implied by the word ‘achieve’?
In the UK, students are taken into University on the basis of results in
examinations which can be the result of detailed and intensive examination
practice. Then lecturers complain that they ‘cannot think for themselves’ and
cannot bring knowledge into play in other contexts. The way many of these
learners ‘think mathematically’ is to look for a similarity with something already
done, and thus simplify what they are asked to do. Both Polya and Schoenfeld
give this as a strategy, but when searching for templates is used as the main
strategy of performance it offers little insight into the ability of learners to work
with structures and meanings, and offers them little insight into mathematics.

A question emerges:

What ways of thinking allow learners to achieve in particular high-
stakes assessments?  What mathematical thinking skills could we expect
those who are successful to have?
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Advanced mathematical thinking
The final source of descriptions of mathematical thinking for this paper is the
analysis of mathematics itself, and the identification of the mental constructions
and reconstructions necessary to understand and develop it. For this, we have to
have a view of what mathematics is. Writers in this area see it as a recursive
structure of successive abstractions, in which learners experience ranges of
examples which are then reflexively abstracted (Dubinsky, 1991) and reified
(Sfard, 1991) in order to become objects for the next layer of work, or tools with
which to develop more complex mathematics (Douady, 1986). Hence, their
descriptions of mathematical thinking tend to be about being able to generalise
from special cases (Mason, 1998), exemplify from generalities (Watson and
Mason, forthcoming), change between representations (Dreyfus, 1991),
habitually see abstractions (Tall, 1991) and so on. Those who would have
mathematics only as a descriptive device and tool for engineering, science, or
everyday living will find little to excite them here. The significant text (Tall,
1991) is supposed to refer to the ways one needs to think about advanced
mathematics. However, the title ‘Advanced Mathematical Thinking’ is
ambiguous, and this leads to some further questions:

Can the characteristics of mathematical thinking described as
‘advanced’ be applicable to learners at all stages? Can teachers
encourage learners to think in advanced ways about simple
mathematics?

Thinking and achievement
In spite of their success in the TIMSS report, several high-achieving countries are
trying to move away from an approach to mathematics teaching which focuses
mainly on performance of skills (for example, Goh, 1997). Instead, broader
definitions of mathematical achievement relating to the reform movements of the
80s and 90s are replacing traditional agendas. There is recognition that
developing mathematical thinking skills might lead to achievement in
mathematics which is more meaningful than traditional approaches have
produced. That is, it may lead to deep learning of mathematics (Marton and
Säljo, 1997). Further, students who have been explicitly encouraged to think
deeply and creatively about mathematics seem to achieve more in very ordinary
kinds of mathematics test (Boaler, 1997; Adhami et al, 1998) as well as in tests
which relate directly to mathematical thinking. Boaler’s results are, however,
only from one school and Adhami’s results are, so far, only from schools
involved in a supported project. On a larger scale we could point to typical
teaching methods in Japan and Hungary, both of which use problem-solving and
discussion approaches in the classroom, and say that they produce strong and
successful mathematicians.
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The use of variety of examples in Japan is particularly interesting, since
learners naturally seek out what is the same and what is different.  Thus being
given a variety of raw material for that process is useful (Becker and Shimada,
1997; Marton and Trigwell, 2000).

Finally, the big question is, of course:

Does the development of mathematical thinking improve mathematics
achievement?

But, as we have seen, this has to be answered within context and with careful
definition.

Future research
Research in this domain is patchy and, as I have pointed out, may be based on
assumptions about language and meaning which cannot be taken-as-shared.
However, if there are going to be any convincing answers to questions about
teaching methods, teaching foci and the development of creative, autonomous
mathematics students this would be a fruitful, if difficult, area to study.
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Forum for Young Researchers

A Forum for Young Researchers, titled New Directions, Problems and
Solutions was held in conjunction with the MADIF 3 conference. The Forum was
chaired by Gilah Leder (La Trobe University, Australia), and consisted of two
parts:

• presentations by doctoral students, most of whom were part of the
newly formed graduate school, and

• a workshop lead by John Mason (the Open University, UK) and
Anne Watson (Oxford University, UK). The activities selected
challenged participants to adopt researchers’ perspectives rather than
the more familiar roles as learners or teacher-educators.

As part of their presentation the doctoral students were asked to:

• give a brief overview of their project (or interesting paper they had
selected for discussion), and

• identify a stumbling block or difficulty they anticipated or had already
experienced in their research.

A group discussion about the problem(s) identified and possible means for
resolving the difficulties raised followed each presentation.

The following students gave a presentation:

Andreas Andersson – Students´ Understanding of Discrete Mathematics in
Higher Education

Jesper Boesen – A Short Presentation Concerning My Research Interest in
Testing and Assessment

Sivbritt Dumbrajs  – Collaboration and Communication as Part of Mathematics
Instruction

Torbjörn Fransson – To What Extent Are Students Able to Create a Formation
of Concepts by Problem Solving?

Monica Johansson – Textbooks in Mathematics (for Fifth Graders)

Per Nilsson – Experimentation as a Tool for Discovering Advanced Mathe-
matical Concepts

Constanta Olteanu – Students’ Development of Algebraic Ability and
Understanding in Upper Secondary School Project Description
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Semiotik och matematikdidaktik

Arne Engström
Örebro universitet

Inledning
Ett växande och intressant område inom det internationella matematikdidaktiska
forskningsfältet utgörs av tvärsnittet mellan semiotik och matematikdidaktik.
Föreliggande paper presenterar några grundläggande frågeställningar inom detta
område. Jag har tidigare delvis behandlat detta område i Engström (2001), där
jag försökte tematisera förhållandet mellan rationalitet och intersubjektivitet.
Avsikten var att förstå hur elever utvecklar en förståelse för  nödvändig kunskap
genom en social interaktion med andra. Matematiken ges därmed en kommu-
nikativ karaktär.

I detta inledande avsnitt ska jag ta en utgångspunkt i den matematiska nota-
tionen för att belysa några matematikdidaktiska frågeställningar som berör semi-
otiken. Semiotik betyder teckenlära. Från en matematikdidaktisk synvinkel är det
av intresse att studera den mening vi tilldelar matematiska tecken, som vi använ-
der i olika sammanhang.

Matematisk notation
Matematik är intimt förknippat med symboler och formler av olika slag. För den
oinvigde ter sig dessa många gånger som något mystiskt, för att inte säga ma-
giskt, något som tillhör en förtrollad värld bara några få förunnade att känna till.

Under historiens gång har den matematiska notationen tagit sig olika uttryck
allt från några regelbundet grupperade streck inkarvade i vargben, sumerernas
kilskrift inpräglade i lertavlor, egypternas hieroglyfer på papyrusrullar, kinesers,
japaners, indiers, arabers och andra kulturers olika teckensystem till våra dagars
närmast standardiserade matematiska notation. Men matematisk notation är inte
bara symboler och formler utan också text. I detta paper ska allt detta benämnas
som tecken.

Till skillnad från matematiken själv, med dess karaktär av nödvändighet, är
dess beteckningar sociala konventioner och därmed arbiträra (godtyckliga). Det
finns ingen nödvändighet i att vi låter representera ett visst tal med t.ex. ”3” eller
”4–1”. Men har vi väl kommit överens om att beteckna ett visst tal på ett visst
sätt så följer därav ett antal konsekvenser.

Vissa tecken som vi använder oss av inom matematiken har en intressant hi-
storia. Kring flera av våra vanliga matematiska tecken har det stått en lång strid
om hur det ska se ut.
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Matematiska tecken står för något, dvs. representerar en idé eller tanke.
Människor uttrycker matematiska tankar med hjälp av tecken av olika slag. Vi
använder tecken till att tänka med, uttrycka och kommunicera våra tankar med
andra människor.

Tecken att tänka med
För varje teori med anspråk att söka förklara lärande blir det av intresse att stude-
ra vilken mening vi tilldelar olika tecken när vi använder dem för att tänka och
kommunicera vårt tänkande med. För att göra oss förstådda bland andra måste
det finnas en viss kongruens i denna meningstilldelning av tecknen. Ibland före-
faller oss användandet av tecken så självklart, framför allt i matematik, att vi
kanske inte funderar så mycket över tolkningen av tecknen. Semiotik handlar om
tolkning av tecken.

Den klassiska matematiken var retorisk, dvs. den framställdes med ord eller
ordförkortningar. Under medeltiden skedde en betydelsefull förändring, mot en
högre grad av abstraktion av matematiken, den s.k. symboliska abstraktionen,
genom mötet mellan den orientalisk-medeltida och den grekiska matematiken
vilket resulterade i algebrans födelse i början av 1600-talet (Thompson, 1991).
Med den symboliska abstraktionen, den analytiska geometrin samt infinitesimal-
kalkylen inleddes den moderna matematiken.

De viktiga abstraktionssteg som togs kan följas i utvecklingen av den mate-
matiska notationen, exempelvis genom införandet av särskilda tecken för ”intet”
(nollan), det ”okända” (x,y,z), ”det ospecificerade” (a,b,c), samt ”det förmodade
lilla” inom infini tesimalkalkylen (Sällström, 1991). Utvecklingen av den mate-
matiska notationen motsvarar en allt högre grad av abstraktion, vilket var en för-
utsättning för den snabba utvecklingen av matematikens tillämpning inom natur-
vetenskapen. Det handlar inte främst om en abstraktion av den direkta verklig-
heten, utan om en kedja av abstraktioner, abstraktioner av abstraktioner. I varje
abstraktions- eller generaliseringssteg har vi att göra med tecken eller symboler,
vilka representerar (generella abstrakta) objekt, som härstammar från en abstrak-
tion och en generalisering.

Matematik kan uppfattas som en generalisering av tecken eller represen-
tationssystem, framhåller Hoffmann och Plöger (2000). En väsentlig del av den
moderna matematiken handlar om symbolisering.

Semiotik
Semiotik betyder läran om tecken. Själva termen semiotik används på lite olika
sätt. Den kan dels uppfattas som en metod, som ett sätt att närma sig ett under-
sökningsobjekt, dels som en särskild vetenskap. En företrädare för denna senare
uppfattning är Sonesson (1989, 1992).

Sonesson utvidgar semiotiken till en betydelselära, som studerar hur mening
uppstår generellt, hur tecken och betydelser fungerar i allmänhet och ser därmed
semiotiken som en nomotetisk (lagsökande) vetenskap.
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Teckenmodeller
Semiotik utgjorde hos de antika filosoferna en del av filosofin. Numera framstår
den alltmer som en egen disciplin. Det är framför allt två pionjärer, schweizaren
Ferdinand de Saussure, grundare av den moderna strukturella lingvistiken, och
pragmatismens grundare, den amerikanske filosofen och matematikern Charles
S. Peirce, som kommit att stå för två huvudinriktningar inom semiotiken. Intres-
set för både semiotiken och Peirces arbeten inom fältet har kraftigt accentuerats
under 1990-talet.

Ferdinand de Saussure
En av de viktigaste teckenmodellerna utgörs av de Saussures distinktion mellan
uttryck och innehåll, mellan den abstrakta ljudbilden signifiant (betecknande)
och begreppet signifié (betecknat). I språket är uttrycket (en föreställning om) ett
ljud, medan innehållet är ett begrepp, en idé eller (föreställningar om) personer,
föremål och andra. Tecknet förhåller sig relativt godtyckligt till verkligheten.
Tecknet uppstår först i och med att något betecknas och betecknandet är en vilje-
akt.

Charles S. Peirce
Peirce har sina filosofiska rötter hos Kant. Ett gemensamt drag hos dem är att
verkligheten framstår som organiserad i några grundläggande kategorier inom
ramen för vilka den först blir uppfattbar. Vi kan enligt Kant inte veta något om
tinget i sig. Hos Peirce är världen endast tillgänglig för oss genom en förmedling
via tecken. Föremål har ingen betydelse i sig. För tolkare av världen finns inga
föremål, bara tecken.

Tecken har en föremålslig sida, en materiell komponent (t.ex. symboler på ett
papper). En annan sida hänför sig till att tecken har en kulturhistorisk framvuxen
och i en social interaktion manifesterad betydelse

Peirce arbetar med tre fundamentala kategorier, etthet firstness, tvåhet se-
condness och trehet thirdness. Alla fenomen i verkligheten uppfattas antingen
som enskilda eller också som delade på två eller tre element. Ettheten bildar ut-
gångspunkt. Det är något i sig själv. Tvåheten är något som står i relation till det
förra och treheten är en förmedling av de båda andra. Tecknet är ett exempel på
trehet och består av tre led: representamen, objekt och interpretant; eller uttryck,
innehåll och tillämpningens särart.

Varje tecken kan kategoriseras i enlighet med de tre sätt på vilka var och en
av de tre leden kan skifta: efter uttryckets egen natur, det slags relation som
sammanbinder uttryck och innehåll och tillämpningens särart (Sonesson, 1992).
Vi kan beskriva detta med figuren nedan.
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   Trichotomy

Category

I.
of the representamen

II.
of relation of object

III.
of relation to
interpretant

Firstness qualisign icon rheme

Secondness sinsign index dicent

Thirdness legisign symbol argument

Figur 1.1. Peirces teckenklasser (Nöth, 2000).

För Peirce råder det ett triadiskt förhållande mellan tecken, objekt och interpre-
tant.

Ett tecken är något som för någon står för något i viss bemärkelse eller kapacitet.
Det är riktat till någon det vill säga skapar ett motsvarande tecken i personens med-
vetande, eller möjligen ett mer utvecklat tecken. Tecknet som det skapar kallar jag
interpretanten av det första tecknet. Tecknet står för något dess objekt (Peirce, cite-
rat i Fiske, 1990, s. 63).

Följande figur kan illustrera detta förhållande:

Tecken

              interpretant        objekt

Figur 1.2. Förhållandet mellan tecken, objekt och interpretant hos Peirce.

Interpretanten är inte tecknets användare utan syftar på ”den egentliga beteck-
nande effekten” (Peirce, citerat i Fiske, 1990, s. 63). Interpretanten av tecknet är
resultatet av användarens erfarenhet av tecknet och de sammanhang där detta
ingår. Gränserna sätts av sociala konventioner. Variationerna inom dessa är en
fråga om sociala och psykologiska skillnader mellan användarna (Fiske, 1990).

Den triadiska strukturen i Peirces teckenbegrepp motsvaras för vår del av
spänningsfältet mellan det matematiska sakförhållandet, representationen och
tolkningen.
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Peirce behandlade också tre teckenkategorier, dvs. olika förhållanden mellan
tecknet och objektet det hänvisar till. En ikon liknar objektet på något sätt; i ett
index finns ett direkt samband i verkligheten mellan tecknet och objektet; i en
symbol saknas både likhet och samband. Ett fotografi är en ikon, rök ett index
som är kopplat till (indikerar) eld och ett ord är en symbol (Fiske, 1990).

Även teckentyperna kan visas i en triadisk modell.

 ikon

   index symbol

Figur 1.3. Förhållandet mellan ikon, index och symbol enligt Peirce.

Förmågan till varseblivning och tolkning av tecknen är inget givet, utan kan vara
ganska olika. Det ger varseblivningen och tolkningen en hypotetisk karaktär.
Varje varseblivning och tolkning uppfattas som bildandet av en hypotes, eller
som resultatet av en abduktion (se nedan).

Semiotik och matematikdidaktik
I detta avsnitt ska semiotikens betydelse för matematikdidaktiken diskuteras,
varvid framför allt tre dimensioner, det matematiska sakförhållandet, representa-
tionen och tolkningen av det, kommer att behandlas.

Matematikdidaktik och meningsskapande
Elevers meningsskapande processer har traditionellt studerats genom olika sam-
tals- och diskursanalytiska studier. Semiotikens klara fördelar gentemot dessa
studier är att alla uttryck, språkliga som icke-språkliga, t.ex. de för matematikdi-
daktiken så centrala matematiska symboler, representationer av olika slag (dia-
gram, tabeller, etc), åskådningsmateriel och hjälpmedel av olika slag, räknas in
(se t.ex. Seeger, 2000).

Semiotiken berör några viktiga dimensioner av matematikdidaktiken, nämli-
gen

• objektet, eller sakförhållandet
• representation (interna och externa) av detta objekt eller sakförhållande
• tolkningen av det.

Ett objekt eller sakförhållande kan bara förstås och kommuniceras när det repre-
senteras och tolkas i någon form. Spänningsfältet mellan sakförhållande, repre-
sentation och tolkning gör därför semiotiken mycket intressant för matematikdi-
daktisk forskning. Det handlar om vilken mening människor tillskriver de olika
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tecken som de använder sig av inom matematiken. Lärande uppfattas som en
teckenprocess (Hoffman & Plöger, 2000).

Sakförhållandet
Sakförhållandet, eller det matematiska objektet, är ett abstrakt eller idealt mate-
matiskt objekt eller ett problem uppkommet ur vardagserfarenheter. Det bör po-
ängteras att semiotiken inte förutsätter en reell existens av ett objekt, dvs. plato-
nism. Som filosofisk position är platonismen högst problematisk (se Engström,
2001).

Hypostasering innehåller både generaliserande och abstraherande processer i
en utveckling till ett mentalt objekt, som hanteras av matematiker som om det
existerade.

Frågan om hur matematisk kunskap utvecklas har traditionellt hanterats
mellan de två ytterligheterna rationalism och empirism. Det finns en paradox i
matematikfilosofin som avser hur man kan avvisa empirismen som grund och
samtidigt förklara matematikens stora tillämpbarhet på verkligheten. Kants väg
ut ur detta dilemma var konstruktivism.

Jean Piaget och Charles Peirce har båda sina rötter i den Kantska filosofin.
Det finns en intressant parallell i hur de båda försöker ersätta de aristoteliska be-
greppen om abstraktion och generalisering i sina respektive diskussioner om en
matematikens epistemologi.

Piaget överskrider Kant genom att visa att de Kantska åskådningsformerna
och kategorierna inte är aprioriska utan konstrueras genom reflekterande ab-
straktion och konstruktiv generalisering (se Piaget, 1985, 2001). Piaget gör en
distinktion mellan empirisk och reflekterande abstraktion och förklarar matema-
tikens tillämpningar med att den matematiska kunskapen har en grund i konkreta
handlingar som att ordna, gruppera, föra samman etc. Dessa utvecklas till rever-
sibla operationer genom en reflekterande abstraktion och konstruktiv generalise-
ring, vilka sedan i sin tur utgör utgångspunkt för vidare abstraktioner och gene-
raliseringar.

Peirce diskuterar ett tredje alternativ till slutledning vid sidan av deduktion,
att följa en ”regel” på ett enskilt fall för att uppnå ett ”resultat” och induktion, en
omvänd slutledning från ett enskilt fall och resultat till en regel. Induktionen är
visserligen användbar i många sammanhang, men är ingen logiskt giltig slutled-
ningsform. Peirce kallar sin tredje slutledningsform för abduktion. Enligt Peirce
är abduktionen vardagens slutledningsform som leder oss till den mest sannolika
förklaringen till ett fenomen som väcker vår förvåning. Peirce kallar sitt begrepp
hypostaserande abstraktion. Abduktionen innebär hypotesbildning och sannings-
antagande av denna hypotes.

Det finns en annan intressant parallell mellan Peirce och Piaget. Deras teorier
om hypostaserande respektive reflekterande abstraktion är ett svar på frågan om
hur ny kunskap utvecklas. Platon hävdade i sin dialog Menon att idén om ny
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kunskap var en paradox. I stället handlar det om en återerinring. Genom den spe-
ciella samtalstekniken, frågor och prövningar av svaren på frågor, låter Platon
Sokrates utveckla sin majevtiska metod, dvs. förlösa vetande som redan finns.

Frågan om hur ny kunskap uppstår i matematik kan förstås utifrån begreppen
Wissensbegründung och Wissensentwicklung (Jahnke, 1978; Steinbring, 2000),
dvs. grundläggande av vetandet och utveckling av vetandet.

Å ena sidan är matematiskt vetande logiskt konsistent och hierarkiskt ordnat;
varje ny kunskap kan deduceras från den gamla och därmed är den på basis av
den logiska strukturen inte ny. Å den andra sidan uppstår det faktiskt ny och hit-
tills okända insikter i matematik, t ex genom lösningar av problem och genom
bevisning av förmodanden (t ex är existensen av oändligt många primtal en ny
insikt för den lärande, men en formell slutsats från talbegreppets axiom).

Matematisk kunskap kan förstås på två sätt:
• logisk struktur – tautologisk, logiskt konsistent, strukturellt nätverk
• matematiska objekt – i varje struktur kan man identifiera och konstrue-

ra kunskapselement och begrepp, vilka öppnar nya frågor och problem,
vilka ännu inte är inordnade i den matematiska kunskapsstrukturen
(problem som ännu inte är ”lösta”).

Representationens problem
Ett matematiskt sakförhållande inte bara kan representeras på olika sätt, utan
måste representeras på något sätt för att vi ska kunna operera eller handla (van-
ligtvis räkna) och därigenom omvandla det på något sätt. Genom att representera
ett sakförhållande, tolkar vi det, dvs. tilldelar det en mening. Ett matematiskt sak-
förhållande framställs (representeras externt) genom ett aritmetiskt uttryck, en
ekvation eller olikhet, en integral eller differentialekvation. Genom ett regelstyrt
opererande, dvs. vi utför de aritmetiska operationerna (addition, subtraktion,
etc.), löser ekvationen, beräknar integralen, leder detta till nya framställningar av
sakförhållandet, vars tolkning i den kontext vari sakförhållandet ges ger ny in-
formation om detta sakförhållande. Nedanstående framställning bygger i huvud-
sak på Pescheck (2000).

Vid de flesta matematiska aktiviteter sker vid sidan av en regelstyrd om-
formning av symboliska framställningar också en ”översättning” mellan olika
framställningar. Att bedriva matematik innebär väsentligen också en interaktion
mellan människa och framställningsform (på ett papper eller en bildskärm).

Därvid uppkommer ett antal frågor: Vad är det egentligen som framställs och
hur framställs det inom matematiken? Normalt är det abstrakta, dvs. något som
inte är direkt tillgängligt för våra sinnen, relationer, t.ex. ett tal som en kvantita-
tiv relation, en ekvation som en relation mellan två variabla storheter, en funktion
som en relation mellan elementen i två mängder. Dessa abstrakta relationer fram-
ställs genom skrivna symboler, eller kan numera också materialiseras som för-
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nimbara objekt på en datorskärm. Abstrakta relationer kan också materialiseras
genom skriftspråk.

Är de redan specifikt abstrakta, som vi materialiserar i matematiska sym-
boler, eller blir de specifikt matematiska genom att vi materialiserar dem på ett
specifikt, matematiskt, sätt?

Det kan vara ekonomiskt att använda en och samma framställning för olika
matematiska sakförhållanden, men varför använder man olika framställnings-
former för att materialisera ett och detsamma matematiska sakförhållande?

Vad är det för mening att skilja mellan objekt och dess representation, alltså
anta existensen av ett objektområde bortom dess materiella eller kognitiva fram-
ställningsformer?

Olika framställningsformer
Man kan språkligt beskriva hur någon kastar upp en sten i luften, hur stenen allt
långsammare stiger, verkar stanna i luften och sedan börjar att falla, allt snabbare
och slutligen faller på marken.

Denna framställning kan också visas visuellt. Man kan här skilja mellan iko-
nisk, schematisk och symbolisk framställning.

Figur 2.1. Ikonisk, schematisk och symbolisk framställning (Pescheck, 2000).

Den ikoniska framställningen gör en närmast kvasianalogisk beskrivning av
sakförhållandet, i form av ett förenklat ”fotografi”.

Den schematiska framställning fokuserar på relationen mellan tid och höjd.
Tabellen gör det på ett diskret sätt och den grafiska framställningen på ett konti-
nuerligt sätt. Båda framställningarna abstraherar från bestämda aspekter av sak-
förhållandet, något som fortfarande kan ses i den ikoniska framställningen, att ett
föremål kastas upp och vilket föremål det handlar om och av vem det kastas.

Den symboliska framställningen går ett stycke längre. Den visar att förhål-
landet mellan tid och höjd är kvadratiskt, samt på vilket sätt höjden är beroende
av utgångshastigheten och gravitationskraften. Den ger också möjlighet som de
andra framställningsformerna saknar att genom en regelstyrd omformning få
fram utgångshastigheten ur tid och höjd.

Det som skiljer de olika framställningsformer åt är:
Ikonisk framställningsform hänför sig till reellt synbara omständigheter och

kan ge ett första inblick i ett sakförhållande, stimulera associationer och vara ut-
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gångspunkt för  utvecklingen av schematiska framställningar, men tillhör egent-
ligen inte matematikens område. Ikoniska framställningar används sällan i ma-
tematiska texter.

Schematiska och symboliska framställningsformer finner man däremot i varje
lärobok i matematik, varför man måste förutsätta att de vid sidan av språkliga
framställningar är särskilt viktiga för matematik och lärandet i matematik. Ge-
nom dessa framställningsformer görs vissa aspekter av ett sakförhållande mer
intressanta än andra. Man måste ”kunna läsa” sådana framställningsformer, sär-
skilt måste man veta vad man abstraherar från.

Medan schematiska framställningar ofta refererar till förnimbara mönster i
referenskontexten och abstrakta relationer framställs med hjälp av förbindnings-
linjer, pilar osv., så framställs sådana relationer i symboliska framställningar i
formaliserad form, dvs. med symboler. Betydelsen av symboler måste överens-
kommas eller förhandlas. Symbolerna görs ofta generella genom att en bestämd
symbol får står för alla reella tal, alla punkter, eller alla integrerbara funktioner.
Övergången till detta symboliska plan kan beskrivas som ett uttryck för generali-
sering.

En annan skillnad är att med symboliseringen följer en ökad rörlighetsgrad.
Ytterligare en skillnad är att medan ikoniska och schematiska framställningar
lämnar ett större utrymme för skilda tolkningar, så är innebörden i symboliska
framställningar mer fastlagda, men också mer villkorade (jag kallar denna funk-
tion g – det kan ingen förbjuda mig.)

För matematikens del är de båda framställningsformerna viktiga, framför allt
karakteriseras matematiskt arbete av en växling mellan schematiska och symbo-
liska framställningar.

Das Wechselspiel zwischen schematischer und symbolischer Darstellung entspricht
etwa dem Wechselspiel zwischen Intuition, Einsicht, Ideengewinnung einerseits
und syntaktischer Rechtfertigung, Kontrolle, Auswertung andrerseits (Fischer,
1984, s. 157, citerat i Peschek, 2000, s. 8).

Den ovanstående diskussionen leder till en rad frågor om förhållandet mellan
sakförhållandet och framställning:

• Hur kan man bortom representationen föreställa sig ett sakför-
hållande?

• Finns det över huvud taget ett matematiskt sakförhållande, en abstrakt
relation, utan representation och hur är det i så fall ”närvarande”.

• ”Existerar” inte ett matematiskt sakförhållande först genom dess re-
presentation, vilket innebär att det är meningslöst att tala om repre-
sentation av något abstrakt. Är inte framställningar mer representation
för något abstrakt?
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• Om man, på goda grunder, vill undvika att likställa abstrakta relatio-
ner och dess kognitiva eller materiella representationer, måste man
formulera det annorlunda:

• Konstituerar sig inte en abstrakt relation, dvs. ett matematiskt objekt,
först genom handhavandet med representationen och skapar sig en
existens också genom detta?

Av stort intresse för denna diskussion är användningen av datorer. Datoran-
vändning ger för det första en specifik form av framställning och materialisering
av matematik, och för det andra kräver och producerar den vissa framställningar
av matematiska sakförhållanden. Förstärker datorer problemet med förhållandet
mellan sakförhållandet och framställningen?

Man betonar ofta möjligheten av att kunna experimentera med olika fram-
ställningar och simulera olika utfall, dvs. framställningar. Den snabba tillgäng-
ligheten till och växlingar mellan olika framställningar anses av många stimulera
och befrämja begreppsförståelsen och matematisk kreativitet. Ännu måste detta
uppfattas som en hypotes att undersöka.

Representation som föreställning
Att förstå någonting innebär att kunna representera detta någonting, internt (före-
ställning) och externt. Varje kunskap yttrar sig eller förmedlas genom en intern
representation, som föreställningar och betydelser. Tecken kan förstås både som
intern och extern representation. Man kan från semiotisk synvinkel förstå läran-
det som en process av tillägnelse och utveckling av representationssystem
(Hoffmann & Seeger, 2000).

Tolkning
För att förstå och kommunicera ett matematiskt sakförhållande måste det repre-
senteras på något sätt, både internt och externt. Att representera innebär att tolka.
Vi tilldelar de tecken vi använder för att representera sakförhållandet en viss me-
ning. För att vi ska kunna förstå varandra, dvs. att kommunikationen ska bli
framgångsrik, rationell, måste det finnas en viss ömsesidighet och kongruens i
denna meningstilldelning.

Att studera tolkningsprocessen är att fråga sig hur matematik kunskap, som
är både nödvändig och universell, kan utvecklas; hur utvecklas en kunskap som
är både intersubjektiv, dvs. alla kan utveckla och därmed äga den, och själviden-
tisk, dvs. det är samma kunskap som förvärvas av alla dem som förvärvar den. Ur
matematikdidaktisk synvinkel blir det intressant att kunna modellera denna me-
ningstilldelning semiotiskt.

Avslutning
Tecken och representationer spelar en avgörande roll inte bara i matematik-
undervisningen utan också inom matematiken. Genom att studera kommuni-
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kationsprocessen ur ett semiotiskt perspektiv överskrids de begränsningar som
traditionella kommunikationsstudier utgör där man fokuserar på språkanvänd-
ningen.

Den matematiska praktiken liksom det matematiska tänkandet är huvud-
sakligen icke-språkligt. Det blir uppenbart när man tänker på förmågan att
strukturera matematiska problem eller sakförhållanden. Spatialt, diagrammatiskt
och relationellt tänkande, vilka kännetecknar den matematiska tankeprocessen,
kan inte representeras språkligt.

Att betrakta matematikdidaktiska frågeställningar semiotiskt har därför klara
fördelar. Därmed kan representationer av matematiska sakförhållanden, tolk-
ningen och hur dessa kommuniceras tematiseras och därmed grundläggande frå-
gor kring rationalitet och intersubjektivitet.

Matematikdidaktiken behöver utveckla semiotiska modeller för att förstå hur
rationalitet och intersubjektivitet uppkommer i kommunikationsprocessen.
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Teachers' Work in the Mathematics Classroom
and Their Education – What Is the Connection?

Barbro Grevholm
Kristianstad University and Luleå University of Technology

In the final phase of a longitudinal study on teacher students' development of
concepts in mathematics and mathematics education the teachers’ work in the
classroom is investigated. The question is what is the connection between what
the students have experienced and learnt during their mathematics teacher
education and their interactions with the pupils in the classroom? I report here
on work in progress and give some tentative interpretations and results.

The studied group and methods of the study
The investigated group consists of six teachers (and their pupils), with whom
deep interviews have been carried through since 1996, when they started their
teacher training. In earlier parts of the study their learning in mathematics and
mathematics education has been studied, documented and analysed (Grevholm,
1998, 2000, 2002, in press).

The methods used in this part of the study are questionnaires and interviews
with the teachers before and after observing and videotaping their mathematics
lessons. The cameraman follows the teacher very closely and the microphone
makes it possible to catch all the conversations the teacher is involved in. The
videotapes are being analysed and interpreted. Evidence of influences from
earlier learning during the teacher education will be of interest. The focus is on
the teachers interactions with the pupils. A triangulation will be used to secure
the interpretation. This means that a research colleague will make interpretations
independently and comparisons and adjustments will be made. After the analysis
of the videotapes the teachers will be interviewed  after seeing them and able to
confirm or reject my interpretations of what is documented from the lessons.

Theoretical framework
The student teachers’ cognitive development has been investigated in earlier
phases of the study applying Ausubel’s theory of meaningful learning (1963).
The perspective used is close to social constructivism (Björkqvist, 1993).
Teachers’ instructions in the classroom have to be understood through their
actions and their interactions with the pupils including conversations. The
observations are made by the researcher as a participating observer with an
ethnographic standpoint. Jaworski (1991) quoting Eisenhart states that ”the
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researcher must be involved in the activity as an insider and able to reflect on it
as an outsider”. Jaworski refers to Blumer speaking of symbolic interactionism
as a methodological approach where the researcher has to take the role of the
actor and see the world from his standpoint. She sees this as ”an unresolvable
paradox” to the researcher. Jaworski claims that at best the researcher can
interpret what she experiences as honestly as possible with every attempt to
verify interpretations. I share Jaworski’s standpoint that it is not possible for me
to take the role of the actor, the teacher, but I will ascertain clear observations
that can confirm the interpretations honestly. To my view teacher knowledge
has to be knowledge that has a potential to be used in interactions during
instruction. Knowledge that cannot influence the teachers’ actions and inter-
actions in relation to the classroom is not relevant or active teacher knowledge.

Sierpinska and Lerman (1996) state: ”Knowledge, in relation to a theory of
instruction, should be regarded as a ‘potential of action developed through
experience’. The orientation of an epistemology can be descriptive; a theory of
instruction must be action-directed, or didactic.” (p. 865). Their view is obvious-
ly close to my position that relevant and active teacher knowledge is know-
ledge that could influence the interactions with students.

Different perspectives can be used while studying teaching of mathematics
such as constructivist, socio-cultural, interactionist, or variation-theoretical. For a
discussion see Runesson (1999). My position when it comes to epistemology is
social constructivism and complementary to that in the interpretations of teacher
instruction I am an interactionist in the sense mentioned above (compare
Bauersfeld, 1994, pp. 138-139). I observe the teacher interacting with the
students and try to interpret what knowledge these interactions is based on.

Some early results from the lesson studies
The six new teachers got a letter of invitation to be videotaped with a first
questionnaire shortly after their graduation. It was not easy for them to find a
suitable occasion for me to visit the class. After a year only three of them had
been visited in spite of many reminders and phone-calls. After three semesters
still two of them have not suggested a suitable time for a visit. From letters and
phone-calls the reason seems to be that they are hesitating to show their work at
any time. They find it uncomfortable to be observed. Two of the teachers
express in the interviews that they almost cannot take the burden it means to
work as teachers. One of the teachers expresses great pleasure with the working
situation and is deeply involved in development work in his school. What kind
of evidence based on observations and interviews have been found in the
classrooms so far?
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Ways of working
The studied teachers express that they in class prefer short common presen-
tations of the content of the lesson. Contrary to this there is evidence that many
of the more experienced teachers nowadays avoid whole class exposure in
mathematics. In the presentations our subjects carry out a conversation with the
pupils with questions and answers that lead forward during the lesson. After the
exposure the teacher assists pupils when they work on their own or in pairs or
groups. In this phase the problem of how to be able to help all pupils that need
assistance is obvious. New teachers express that they have problems judging
how much they have to tell the pupil and how to do it. Some conversations with
one specific pupil are far too long and other pupils get very frustrated waiting
for help. The difficulty seems to be for the teacher to know what pre-knowledge
the pupil has. In classes with many pupils this situation creates discipline
problems. An illustration of this is given below.

Use of textbooks
New teachers use the textbook and point out that they are governed by the
textbook. In the interviews they express a need for help to make a choice
among too many problems in the books and help to know what is the most
important content for the students to learn when time is running out. They seem
to be too uncritical towards given tasks or problems in the books. One of the
episodes below will illustrate this.

Working load
The observations show that teachers spend a lot of energy in the classroom and
try to be friendly with their pupils. It is a problem for them when they have to
raise their voice to silence the class to get a good working atmosphere. It creates
a conflict between their ideal of a teacher and reality. It is obvious from the
interviews that these teachers spend much time preparing their lessons and that
this part takes up so much of their time out of classroom that they can hardly
cope with it.

General situation for a newcomer in school
When the new teachers got their first position in a school they were promised
special conditions to assist them in the unknown situation. Examples of such
things can be a lower teaching load or a mentor that can help out in the process
of learning how to cope as a teacher. These conditions have in several cases just
lasted for a short time in the beginning. Then difficulties in the staffing of the
schools have created changed situations that have taken away the assistance
for the new teachers.

The lack of qualified colleagues
In some cases the new teacher finds himself to be the most educated
mathematics teacher in the school. In several cases the teachers were given
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special tasks as responsibility for a subject or a class. Another consequence is
that the teacher has to take care of many or all classes with older students. He
has no colleague to discuss with when some questions or problems occur. There
is no one around that is familiar with for example assessment and marking of
pupils’ work in the higher grades. Especially questions about assessment seem
to worry the teachers. They express the awareness of their influence on the
pupils' future by the grading. Watson (2000) has found that teachers’ practices,
when acting as assessors of pupils’ mathematics, are complex and intimately
related to every aspect of teaching and learning. She claims that even teachers
who have undergone some assessment training may underestimate the role of
interpretation of evidence. The teachers in our study seem to intuitively realise
that the limited experience of classroom interactions makes the assessment a
crucial activity for them.

The need for competence development
The new teachers express that they need to know more about how to select the
most important content to work with, how to create problems for diagnoses and
assessment, how to judge textbooks and make choices from them, how to plan
their work over longer and shorter periods, and how to find relevant working
materials. In the area of general schooling problems they mention how to be able
to motivate students, get them to school regularly, make them work enough in
relation to ability and capacity, show respect to comrades, and maintain disci-
pline.

The connection to the earlier teacher education
Some of the teachers’ actions that have been observed show clear connection
to earlier studies: The use of concept maps, working with games, working in
pairs or groups, posing questions to pupils in supervision, using experimental
material, aiming at learning for deeper understanding, and communicating
mathematics through conversation or written work. Of course any new teacher
might do such things without having taken the courses these teachers have, but
at least the interactions do correspond to the teachers own learning experiences
during education.

Short presentations in whole class settings are preferred in spite of a com-
monly held negative view of ”traditional desk teaching”. The interviews after
the teachers have seen the videotapes will confirm or change these interpre-
tations. I will comment on some of these observations.

The use of concept maps
One of the observed teachers had used concept maps in his class in the
introduction of geometry in year 7. The teacher had a brain storm with the class
as a starting point and let the pupils come up with ideas about all they already
knew about shape and area. The teacher and the class used all knowledge that
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was written on the blackboard after this discussion to draw a concept map of
geometry. The teacher said he did it this way because he himself had
experienced the use of concept maps in his education as powerful for learning
(Grevholm, in press). He says he will continue to use concept maps.

Working with games
One of the teachers worked with a smaller group of pupils that had difficulties
with mathematics. It was Friday and the pupils were not concentrated during
the lecture. The teacher said to the pupils that if they work well they will play a
game with him for the final ten minutes. Obviously this helped to motivate some
pupils to concentrate even if there was a lot of uneasiness during the lecture.
When the teacher finally said to the pupils that it is time for game everybody
was alert and extremely concentrated. It was a game where the teacher throws a
dice and reads the result aloud. In front of them the pupils have a sheet of paper
with three times three squares and can choose to put the number in any of the
nine positions. Winner is the one who can add up the three three-digit numbers
to a sum as close as possible to one thousand. The game was played some times
and all students took part with eager. There was almost complete silence during
the game and everyone made the additions quickly. There was a complete trust
that everyone was reporting her correct sum. For some of the pupils obviously
more calculations were made during these ten minutes than during the earlier
part of the lesson.

During teacher training this teacher had lectures on how to use games in
instruction. This kind of games was one of the examples he met there. Having
problems to get the pupils motivated he took advantage of the game. The game
was also an opportunity for him to get variation in work forms during the lesson.

Working in pairs or groups
In one of the classes the students were sitting around bigger tables in groups of
four of five. In another class they worked in pairs. A third class had the desks
arranged as single tables in four rows and consequently most pupils worked
alone with some exceptional pairs created. In all three cases the teachers asked
the pupils to discuss problems with a neighbour first before asking the teacher
for help. This seemed to work rather well. The teacher that was most stressed by
pupils queuing for help was the one mentioned in third case. She seemed to get
stuck with one pupil and in the mean time many other pupils had problems and
raised their hands for help.

During training the teachers had experienced working in pairs and groups
and found this useful. The way they use this experience seems to be depending
on the conditions in the school. In one of the schools the room and the desks
were not so well fitted to arrange for group work. My interpretation is that this
caused the teacher unnecessary stress. An illustration will be given below.
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Using experimental material
In the class working with geometry the teacher was preparing the next lesson to
be an experiment. He was making them curious about this during the lesson
observed. The pupils were going to use a lot of ”round shapes” and measure
perimeter and diameter. The aim was of course to introduce π . Another teacher
was preparing the pupils for a lesson that was going to take place in the school
kitchen. They were going to measure and use different units and get some
experience of prefixes in connection with these units. Pupils had difficulties
with g, hg, kg, ml, cl, dl, and l. Better understood were m, dm, cm, and mm. In the
exposure during the lecture observed the teacher tried to get the pupils to
understand that the prefix meant the same thing used with different units. The
meaning of each prefix was written on the blackboard. There was an intention
that pupils should understand the prefixes and not just learn by heart how many
grams are one kilogram and so on. She planned to have this illustrated and made
concrete in an experiment lesson.

The teacher training for these teachers included many laborative investi-
gations where they experienced manipulatives, concrete material and experi-
ments that could be used in class. It seems that learning by doing is something
that the teachers have included in their collaboration with pupils. The concrete
activities are prepared carefully in class and carried through by the students in
independent experimental pair work.

The aim expressed by the teachers was that pupils should be offered an
opportunity to understand and not just learn mathematics as rules. Such an
attitude towards mathematics was promoted during their teacher training.

Examples of conversations in class
I will try to outline a few examples of conversations that were observed. The
examples chosen might be useful starting points in my follow up interviews with
the respective teachers.

A first episode
A boy calls for help and tells the teacher he does not know what to do with a
problem in the textbook. The teacher starts to read the problem aloud. You are
going to buy boxes of potato chips for a party. Each box contains 25 g of chips.
You want to have 3 kg. How many boxes do you need?

The teacher asks the boy what is the problem. He does not know at all what
to do. The teacher starts asking him questions to get started. How many boxes
do you need to get 100 g? Two, is the answer. How much is the weight of two
boxes if each is 25 g? Well, 50. How many for 100 g then? Well, four. The
teacher gave the boy time to think before he gave answers. How many more do
you need for a kilogram then? The boy answers somewhat unclear something
about nine. The teacher ignores this and asks how many times 100 g is needed



Papers

102

to get a kilogram. After some confusion they agree about ten times. The boy
then says that he told her that before. He says he is now tired and he does not
mind and he will just take a lot of boxes. It does not matter. The teacher asks him
to continue just a little bit. We are almost there, she claims. If you need 40 boxes
for one kilogram how many do you need for 3 kilograms? The boy shows that
he is tired of the problem and starts to pack his things. The teacher tells him the
result.

This conversation took a long time and in the meantime the other pupils
started to get uneasy and the background noise raised. Many other pupils were
waving their hands for help. When the teacher looked up from the long
conversation with the boy she had to raise her voice and silence the class.

I could notice a feeling of unhappiness after this episode. Reading body
language I could see that the boy seemed to be unhappy and upset, the teacher
looked disappointed and the class was not satisfied.

The boy expressed that he was upset because the teacher did not under-
stand that what he meant was that when they had taken 4 boxes with a 100 g
they needed to do this again nine times to have one kilogram. The teacher could
not follow his line of thought there. If she had been able to do that maybe the
conversation had ended with a little less bad feelings.

The teacher probably knew that it was no use to ask this boy to divide
3000 by 25. It was necessary to funnel him by breaking down the problem into
smaller steps. She did this without telling him how she intended to work. She led
him blindly so to say. According to my interpretation, this made the boy con-
fused and lost. How could he know what the teacher was aiming at?

The boy also expressed that he thought the problem was irrelevant by
telling her that he would just take a lot of boxes. Pseudo problem is a label used
for this kind of problems (Bratt, Grevholm & Nilsson, 1987), where real life
problems are turned upside down. In reality it is more plausible that we know
how many guests will come to the party and then bye one or two boxes for
each guest. It is a sign of health when pupils react to these problems. If the aim is
that education should result in independent mathematical thinkers with ability
to criticise we should accept the boy’s reaction.

The teacher did not ask herself if this boy should actually work with this
problem. She trusted the textbook. I asked another newly educated teacher
what she would have done in this situation. She came up with the idea to
choose other values such as boxes of 50 g and how many are needed for 250 g.

She also suggested that the teacher could have asked the boy to make a
table showing number of boxes in one column and total weight in another. The
fact that the interaction ended up in mental calculations and memorisation of
partly results made it more demanding for the boy.

Another idea would be to let the boy change the problem into other similar
problems that he could handle. The teacher alternatively could have created a
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series of problems that finally led to the starting problem here. I am looking
forward to seeing the video together with the observed teacher and listen to her
reflections about alternatives. A conjecture is that she will see alternatives when
she looks upon herself from the outside. In her situation with a cameraman next
to her and me observing it was probably hard to change content for the boy by
an instantaneous decision. Reflecting on your own interaction during instruc-
tion is a demanding activity for a new teacher. However the teacher showed a
lot of patience and with more experience she will probably develop a higher
aptitude to make decisions about change of course during instruction.

A second episode
In the smaller group with pupils having difficulties in mathematics (mentioned
above) a girl was asking for help. Normally she wanted to sit all by herself in a
sheltered part of the room but because of the videotaping she was now sitting
with the group. She asked for help from the teacher although the boy next to
her tried to assist her. The teacher reads the problem aloud. A triangle is given
with all three sides. Create a square with the same perimeter as the triangle.
What will be the length of the side of the square? The teacher asks the girl to
calculate the perimeter. She finds that the perimeter is 26 cm. What will you do
now, asks the teacher. I do not know, says the girl. How many sides has a
square? Well, four. What do you do then? The girl hesitates but after a little
while they end up with the fact that she wants to divide 26 by four. The teacher
asks her to write down 26/4. And what do you do then? I don’t know. How
many times does 4 go into 26? I don’t know. Well, then we have to take the
four times table. Two times four is…? Well, eight. Three times four is…? Eh, eh,
… 12. Four times four is….? Eh, eh … 14, no… no.. 15, no,..  no..16. Five times
four is…? Eh, eh…19, no 20. Six times four is…? Eh, eh… 23, no 24. Seven times
four is…? Eh, … 27, no 28. Well, how many times then goes four into 26?
Seven. No, that is too much. Well, 6 then. And what then? How much is left?
Well, two. And what do you do then? Put a decimal sign and see how many
times four goes into 20? I do not know. You said that just before. Five time four
is…? Well, five. So what is the result? 6.5. What? What unit? 6.5 cm. That is the
length of the side in the square with the same perimeter as this triangle.

The teacher walks away to another pupil and the girl writes down the
answer in her book. What did she learn? Did she learn that she rarely gave a
correct answer to the questions? The teacher was persistent and went on asking
questions. Was it effective learning? Effective teaching? What could he have
done instead? Did his teacher training offer him any alternatives? The training
did offer him alternatives, but they obviously did not come to his mind in the
actual situation. In the interview after the lesson we talked about the
opportunity to work with concrete material and he saw that he could have
offered the girl a piece of string, let her cut off 26 cm and do the partition in
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reality. She might then have realised that dividing by four can be done by
halving twice? Would it have changed her learning? She would maybe still not
know her four tables?

Reflections on the episodes
What is actually going on in the study? It involves students, teachers, educators
and researchers. All four groups are trying to learn something. The pupils are
learning mathematics. The teacher is learning how to teach mathematics and
how students learn mathematics. The teacher educator is trying to learn how
teacher training influences the teacher. The researcher is learning about the
interactions between the student and the teacher in the mathematics classroom.
They are all depending on each other. Barbara Jaworski (2002) has suggested a
diagrammatic representation of participants, concepts and relationships for what
she calls a co-learning partnership (figure 1 below). She derives it from Jon
Wagner’s idea about co-learning agreements as one style when he analyses the
relationship between researchers and practitioners. Wagner says that in a co-
learning agreement researchers and practitioners are participants in processes of
education and systems of schooling. They are both engaged in action and
reflection. Each might learn something about the world of the other by working
together but they may also learn more about their own world and how it relates
to institutions and schooling. Jaworski extends the notion to relationships
between educators, teachers and students. She underlines the responsibility of
the learner to be an agent of inquiry. Thus she considers all participants in the
co-learning partnership as researchers.

For this study I find her picture of the co-learning community thought-
provoking. It gives a full picture where all the fragments in the study can be
fitted into its place. The concept of didactic tension that Jaworski has brought
into the picture is relevant both for the level pupil-teacher and the level teacher-
educator and for researcher-educator-teacher. How can we create better
learning and understanding through substance and not form?

The video recorded lessons give raise to questions and issues that should be
addressed by the teachers and the educators in the future work in a co-learning
partnership. Learning can take place only if the partners agree to participate in
the study and to make inquiries into the actions and interactions that take place.
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Figure 1. A co-learning community in developing mathematical learning and teaching
(Jaworski, 2002, p.52).

Can the study inform future teacher education?
During the interviews in connection with the observations the teachers spon-
taneously bring up the question about where their education has given them a
solid base to work from and where they feel more knowledge is needed.
Carefully listening to the teachers’ reflections during the study could give
inspiration to development in pre-service and in-service mathematics teacher
education. Participation in the classroom will give the researcher a conception of
the conditions and limitations for learning that are at hand for new teachers, for
students and for teacher educators and researchers. The quality of mathematics
teacher education is rarely investigated and secured by exploring the outcomes
of it but this study could contribute to this.
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The Beginnings of Algebraic Thinking

Milan Hejny, Charles University, Prague1

Graham Littler , University of Derby

Introduction
We believe that the way in which a child is able to use a piece of knowledge
depends profoundly on the way the child’s mind has grasped the piece of
knowledge. This research is therefore based on the premise that constructive
rather than transmissive methods of teaching allow the child to use each piece of
knowledge with understanding rather than as a skill. These methods also allow
the easier joining of pieces of knowledge to form into linkages in the mind.

The research is aimed at a critical analysis of the manipulative skill oriented
strategy in algebra and at looking for more effective educational strategies in this
topic. Thus the target of our research is to understand the development of
arithmetical thinking and the very first period of algebraic thinking, that is the
period that can be named pre-algebraic. We are going to analyse this pre-
algebraic thinking to look for more effective teaching strategies for this topic.
Our belief is that algebra must be rooted in arithmetical experiences. The nature
of these experiences arises from three distinct kinds of situations, which we will
label unknown, parameter and variable.

In their research, the authors began by having comparative discussions of
their extensive experiences of experimental work and teaching, which resulted in
the consolidation of these shared analysed ideas. A main outcome of this was an
arithmetic-algebraic developmental model.

Arithmetic-algebraic developmental model
The model is described by ten stages of learning, from a child’s early experiences
with number to the pupil’s confident handling of abstract algebraic expressions
and equations.

(1) Early experiences with number, words and rhymes.
(2) The understanding of small numbers (words, symbols, patterns) and the

structured recognition of symbols.
(3) The understanding of place value in two-and three-digit numbers.
(4) The active usage of arithmetic symbolic representation. A child uses with

understanding symbols >, <, =, +, -, x, and : (here ‘x’ means the
multiplication sign).

1 The research was supported by VZ J13/98/114100004 (CZ)
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(5) The ability to grasp and analyse simple word problems and arithmetical
schemas.

(6) The appearance of the symbol for the unknown number (blank place _ or � ,
or symbols such as ?, x). Using this symbol when solving word problem or
arithmetical situation.

(7) Inventing a pattern which is hidden in a set of similar situations. This
knowledge in action (see Mason and Burton, 1994) enables students to
solve tasks which are beyond the manipulative horizon.

(8) Extending the gained knowledge in action into the knowledge in words.
This is the ability to formulate verbally relations between magnitudes or
numbers in situations and schemas.

(9) Extending the gained knowledge in words into symbolic language. Letters
appear in the function of parameters.

(10) Ability to use algebra in modelling/analysing/generalising situations.

This sequence of stages gives the framework for the research and should not be
understood to be a strict description of the development for each child. In some
cases the order of the stages described must be preserved, e.g. stage 2 must come
before stage 4. In some cases stages might be parallel, or even in a reverse order;
e.g. stages 5 and 6.

The first four stages focus on arithmetic. Our interest concerns the pre-
algebraic and algebraic thinking. Therefore we will start with stage 5.

The problem situation – Stage 5
From the point of view of the context, problem situations can be divided into:
arithmetical, mathematical but not arithmetical (i.e. geometrical, combina-
torial,…), and real life problems. Five examples will illustrate these terms.

Task 1.  (Arithmetical) The sum of three consecutive integers is 33. Find these
numbers

5 4Task 2.  (Arithmetical) Find the three missing numbers in the
‘adding triangle’. In any ‘adding triangle’ the number under
any pair of neighbouring numbers is the sum of this pair.
(Solution: 5, 2, 4  first row; 7, 6 – second row; 13 the bottom
number. 13

Task 3.  (Geometrical) The perimeter of a square is 12. Find its area.

Task 4.  (Combinatorial) How many rectangles can you find in 3 x 3 chessboard?

Task 5.  (Real life) Ann is 3 years old. When she will be as old as Ben is today,
he will be 15. How old is Ben today? How old will Ann be?
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We are interested in the solving process used for these problems rather than the
problems themselves. When we consider problem situations we will divide the
solving processes used into direct and indirect solving processes.

By direct solving processes of a problem situation we mean that the solver is
familiar with the structure of the solution of the problem, and immediately knows
the strategy for the solution. In such a case we will say that the problem situation
is direct for the solver. For example, in Task 1, such a direct strategy might be
described by the statement ‘If I divide 33 by 3 and then I will obtain the middle
number of the triple I am looking for’.

Looking at a pupil’s direct solving process we have to ask the fundament
question: ‘How did the solving strategy come into the pupils mind?’ If it was
committed to his/her memory by transition from a teacher’s or a friend’s mind as
an instruction, then this solving process is of a low educational and diagnostic
value. It simply shows the ability of the pupil to memorise and recall an
instruction but gives no evidence about his/her mathematical knowledge. If the
knowledge of the solving strategy is the result of the pupil’s previous experi-
ments and analysis, or if it is the result of the pupil’s insight into the given
problem, this process is of a high educational and diagnostic value.

By indirect solving processes for a problem situation we mean that the solver
is not familiar with the structure of the solution of the problem and has to start
the solving process by analysing the problem situation to get an insight into it. In
such a case we will say that the problem situation is indirect for the solver since
for another solver the problem might be a direct problem. Two of the most
frequent indirect solving strategies will be illustrated in the solving of Task 1.

First strategy. A solver starts by guessing the triple to provide the solution, say
5, 6, 7. Since the result 18 is too small the solver will try different triples such as
triple 8, 9, 10 and then the triple 10, 11, 12, this last one giving the required
result. This solving process has used the trial and error strategy. The experience
gained by the solver during this solving process will give him/her a better
understanding of the analysed situation and the next problem of this type will be
solved more easily.

Second strategy. Using the previous experience of adding consecutive
numbers a solver sees that all three numbers are nearly the same and then alike.
Therefore (s)he take a third of 33 as the input number and reasons that since
11 + 11 + 11 = 33, then (11-1) + 11 + (11+1) = 33. Hence the three consecutive
numbers are 10, 11, 12.  This solving process involved the insight strategy.

The symbol for the unknown number – Stage 6
In stage 5 we discussed direct and indirect problem solving. So far we did not use
a symbol for the unknown number. The next stage introduces this symbol.
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Unknown
Mathematicians use this single word for the phrase ‘unknown number’ or
‘unknown magnitude’. The ‘definition’ of the term is given in its name. It is a
number, but we do not know its value directly. We are given some information
about this number and our task is to use this information to find out the hidden
value. To get the answer we need to determine a solving process. If it is success-
ful, an unknown number is found. It is no longer an unknown, it is known. In
many schools pupils are taught algorithms for these solving processes. This
teaching approach develops skills for the pupils but neither understanding nor the
ability to grasp the problem and what is behind the situation.

Task 6: The perimeter of a rectangle is 20 cm and its length is 7 cm, find its
width.

We are going to compare two different solving processes. The first one without
the usage of the symbol x, the second with the help of algebra.

The first solving process consists of three phases.

First phase – A pupil will draw a rectangle putting 7 on both its long sides.
Second phase – The pupil adds 7 + 7 = 14 and subtracts this from 20. He/she gets
the answer 6 and then finds half of it getting 3 as the result.
Third phase – The pupil writes the width of the rectangle as 3 on his figure and
checks to see whether the total perimeter is 20 cm. Notice that in phases 1, 2, and
the first part of 3, the pupil is working with numbers and not magnitudes. The
picture helps him/her to translate magnitude to number. It is only when he checks
the total perimeter that he returns to magnitudes.

The second solving process consists of three phases.

First phase – A pupil will draw a rectangle putting 7 on both its long sides and x
on both its short sides.
Second phase – The pupil adds 7 + x + 7 + x = 20. So (s)he created an algebraic
model of the geometrical situation.
Third phase – The solving process comprises three purely algebraic steps:
7 + x + 7 + x = 20  →  14 + 2x = 20  → 2x = 20 – 14 = 6 → x = 3.

Fourth stage – the solver puts the 3s into the picture and then will proceed as in
first solving process.

The first solving process depends profoundly on the geometrical situation.
Each solving step came from the geometrical situation. The second solving
process is based on the possibility of transferring the geometrical situation to an
algebraic equation. The main part of the solving process is done inside the
algebraic world. Only the last step, the geometrical interpretation of the
numerical result, returns the process back to the geometry.
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Here the equation is an algebraic model of the given situation. This is the
most frequent way of how an unknown number ‘x’ is used to find a solution.
However there are also problems in which the unknown number ‘x’ penetrates
deeply into the starting situation. An example of such case is given in the
following solving process for task 2.

5 x 4

5+x x+4

13

Solving process. Let us denote the central number in the
top row by x. Then numbers in the second row are 5 + x
and x + 4 and hence the bottom number is 9 + 2x. Finally
we get the equation  13 = 9 + 2x, therefore x = 2.

In this solution x is involved in the first line and then carried through using the
triangle rule to the second line. Finally the equation is determined by using the
rule in lines two and three and is just the last step of the solving process.

Inventing a pattern – Stages 7 to 9
So far we have been using a letter in the sense of an unknown. From now on two
other interpretations of a letter will be used, namely a letter used as a parameter
and a letter used as a variable. Both are closely linked to inventing a pattern. In
fact they allowed us to express the pattern in a dense form of algebraic language.

Parameter
If following several outcomes of an experiment they exhibit a pattern which can
be set down as a generalisation, then those part(s) of the generalisation which can
take different values is/are the parameter(s). Each parameter is taking the place of
a number.

Task 7a  Find and record the length and width of all rectangles with integer sides
whose perimeter is a) 20 cm and b) 200 cm. (Pupils already solved Task 6)

Length 9 8 7 6 5 4 3 2 1Solving process
a) The pupils  record in tabular
form all nine rectangles. Width 1 2 3 4 5 6 7 8 9

Two patterns are obvious: the numbers in the top row are decreasing, whilst
those in the  bottom row are increasing. At this stage the third pattern, that the
sum of two numbers in each column is 10, is hidden.

Solving process b): The experience gained already will be generalised into a
long table; because of its length if written out fully only the first few columns of
the table will be completed. The teacher then asks the question ‘Can you tell me
the number which is under 47?’ which forces the pupils to look for the hidden
pattern: length + width = 100. If the words ‘length’, ‘width’ are abbreviated by
letters l , w these will be understood as parameters. In this case the pattern is
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expressed by l + w = 100 and the question rephrased to ‘Can you tell me what
the width of the rectangle is when its length is 47 cm?’.

Task 7b  Suppose the length of a rectangle with perimeter 200 cm is known, find
its width.

Solving process: The already found formula is used and rearranged as w =  100 – l.
This will give the solution for any suitable value of l.

You will notice that there are two different mental usages of parameter; the
first is to generalise from a series of outcomes of an experiment and describe
these in one formula, the second is to use the formula to analyse that situation
and find particular solutions.

Variable
Variable is used to analyse the dependency between two parameters where one is
regarded as the input and the other as the output of the relation. From this it can
be seen that variable is a very important sub-set within the concept of parameter.

Task 7c  Using the result of Task 7b to explain what is meant by ‘suitable value
of l´.

Solving process: This is best done within a classroom discussion situation. From
our experiences working with different pupils at Grade 5, (already familiar with
fractions and some negative numbers) different approaches are made:

a) For variable l we can take any number;
b) Only integers can be used;
c) Only positive numbers can be used;
d) Only natural numbers can be used;
e) Only natural numbers less than 100 can be used

These are some examples of pupil’s ideas. None of these ideas is important in
itself but the discussion which takes place around the idea is extremely valuable.
Idea a) grasps the formula just within the world of arithmetic and does not link it
to the previous geometrical context. This is an acceptable approach. It will be
rejected by many Grade 5 pupils and at a later stage of geometrical development
following the introduction of orientation into geometry, negative lengths and
perimeters could be considered. A similar analysis could take place with all the
other ideas.

The described process of inventing patterns will now be discussed in more
detail.

Inventing patterns as knowledge in action – Stage 7
Pupils usually invent, through knowledge in action, patterns which are hidden in
a set of similar situations (see Mason and Burton, 1994). This knowledge enables
students to solve tasks which are beyond the manipulative horizon.
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The following problem is given to second graders.

Task 8a   How many matches are needed to construct   (a) a square 1x1,
(b) a rectangle 1x2,  (c) a rectangle 1x3,  (d) a rectangle 1x4?

Each of these cases would be illustrated for the pupils. The pupils will do these
tasks in order and produce a series of results. A teacher draws a table and pupils
then put the results (in italic) into it.

length 1 2 3 4

matches 4 6 8

Pupils will find that the pattern in the top line increases by one and in the second
line by two.

This enables pupils to find the last number in the table without creating a 1x4
triangle. This invention enables pupils to solve the problem for a rectangle  1xn
with a larger n, e.g. n = 20. Matches are no longer used, the pattern of the table
will be applied instead. Pupils will use the extension of the table to obtain the
result 42. If a teacher will set, say n = 100, the extension of the table will be
tiring. However some pupils might find the relation between the first and the
second row and use this new pattern to find the number 202. The teacher must
not force this invention on the children but to continue the problem in grade three
with the larger numbers.

From knowledge in action into knowledge in words – Stage 8
A lot of our everyday knowledge is knowledge in action which is not knowledge
in words. We know how to tie our shoe laces, but we are not able to express this
knowledge by words. It is because of the lack of words needed for such a
description. The same problem arises for a pupil if (s)he would like to express
some mathematical idea (s)he knows in action and has not got the mathematical
vocabulary. Let us give one example from our experimental teaching.

Michael invented the relation between the first and the second row of the
table above. A teacher asks him to explain his finding to the class. He said: ‘to
get the number of matches take the length twice and add two matches’. Eva re-
formulated the result: ‘take the top number twice, add two and you have the
bottom number’. This shift in grasping the analysed situation is a step towards
abstraction, since the table is more general than the particular case we analysed.
For example the same table arises from the following problem.
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1 1Task 8b In the adding triangle two numbers are known. Find how
the bottom number of the triangle depends on the missing number
of the first row. (It is our intention not to denote these numbers by
‘m’ and ‘b’.)

In this case the first row of the table represents ‘the missing number in the first
row of the triangle’ and the second row for ‘the bottom number of the triangle’.

When discussing this table with our class two different rules for finding the
relation between the top and the bottom numbers appeared. In addition to Eva’s
relation defined above we also have  ‘add one to the top number and multiply this
result by two’. For some pupils it was surprising that two different rules yield the
same result. Later on this experience will be the beginning of the understanding
of the Distributive Law.

Task 9 Fill in four numbers 1, 2, 4, 5 into four windows
of the first row of a triangle to get the bottom number as
big as possible. Find all solutions.

Grade 3 pupils found the general rule: put the big
numbers into the inside windows and the small numbers
into the outside ones.

The teacher asked the class ‘Why is this?’ One boy immediately began to answer
the question: “it is because, … because… “ and he could not find the words.
Obviously the boy was sure he knew the explanation, since the idea was in his
mind. However, when he tried to articulate this knowledge in action he
recognised that he was not able to put it into words.

1 0 0 0 0 1 0 0

1 0 0 1 1 0

1 0 2 1

Several days later the boy
returned with the perfect idea. He
brought two triangles and pointing
to the first one said “this number
only slips down, but this one
(pointing to the second triangle) 1 3

spreads all over these windows”. This perfect idea, which is pre-inventing of the
concept of the base of a vector space was more than an explanation, it was nearly
a proof.

From knowledge in words into symbolic language knowledge –Stage 9
In the previous paragraph we saw two solutions of tasks 8a and b, both expressed
in words. If pupils deal with such rules more frequently, they start to simplify the
wording of rules by using abbreviations of words.  For example the rule ‘take the
top number twice and add two’ might be re-formulated as ‘bottom number =  2 x
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top number + 2’ and later on even ‘b = 2t + 2’. This is in fact the algebraic
language, but still the letters b and t are linked to the objects they denote. The
next and the last developmental step to understanding algebraic language is to get
rid of the linkage between the letters and the objects they stay for. A pupil
familiar with the algebraic language on this most developed level would express
the rule by ‘m = 2n + 2, where  n  above can be any natural number.

Here it is worth recalling the famous students and professors problem:

 ‘Write an equation using the variables S and P to represent the following
statement: “There are six times as many students as professors at this university.”
Use S for the number of students and P for the number of professors’. See Rosnick
& Clement (1980, p. 4).

Rosnick and Clement proved that there is a serious danger of misinterpreting
symbols. The phrase ‘six times as many students as’ is often written down using
the literal translation by ‘6S =’. This misinterpretation is a consequence of the
transmissive teaching approach to algebra and formal knowledge of a student.
When solving word tasks a student does not analyse the given situation but uses
the signal strategy instead. This can be described as ‘find in the text some
word(s) or symbol(s) which is (are) associated with a particular algorithm stored
in the memory; then apply it’.

The signal strategy is a strong diagnosing tool which indicates the formal
knowledge of a student. The following examples will give more illustrations.

Fourth graders solve the task ‘Tom loses 10 crowns. Now he has 23. How
many crowns did he start with?’ Nearly one third out of 58 pupils answered ‘13’.
The word losses served as the signal since this word is associated with
subtraction.

Task 5 was given to sixth graders. Five out of 22 students gave the answer:
Ben is 12. In the following interview all these students gave the same argument
‘Ben will be 15; now he is younger; so he is 15 – 3  = 12’. In this case the solvers
did some analyses of the text, but this was not deep enough.

Eighth graders solved the task ‘find the length of the side c of the right-
angled triangle with the hypotenuse a = 13 cm and second side b = 5 cm (on the
figure all these lengths were shown). Six out of 22 students wrote the
Pythagorean formula in the standard way  a2 + b2 = c2  and found c = 

€ 

194 cm.
For these students the standard notation served as the signal.

Window to symbol manipulation
Usually teaching algebra starts with manipulating symbols and is a pure skill
training. We believe that the constructivist approach has to be grounded in
semantic understanding of symbols as shown above. We also believe that
manipulating symbols has to start with semantic anchored situations to give



Papers

116

students confidence and help with their understanding of the process. This
approach will be illustrated using Task 8c as an example.

Task 8c Consider the addition triangle in which two numbers are known and four
are unknown as shown in the Task 8b figure above. If one of the four unknown
numbers is given, find the rules which determine the other three unknowns in
each case.

When solving this task students will start with the known a, and find that
b = a + 1 and c = 1 + a. From this fact they can observe that b = c. This
observation is the first finding by using the language of algebra. This observation
may also be made from the symmetry of the triangle. These two different roots to
this observation support in the students’ mind the structural linkage between the
real situation and its algebraic model. The rules d = 2(a + 1) and d = 2a + 2 have
already been found in Task 8b and the result for d can be found by transferring
this previous knowledge. However, pupils in grade 4 or 5 do not use this
approach. The idea of transfer of knowledge is too difficult for them at this stage.
These pupils will in the future probably use the procedure for getting the number
below two known numbers, namely d = b + c = a + 1 + 1 + a = 2a + 2.

If d is known a can be calculated from the equations above, but this will not
be carried out in practice. Students will repeat the methodology of the table
finding that d must be even otherwise there is no solution. If d is even then
a = d/2 – 1 or a = (d – 2)/2. We know that these two functions a→d and d→a are
inverse to each other but for pupils it is not so evident. This experience may
serve for some pupils as the first model of the phenomena of the inverse function.
Later on when fractions are introduced this task may be discussed and the result
extended to all natural d and not just to the even d.

Conclusion
The whole process elaborated above concerns not just algebraic language but
also the cognitive development of a pupil, since it creates new processes,
concepts and structures. All these need a considerable amount of time for their
development and therefore we have to start stage 5 of this process early in the
first grade by means of word problems. The teacher should not hurry this
process, they must give the pupils time to construct and assimilate this new
knowledge. The teaching approaches to this work should be constructive, and
crucial to this is the class discussion, which allows pupils to penetrate into the
more abstract level of the problem, using his/her classmate’s understandings.

The word problems given to the pupils should be drawn up using the pupil’s
experiences from both inside and outside the school environment. There should
be a graduation of the problems to suit the stages of development expressed
above. The teachers should motivate their pupils to grasp the problem situation
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using a variety of ‘languages’ namely, pictorial representations, tables, schemas
and dramatisation.

Our experiences of this approach through long-term teaching are promising.
We have been less successful when we have been trying to motivate teachers to
implement such approaches in their classes. The difficulties found in changing
teachers’ established ways of working is well known. It requires changes in their
hierarchy of pedagogical values. It is incumbent on mathematics educators to
continue to attempt to make these changes.
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Making a Difference in the Early Years

Marj Horne &  Doug Clarke
Australian Catholic University

The Early Numeracy Research Project (ENRP) is researching effective
approaches to numeracy learning in the first three years of school. Established in
1999 as a three year long project, it has been a collaborative venture between
Australian Catholic University, Monash University, the Victorian Department of
Employment, Education and Training, the Catholic Education Office
(Melbourne), and the Association of Independent Schools Victoria.  All teachers
of grades Prep – 2 (0-2) in 35 Victorian schools have actively been participating
in the project. As well as these 35 “trial” schools there are 35 “reference” schools
matched in factors such as language background, socioeconomic environment,
region and type of school and size (for details see Clarke, 1999, 2000; Clarke,
Sullivan, Cheeseman, & Clarke, 2000). One of the project’s aims is to evaluate
the effect of the key design elements and the professional development program
on student numeracy outcomes. These key design elements were proposed by
Hill and Crevola (1998) as part of the Early Literacy Research Project. These key
design elements include leadership and coordination; standards and targets,
monitoring and assessment, classroom teaching programs; professional learning
teams; school and class organisation; intervention and special assistance; home,
school and community partnerships; and beliefs and understandings.

The ENRP has a major professional development component, with teachers
meeting with project staff for statewide, regional cluster, and local in-service
programs. Important differences from the literacy project, from which the key
design elements arose, included the need for development of a comprehensive
and appropriate learning and assessment framework for early numeracy (such
frameworks were well established for reading), and the need to address the
personal confidence with and understanding of mathematics of many primary
teachers.

Measuring mathematics learning
The impetus for the project was a desire to improve mathematics learning and so
it was necessary to quantify such improvement. It would not have been adequate
to describe, for example, the effectiveness of the professional development in
terms of teachers’ professional growth, or the children’s engagement, or even to
produce some success stories. A search for appropriate assessment that covered
the range of mathematics and was suitable for the age range of children did not
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produce an already established measure or set of measures. It was decided to
create a framework of key “growth points” in numeracy learning to use both as a
framework for assessment and to provide a framework that could be easily used
by teachers in their planning and implementation of curriculum.

The project team studied available research on key “stages” or “levels” in
young children’s numeracy learning (e.g., Boulton-Lewis, 1996; Fuson, 1992,
McIntosh, Bana, & Farrell, 1995; Mulligan & Mitchelmore, 1995, 1996; Pearn &
Merrifield, 1992), as well as some frameworks developed by other authors and
groups to describe learning (see, e.g., Bobis & Gould, 1999; Wright, 1998).

In developing the ENRP framework, it was intended that the framework
would

• reflect the findings of relevant research in mathematics education from
Australia and overseas;

• emphasise the “big ideas” of early numeracy in a form and language readily
understood and, in time, retained by teachers;

• reflect, where possible, the structure of mathematics;
• give a sense of a possible order in which strategies are likely to emerge and

be used by children;
• allow the description of the mathematical knowledge and understanding of

individuals and groups;
• form the basis of planning and teaching;
• provide a basis for task construction for interviews, and the recording and

coding process that would follow;
• allow the identification and description of improvement where it exists;
• enable a consideration of those students who may benefit from additional

assistance;
• have sufficient “ceiling” to describe the knowledge and understanding of all

children in the first three years of school; and
• build on the work of other successful, similar projects such as Count Me in

Too (see below).

These principles informed the process of developing and refining the
framework as is outlined in the next section.

The development of the framework
For 1999, the decision was taken to focus upon the strands of Number
(incorporating the domains of Counting, Place Value, Addition and Subtraction
Strategies, and Multiplication and Division Strategies) and Measurement (incor-
porating the domains of Length, Mass and Time). In 2000, the strand of Space
(incorporating Properties of Shapes and Visualisation and Orientation) was added
to the framework.



Papers

120

Within each mathematical domain, growth points were stated with brief
descriptors in each case. There were typically five or six growth points in each
domain. To illustrate the notion of a growth point, consider the child who is
asked to add two and nineteen. Some young children will either use pen strokes
or objects to make 2 ands to make 19 then put them together and count all to find
the total. Other children will start at two and count on 19 more, keeping track on
their fingers or by some other method. Yet others realise that it is commutative
and know that the problem is the same as 19 plus 2 thus solving the problem still
by counting on but in an easier way having used a strategy to simplify the
problem. Another child might use a derived strategy and recognise that 2 plus
nineteen is like 2 plus nine and then add the ten later. These children may all
succeed in solving the problem but they are operating in this situation with
different growth points (GP) varying from GP1 to GP5. The ENRP growth points
for Addition and Subtraction Strategies are shown in Figure 1.

0. Not apparent
Not yet able to combine and count two collections of objects.

1. Count all (two collections)
Counts all to find the total of two collections.

2. Count on
Counts on from one number to find the total of two collections.

3. Count back/count down to/count up from
Given a subtraction situation, chooses appropriately from strategies
including count back, count down to and count up from.

4. Basic strategies (doubles, commutativity, adding 10, tens facts, other
known facts)
Given an addition or subtraction problem, strategies such as doubles,
commutativity, adding 10, tens facts, and other known facts are
evident.

5. Derived strategies (near doubles, adding 9, build to next ten, fact
families, intuitive strategies)
Given an addition or subtraction problem, strategies such as near
doubles, adding 9, build to next ten, fact families and intuitive
strategies are evident.

6. Extending and applying addition and subtraction using basic, derived
and intuitive strategies
Given a range of tasks (including multi-digit numbers), can solve them
mentally, using the appropriate strategies and a clear understanding of
key concepts.

Figure 1. ENRP Growth Points for Addition and Subtraction Strategies.

These growth points were used in the creation of assessment items, and in the
recording, scoring and subsequent analysis. They were also used in the Profes-
sional Development and became an integral part of the planning process and the
on-going assessment.
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Growth points, levels and stages
The growth points are clearly a key element of this framework. While they
provide a guide to teachers and a clear way of thinking about the children’s
learning there are some important aspects to acknowledge.

• Each student does not necessarily pass each growth point along the way. The
interpretation of these growth points reflects the description by Owens and
Gould (1999) in the Count Me In Too project: “the order is more or less the
order in which strategies are likely to emerge and be used by children. . . .
intuitive and incidental learning can influence these strategies in unexpected
ways” (p. 4).

• A student who is capable of operating at a particular level does not
necessarily use those strategies at a particular time. For example “counting
back” in subtraction is at a lower level than derived strategies but many
people would count back for a problem such as 1001 – 3.

• The growth points should not be regarded as necessarily discrete. The extent
of the overlap is likely to vary widely across young children, and “it is
insufficient to think that all children’s early arithmetical knowledge develops
along a common developmental path” (Wright, 1998 p. 702).

Rather than a document specifically written for research, the framework is a
document written for teachers with the intention that it is used by them to such an
extent that they take ownership of it. It is a guide and not a statement of develop-
ment stages in the sense of children being locked into certain growth points
according to age, or in the sense of all children moving along the same
developmental path.

The development of the interview
Once the early drafts of the framework were developed, assessment tasks were
created to match the framework. A major feature of the project is a one-to-one
interview with every child in trial schools and a random sample of around 40
children in each reference school at the beginning and end of the school year
(February/March and November respectively), over a 30- to 40-minute period.

There have been many studies that have used interview techniques (For
example: Doig & Hunting, 1995; Pearn, 1996; Rowland, 1999). Such techniques
enable the interviewer to gain insight into children’s thinking. Teachers inter-
viewing their own students will be better able to target their teaching. However it
is difficult for teachers not to use a session with a student as a teaching oppor-
tunity. For this reason the interview is deliberately not an open interview but
rather set questions with set language and strict protocols.

Children are interviewed individually, and presented with a series of
carefully-graded tasks, according to carefully documented protocols. Although
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the full text of the interview involves around 50 tasks (with several sub-tasks in
many cases), no child moves through all of these. The interview continues until
they reach a point where the child is judged from the responses to be unable to
proceed to higher levels. The interview is of the form “choose your own ending”,
in that the interviewer makes one of three decisions after many tasks. Given
success with the task, the interviewer continues with the next task in that
mathematical domain as far as the child can go with success. Given difficulty
with the task, the interviewer either abandons that section of the interview and
moves on to the next domain or moves into a detour, designed to elaborate more
clearly the difficulty a child might be having with a particular content area.

All tasks were piloted with children of ages five to eight in non-project
schools, in order to gain a sense of their clarity and their capacity to reveal a wide
range of levels of understanding in children. This was followed by a process of
refining tasks, further piloting and refinement, and where necessary, adjusting the
framework.

The growth points for which they are intended to provide evidence influence
the form and wording of the tasks. The consideration of student responses to a
given task led to a refining of the wording of a given growth point.

The interview provides information about those growth points achieved by a
child in each of the domains. Our aim in the interview is to gather information on
the most sophisticated strategies that a child accesses in a particular domain. It is
important to stress that the growth points are “big mathematical ideas or
concepts”, with many possible “forms of progress” between them. As a result, a
child may have learned several important ideas or skills necessary for moving to
the next growth point, but perhaps not of themselves sufficient to move there.
Also, to achieve many of the growth points requires success on several tasks, not
just one or some.

Of course, decisions on assigning particular growth points to children are
based on a single interview on a single day, and a teacher’s knowledge of a
child’s learning is informed by a wider range of information, including obser-
vations during everyday interactions in classrooms. However, teachers agree that
the data from the interviews are revealing of student mathematical understanding
and development, in a way that would not be possible without that special oppor-
tunity for one-to-one interaction. It appeared that the children also enjoy that
special time having the teacher “all to themselves”. Teachers report that children
appreciated the opportunity to show what they knew and could do.

Professional development
The design of professional development included four strands that were
interwoven throughout the project. These strands were the knowledge of children
and the way they think, the knowledge of the mathematical thinking of the parti-
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cular children in the class, the knowledge of the mathematics, and the knowledge
of mathematical pedagogy. The professional development was delivered through
the mechanisms of statewide conferences, regional meetings, school teams and
support for the individual teacher within the classroom.

For example the task based interview, administered by the teachers, could be
considered as part of the professional development. It provides information about
the first two knowledge strands – children’s understanding of mathematics, but in
some cases it also challenged knowledge of mathematics and the interview
approach with its emphasis on children’s verbal explanation raised some aspects
of pedagogy. Teachers first met the interview at a Statewide Professional
Development where they were given both an overview and a chance to see the
detail of each section through observation of recorded interviews. They also had
an opportunity to record an interview. This was followed by further support at a
school level and with a team member working with individual teachers during
their first interviews sometimes demonstrating as well as providing other support.
There was also discussion at meetings within the school and direct contact with
project personnel for any queries. The interview touches on most (but not all) of
the mathematics curriculum areas in the first years of schooling. Volume and
capacity and Chance and Data are not included, though they have been part of the
professional development and knowledge about them has been accessed through
other assessment activities.

The State-wide professional development days included a range of aspects of
teaching as well as dealing with project specific aspects such as the framework
and interview. Aspects of teaching such as the use of open questions, opening
and concluding a lesson, and the use of manipulatives were discussed. Each of
the domains was also looked at in detail with teaching ideas and issues as well as
ongoing assessment. Some sessions were for all but each professional develop-
ment day had some sessions where there was a degree of choice. Because the
whole team from the school was involved in the professional development
usually a school planned their involvement in the sessions so that their coverage
was complete and the teachers could then share what they had learned with the
other team members on their return to the school environment. The knowledge of
mathematics pedagogy was the main aspect of many sessions on the State-wide
days but while this may often have been the main focus, the knowledge of
mathematics and the knowledge of how children develop and learn mathematics
was also a part of these sessions. In the later two years teachers started to play a
greater role in these days with some sessions being run by teachers from the
schools involved.

The regional or cluster meetings involved all staff from 3-5 schools in a
region in a two hour after school professional development session. They gene-
rally occurred once a month (except in some months where there was a State-
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wide meeting of all teachers), and each one was led by a member of the research
team who worked closely with all schools in that region. Each cluster meeting
had a theme with a specific issue to discuss and some classroom activities to try.
These cluster meetings provided opportunity for teachers to share their ideas and
their insights and gave real value to the input from the teachers. Often there were
tasks for teachers to try back in their classrooms and opportunity to share their
children’s work and discuss their observations and ideas at the following cluster
meeting.

The other level of professional development was one-to-one in the schools
and in the classroom. Each cluster leader from the research team visited their
schools on average about once a month and spent time in the classrooms working
alongside the teachers. This enabled a working relationship to be built between
the research team member and the teachers in the schools. Sometimes on visiting
a classroom the cluster leader “borrowed” the class to try out a new activity. On
other occasions a demonstration lesson was given in response to a specific
request from the teacher or team leader within the school. A team teaching
approach was often used with the classroom teacher and the cluster leader
working together. Another common experience was the visitor working with a
small group of students or just roving and working with students as the situation
indicated, generally being another “hand” in the classroom. Finally there were
times when the cluster leader just acted as observer. Within the school on these
visits there was a lot of opportunity to talk with individual teachers both in
classrooms and in the staffroom, and to directly respond to the teachers’ needs.

The impact of these professional development approaches can be evidenced
both through student growth and teacher change.

Student growth
Student growth in the 35 trial schools where teachers are actively involved in the
project has been compared with growth in a set of 35 reference schools, matched
on a range of characteristics including among language backgrounds, socio-
economic areas, regions and size. Growth is based on the growth points assigned
as a result of the interview. It is important to note that the assignment of Growth
Points is an “on-balance judgment,” not an aggregate of completed items, as on a
more orthodox test. It should be said that students in all 70 schools demonstrated
growth. However, looking at the data overall, children in trial schools outper-
formed those in the reference schools at every grade level and in all of the
mathematical domains studied.
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Domain Assessment
time

Reference
Schools
Mean
N=295

Trial
Schools
Mean
N=942

Counting March 1999 0.83 1.07
Nov 2001 3.49 4.15

Place Value System March 1999 0.38 0.46
Nov 2001 2.24 2.67

Addition & Subtraction Strategies March 1999 0.19 0.30
Nov 2001 3.03 3.69

Multiplication & Division Strategies March 1999 0.31 0.44
Nov 2001 2.85 3.28

N=295 N=884
Time March 1999 1.04 1.10

Nov 2001 2.63 3.20
Length Measurement March 1999 1.56 1.58

Nov 2001 2.92 3.41

Table 1.  Means showing growth over the three years.

An ANOVA looking at the student growth over the six domains which were
assessed in both March 1999 and November 2001 shows the difference between
the trial and reference schools to be significant (p<.001) for each domain. This
was a comparison of the 295 students in reference schools and 942 for the num-
ber domains and 884 for the measurement domains in trial schools. The means
for the two assessments are shown in Table 1.

The graph in Figure 2 shows the growth of students in the Addition and
Subtraction Domain across the three years of the project. The triangles symbolise
trial schools while the reference schools are shown by rectangles. Each pair of
graphs represents a cohort of students progressing through the project. Horne and
Rowley (2001) described a process of creating an interval scale from the growth
points so that means and comparisons could easily be made. This interval scale is
created from the growth points and is close to them so that the number 5 can be
considered as approximately growth point 5.
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Figure 2.  Growth from March 1999 to November 2001.

The growth graph shown in figure 2 represents all cohorts of students and shows
the means for each testing period. Of interest too though is the spread of students
across the growth points. Figure 3 follows the group of students in the trial
schools who were part of the project for the whole three years and shows the
percentage of students at each growth point. A vertical line at any time period is
divided so that the regions are representative of the percentage of children de-
monstrating achievement of that growth point. One aspect this graph demon-
strates is that there is a spread across the growth points at each year level and that
teachers are providing learning experiences suitable for all of the children in their
classes.

Figure 3. Spread across growth points of children present in trial schools for three years.
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Teacher change
Teachers’ growth and change is the other major indicator of success. Given the
clearly successful efforts of trial school teachers in developing children’s
mathematical skills and understandings, the research project has been looking at
successful teachers’ practice to try to discern those aspects of “what the teacher
does” that make a difference. After slightly more than one year’s involvement in
the project, teachers were asked to identify changes in their teaching practice (if
any). There were several common themes emerged including among others: more
focused teaching (in relation to growth points), greater use of open-ended
questions, providing more chance for children to share strategies used in solving
problems, and offering greater challenges to children, as a consequence of higher
expectations.

Considering the more focused teaching, 72% of teachers specifically stated
that the starting point for lesson planning is largely statements of mathematics
content rather than activities. This is exemplified in the following statement from
Ms H, a middle aged teacher who was asked near the end of the second year
whether she thought her teaching had changed as a result of the project.

Amazing, yes, I have. Definitely

I think in the way that probably more now my teaching is more focussed, on
just one - like in past times I’ve done what’s called an “activity maths” where
you might have some children working on space and some people working on
measurement, and kids rotate, but I don’t do that any more. What I try and do
now, because of the project, is focus on one area of learning and the whole
class working on that area at their own level. And I think that’s what’s been
wonderful. You’re more focussed on what you’re trying to get out of the kids.
And that has been a huge change.  (Ms H)

The mathematics content was not only the starting point for planning but also the
focus of the whole lesson and with this focus the teachers are catering for the
range of students in the class. Much of this focus has come from the framework
providing the basis for the mathematics content. More than 70% of trial school
teachers claim to have the framework in their heads to some extent, and a further
26% understand it but don’t have it in their heads. It informs teaching.

… I feel much more informed about how they’re learning, what they need to
learn next and what’s reasonable to expect to try and get children, most
children achieving by the end of the year.

Catering for the range of students in the class has meant the use of different
strategies. Many of the teachers use open questions that allow students to operate
at different levels while still tackling the same task.

Another change has been the nature of classroom questions. Asking students
to explain their own strategies is something that is expected in trial school
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teachers’ classrooms. Approximately 86% of teachers ask students for explana-
tions at least a few times a week. More than a third of teachers ask students to
explain their own strategies every day.

Until they’re explaining how they got there. It’s great that you’ve got the
answer that I want to know, that you understand why that’s right, and you can
prove it to me. Yeah, because the children who’ve got it all together, that’s no
problem. I know that they know, but there are other children who are not really
sure how they got there or whether they’ve fully understood why that’s the
right answer. ‘Cause you see the doubt sometimes and they’ll give an answer,
in the circle somebody did it today, and it was like yes, no. It’s like, can I be
really confident in myself that this is right? (Ms S)

Teachers have also commented that they have become more reflective as
exemplified by this statement.

Yes, I think we all knew to a certain extent what good teaching should look
like, but I don’t think we always practiced good teaching, so what ENRP has
also provided us with different activities, and the confidence to try things, you
know, that you’re not looking for worksheets, you know that you can do what
you need to do with concrete materials, and you can extend children’s thinking,
and also it sort of helped me link children’s knowledge from one area to
another, I think it just changed, I think it’s just a change in thinking, about how
you approach, you sort of become a much more reflective teacher, I suppose
that you actually think about what your doing, why you are doing it, is this the
best way, what other things can I use, how could I make it more practical.  Oh,
yeah, I think I’m a much better teacher, and it’s a lot about making connections
to, like if your doing counting, then you relate that to your multiplication, you
know if your doing that, you relate it to your place value, it’s the linking of all
knowledge, and then once you’ve got a bit of knowledge you can link it out
elsewhere.  Yeah, into the maths area and beyond.  (Ms CS)

The change has not only been in individuals but in the way teachers operate
within the school. The team has been an important aspect as has the sharing
between schools in the local area. The teachers own words express this.

I told you that, its also, part of the ENRP, is it’s given us an opportunity to be
together as a team, we’ve all had the same input, we’ve all been down there, or
we’ve all been at cluster, we’ve all heard the same sorts of messages, so you’ve
actually got a supportive team to work with.  You’re all hearing the same thing,
there is no, someone imposing anything on you, you’re working through
together, and we’ve probably developed what they call a professional learning
team in a true sense, that you actually work together, you share together, you
ask for help.

Well, I think you know, and also, going away together, you sort of actually get
to know people, even better, so you actually develop strong friendships as well,
and that supports the teaching and learning, like you know that you feel
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confident to say “so what are you doing in that”, or “how are you doing that”
or “I’ve got this to share”, you know that your not just big noting or anything,
your just saying “I know this works, have a go”, or and confident to go to
another classroom and say, “oh that’s good, can I have that”, rather than
everyone owning things, its sort of…

Further data in 2001 has added to this knowledge of teacher change but is still in
the process of being analysed. Making the most of every opportunity, building on
student knowledge and working on improving student attitudes towards
mathematics are some of the characteristics that show clearly in the case study
teachers.

Conclusion
Overall the project has made a difference to both students and teachers in the
schools involved. This shows in the student growth and in the teachers’ com-
ments and changes observed in their classrooms. The project was a collaborative
venture and the teachers were very much co-researchers in the collaboration. The
central research team feel they have been privileged to work with these teachers
and feel that they too have learned much from the opportunity to work with these
teachers. This research has changed the students, the teachers and the researchers.
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Numerical Skills and Arithmetic Performance

Bo Johansson
Uppsala universitet

Introduction
Whether pupils in primary mathematics education should learn to write the
numerals and also use them in mathematical calculations has been the subject of
an ongoing debate among Swedish mathematics teachers, educational researchers
and teacher educators. Usually arguments have been voiced for a postponement
of the teaching of numerals. For example, Nordlund (1910) held that a firm
number concept had to be formed before the introduction of the numerals. Too
early introduction of the numeral system made the children mentally represent
numbers by numerals, which was a grave obstacle to the acquisition of mental
calculation. Also Wigforss (1925) was against an early introduction of the
numerals, which may divert attention from the solving of the problem to the
drawing of the symbol. He suggested an initial use of tallies to represent the
numbers and that the children must have substantial practice in writing the
numerals before using them for calculations.

An early empirical investigation of children’s level of skill in writing
numerals (Wigforss, 1946) showed that more than 50% of the children entering
school (at 7) understood the meaning of all the 10 basic numerals and that about
one third could draw the numerals. These findings made Wigforss change his
view and argue (Wigforss, 1946; Wigforss & Roman, 1951) in favor of numeral
practices already at the beginning of the first school year. Further investigations
(e.g. Malmquist, 1961) showed a still higher level of numeral skills among
school starters. Despite this, experts in the area have been skeptical towards early
numeral exercises (e.g., Sjöholm, 1949; Magne, 1986; Unenge, Sandahl &
Wyndhamn, 1994; Alhberg & Hamberger, 1995). Arguments have been that
premature introduction of the numerals results in reversals or mirror-image
writing, that the children learn to write the symbols without understanding the
number meaning, and that early numeral practices impede the acquisition of the
number concept. However, these arguments are not supported by empirical
investigations. The three experiments in this paper represent a preliminary effort
to study the development of early numerical skills and the relation between
numerical skills and the number concept as measured by arithmetic performance.

The views presented in the Swedish debate receive support from the results
of Hughes’ (1986) investigations. His argument was that there is a natural
development of the symbols used by children to represent a given quantity of
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objects starting with idiosyncratic responses (“scribbles”) and changing into
pictographic responses, or drawings of the objects to be counted. The third stage
is the use of iconic responses, for example, making a tally for each object.
Finally, the conventional numeral symbol system is acquired. His conclusion was
that there is “a serious mismatch between the system of symbols which children
are required to learn, and their own spontaneous conceptualizations” (Hughes,
1986, p.78). Following Hughes’ conclusions children should be allowed to use
pictographic and iconic symbols until they have developed a readiness for the
conventional symbol system.

The experimental procedure used by Hughes (1986) has been criticized by
Munn (1998), who argued that his tasks did not have a clear communicative
purpose and that the design was cross-sectional. Munn, using a task encouraging
the child to write symbols that signaled a given number, found that the key
developmental shift was not with regard to form (from concrete to abstract) but
in how the symbols were used (from pre-functional to functional). The above
raises three questions: 1. What is the level of numeral writing skill among
children entering school today?, 2. Is skill in writing the numerals positively or
negatively related to the number concept?, and 3. If numeral writing is related to
the number concept, which is the mechanism? Is there a relation between
numeral skill and digit memory or does numeral skill affect how the numbers are
represented?

Study 1

Introduction
This study was made in 1991 and 1992. Part of Wigforss’ (1946) investigation of
number skills in school-beginners was replicated to find out if level of skill in
writing the numerals had changed during the period from early 1940 to early
1990. A second purpose was to investigate the correlation between the numeral
writing skill and arithmetic performance. Unenge, Sandahl and Wyndhamn
(1994) and Ahlberg and Hamberger (1995) argued that early acquisition of the
numerals may be an obstacle to the development of the number concept. To find
out if that meant a negative correlation between numeral writing skill and
arithmetic performance, Wigforss’ arithmetic test was also replicated. Magne
(1986) argued against numeral practices with young children, because it results
in many reversals or mirror-image responses. To study Magne’s hypothesis an
analysis was made of the relation between number of mirror-image numerals
produced and number of arithmetic problems solved.
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Method

Subjects
Two samples were investigated: 372 school beginners (7 years old) and 161 6
years old children attending pre-school. Testing was made in early autumn a few
weeks after school had started. Data were collected by pre-school and
comprehensive school teacher trainees. Each student tested four children,
randomly selected from the class. Before testing, teachers and parents were
informed in a letter asking for permission to carry out the investigation.

Tests
The children were given ten different tests, only the three tests of relevance for
this study are presented here. A complete report is given in Johansson (2001).

Numeral writing
The child was given a sheet of paper and a pen with the instruction “Would you
like to write the numerals you know here!” The responses were coded into four
categories following Wigforss’ (1946) definitions: 1. Numerals correctly written,
2. Reversals along the vertical dimension (mirror-image reversals), 3. Omitted
numerals, and 4. Unreadable numerals.

Addition and subtraction
The 7 year olds were given three addition (3+2, 2+6, 7+8) and subtraction (5-1,
7-3, 15-8) problems taken from Wigforss (1946), whereas the 6 year olds were
given three slightly different addition (1+4, 3+4, 5+7) and subtraction (5-4, 8-3,
13-6) problems. The wording of the addition problems was “Imagine that you
have x pears/balls and then get y more, how many do you then have altogether?”
and for subtraction “Imagine that you have x pears/balls and then you give away
y. How many do you have left?”

Procedure
The different tests and instructions were printed in a booklet and the students
practiced giving the test and coding the responses before actual testing. The
children were tested individually in a separate room in the local pre-school or
school.

Results

Writing of numerals
The following results are given for each age group: number of correctly written
numerals (Figure 1), number of reversals (Figure 2), number of omitted numerals
(Figure 3) and number of incorrectly written numerals (Figure 4), for each of the
numerals 0 to 9. For sake of comparison Wigforss’ (1946) results are also
presented.
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As can be seen, the 7 year olds tested by Wigforss performed at about the same
level as the 6 year olds tested in 1992, whereas performance for the 7 year olds
tested 1991 was considerably higher. In other words, the school-starters of today
seem to be one year ahead of the school-starters of 1942.

Figure 2, on reversals, shows that each age group produced between 1 or 2
such responses. Accepting reversals (Wigforss, 1946) as readable numerals, the
results mean that the 7 year olds tested in 1991 could correctly write (albeit not
perfectly) almost all the 10 basic numerals. This is a surprising contribution to
the debate on numeral practice in early mathematics education: most children
have learned to write the numerals before entering school.

The fact that the child can write a numeral, however, does not prove that this
knowledge affects the number concept. To find out if there is such a relationship
the correlations between numeral performance and arithmetic problem solving
was analyzed. The categories of omitted and incorrectly written numerals were
added under the heading incorrect numerals. To obtain a clearer picture of age-
related development, the six year olds were divided into children younger and
children older than 6,4, respectively. The seven year olds were partitioned into
younger than 7,3, between 7,3 and 7,7, and older than 7,7. The partitioning
criterion was to obtain groups with about the same number of children. The
results are given in Table 1.

______________________________________________________________________
Number of arithmetic problems solved for children aged:

________________________________________________

6, 4 6,5 7, 3 7,3 7,7
Number of or or or to or
numerals: younger older younger 7,7 older

______________________________________________________________________
correctly written .18 .24** .28** .12 .05

reversed .40** .04 -.09 .00 -.11

omitted and incorrect -.37** -.13 -.33** -.24** -.29**

Number of children (n)  66 95 144 121 107
______________________________________________________________________
** p ≤ 0.01.

Table 1. Correlations between numeral and arithmetic test performance.

Positive correlations were obtained between numerals correctly written and
arithmetic problems solved for the oldest half of the 6 year olds and the youngest
third of the 7 year olds. For reversals a positive correlation with arithmetic
performance was obtained for the youngest age group. Finally, for omitted and
incorrectly written numerals the correlations were negative in four of the five age
groups. Accepting arithmetic performance as a valid measure of the number
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concept, these results give no support to the statements that early numeral
writing, or writing reversed numerals, should be an obstacle to the development
of the number concept. Rather, the results indicate that not knowing to write
numerals is a negative factor in the acquisition of the number concept. It should
be added that strong ceiling and bottom effects may give a biased picture of the
relations; a replication with younger subjects seems necessary.

Study 2
The tests in Study 1 do not measure the child’s understanding of the meaning of
the numerals. Unenge, Sandal and Wyndhamn (1994) argue that the fact the child
can write a given numeral does not prove that the child understands the meaning
of the symbol. One aim of this study was to measure children’s understanding of
the cardinal meaning of the numerals.

In Study 1 it was found that early mastery of the numerals may enhance the
acquisition of the number concept (measured by arithmetic performance).
However, the experiment gives no clues as to why this should be the case. As
early as 1884 the Swedish mathematics educator Velander suggested that the
numerals facilitate memorizing the numbers. His argument was that the numerals
afford a small set of units easy to grasp and summarize and hence easy to use in
mental calculations. This argument is in effect the opposite of Sjöholm’s (1949)
thesis that the numeral is “the symbol for a symbol” /my translation/ and
therefore very difficult to handle. As a first test of how the numerals are used in
mental calculations, the correlation between numeral writing and digit memory
was analyzed.

Method

Subjects
Subjects were 84 children aged 5 to 6 years and attending pre-school. The
parents and the pre-school teachers were asked for permission before testing. The
children were partitioned into three age groups with 28 children in each: 1. Mean
age 5,2 (range 4,8-5,4), 2. Mean age 5,8 (range 5,5-6,2), and 3. Mean age 6,5
(range 6,3-6,8).

Tests
The children were tested with a total of 12 different tests. Due to space limi-
tations, only the 5 used in the analysis will be presented here.

Numeral writing
The children were given the same numeral writing instruction as in Study 1 and
the responses were coded according to the four categories already described.
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From numeral to cardinal number
The children were presented a numeral written on a card (numerals taken from
Angelin, 1978) with the instruction “I would like you to draw as many tallies as
the numeral says”, with the numeral 2 as practice. Two series were constructed:
A. 3, 5, 7, and 11 and B. 3, 6, 8 and 14. Each child was tested with only one of
the series.

From cardinal number to numeral
The child was presented a sheet with a given number of tallies. The instruction
was “Draw the numeral that tells how many tallies there are”. Both correctly
written numerals and reversals were scored as correct. Children tested with
Series A in the former test were given Series B in this, and vice versa for Series
B.

Addition tests
Six different problem series were constructed: 4+1, 3+4, 5+4, 13+4; 3+2, 2+4,
3+6, 5+12; 1+3, 5+2, 7+2, 7+8; 1+4, 4+3, 2+7, 5+12. Each child was tested with
two of the series. The instruction was “Imagine you have x bolls/apples and then
you get y more. How many do you then have all together?”

Digit memory
A digit memory test, modeled after WISC, was used.

Procedure
The children were tested individually in the local preschools by two trained
research assistants.

Results
Table 2 presents mean performance on the different tests with the children
grouped into three groups according to age.
____________________________________________________________________

Child group with mean age of
______________________________________________________________________________________________________

Test 5,2 5,8 6,3 R2

______________________________________________________________________________________________________

Numerals to number (%) 69 73 85 .04
Number to numerals (%) 55--------------81 85 .15**
Addition (%) 0.7 0.9 -------------1.5 .21***
Digit memory (%) 51 53 58 .02
Correctly written numerals (mean) 2.4--------------4.4 4.8 .19***
Reversed numerals (mean) 1.3--------------2.4 2.5 .09*
Errors and omissions (mean) 0.4 0.3 0.4 .01
Number of children (n) 28 28 28
_______________________________________________________________________________________________________

*p<.05, **p<.01 ***p<.001 _R2 =explained variance

Table 2. Performance on the different tests for the three age groups.
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The results were subjected to an analysis of variance with age group as a between
subjects variable. Significant results were followed up by Tukey tests of simple
main effects. A line in the table signifies a statistically reliable difference
(p<.05). The results show that the sharpest increase in number skills took place in
the age interval 5,2 – 5,8 years of age, whereas the increase in arithmetic
performance was concentrated to the next age interval.

Next, correlations were computed between the measures of numeral writing
and the other four test results, see Table 3.

______________________________________________________________________
Numeral writing Numeral to Number to Addition

Memory
and age group number numeral results

results
_________________________________________________________________________________________________________

Correctly written numerals
Oldest group .30 .62 .56 .30
Middle group .63 .54 .61 .54
Youngest group .36 .57 .57 .20

Reversed numerals
Oldest group -.11 .14 .05 .30
Middle group .36 .39 .42 .22
Youngest group .43 .47 .56 .35

Incorrect numerals and omissions
Oldest group -.16 -.07 -.23 -.37
Middle group -.30 -.08 -.05 -.05
Youngest group -.12 -.04 .10 .10

______________________________________________________________________
r > .37 is significant at the .05 level.

Table 3. Correlations.

The strong correlations between correctly (and in 2 of 3 cases for reversals)
written numerals and performance on the number to numeral test is taken to
indicate that the ability to write numerals is not only an acquisition of a certain
form but also the learning of the cardinal meaning of the symbol. The correla-
tions between correctly written and reversed numerals (2 cases of 3) on the one
hand and number of addition problems solved on the other are a replication of the
Study 1 results supporting the conclusion that numeral writing develops hand in
hand with the number concept. The results for digit memory, however, were
inconclusive, indicating that numeral writing is not effective through an
increased digit memory span.
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Therefore, it was decided to pursue another track to analyze why numeral
skill has a positive effect on arithmetic performance, namely that numeral skill
affects strategy used to solve the arithmetic problem. Consider the problem “Lets
say you have 3 crowns and then you get 4 more. How many do you then have all
together?” One way to solve this problem is to imagine first three coins, or look
at three fingers, then four coins/fingers and finally count all items to find the sum
– seven. Another strategy would be to simply imagine the numerals 3 and 4 and
then compute the sum, either directly or with a decomposition into simpler
number combinations , e.g., by using the doubles: “3 and 3 equals 6, 1 more
makes 7”. In other words, children with a low level of numeral skill may have to
use various counting-all strategies whereas children having acquired the nume-
rals may also have access to derived strategies such as direct retrieval, doubles or
ten complements. To test this hypothesis, the third study was run.

Study 3
To test the hypothesis presented above the children were presented with both
numeral writing tests and arithmetic tests, followed by post-solution questioning
on strategy used to solve the problem. Because the first two studies had
demonstrated that many pre-school children can write the ten basic numerals, the
present children were also asked to write the numerals for two- and three-digit
numbers. As in the former experiments, the children were tested with many
different tests; only those of relevance for the hypothesis under study will be
presented.

Method
Subjects
The subjects were 6 years old children having completed their pre-school class
(testing made in late May). Of a total of 60 children enrolled in the school,
permissions for testing were obtained for 54.

Tests

Two numeral writing tests
were run. First, the experimenter asked the child to write the numeral she or he
knew, then the child was asked to write (numbers said): 13, 18, 23, 54, 62, 106
and 2089 in numerals. To concentrate result presentation only correct responses
are given.

Arithmetic tests
The subjects were given one addition and one subtraction test, each with five
problems given in order of difficulty. After the child had solved a problem the
experimenter asked questions about solution procedure.
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Procedure
Each child was tested individually in a separate room in the school. All test
sessions were video-recorded and the strategies were scored by both the
experimenter and the author. Scorer agreement was .91.

Strategies
The distinctions between direct modeling, verbal counting and derived strategies
(e.g. Bergeron & Herscovics, 1983) were taken as points of departure when
categorizing the children’s descriptions of their solution procedures. Due to space
limitations only the strategies for the addition problems are presented:

Concrete Counting All (CCA): Fingers or other countable objects were counted out
one by one to represent one of the addends followed by a similar process for
the other addend. Then all the objects or fingers were counted to determine the
sum. On a few occasions abbreviated counting strategies (see Baroody, 1987)
were used, these were also categorized as CCA.

Sequence Count All (SCA): The child started with “one” and counted up to the
cardinal value of the first addend, then the child continued to count a number
of steps equal to the second addend.

Sequence Count On (SCO): The child started with the cardinal value of the first or
largest addend, counting on from there while the second addend was
enumerated.

Decomposition strategies (DE): The child decomposed the given numbers into
easier number combinations, using doubles or combinations of 10.

Direct recall (DR): The child relied on facts recalled from memory, without
recourse to counting. To be defined as a direct recall answer, the response had
to be given within 2 sec.

Don’t know, guessing and not identifiable (GU): Some children could not describe
their solution procedure, others said that they had guessed the answer and some
descriptions were too vague to be categorized. All these responses were
brought together under the heading of guessing (GU).

Not given (NG): The problem was considered beyond the child’s current per-
formance level and was therefore not given to the child.

Table 4 shows mean performance on the various tests (not subtraction) described
above. The children correctly drew 7.7 of the numerals from 0 to 9, solved a
mean of 2.5 multi-digit numeral problems, and solved about 3 of the arithmetic
problems.
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______________________________________________________________

Tests
______________________________________________________________

Single Multi- Addition-
Numerals digit digit problems
test numerals numerals
_________________________________________
Performance
(means) 7.7   2.5 2.9
(max) 10 6 5
______________________________________________________________

Table 4. Mean performance on the two numerals tests and the addition test.
 Maximum performance on each test is also given.

In Table 5 are given the results from the computation of correlations between the
drawing of numerals (single-digit and multi-digit numerals) and strategies used
to solve the addition problems.

______________________________________________________________________
Strategies

    _________________________________________________________________________________________

Problem Guess- Concrete Sequence Sequence Decom- Retrie-
Numerals Not ing counting count count position val
test given all all on
______________________________________________________________________
Numerals

Single-digit -.02 -.03 -.26 -.12 -.10 .08 .42
Multi-digit -.41 .05 -.23 -.26 .26 .23 .34

_________________________________________________________________________________________________________

r > .22 is significant at the .05 level.

Table 5. Correlations

The results show that children solving many numeral problems also made heavy
use of the retrieval and decomposition (multi-digit numerals only) strategies,
with a reverse relation for the strategies concrete counting all and sequence count
all (multi-digit numerals).

Discussion
All three experiments have shown positive correlations between number of
numerals correctly written and arithmetic performance, which suggest that
knowing to write the numerals correctly (or reversed) concur with the develop-
ment of the number concept, contrary to the opinion of many mathematics
teachers, educational researchers and teacher educators. It seems that learning to
draw a given numeral not only means the learning of a given form, but also the
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acquisition of its cardinal value. In addition, the present experiments suggest that
the reason why numeral writing goes hand in hand with the development of the
number concept is not through an increase of digit memory, but through the
providing of an efficient system for imagining the numbers. In effect, Velander
(1884) considered the numerals “fully concrete” /my translation/, just because
they were easy to grasp and turn into distinct images.
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Projects as an Educational Strategy1

Marie Kubinova
Charles University, Prague

Introduction
By a project we mean, in line with e.g. Lehmann (1999), Ludwig (1996), Meyer
(1997), Quartapelle (1999) and others, a challenge to carry out various activities
(both mathematical and non-mathematical) during which pupils, guided by the
teacher or on their own, during and/or outside school hours, discover mathe-
matical concepts and regularities, acquire new knowledge and/or get to know the
possibilities of using mathematical knowledge outside mathematics. These activi-
ties go on within mathematics (in a mathematical context, e.g. a project Pytha-
goras’ Theorem, Origami and symmetry) or outside mathematics (e.g. a project
Water in which pupils learn the concept of dependency, practise operations with
decimals and fractions and use physical, geographical, scientific, etc. knowledge
as well as real life knowledge).

We consider the project method to be a challenge for a teacher to become a
co-ordinator of pupils’ independent work (based on their activity when acquiring
information, analysing it and using it) and to enable pupils to become active
participants of the project who have considerable competencies and who are able
to co-operate with each other and use the available information.

Our priority is to construct and realise in school such projects which are based
on the ideas of constructivism and to overcome the disadvantages of the
“traditional teaching” (at least in the Czech Republic) such as: memorised and
one-sided cognitive learning based on the didactic transformation of subject
matter which emphasises passing ready-made knowledge to pupils; isolated and
fragmented school subjects and the separation of school from everyday life; low
motivation; mechanisation and rigidity of school work; disregard of children‘s
interests.

Some characteristics of projects
Projects which we prepare for pupils are based on some characteristics which in
our opinion contribute most by their motivating role in the teaching of mathema-
tics. They are: realisation of pupils‘ needs and interests; development of pupils‘
competencies and potentials; self-regulating learning, motivation; changing roles
in the teaching/learning process; implicit role of a teacher; orientation towards

�

The contribution was supported by a research project Cultivation of Mathematical Thinking
and Education in European Culture, No. J13/98:114100004.
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the presentation of results; co-operation in teams; interdisciplinary character;
social relevance; change in the conception of school.

In this contribution, we will describe in more detail three projects which we
used in our own teaching at the basic school. While ‘solving’ them, pupils get an
opportunity to:

• get to know mathematics from a different point of view, namely as a
suitable method for solving problems from various different fields and
from everyday life and as one of the ways of how to understand
reality,

• learn about the potential of mathematics and other school subjects and
their own potentials,

• be directed to independent work, to defending their opinion, to coping
with failures and discovering their causes, to using results of their
work outside mathematics, to co-operating with others, looking for
solving methods outside mathematics and coping without the teacher‘s
help,

• use previous knowledge and various different solving methods in
problem solving and look for an optimal solution and optimal strategy.

The project We look for a number – diagnostic version2

One version of the project We look for a number was prepared for 14-year-old
pupils from grade 8 and 15-year-old pupils from grade 9 as two worksheets,
which only differed in the instruction which of the numbers A, B should be
chosen and which one should be looked for.3 It was our intention that the two
worksheets were identical except for the label of the INPUT and OUTPUT
because, among others, we also wanted to diagnose if pupils pay attention to the
assignment of the problem they are supposed to solve and if they will distinguish
the two types of projects and discover their connection.

The two types of projects were posted on the notice board and pupils had a
sufficient number of worksheets4 at their disposal. Their task was to: look for
pairs of numbers A, B so that the conditions given in the worksheets were

�

The project We look for a number was realised with different worksheets in the school year
1998-99 in grade 7, first as a motivational (for the motivation of new subject matter) and
expositional (for the introduction of new subject matter – the ‘discovery’ of negative numbers
and their properties), later as fixing (for the consolidation of already known subject matter – the
drill of the algorithms for counting with integers), and finally as diagnostic (assessment of the
level of understanding operations with integers).
3 If number A was given, number B was looked for via a sequence of inverse operations to the
given operations.
4 An illustration of one worksheet is appended.
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fulfilled; prepare a set of similar problems with solutions for their classmates and
for younger students; present results of their work to their classmates.

Eighth graders worked independently or in groups outside the school lessons,
ninth graders worked in groups in two successive mathematics lessons.
Altogether 92 pupils took part in the project. Pupils became interested in the
project and lively discussions among pupils and between the teacher and pupils
originated. Their focus was mainly questions connected with properties of
numbers and arithmetic operations. In all classes pupils agreed that they would
present results of their work via (a) filled worksheets and (b) a set of worksheets
with tasks for their classmates.

The observations of pupils’ work, discussions with them and analyses of their
written work brought about some interesting phenomena:

Interest in work which went beyond their ‘normal’ schoolwork – pupils
worked with interest, they accepted the task as their own, kept bringing new and
new solutions of the given task. Without any major outer motivation, they carried
out a number of sums with numbers which in ‘traditional’ teaching would be
unthinkable.

Minimal co-operation among students in a group – group work which we
observed in mathematics lessons was organised differently in different groups.
The prevailing model was where one member of the group organised work of the
others. Co-operation among group members was minimal even in classes in
which pupils were used to group work.

Strong influence of the used educational strategy on the use of solving
strategy – groups in class 9A5 worked with both types of problems at the same
time. However, they discovered the mutual connection of them very quickly and
immediately used it in their further work. For most groups from the other classes,
the first key factor of the success of their work was the realisation that they were,
in fact, solving two different types of problems. Not surprisingly, most of them
concentrated on solving the problem in the direction from the given number A to
the unknown number B. The second, intellectually and numerically more deman-
ding type when number A was looked for via number B, was not solved at first by
pupils at all. When speaking to them, we found out that the majority did not
consider the difficulty of the tasks at all, they supposed that the two worksheets
were identical. They chose the solution ‘from A to B’ because they considered it
to be natural. Four groups and three individual pupils even refused to accept both
types of worksheets because ‘they only need it once’. One group and one pupil
came later to collect the second type because ‘they need it after all’. Only three
groups from classes other than 9A discovered the connection between the two
types of tasks and used it in their work.

�

Project teaching was used very often in this class.
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Neglecting the input on the worksheet – this was the most frequent mistake in
pupils’ work in ‘We look for number A’ which could be caused by the stereotype
‘the problem is solved from the front’, as one pupil explained.

Choice of a correct inverse operation – if pupils discovered the direction in
which the task should be solved, they had no problems with the choice of the
correct inverse operation.

Different attitude to problems with no solution or with several solutions –
class 9A was unusual in that the pupils also handed in problems with no solution
or with several solutions. In other classes, it was very rare that pupils handed in
worksheets in which the input number was chosen so that the problem had
several solutions or no solution. They justified it by saying ‘we cannot hand in
unsuccessful problems with several solutions’ or ‘an unsolved problem’.

Feedback – in class 9A pupils emphasised the need to check if their proposed
solutions were correct, in other classes there was no feedback.

Minimal innovation in the creation of new tasks – worksheets which pupils
prepared for their classmates more or less copied those given by the teacher.
Tasks prepared by younger pupils mostly concerned operations with natural
numbers.

The project We look for a number can be easily modified according to the
situation in the class. The above comments suggest that work on projects of this
type can help pupils overcome stereotypes in grasping problems and in their
solutions. This is exemplified by the different approaches to the solution of the
project by class 9A where project teaching had been used quite often compared
with other classes in which different educational strategies had been used.

The project We look for a number – motivational version
A modified version of the project ‘We look for a number’ was used in grade 6 as
a motivational project. We wanted to:

• create a suitable climate for group work because the class was newly
established (it consisted of pupils from different classes) and pupils
were at first not able to co-operate at all,

• support pupils’ inner motivation to the work beyond the normal scope
of school work,

• lead pupils in such a way that they independently get into the
expositional phase and discover the ‘basis’ of a decimal number.

The sixth graders were excited about the project. Groups formed spontaneously
without the teacher’s intervention. However, during the first lesson when the
worksheets were prepared in such a way that all the prescribed operations were
realised within the domain of natural numbers, the groups did not function
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properly. Individual members of groups did not co-operate, there was no control
of work inside groups.

During the second lesson problems were given which could not be solved
within natural numbers and the work became so time consuming and technically
and intellectually demanding that it required pupils to co-operate. This probably
was the beginning of the creation of a suitable climate, which will enable us to
use project teaching in the future.

Pupils were fascinated by the possibility of creating ‘their own’ numbers.
During their first lesson they solved all the prepared stock of worksheets. Some
pupils prepared their own worksheets at home, others wrote new solutions into
already filled worksheets.

During the second lesson, in several groups at once, the ‘discovery’ of a
decimal number was made as an object which:

• can solve the situation in which we look for a quotient of two natural
numbers and can show that it is not a natural number,

• is not given in advance but originates during the process of division of
one natural number by another.

It transpired that pupils could write decimal numbers, some of them could even
add them. However, their knowledge was mostly formal and connected with the
separate model of a decimal number which expresses price of goods. The next
lessons confirmed that pupils accepted the concept of decimals into their
knowledge structure as recognised notation via the agreed system of signs (digits,
decimal number) without any connection to the process in which the decimal
system originated.

The work on the project was the stimulus for several pupils to discover other
properties of decimal numbers through the algorithm of division of one natural
number by another. Other pupils elaborated at home an extensive set of examples
of decimals with the help of which they showed that there were two ‘types’ of
decimal numbers: ‘decimal numbers which will stop’ (decimals of the type 0.25)
and ‘decimal numbers which repeat’ (periodical decimal numbers even though
some of the numbers they gave were not periodical). When the pupils presented
results of their work to other pupils in a mathematics lesson, a rich discussion
originated in which pupils: made the first (incomplete) classification of divisors
according to the ‘type’ of decimal; discovered the possible lengths of the period
and ‘that in some numbers there is also something before the period’; described
the rules for the order of decimals.

It was very important for us that the pupils’ spontaneous interest in the results
of work of their two classmates brought about a working climate which meant a
possibility to use, in a natural way, the constructivist approach to teaching even
though it meant that the teacher had to react to the situation by the change of the
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content of the lesson. For the first time in five weeks of common work, we
succeeded in creating working climate in the class which addressed most of the
pupils. Pupils showed their excitement from the ‘discoveries’ they made and
required new problems to solve.

The project Energy for all
The project ‘Energy for all’ has been in a simple form assigned since 1994 as a
fixing project when topics Percent and later Statistics were being covered in
class. The pupils’ task was to carry out a statistical survey on the consumption of
electricity in their households, to present their results in a suitable way and
possibly to suggest ways to save energy. In all but one case the parents supported
the project and co-operated. In some cases they even accepted the results of the
project and observed the proposed suggestions! So results of school work were
used outside school as well. It had a motivational effect on some of our pupils.
This was manifested, for instance, in that they offered topics for other projects.6

At the beginning of the school year 1999-2000, we got into an altogether
different situation. A discussion about various sources of energy took place in
one physics lesson in grade 9 when the revision of the subject matter Work and
energy took place. During that day a group of pupils brought their suggestions
for projects on energy which could be solved by others. It was a very extensive
list of topics that the pupils called Energy for all and which consisted of the
following areas7:

(a)Can I manage my own energy? Intake and distribution of energy
(tables of energy values of food, ways of distribution of energy,
balance between the intake and distribution of energy, ...). Healthy
lifestyle (my opinions of the possibilities of living in a healthy way
every day, what other people think about it, ...).

(b)How much do we pay for the electric appliances in our households?
How much energy do we use (statistical survey on the consumption of
electric energy, heat and gas), proposals for saving energy,
experiences with them. How much electricity does my cassette
recorder (computer, television, video,…) use? Can we buy an electric
appliance which saves energy?

(c) Ecology-friendly energy sources. Solar, thermal, water, wind, nuclear,
... power stations. Energy of biomass. Power stations – pros and cons.

(d)Advantages and disadvantages of various types of transport (car, air,
train, boat, ...).

6 For instance, the projects What is missing in our neighbourhood, The place where I live, and
Smog on a highway.
7 The areas are given in the form which the pupils used�
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The project Energy for all was organised as the after-school activity. In a month,
pupils gathered an enormous amount of materials, including statistical surveys
and summaries, graphs and diagrams. They also organised and analysed two
questionnaires. The results of the project were presented in several school
subjects.

It was very important that the project was initiated by pupils themselves.
They accepted the project as ‘theirs’. The work was organised by two boys and a
girl who guided their classmates – they distributed individual tasks among them
and organised the presentation of results.

Conclusions
Our long-term experience with using projects in the teaching of mathematics
shows that well chosen and well used projects can be one of the means of
creating a positive climate for a quality change in a pupil‘s personality. In such a
project there is enough space for the development of one‘s own learning
strategies and at the same time enough time and space for solving many different
problems and reaching some results. It motivates pupils towards an active
approach to their learning. Therefore, we can understand a project as a specific
educational strategy based on partnership.
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Learning Velocity Graphs –
The Case of Laura and Fiona

Variation as a critical feature for learning

Ulla Runesson
Göteborgs universitet

Comprehending graphical representations of time versus velocity (a v(t) curve)
indicating negative velocity seems to be problematic to students (see e.g.
Goldberg & Andersson, 1989; Nemirovsky, 1994). In this paper I demonstrate
how two students in grade eight learn to interpret this kind of graphical repre-
sentations during a mathematics lesson.

Theoretical framework
The point of departure taken is that for a certain learning to happen there must be
certain critical features present in the learning environment. The assumption is
based on a theoretical framework, developed in detail by Marton and Booth
(1997) and Bowden and Marton (1998). They argue that variation plays an
important role for learning, that certain learning presupposes an experienced
variation of the object of learning. We learn to experience and act in the world by
discerning critical features or aspects of objects and situations by focusing on
them simultaneously. The way in which the learner experiences an object is due
to which aspects of the object that is in her focal awareness at the same time.
Certain aspects of the object or the situations are discerned, they are in the fore of
her attention, while others remain in the background. To understand something in
a certain way implies that certain aspects must be discerned and held in our
awareness in a certain way. Further, an aspect is discerned only if it is
experienced as a dimension of variation, thus that it could be something else.

Description of the study
The aim of the study was to analyse and describe that which was critical for
learning in terms of the aspects and dimensions of variation related to the object
of learning that was present in the learning environment. The base for analysis
was a section of a more extensive data set of videotaped records of fifty-five
secondary maths and science lessons. This data set was made available to a
multidisciplinary research team comprising expertise in different areas, for
instance mathematics and science education, sociology, developmental psycho-
logy (Clarke, 2001). The particular extracts of data chosen for this study, are one
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video recording of a whole class discussion and a sustained conversation between
two students during a mathematics lesson.

The lesson, which was narrowly examined in this study, was a maths lesson
in grade eight. After an introduction in a whole class setting, the students worked
in pairs. The task was to match five different situations with a moving object
changing velocity as a rate of time, to eight different graphs (figure 1). Two of
the situations implied a bi-directional movement (a bouncing ball and a ball
thrown into the air). That is, these did not only include a change of velocity, but a
change of direction of the object, as well. Opposite to the unidirectional motion
of a falling stone for instance, a bouncing ball is bi-directional (i.e. moves in
different directions). A bouncing ball changes velocity and direction. In that
sense this situation – and the graphical representation – is more complex than the
others are. To two of the students – Laura and Fiona – studied particularly in this
study, these situations were the most problematic ones.

Figure 1. V(t) graphs presented to the students
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The focus of my analysis was the object of learning (i.e. that which was possible
to learn) that was jointly constituted in the interaction between the teacher and
the students in the whole class setting on the one hand, and between the students
working together on the other. Similar analysis of the classroom interaction has
been presented before (see e.g. Runesson, 1999; Rovio-Johansson 1999).

Results
It was found that the students’ ways of handling the task in the peer interaction
very much reflected how this was handled in the whole class setting. The
presence as well as the absence of variation of certain aspects of the object of
learning, constituted in the whole class setting, was found to be critical for their
learning.

The lesson started with a whole class session for about 15 minutes, followed
by peer work.

In the whole class instruction graph B (see figure 1) was presented to the
students. However it was not chosen as representing a ball thrown into the air, as
was the case in the text book, but a car slowing down, stopping and then
reversing, moving in opposite direction with an increasing speed. This situation
was supposed to illustrate how a graph intersecting the x-axsis indicate a change
of direction. In different ways the teacher opened for variation. For instance, she
shifted focus (e.g. between the situation and the graph) she made comparisons
(e.g. of the speed in different points of time) and pointed to similarities and
differences. In this way, she brought out a pattern of variation.

When working in pairs, the students should chose the appropriate graph and
make a quick sketch of the graph. The focussed students, Laura and Fiona, chose
graph D as representing “a ball thrown into the air”. For “a bouncing ball”, they
also chose graph D, that is the same graph representing both the situations. When
Laura and Fiona were discussing the problem with the bouncing ball (e), it was
suggested that it could be either graph D or E. Laura, who suggested D, argued:

L: Wouldn’t be like E, it’s not, a ball’s not gonna like –
F: (filled in) Go backwards. It’s going to go woo-woo (moving hand back and
forth once fast two and half times horizontally). It’s not going to do that.

In my interpretation, the girls must have experienced that alternative E, with the
graph intersecting the x-axis, represented a change in direction. Thus, they have
discerned one critical feature of that kind of graph. However, they took the
change of direction for-granted – that this kind of graphs represent a horizontal
change of the direction only. The girls explicitly stated that the change of the
movement of the ball is vertical. It does not “go backwards”, and therefore
alternative E, must be rejected. However, Fiona who probably kept to the idea
that a graph intersecting the x-axes represents a change in direction, suggested B.
Laura rather impertinently put off the suggestion with:
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L: Like B? It’s not like B.
F: D. (Fiona immediately corrected)
L: Yeah that’s what I reckon. It’ll go bo-ing (moves pencil in hand as a
bouncing ball) except it’ll  a little lower each time. I reckon. So I reckon it’ll be
like D.

It seems as it did not appear to the girls that the graph could represent a
horizontal and a vertical movement as well. They did not open up for this
variation; that the change of speed could imply a vertical or a horizontal
movement. The fact that they omitted the possibility that a graph intersecting the
x-axis could indicate a vertical as well as a horizontal change of direction, was
critical for their solving of the problem, and thus for their learning.

The students’ way of handling the task in the peer interaction very much
reflected what had happened in the whole class interaction. For instance, graph E
was rejected by the girls as representing the bouncing ball due to it did not go
"backwards". Exactly the same word was used in the whole class interaction, but
about another object and another kind of motion (a car going forward and
reversing). In that episode, the teacher opened for variation of change of a
horizontal direction. This dimension of variation was identified in the peer
interaction as well.

By comparing the patterns of variation that was constituted in the whole class
and the peer interaction respectively, it was possible to identify some features in
the learning environment that were critical for the students' learning. According
to the theoretical framework taken and described previously, the pattern of
variation - that is what is varying, is invariant, what is left out, or is taken for
granted - is a defining condition for learning. I will point to some features of the
pattern of variation that was constituted in the whole class interaction that I
would argue affected the students' possibility to learn.

First, the way the teacher changed one of the examples, from a bouncing ball
to a car, seemed to be critical for the students’ learning. The very idea of
mathematical representations is that they are general, for instance a graph can
represent many situations. From the point of view of mathematics, one could
believe that it does not matter if the example is about a ball or a car. However,
from the point of view of the students, these situations are quite different. Firstly,
the change of direction is different. Secondly, in terms of the learners' everyday
experience of the force that affects the velocity and the motion of the object, the
two situations are quite different. From their everyday experience they "know"
that the change of the velocity and direction of the car is caused by a human
being (pushing the accelerator and reversing the car). So, in this case a "visible
force" accomplishes the change. For the ball, however, the only force that is
visible is the force caused by the throwing hand. So, that it was never pointed out
that the graph represented a change of direction vertically as well as horizontally
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- that this aspect did not make up a dimension of variation, but was taken-for-
granted - seemed to be critical for the girls' learning.

Discussion
It is reasonable to assume that the teacher changed the situation represented by
the graph (i.e. from representing a ball thrown into the air as in the text book, to
represent a car first moving forward and then reversing with the velocity
changing) was done out of good will. It is usual that teachers in the introduction
of the lesson take examples that in some respect are somewhat different from
those ones the students will encounter when they solve problems on their own.
This could be a way to demonstrate the generality of mathematical represen-
tations or models. However, in this case, this change was critical for learning,
particularly since an important general aspect of the v(t) graph (i.e. how the graph
represents vertical as well as horizontal direction of velocity) was not indicated.

From the theoretical standpoint taken, that which is varied is likely to be
discerned. It is reasonable to assume that the understanding of the generality of
graphs representing negative velocity (i.e. horizontal and vertical change) takes
the experience of a certain pattern of variation. Obviously, the girls, when
working on their own, did not experience that the same graph indicating negative
velocity could represent a variation of situations (in this case changes in different
directions). So, one could ask; would another pattern of variation in the whole
class interaction have made this learning possible? I would argue that there
would have been other possibilities to discern this critical aspect, and thus the
generality of the graph, if the teacher instead had illustrated the same graph with
two different situations (i.e. keeping the graph constant while varying situations).

References
Bowden J. &  Marton, F. (1998). The university of learning. Beyond quality and

competence in higher education. London: Cogan.
Clarke, D. (2001). Perspectives on Practice and Meaning in Mathematics and Science

Classrooms. Dordrecht: Kluwer
Goldberg, F. M. (1989). Student Difficulties with Graphical Representations of

Negative Values of Velocity. The Physics Teacher (27), 4, 254-260.
Marton, F. & Booth, S. (1997). Learning and awareness. Hillsdale, NJ: Erlbaum.
Nemirovsky, R. (1994). On Ways of Symbolizing: The case of Laura and Velocity Sign.

Journal of Mathematical Behaviour, 13 (389-422)
Rovio-Johansson, A. (1999). Being good at teaching. Exploring different ways of

handling the same subject in higher education. Göteborg Studies in Educational
Siences 140.

Runesson, U. (1999). Variationens pedagogik. Skilda sätt att behandla ett matematiskt
innehåll [The pedagogy of variation. Different ways of handling a mathematical
topic]. Göteborg Studies in Educational Siences 129. Göteborgs universitet.



157

Process Oriented Research and its Reflection in
Pre-Service Mathematics Teachers Education –

A Case of Diploma Theses

Nada Stehlíková, Darina Jirotková
Charles University, Prague

Our conception of the didactics of mathematics
Hejny (Hejny and Stehlíková, 1999) distinguishes two polarised streams in the
research of the didactics of mathematics. The content oriented stream focuses on
the curriculum, textbooks and teaching aids and looks for ways of opening the
world of mathematics to as many people as possible through the change of the
content and teaching methods. The process oriented stream concentrates on what
is going on in a student’s or teacher’s head when they are doing mathematics,
solving problems, discussing mathematics and explaining it to another person;
this includes the study of interactions, classroom learning, etc. – i.e. cognitive
and communicative processes in mathematics education. Whilst the first type of
research is traditional in Czech mathematics education research, the latter type
has only gained more attention in the last ten years.

Advocates of process oriented research believe that teachers play the key role
in the process of improving the teaching of mathematics. This assumption has
been acknowledged by both national and international research which shows that
neither a change of curriculum nor a change of textbooks and teaching aids can
bring about the desired shift from instructivist towards constructivist approaches
on their own.

One of the ways of influencing teachers’ strategies of teaching is through
action research.

Action research and student teachers as researchers
Much research has been devoted to ‘the-teacher-as-the-researcher’ movement
(action research) in the didactics of mathematics and it has been widely
acknowledged that a teacher who carries out experimental and research work
changes his/her pedagogical consciousness and attitude in a positive direction
(see e.g. Boero and Szendrei, 1998; Cooney and Krainer, 1996; Crawford and
Adler, 1996; Edwards and Hensien, 1999; Hatch and Shiu, 1998, and others).
Moreover, action research contributes to the difficult task of implementing
research results in practice because “on the one hand teachers must know about
research issues in mathematics education, and on the other hand researchers must
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know the challenges that teachers have in their practice, and the solutions of
these challenges should be one of the main issues to study” (Carrillo, Coriat &
Oliveira, 1999).

Mason’s (1998) idea that the most significant products of research in
mathematics education are “the transformations in the being of the researchers”
because it is “their questions that change, their sensitivities that develop, their
attention that is restructured, their awarenesses that are educated, their
perspectives that alter”, supports the above claim.

Action research has been reflected in the pre-service education of teachers,
too. More and more researchers claim that student-teachers can also take part in
action research (e.g. Hatch, Shiu, 1998 – UK example, Peter-Koop, 2001 –
German example). Tutors/researchers from our Mathematics and Mathematical
Education Department have started to involve student teachers in action research
and, similar to Germany (Peter-Koop, 2001), the student teachers’ research
results form the basis for their diploma thesis, which they have to write in order
to get a teaching degree in mathematics.1 In this contribution, we will focus on
diploma theses of future elementary teachers and future mathematics teachers
trained at the authors’ university as one of the manifestations of the process
oriented research in the preparation of future teachers. ‘Diploma student’ is the
student teacher who writes a diploma thesis, ‘supervisor’ is a person who
supervises him/her.

Traditional diploma theses
Traditionally, diploma theses reflecting the content oriented didactics of
mathematics have prevailed at our faculty. They mostly come under quantitative
research paradigm and concentrate on the content of mathematics, textbooks,
teaching aids, curriculum, standards, possibly different ways of teaching a topic.
Teaching experiments are carried out solely to try proposed teaching methods in
practise. The following are examples of such theses: ‘Congruences modulo and
their use in arithmetic’, ‘Graphic solution of equations’, ‘Mathematical test as a
means of evaluation’, ‘Comparing mathematical textbooks’, etc.

Alongside these types of diploma theses, the new types2 (hereinafter NT)
reflecting the process oriented research started to appear. In the text below, we
will attempt to determine their common characteristics and illustrate our
considerations through two examples.

1 Some of them continue with their research project within the PhD study.
2 ‘New’ refers to being new within the education of teachers in the Czech Republic, we are
aware that similar work has been done in other countries for some time now (e.g. Peter-Koop,
2001).
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New types of diploma theses – two illustrations

Illustration 1: Didactical elaboration of a non-standard arithmetic structure
The diploma thesis ‘Didactical elaboration of a non-standard arithmetic structure’
was written by a female student, let us call her Molly. She was a future
mathematics teacher. Molly started working with the first of the authors (NS)
when she was in her first year of a five-year study. She took part in a series of
semi-structured interviews, which were conducted within the research on a
student’s ability to structure mathematical knowledge. She was very excited
about the mathematical topic she was working on – so called restricted arithmetic
RA3. She studied it at home and often came back to the experimenter (i.e. NS)
with new suggestions. Very soon, the previously formal interviews were
transformed into a qualitatively different setting in which the research purposes
grew less and less important, while the teaching-learning purposes became
prominent. Molly continued investigating RA with growing autonomy, formu-
lated hypotheses, definitions, tentative theorems, meeting regularly with the
experimenter to discuss her work. Her ‘co-operation’ with the experimenter
spanned all five years of her study and culminated in her two-hundred-page
diploma thesis on the topic.

Her diploma thesis consists of two parts. The first, a mathematical section
comprises (1) the mathematical description of restricted arithmetic, and (2) some
results of investigating magic squares, Pythagorean triples and pyramids within
restricted arithmetic. In both cases, these are Molly’s own mathematical results
which have not been elaborated anywhere in literature. The second part is
didactical and consists of (3) a teaching experiment, which Molly prepared,
carried out and analysed (including an overview of terms she was using –
constructivist approaches to teaching, clinical interview, how to make protocols,
concept mapping in the didactics of mathematics), and (4) a proposal for a
mathematical project for primary and secondary students on restricted arithmetic.
The appendix includes protocols from the teaching experiment.

Illustration 2: Concept creation process in geometry of the elementary school
The diploma thesis ‘Concept creation process in geometry of the elementary
school’ was written by a female student – Dana. Her supervisor was the second
author of this contribution (DJ). Dana was a future elementary teacher. Her
diploma thesis involved a qualitative analysis and its research tool was the well-
known YES-NO game. The rules of this game are simple. It is played by two
players A and B (these can be either individuals or groups). A set of objects
represented by models, icons, or written form is given. Player A chooses one
element from the set mentally. The task of player B is to guess using yes-no
questions only which element has been chosen. The game has been developed so

3 For its description see Stehlíková and Jirotková, 2001.
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that it can be used with elementary pupils and the set of objects for this age-
group consists of models of solids.

Dana prepared the game and played it with elementary pupils. She recorded
all interactions and interviews she had made with the pupils. She transcribed
them and complemented the transcriptions by indicating where necessary the
pupils’ non-verbal expressions. These protocols were then analysed from the
point of view of the concept creation process. Dana was very surprised to see
how much information she could extract about the pupils’ images of not only
solids, but also of various geometric relations, what experiences pupils have,
what the level of their communication abilities is, etc. She gradually developed
her ability to analyse the protocols and gained sensitivity to important cognitive
and communication phenomena. The relation with her supervisor developed from
‘student – researcher’ to ‘researcher – expert’ and finally to a ‘partner’
relationship.

Some characteristics of NT diploma theses
Long-term elaboration: It is not unusual for the diploma students to work on
their diploma theses for three or more years. Very often they volunteer to take
part in some research as subjects and then they get interested in the topic and
continue with their own part of the research.

Student’s own experiment: We believe that clinical interviews can help
student teachers to learn both about how pupils think and how they themselves
think. Therefore, interviews often become part of the research diploma that
students carry out. Recording, transcribing and analysing a teaching experiment
is a valuable source of information for student teachers from the point of view of
both mathematics and pedagogy. When analysing their experiment, the students
reflect and critically evaluate their own behaviour in the roles they played during
the interview – the role of teacher and researcher. They realise the deficiencies in
their mathematical formulations, their teaching methods, communication
techniques, etc. They develop a sensitivity to use, or avoid where possible, such
situations.

Student’s introspection: Introspection is one of the characteristics of the
methodology built into the Prague Seminars and has become a part of diploma
theses as well. The students are asked to reflect on (a) themselves being problem
solvers, and (b) themselves being teachers/researchers. In agreement with Duffin
and Simpson (2000), we take into account that introspection should be
complemented by other techniques in order for us to get more creditable results,
and thus this technique is accompanied by co-spection (Duffin and Simpson
characterise it as “sharing of our own personal reactions to experience”; in our
case it is the sharing between the diploma student and the supervisor) and
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research ‘as if from inside’ with the student trying to take into account how the
learner might reason whilst he/she is observing the experiment.

Mutual influence between a diploma student and supervisor: The long-term
relationship between a diploma student and a supervisor influences both parties.
During their work together they develop mutual trust which is very important for
the ‘success’ of their co-operation. While the supervisor first plays the role of a
teacher, he/she later becomes a discussion partner. The student learns how to do
research in mathematics education, gets to know his/her learning and teaching
styles, etc. On the other hand, the supervisor gets new and fresh ideas from the
student who might have different opinions and offer different perspectives, which
the supervisor can immediately use in his/her teaching practice. He/she also
improves his/her sensitivity to students’ reactions, which has a positive impact on
his/her teaching, too.

Supervisor’s involvement in the topic: It is also distinctive to the research at
the Faculty of Education that researchers (and teachers) go through the similar
situations (usually at a higher level) as their students to get a deeper insight into a
student’s thinking processes (see also Littler and Koman, 1998). For instance, in
illustration 1, the supervisor herself first investigated RA (which had not been
previously elaborated anywhere) before offering it to Molly. In illustration 2, the
supervisor carried out many experiments with the YES-No game first. Our
experience has shown that this fact contributes profoundly to the positive and
motivational climate between the diploma student and the supervisor.

Change of roles: The change of roles is the most important characteristics of
NT diploma theses. By the change of roles we mean that the participants, i.e. a
diploma student and his/her supervisor, assume certain roles during the
elaboration of the diploma thesis: the role of pupil, teacher, researcher and
possibly expert.

Roles of pupil, teacher, researcher, and expert
In illustration 1, we can distinguish several roles of the supervisor and several
roles of the diploma student (roles are given in brackets). The supervisor
[researcher] carried out a series of semi-structured interviews within the research
on structuring mathematical knowledge. The (future) diploma student took part
in them as a subject [pupil] and was asked to investigate RA. Later, as the
didactic intentions of the supervisor grew more dominant, she [teacher] guided
Molly [pupil] in Molly’s own discovery of RA in a constructivist way. While
doing so, Molly prepared [researcher/teacher], carried out [researcher/teacher]
and analysed [researcher] a teaching experiment based on RA. The supervisor
[expert/researcher] discussed with Molly the phases of her teaching experiment.

In illustration 2, the diploma student [pupil] first experienced the game in her
classes with the supervisor [teacher]. Then the supervisor [researcher/teacher]
offered the diploma student [pupil] a set of problems which concerned the game
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above and which had both a mathematical and a didactical character. They
proceeded to prepare together [expert – researcher] the experiment, which Dana
[researcher] later analysed. The supervisor assumed the role of [expert]. Dana
[researcher/teacher] realised her experiments during her teaching practice.

From the examples it is clear that the roles are not easily separated and in
fact, one person can play several roles in a particular situation.

Role Cognitive competencies Actions

pupil is able to solve presented
mathematical problems, to play a
game, etc., to react to teacher‘s
challenges

solves problems, plays a game,
etc., responds to teacher’s
challenges

teacher4 is able to create suitable problems,
questions, etc. with the given
educational goals, knows the
class, knows his/her pupils, can
use his/her pedagogical experi-
ence, has communicative skills

realise didactic intentions,
possibly co-operates with the
researcher, reacts positively to the
pupils social environment to
create problems which are
relevant in pupils’ experience

researcher is able to determine the goal of
research, to prepare, realise and
analyse an experiment, to
formulate results of the research,
to propose research implemen-
tation, formulate questions for
new research

(in co-operation with an expert
and/or teacher) prepares a
scenario of the experiment,
realises it, keeps evidence, makes
protocols and analyses them

expert5 is able to place research into a
wider context, to make hierarchies
of goals and research results, to
offer a methodology for research

discusses with the researcher, or
teacher, goals and conception of
research, its results, the
techniques of analysis

In the table above, we attempted to describe the above roles in a more general
way. Each of them is characterised by two parameters – cognitive competencies
and actions. Only some characteristics of the individual roles have been chosen
for their description.

The change of roles between teacher and researcher is particularly interesting
and the above mentioned literature on action research pays considerable attention

4 Goffree et al (1999) describe the role of teacher as follows: the teacher creates conditions for
student activity, creates a favourable disposition towards mathematical tasks, promotes investi-
gative processes, sustains students’ activity, promotes communication and thinking and stimu-
lates the development of concepts and procedures.
5 Goffree et al (1999) characterise the expert as a person who helps the student in that he/she
“points out relevant events and interesting phenomena, asks questions and discusses the
answers, gives explanations and makes theoretical reflections”.
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to it. We can say that the continual change between the role of teacher and the
role of researcher is characterised by distancing. If the person distances him/
herself from the event, then he/she behaves as a researcher rather than a teacher.
When the didactical intentions are more prominent, than he/she assumes the role
of teacher.

Note: A teacher finds it more difficult than a researcher to distance him/
herself towards a pupil who is having problems with the research experiment.

Conclusions
What do we consider as having contributed to the success of our work with
diploma students? We believe that is the interplay of several factors. First, we
were able to offer the students tasks early in the course, which they found
interesting. Next, we involved them in our research, which stimulated them into
doing their own research in the area. Doing their own research project helped
them see things they had not seen previously. Putting them into different roles
during their work also widened their perspective profoundly. It is our belief that
these factors contributed greatly to the students' willingness and eagerness to
learn something new and not just write a diploma thesis. We are aware that this
approach will not work with all students. Some of them will feel more secure by
writing the ‘old type’ of diploma theses.

We believe that the above described way of ‘supervising’ diploma students
will influence a long-term change of the students’ beliefs and their teaching
styles and that they will be more disposed to the constructivist approaches to
teaching and influence other practising teachers in this direction. Their long-term
development as practising teachers and/or researchers will be followed.

Acknowledgement: The contribution was financially aided by the grant GACR
406/02/0829.



Papers

164

References
Boero, P. & Szendrei, J. R. (1998). Research and Results in Mathematics Education. In

A. Sierpinska & J. Kilpatrick (Eds), Mathematics Education as a Research
Domain: A Search for Identity, GB, Kluwer Academic Publishers, 197–212.

Cooney, T.J. & Krainer, K. (1996). Inservice Mathematics Teacher Education: The
Importance of Listening. In A.J. Bishop et al. (Eds), International Handbook of
Mathematics Education, the Netherlands, Kluwer Academic Publishers,
1155–1185.

Crawford, K. & Adler, J. (1996). Teachers as Researchers in Mathematics Education. In
Bishop A.J. et al. (Eds), International Handbook of Mathematics Education, the
Netherlands, Kluwer Academic Publishers, 1187–1205.

Carrillo, J., Coriat, M. & Oliveira, H. (1999). Teacher education and investigations into
teachers’ knowledge. In K. Krainer, F. Goffree & P. Berger (Eds), European
Research in Mathematics Educ. I.III. Proc. of CERME1. Osnabrück, Forschungs-
institut für Mathematikdidaktik, 99–145.

Duffin, J. & Simpson, A. (2000). When does a way of working become a methodology?
Journal of Mathematical Behavior, 19, 175–188.

Edwards, T.G., Hensien, S.M. (1999). Changing Instructional Practice through Action
Research. Journal of Mathematics Teacher Education, 2, 187–206.

Goffree, F., Oliveira, H., Serrazina, M. Szendrei, J. (1999). Good practice. In K.
Krainer, F, Goffree & P. Berger (Eds), European Research in Mathematics
Education I.III. Proc. of CERME1. Osnabrück, Forschungsinstitut für Mathematik-
didaktik,149–169.

Hatch, G. & Shiu, Ch. (1998). Practitioner research and the construction of knowledge
in mathematics education. In A. Sierpinska & J. Kilpatrick (Eds), Mathematics
Education as a Research Domain: A Search for Identity, GB, Kluwer Academic
Publishers, 297–315.

Hejny, M. & Stehlíková, N. (1999). Císelné predstavy detí. Praha, UK v Praze, PedF.
Littler, G.H. & Koman, M. (1998). Challenging Activities for Students and Teachers. In

Novotná, J., Hejny, M. (Eds), Proceedings of SEMT01, Prague, PedF UK, 113–118.
Mason, J. (1998). Researching from the Inside in Mathematics Education. In A.

Sierpinska & J. Kilpatrick (Eds), Mathematics Education as a Research Domain: A
Search for Identity, GB, Kluwer Academic Publishers, 357–377.

Peter-Koop, A. (2001). From 'teacher researchers' to 'student teachers researchers' -
diagnostically enriched didactics. In van den Heuvel-Panhuizen, M. (Ed), Procee-
dings of PME25, Utrecht, the Netherlands, Freudenthal Institute, Utrecht
University, Volume 1, 72–79.

Stehlíková, N. & Jirotková, D. (2001). Building a finite algebraic structure. In
Proceedings CERME2, Prague, PedF UK. Published on the website:
http://www.pedf.cuni.cz /k_mdm/vedcin.htm.



165

Vad lär lärare och elever i år 7 - 9
via rika problem?

Eva Taflin, Kerstin Hagland, Rolf Hedrén
Högskolan Dalarna

Inledning
I den senaste svenska kursplanen i matematik för grundskolan står bland annat:

Problemlösning har alltid haft en central plats i matematikämnet. Många problem
kan lösas i direkt anslutning till konkreta situationer utan att man behöver
använda matematikens uttrycksformer. Andra problem behöver lyftas ut från sitt
sammanhang, ges en matematisk tolkning och lösas med hjälp av matematiska
begrepp och metoder. … Problem kan också vara relaterade till matematik som
saknar direkt samband med den konkreta verkligheten. För att framgångsrikt
kunna utöva matematik krävs en balans mellan kreativa, problemlösande
aktiviteter och kunskaper om matematikens begrepp, metoder och uttrycksformer.
Detta gäller alla elever, såväl de som är i behov av särskilt stöd som elever i behov
av särskilda utmaningar.
(Skolverket, 2001, s 2)

Anledningen till att problemlösning har denna centrala plats i matematikunder-
visningen diskuteras dock inte så ofta. Enligt vår uppfattning kan detta leda till
att lärarna betraktar problemlösning som ett moment vid sidan av den ordinarie
undervisningen, något som man tar till som stimulerande inslag och/ eller för att
sysselsätta snabbräknande elever.

Inom både den internationella och nationella matematikdidaktiska forsk-
ningen har elevers strategier vid problemlösning i matematik och deras förmåga
att klara av matematiska problem länge varit ett rikt forskningsfält. Det som
enligt vår uppfattning är mindre rikligt representerat är forskning kring hur
lärare lägger upp och motiverar sin undervisning i samband med problemlösning,
hur eleverna uppfattar denna undervisning och vilka tillfällen till lärande som
därvid erbjuds eleverna.

I vårt projekt om rika problem, RIMA, som vi behandlar i denna rapport, vill
vi speciellt uppmärksamma dessa frågor. Enligt Lesh et al (1983) kommer
problemlösning och tillämpningar i matematik inte att användas i skolan om inte
lärare och andra praktiker blir övertygade om att dessa spelar en viktig roll när
det gäller att eleverna förvärvar grundläggande matematiska idéer. Dessa tanke-
gångar är en utgångspunkt för vårt projekt, och vi  använder en typ av problem,
som vi uppfattar vara särskilt ägnade för att skapa tillfällen till lärande. Sådana
problem kallar vi rika problem, en term som med olika definitioner återfinns i den
matematikdidaktiska litteraturen (t ex Björkqvist, 1999).
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Innan vi går in på vår egen definition av rika problem vill vi kortfattat
beröra vad andra forskare skrivit om problemlösning. Lester (1983) ger en defi-
nition av ’problem’, som vi uppfattar vara tämligen allmänt accepterad. Ett
problem är en uppgift för vilken:

1. individen eller gruppen som möter uppgiften vill eller måste finna en
lösning,

2. det inte finns en enkel tillgänglig procedur som garanterar eller
komplett avgör lösningen,

3. individen eller gruppen måste göra en ansträngning för att finna
lösningen.

Det är framför allt det andra och tredje villkoret som skiljer ett problem från en s
k rutinuppgift, där lösningsproceduren är given, och som oftast är en ren
tillämpning av ett matematikmoment, som eleverna nyligen undervisats om.

Olika forskare har i sina publikationer betonat olika aspekter av problem-
lösning. Polyas fyra problemlösningsfaser (Polya, 1945) är väl bekanta: Att
förstå problemet, att göra upp en plan, att genomföra planen och att se tillbaka
för att kontrollera lösningen. Polya betonar också vikten av heuristik, metoder
och regler för upptäckt och uppfinning. Problemen ska lösas genom en dialog,
läraren ska ställa de rätta frågorna för att hos eleverna skapa tillfällen till lärande.

Schoenfeldt (1983) ser en kvalitativ skillnad i om eleven fattar taktiska eller
strategiska beslut vid problemlösning, en skillnad som är avgörande för
framgång i verksamheten. Ett taktiskt val innefattar för Schoenfeldt standard-
procedurer, algoritmiska val men också val av metod, t ex att rita ett diagram. Ett
strategiskt val är av mer övergripande natur, dit räknar han en övergripande
handlingsplan, som närmast hör samman med metakognition.

Jaworski (1998) tar upp problemlösning med utgångspunkt från konstruk-
tivismen. Hon pekar på att eleverna individuellt utvecklar sin egen förståelse,
men att denna samtidigt är starkt beroende av klassrumsdiskursen. Lärarens roll
kan uppfattas vara att dela med sig av sitt sätt att se på problemets matematiska
innehåll som en av rösterna i den sociala diskursen.

Många av de problem, som de ovan nämnda forskarna ger exempel på vid
problemlösning, leder till att eleverna får tillfälle att arbeta med olika matematiska
satser och samband. Ingen av forskarna använder dock termen "rika problem".
Björkquist (1999) skriver däremot om rika matematikuppgifter, som är värdefulla
på grund av sitt matematiska innehåll. Sådana uppgifter ska användas för att
koppla olika tillvägagångssätt till varandra och utgöra utgångspunkter för att
utveckla olika teman inom matematik. De kan ses som viktiga hjälpmedel för att
bygga upp kognitiva scheman och kan då även fungera som nyckeluppgifter
för förståelse, för minnet och för generalisering.

Vi vill slutligen peka på Wistedts studier kring vardagsnära problem
(Wistedt, 1992). När man ger elever problem från en vardaglig kontext kan det,
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som författaren visar med exempel, hända att verklighetens realiteter tränger sig
på och hindrar eleverna från att utnyttja sina matematiska kunskaper för att lösa
problemen.

Med utgångspunkt i litteraturstudier och även i våra egna erfarenheter av
lärares, lärarstuderandes och elevers arbete med olika typer av problem, har vi
ställt upp följande kriterier för ett rikt problem:

1. Eleven ska utveckla sin matematiska kunskap genom att arbeta med
problemet.

2. Problemet ska vara lätt att förstå, och alla ska ha en möjlighet att
arbeta med det.

3. Problemet ska inte ha en för lösaren given lösningsstrategi.
4. Problemet ska upplevas som en utmaning, kräva ansträngning och ta

tid.
5. Problemet ska kunna lösas med flera olika representationer.

Vi kan se dessa kriterier som en utvidgning av de villkor, som Lester (1983)
ställer på problem. Vi vill även peka på att eleven ska tillägna sig ny matematisk
kunskap eller fördjupa den hon äger. Vi vill också betona att det ska finnas flera
olika sätt att lösa problemet på genom att det ska kunna leda fram till flera
representationer, och att alla elever i den grupp, som arbetar med det, ska känna
att de kan nå något resultat vid problemlösningsprocessen.
 
Syfte och frågeställningar
Syftet med det här diskuterade projektet är, som berörts i inledningen, att skaffa
fördjupade insikter i hur lärare lägger upp arbete kring problem, som har en
potential att vara rika enligt de kriterier, som vi angett ovan. Vi vill också studera
hur elevernas eget arbete kring lösande av problemen kan leda till att tillfällen
för lärande uppkommer samt hur eleverna själva uppfattar arbetet med lösande
av rika problem.

Våra frågeställningar är:

1.  På vilka grunder planerar lärare lektioner kring rika problem?
2. Vilka tillfällen till lärande uppfattar läraren att hon/han skapar i sin

undervisning kring rika problem?
3. Vilka tillfällen till lärande uppstår, när eleverna arbetar med rika

problem, och hur utnyttjar de dessa tillfällen?
4. Hur uppfattar eleverna undervisning kring rika problem?

När vi enligt punkt 1 studerar grunderna för lärarnas planering, skiljer vi på
matematiska grunder å ena sidan och sociala grunder å den andra.

Genom att vi tidigare i stor utsträckning har studerat lösande av rika
problem bland grundskoleelever, lärarstuderande och även bland färdiga lärare
och att vi studerat relevant forskningslitteratur, anser vi oss ha möjlighet att
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ställa upp en hypotes. Vi tror att lärarens agerande har stor betydelse för om ett
problem ska bli rikt eller inte enligt de ovan angivna kriterierna. Detta gäller
både när hon presenterar problemet och när hon leder den gemensamma klass-
diskussionen i samband med att eleverna redovisar sina lösningar.

Metod
Projektet startade höstterminen 2001 och är longitudinellt. Vi kommer att följa
fyra olika klasser, som tillhör två olika skolor och har fyra olika matematiklärare,
under skolåren 7 t o m 9. Under åren 7 och 9 kommer eleverna att få tillfälle att
arbeta med tre problem, som vi anser vara rika, under år 8 med fyra sådana
problem. Problemen kommer i stor utsträckning att väljas från en problembank i
samråd med de deltagande lärarna. Vi söker därvid att så långt möjligt välja
problem, som anknyter till den övriga matematikundervisningen. Vi kommer att
med lärarna diskutera de erfarenheter av arbete med problemen, som vi själva
skaffat oss, innan lärarna låter sina elever arbeta med dem. I övrigt ges lärarna
full frihet att lägga upp sin undervisning kring dem som de själva anser vara
bäst. De kan t ex välja att låta eleverna arbeta enskilt med problemen, låta dem
arbeta i grupper eller först låta dem arbeta enskilt för att sedan samlas till
gruppvisa diskussioner.

Vi samlar samtliga i projektet deltagande lärare till träffar ungefär tre gånger
per termin. De därvid förda diskussionerna spelas in på ljudband.

Följande utvärderingsmetoder används:

- Videoinspelningar av lärare och några elever under problemlösnings-
tillfällen.

- I två grupper av elever används även inspelning med ljudband,
eftersom videokamernas ljud inte är tillräckligt för att fånga
diskussionerna i grupperna.

- Ljudbandinspelade intervjuer med lärare före och efter lektioner. Den
sistnämnda sker med hjälp av den metodik som på engelska brukar
kallas stimulated recall.

- Läraranalys av lektioner.
- Lärarloggböcker.
- Kliniska intervjuer med elever före och efter lektioner. Dessa spelas in
på ljudband.

- Intervjuer med elever efter lektion med hjälp av stimulated recall.
Intervjuerna spelas in på ljudband.

- Test och enkäter som bjuds tre gånger under projektets gång.

Inspelningar med ljudband transkriberas för att användas i kommande analyser.
Videoinspelningarna bildar underlag för stimulated recall. I de grupper, där
diskussionerna spelats in med ljudbandspelare används de också för att vi ska
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kunna avgöra vem som säger vad och för att kunna följa elevernas gester och
mimik.

Resultat
Vi tar här endast upp resultaten från det första problemlösningstillfället, det enda
som vi i någon mån har hunnit analysera hittills. Det problem, som eleverna
arbetade med vid detta tillfälle löd:

32 Ahlgrens bilar kostar 10 kronor. Hur många bilar får du för 25
kronor?

Problemet kom att utvidgas på olika sätt i de fyra klasserna. I denna rapport
koncentrerar vi oss på det som händer i två av klasserna och huvudsakligen på
de matematiska målen. Vi tar upp frågeställningarna i ordning.

På vilka grunder planerar lärare lektioner kring rika problem?
Lärarna, som vi kan kalla Sven och Sara, uttalar sig på följande sätt om de
matematiska målen för problemlösningstillfällena. Vi börjar med ett kort utdrag
ur intervjun med Sven före problemlösningstillfället. ET är intervjuare.

ET Är det något annat du tycker är viktigt att lyfta fram här?
Sven Det viktigaste målet som jag har är att dom ska få öva på problemlösning

att dom ska se att det finns olika sätt att lösa samma problem. Sekundärt
mål med lektionen är att dom ska få lite hum om proportionalitet och så där
men huvudsaken är att öva problemlösning och att öva att arbeta i grupp.

ET Om du kommer på det sekundära målet som du sa handlar om
proportionalitet vad mera inom matematik är det som du tycker att dom
tränar på?

Sven Förutom proportionalitet, det beror på hur dom löser problemet lite grann.
Om dom väljer att ställa upp som bråk eller om dom räknar ut det med
procent eller om dom gör en konkret lösning med att rita bilder av kronor
eller konkreta bilar. Jag vet inte vad dom kommer att välja för strategi.
(Intervju med Sven 01-11-14)

För Sven är det ett mål i sig att öva att arbeta i grupp. Vad gäller de matematiska
målen går han ut mycket öppet och överlåter i stort sett åt eleverna att välja den
matematik, som de vill föra in i sitt arbete med problemet. Att öva på problem-
lösning är också ett mål för Sven.

Sedan följer motsvarande intervju med Sara.

ET Har du funderat redan nu om du har någon särskild indelning av lektionen,
hur lång den är och hur du använder tiden?

Sara Ja först tänkte jag att dom skulle få arbeta individuellt för att försöka få
fram en uppställning eller om dom resonerar sig muntligt eller om dom
ritar på en gång eller om dom sätter upp ett uttryck, hoppas att det blir
mångfald där då. Och där har dom olika strategier och sen ska dom få gå
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fram till tavlan och berätta för kamraterna då och sen diskuterar vi dom
olika om vi har kommit fram till samma sak. Och sen hade jag tänkt att
efter den genomgången får dom jobba ihop i liten grupp för att dels göra
det här diagrammet. Och sen att dom funderar över räta linjens ekvation.

ET Är det något annat särskilt?
Sara Jag vet inte, jag tror att det är en rätt så hög nivå som jag har lagt det på.
ET Så att det kan bli svårt för alla att komma dit?
Sara Ja det tror jag, diagrammet tror jag att alla klarar då, men sen att förstå

sambandet kan, dom förstår nog men dom kan inte uttrycka det.
(Intervju med Sara 01-11-21)

Sara talar om hur hon tänker organisera arbetet men nämner inte att kunna
arbeta i grupp som ett socialt mål. Hon är också inriktad mot specifika matema-
tiska mål, som eleverna ska söka uppnå, att rita diagram och fundera över räta
linjens ekvation. Samtidigt är hon medveten om att målen är högt satta och att
alla inte kommer att kunna nå dem.

Vilka tillfällen till lärande uppfattar läraren att hon/han skapar i sin under-
visning kring rika problem?
Vid den intervju, som görs med lärarna i samband med stimulated recall, har de
möjlighet att reflektera över sin undervisning och vad den kan tänkas ha gett
för eleverna. Sven uttrycker det på följande sätt:

ET När du ser dom redovisa framför klassen vad ser du för effekter av det,
plus och minus?

Sven Jag tror att det är nyttigt att få öva det framför grupp.
ET Hur blir dom matematiska fördelarna?
Sven Dom som redovisar måste tänka till hur man själv har tänkt. Sen kanske lite

fördelar för dom som står där dom får visa vad dom kan. Dom är lite stolta
när dom redovisar.

ET Dom har räknat ut 30 kronor 96 bilar och då ska dom betala för 24 bilar till
och det där hade dom ju en ganska häftig tanke det var den du hjälpte dom
4/4 och sen kom dom på att dom där 24 bilarna motsvarades av 3/4 krona
och sen räkna dom ut det.

Sven  Här tror jag att jag går in för mycket och tar över deras redovisning, jag vet
inte. Eller så skulle dom haft mer tid.
…

ET Jag tror att det är viktigt att du går in och förtydligar vad eleverna gör. Det
är inte så enkelt att ha ord och uttryck. För du visar att 24 av 32 var 3 av 4
medans dom pratar om 3 fjärdedelar av 10 kronor.

Sven Fast egentligen så visar jag det dåligt vi har inte hållit på med bråk. Ska
man visa det så skulle man kanske gå vidare och ta ett stort exempel ha en
tårta som kostar 32 men vi har bara 24 hur stor del av tårtan får vi handla.
Men då blir det en lång genomgång på det också.
(Intervju med Sven 01-11-20)
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Efter intervjuarens påpekande ser Sven att det dök upp ett matematiskt intres-
sant proportionalitetsproblem vid redovisningen. För  Sven är det oklart om han
här borde ha tagit tillfället i akt och diskuterat räkning med bråk eller inte. Han
ger ändå ett exempel på hur det skulle kunna ha gått till. 

I Saras klass inträffade en oväntad händelse. Medan eleverna löste det
givna problemet individuellt, gick Sara runt och försökte hitta så många olika
lösningar som möjligt. Bland annat uppmärksammade hon en pojke med en
avvikande lösning och ett avvikande svar och tog sedan chansen att släppa
fram den pojken till tavlan. Intervjuaren och Sara diskuterar motsvarande avsnitt
på videon

ET Här sitter en kille kommer du ihåg vad ni pratade om?
Sara Jag såg att han kommit snett med hur han skulle lösa det. Jag fick

förklaringen idag. Man kan ju inte dela en påse Ahlgrens bilar! Man köper
bara hela. Man kan inte få ut för 25 kronor och 80 bilar.

ET Det var han som skrev 12,50 + 12,50 på tavlan?
Sara Nej, det var pojken bredvid det sörru.
ET Så han var låst i verkligheten? Vad sa du då?
Sara Du har alldeles rätt sa ja. Han var den enda i hela klassen som inte hade

kommit fram till 80 bilar.
ET Han var i verkligheten, man kan inte dela och köpa.
Sara Jag är glad att jag fick en förklaring.
ET Det var bra att du följde upp det idag.
Sara Det hade jag inte kommit på själv.

(Intervju med Sara 01-11-22)

Vilka tillfällen till lärande uppstår, när eleverna arbetar med rika problem,
och hur utnyttjar de dessa tillfällen?
I Svens klass utvidgades problemet på följande sätt: Vad kostar 120 bilar? Det
förutsattes stillatigande att kostnaden var proportionell mot antalet bilar. I
denna klass följde vi en grupp av elever. Dessa elever såg inte möjligheten att
bygga vidare på svaret från det ursprungliga problemet, att 80 bilar kostar 25 kr,
vilket snabbt hade kunnat hjälpa dem att besvara den nya frågan. Efter att
gruppen med negativt resultat hade prövat olika metoder att lösa problemet,
uppstod följande samtal mellan två av gruppens deltagare. Eleverna hade
tillgång till en miniräknare. Namnen är fingerade.

Björn …  Så här blir det: Man tar 32 gånger 3, just det här på den här uppgiften
(ohörbart) eller.

Bertil. Jaa. Vi får ta 32 gånger (ohörbart) då.
Björn 32 gånger 3 är 96.
Bertil Mm.
Björn Och sen tar vi 32 delat i 4 är lika med 8.
Bertil Mm.
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Björn Då tar man 96 plus, 8 och 8 är 16, nä 8 gånger 3, det är 24.
Bertil 3 gånger.
Björn Ja, 8, 8 gånger 3 chansar vi på, och det blir 24. Tar vi 24.
Bertil Det blir 120.
Björn Ett, två, noll. Alltså skulle det kosta. Nu har vi gjort fel, nu har vi bara fått

fram ett svar, tre det är 30 kronor, och så tre fjärdedelar av ti, av 10 kronor,
2 och 50, 7 och 50 plus det. Det är ett hund, nä, 37 och 50.
(Observation med Bertil och Björn, 01-11-14)

Eleverna ser först att 3 gånger 32 bilar är 96 bilar. Det fattas då 24 bilar till 120
bilar. Sedan upptäcker de att 32 delat med 4 är 8 och 3 gånger 8 är 24. 96 bilar
kostar 30 kronor. Sedan ska de lägga till 3 fjärdedelar av 10 kr, d v s 7,50 kr.
Den här lösningen redovisades inte på tavlan, men den motsvarar den, som ET
och Sven talar om ovan. 

Hur uppfattar eleverna undervisning kring rika problem?
Eleverna i Saras klass kommenterade den lösning, som ET och Sara diskuterar
ovan. De uppfattade att den kan vara riktig, om man utgår från verkligheten.
Även här tittar eleverna på filmen, medan de ger sina kommentarer. Namnen är
fingerade.

Carl Här kommer Jakob, Jakob hade väl på sätt och vis fel men ändå rätt liksom.
Birger Han skrev ju att man bara kunde få sextiofyra bilar för man kan ju inte dela

på en förpackning.
(Intervju med Anders, Birger och Carl 01-11-26)

Eleverna kommenterade också lärarens förehavande vid redovisningen. Här är
det KH som intervjuar.

KH Vad gör hon nu?
Carl Där visar hon för närvarande hur alla tänkte, eller jag tror det i alla fall.
KH Jaha.
Anders Eller nej, det var där hon visade hur mycket olika bilar skulle kosta.
Carl Ja, ett sådant papper fick ju vi.
Anders Det där diagrammet .
Carl Mm.
KH Varför gjorde hon det, tror ni? Vad vill hon att ni skulle förstå där då?
Carl Hur man räknar ut det.
Anders Hur man kom fram till hur priset blev ju mer eller mindre bilar det var att

det bara ökade ju mindre och att det minskade när det blir mindre och att
priset berodde på hur många bilar det var.
(Intervju med Anders, Birger och Carl 01-11-26)

Eleverna har en god uppfattning om vad läraren ville visa med det diagram, där
antalet bilar och kostnaden för dem jämförs.
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Diskussion
Vi kan se, i de korta avsnitt av intervjuerna före problemlösningstillfällena som
redovisats här, att Sven och Sara har ganska olika utgångspunkter för elevernas
lärande i dessa sammanhang. Sven går ut på ett öppet sätt och låter eleverna
styra över den matematik, som ska komma ut ur arbetet. Sara är mer mål-
medveten. Hon vill att lektionen ska peka hän mot ritande av diagram och en
förberedande diskussion om räta linjens ekvation, även om hon inser att detta
stoff kommer att ligga på ett väl högt plan för hennes elever.

Tendensen håller i sig även i den intervju, som företas efter det att eleverna
arbetat med problemet. Det verkar inte som om Sven är riktigt medveten om den
intressanta matematik, som de grupper, som blev tvungna att räkna ut priset för
24 bilar, var inne på. I varje fall var han inte beredd att gå in på detta moment
vid själva redovisningen, även om han hade helt klart för sig hur han skulle ha
kunnat gå till väga. Kanske borde han inte vara så beroende av att klassen har
diskuterat  bråk förut just i skolår 7. Eleverna bör ha stött på begreppet tidigare.
Den grupp, som observerades, visade ju också att de kunde hantera problem-
ställningen, även om de använde sitt eget sätt att uttrycka sig på. 

Sara är noga med att följa upp problemet också genom att i förväg försöka
hitta olika elevlösningar, ja, hon vågar till och med plocka fram en, som hon tror
leder till ett felaktigt svar. Det visade sig senare vara ett klokt val. Här kommer
både hon och hennes elever till insikt om att verkligheten faktiskt ibland kan
vara ett hinder för en mer teoretisk matematik, som Wistedt (1992) så tydligt har
belyst. Carl och Birger visar även i intervjun med KH att de uppfattat att olika
förutsättningar kan leda till olika svar. Sara följer också upp sin idé om att leda
in problemlösningen på diagram och i viss mån räta linjens ekvation. Carl och
Anders talar också i intervjun med KH om att de uppfattat vad deras lärare ville
visa.

Vi vill, i varje fall i det preliminära skede som projektet befinner sig i, inte
uttala oss om vilket av de här diskuterade tillvägagångssätten som är rätt eller
bäst. Det enda vi kan konstatera är att ett och samma problem av lärarna kan
hanteras på vitt skilda sätt, och vi tror oss också våga påstå att vad eleverna lär
sig, när de arbetar med problemlösning, hänger nära samman med hur läraren
presenterar problemen och följer upp elevernas varierande lösningar.

Vi anknyter till vad Lesh, Landau & Hamilton (1983) säger, nämligen att
problemlösning och tillämpningar i matematik inte kommer att användas i skolan
om inte lärare blir övertygade om att dessa spelar en viktig roll för elevernas
kunskapstillägnande i matematik. Är detta riktigt, och vår egen erfarenhet pekar
starkt i den riktningen, visar det att studier kring samband mellan uppläggning
av problemlösningslektioner och elevers inhämtande av kunskap i matematik, är
mycket angelägna.

Vi har i denna rapport bara kunnat ta med några korta episoder, som
utspelade sig, och några tankar, som de inblandade aktörerna gav uttryck för. Vi
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tror dock att det som här kommit fram kan ge en antydan om något av det som
vi bör gå närmare in på i den fortsatta forskningen.
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