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Preface

This volume contains the proceedings of MADIF 2, the Second Swedish Mathematics
Education Research Seminar, with an introduction by Barbro Grevholm. The seminar,
which took place in Gothenburg in January 26-27, 2000, was arranged by SMDF, The
Swedish Society for Research in Mathematics Education, in co-operation with NCM,
the National Center for Mathematics Education. The members of the programme
committee were Ann Ahlberg, Christer Bergsten, G6te Dahland, Barbro Grevholm,
and Ulla Runesson

The programme included four plenary lectures, two plenary panels, and ten paper
presentations. The four plenary lectures and eight paper presentations are published
here. We want to thank the authors for their interesting contributions. The papers have
been reviewed by the editors, and some minor editorial changes have been made
without noticing the authors. The authors are responsible for the content of their
papers.

We wish to thank the members of the programme committee for their work to
create an interesting programme for the conference, and Bengt Johansson and Birgit
Eriksson from NCM for all their help with the preparation and administration of the
seminar. We also want to express our gratitude to NCM for its valuable financial
support. Finally we want to thank all the participants at MADIF 2 for creating such an
open, positive and friendly atmosphere, contributing to the success of the conference.

The editors
ChristerBergsten
Gote Dahland
Barbro Grevholm
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Research and action in the mathematics classroom

Barbro Grevholm

In her plenary lecture Michele Artigue deals with Didactic engineering and the
complexity of learning processes in classroom situations. Introduced in the early
1980:s didactic engineering was intended for two fundamental issues: The question
of dealing with the complexity of classroom phenomena in research methodologies
and practices and for the question of relationships between research and action on
the educational system. She exposes the theoretical base for didactic engineering and
presents some prototypical examples of it. Two examples of Brousseau’s engineering
are given: introducing rational numbers and the puzzle situation, and one example of
differential equations on university level. Finally she discusses the potential and
limits of didactic engineering as a research methodology and claims that there is a
necessary complementarity between it and the more naturalistic methods.

The title of Christer Bergsten’s plenary talk is Faces of Swedish research in
mathematics education. His presentation is based on literature, previous overviews
and data collected in 1997 through a questionnaire to researchers in Sweden. He
describes the development in Sweden as a move from content oriented and expe-
rience based guidance to research based didactics. The term “matematikdidaktik”
(didactics of mathematics or mathematics education) became more widely used after a
conference in 1986. Problem areas and research methods used are reviewed, and
some examples of Swedish research studies from different time periods are presented.
The dissemination of research results is a critical question. Many persons in Sweden
doing research and developmental studies in mathematics education have a back-
ground as teachers and thus keep their research close to the teaching and learning
practice, something which may be viewed as a Swedish tradition in mathematics
education research. Finally he expresses the hope that this conference will contribute
to increase awareness and interest also among practitioners for what research can
offer.

Barbara Jaworski in her plenary lecture talks about co-learning partnerships in
mathematics teaching and teaching development. Her title is The Student-Teacher-
Educator-Researcher in the mathematics classroom. She explains the concept co-
learning emanating from Wagner and continues with Pearson’s suggestion that
teaching is intended to create learning as an answer to the question what is learning
and what does it mean to develop it. In her introduction she points out the
complexity of the classroom setting. After elaborating some problems in mathematics
teaching and its development she gives examples relating to co-learning partner-
ships. In these many concepts and factors are discussed such as inquiry, classroom
norms, diversity, and teacher as researcher in tackling dilemmas. Partnerships on
different levels are discussed. Tom Cooney’s concepts of mathematical and
pedagogical power are related to co-construction in the co-learning partnership. She
asks how a co-learning partnership is constructed and how it operates. The
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Introduction

discussion on development of norms for co-learning leads to questions as in what
ways teachers are socialised into the norms of inquiry and reflection. Finally she
presents a diagrammatic representation of participants, concepts and relationships as
a starting point for further dialogue about how to develop teaching of mathematics
through co-learning at all levels.

From natural language to mathematical reasoning: Word problems and the
socialisation of children’s thinking is the title of Roger Séljo’s plenary talk. His
interest is how people reason, argue and act in different communicative practices and
how they learn to do so. His perspective is socio-cultural. A few examples illustrate
what is going to be his point. He discusses the fact that people develop intellectual
and discursive tools, physical tools and social institutions. Learning how to translate
from every day language to expressions in mathematical or logical terms is a powerful
socialisation of people’s minds and an advanced kind of skill. He claims that we have
to learn to disregard from the real world and argue in a textual reality. Textual worlds
are often different from physical worlds. The discussion continues with questions
about attending to the world and attending to texts about the world. He claims that it
is extremely important to assist children in bridging the gap between a text about the
world and the real world and this is an issue of being made aware of how models
relate to physical reality. This learning must come through interaction, arguing and
discussion. The skill of realising how to co-ordinate models and mathematical
expressions is a discursive skill. Silj6 finally claims that learning how to move around
in text based realities is a complex aspect of our cognitive socialisation that requires
systematic challenges and guidance.

In the paper presentations Merethe Anker-Nilssen and Guri A. Nortvedt talk
about Girls and Mathematics - Focusing on the current situation in the Norwegian
upper secondary school. The aim of the project is to increase recruitment and level
out gender differences in upper secondary school. The presentation first outlines
findings in the research literature and then describes some findings in a qualitative
research study. The aim of the study is to investigate students’ attitudes towards
mathematics in order to see what makes mathematics a preferred choice of subject.
Four different reasons are found: extra credits, mathematics is needed for further
education or employment, interest in the subject and mathematics is helpful to
understand other subjects. The next part of the study will focus on assessment
format, attitudes and expectations towards testing, self evaluation, alternatives to
traditional written tests and teaching aids.

Per-Olof Bentley presents A4 study of students’ ways of experiencing ratio and
proportion. He starts with an introduction of some concepts from literature such as
extensive and intensive quantities, homogeneity and relates to studies by Lybeck, by
Kaput and West, and by Lamon. Both qualitative and quantitative data are used. In-
depth interviews were carried out and three categories found are called explicit,
implicit and absolute proportionality. These are elaborated and exemplified. Educa-
tional implications are to devote more attention to ratio and proportion.

Arne Engstrom speaks about Rationality and intersubjectivity — some prelimi-
nary starting points to understand the communicative character of mathematics. He



Grevholm

wants to put forward some preliminary starting points for a theoretical frame-work in
a study of the communicative character of mathematics. Mathematics education is
related to the ideas of intellectual education and citizenship of the reformation. He
claims that the rational action is based in an intersubjective understanding and treats
in his theoretical discussion common points from Habermas, Piaget, Wittgenstein,
Schiitz and Pierce. The conclusion is that problems in having a meaningful and
relevant mathematics education should be sought in failures in establishing a
functioning social interplay in the mathematics classroom rather than in pupils’ lack
of ability.

Using symbol-manipulating calculators (SMC) in upper secondary schools is
the title of the presentation by Gunnar Gjone. The study, initiated by The National
Examination Board in Norway, has the purpose of investigating conditions concer-
ning the use of SMC for final exams in mathematics in the second year of upper
secondary school. The question is if it is possible to construct examination problems
and organise test situations that mirrors real challenges and possibilities and still
provides a base for giving individual marks. The author discusses the use of graphs
in solving problems, equality and the formation of the limit concept and illustrates
with some exam tasks. In his discussion about forms of knowledge Gjone finds
Sfard’s notion of structural and operational conceptions helpful but asks if the
definitions of these concepts should be somewhat redefined with respect to the new
technology.

Rolf Hedrén presents Alternatives to standard algorithms. A study of three
pupils during three and a half years. The three girls in the study were not taught
standard algorithms during their first five years in school. They were encouraged to
use their own written methods, including drawings, for all kinds of computations that
they could not do mentally. They often worked in a group and were not shown the
standard algorithms until their sixth year in school. The results show that the girls
could find their own methods on their own and sometimes with the help of peers or
teachers. Their methods were less effective and more like methods used in mental
arithmetic. They acquired a good number sense and good ability in mental compu-
tation and preferred their own methods even after they were taught the standard
algorithms.

How can we describe young children’s arithmetic abilities? is the question
Ingemar Holgersson discusses. The objectives of the study have been to investigate
whether the schemes for cognitive development of numerical abilities developed in
the US can be used to analyse Swedish children on an individual level and to see
how these abilities develop during the time in pre-school. Tasks on sequencing,
counting, abstraction and problem solving were used in a study with 16 six year olds.
The results of the length of their number sequence is comparable with the results
from the US. The most striking result is the great span in ability between different
children, a finding also consistent with that of Fuson. A remaining question is why
some children use derivations based on a growing number of relations while others
resort to counting procedures even for basic number relations. Holgersson thinks
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that longitudinal studies, focused on important key questions, could contribute to
the understanding of this phenomenon.

Thomas Lingefjard writes about Mathematical modelling and prospective
teachers. Three studies are discussed with the questions: How do pre-service
teachers relate mathematical models to reality when using software tools to generate
the models? What conceptions and misconceptions lie behind the decision to believe
more in a mathematical model than in real-world phenomena? Some results from the
third study are discussed with examples of the kind of tasks students worked with.
Authority and responsibility are exposed. When students are forced to explain and
argue for the models inaccuracies and misconceptions are revealed that may be
hidden otherwise. The conclusion is that teachers on all levels need to be cautious
about what students actually understand about the modelling process and how they
interpret it.

Allan Tarp presents a paper on Killer-equations, job threats and syntax errors.
His starting point is the fact that an increasing number of students turn away from
mathematics in school and from math-based education programs at university level.
He claims that modern research seeks explanations within human factors as students,
teachers and cultures. Postmodern counter research looks for hidden possible
explanations in mathematics itself. His study identifies unnoticed syntax errors within
mathematics and problematic top-down practice that allows killer-equations in the
classroom. The study reports successful change of practice with a bottom-up
approach that is more user-friendly.

The subject in most of the papers touches upon research and action in the
mathematics classroom. Many different aspects are exposed as design of the action
through didactic engineering, the importance of action through communication,
action in co-learning partnerships on different levels, gender questions, the relation
between mathematical models and reality, the use of tools in mathematical activity
and alternative pathways for learning. There are many connections between the
content in the different papers and two or several authors bring up similar questions
from different entrances. In all the authors in their papers have contributed in
constructive ways to the development of mathematics teaching and learning through
their insightful discussions. The readers should be able to get inspiration for new
actions in the mathematics classroom or for new research studies.



Didactic engineering and the complexity of learning
processes in classroom situations

Michele Artigue
Université Paris 7 Denis Diderot

Introduction

In order to understand a concept, it is generally useful to look at its “history”, to try to
determine what kind of problems motivated its emergence, shaped its development.
Without any doubt, such an historical entrance is specially helpful when dealing with
didactic concepts. Most of them are still under development, strongly contextualised
and dependent from the didactic culture where they emerged. More than by general
definitions, they take meaning through the ways they are used and transformed by the
didactic community. For such a reason, I begin this text dedicated to didactic engi-
neering by briefly evoking the context of its emergence before presenting its theoreti-
cal basis and, in the second part, the main characteristics and phases of an engineering
work. In the third part, I illustrate these theoretical and methodological considerations
by some typical examples ranging from elementary to university level. In the fourth
part, finally, I briefly discuss the potential and limitations of didactic engineering work
and the role such a work can play now in the didactic field where a variety of ways of
dealing with the complexity of teaching and learning phenomena have been developed.

Didactic engineering: From where does this concept come?

The notion of didactical engineering emerged in the didactic field in France in the
early eighties. As appears in a seminal text written by Chevallard (1982), it was seen
as a means to approach two fundamental issues.

1. The question of dealing with the complexity of classroom phenomena in re-
search methodologies and practices;

2. The question of relationships between research and action on the educational
system.

At that time, in France as in many countries, didactic research was in search of scien-
tific legitimacy and was tempted to borrow scientific criteria and methods from well
established domains, such as psychology. Researchers were thus led to escape class-
room complexity through what we have then called “external methodologies” such as
tests, questionnaires, interviews, with an overemphasis in validation on the statistical
comparison between control and experimental groups as if it were the only pathway to
scientificity. The concept of didactic engineering was developed in order to overcome
the limitations of such an attitude which are now well known (Schoenfeld, 1994), sci-
entifically to take into account the complexity of the systems we wanted to investigate
and specifically to find methodological ways for dealing with the complex intimacy of
classroom functioning. As regards the second point, relationships between research
and practice, the ambition was to find ways of rationalising action on the educational
system and to create, in some sense, an engineering science for didactic design. As
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expressed by Chevallard, in the text quoted above, engineering work relies on scien-
tific knowledge (this is not a requirement for innovation whose essential value is new-
ness even if this newness often only results from the poor institutional memory of edu-
cational systems), but engineers have to work with more complex objects than the re-
fined objects of science. They have thus to manage pragmatically problems that sci-
ence is unwilling or not yet able to tackle, and they have pragmatically to prove the
effectiveness of their constructions. According to Chevallard, action research, which
was predominantly seen at that time as the way of linking research and action, located
in an intermediate position, fulfilled neither the requirements for validity of research,
nor those of action.

Let us note that initially, two different terms were introduced: the term of “phe-
noménotechnique” borrowed from the philosopher Bachelard for the research dimen-
sion, and the term of “didactic engineering” for the development dimension. Very
soon, however, the two collapsed and only the second survived. In fact, didactic engi-
neering developed mainly as a research methodology. Entering the rational vision sup-
ported by the term of engineering for development didn’t fit the educational culture.
Teachers were more likely to see themselves as “artisans”, artists rather than engineers
or users of engineering products. Moreover, there were neither appropriate structures
nor persons ready to take charge of the huge amount of development work necessary
in order, for example, to transform prototypes built for research into viable and robust
engineering products. Adaptation of research products to ordinary teaching remained
mainly uncontrolled.

The theoretical base of didactic engineering

As mentioned above, didactic engineering emerged and developed in the French di-
dactic culture, relying on its theoretical frames. It particularly relies on the theory of
didactic situations initiated by Brousseau (1997) and its evolution has been shaped by
the evolution of the theory. There is no doubt that my presentation given here is differ-
ent from that which I would have given ten years ago or even five years ago.

Introducing didactic engineering I have thus to enter the theory of didactic situa-
tions, at least in order to stress some fundamental points, and hope that I will be able to
avoid possible misunderstanding.

1. The theory of didactic situations, which began to develop from the late sixties,
was initially inspired by constructivism and Piaget’s epistemology: learning results
from adaptation in some kind of biological sense to “problematic situations”. In that
sense, it is a constructivist theory.

2. The theory of didactic situations is not a cognitive theory. Its central object is
not the cognising subject but the didactic situation: a construct, which denotes the
complex set of interactions between students, teachers and mathematics at play in
classroom situations. The didactic situation shapes and constrains the adaptive proc-
esses students can develop and thus the mathematical knowledge, which can be con-
structed. One essential assumption is that, without understanding the situation, you
cannot interpret students’ behaviour in cognitive terms.

3. The aim of the theory is to understand learning and teaching processes and the
ways these interact, but beyond that, the theory also aims at developing rational means
for controlling and optimising such didactic situations.
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In fact, in the theory, classroom situations are modelled at different levels and, to
keep here a reasonable level of complexity, I will distinguish two main levels: the “a-
didactic” level and the didactic one.

In the a-didactic model, students are modelled as cognitive subjects, in the classi-
cal sense. The model focuses on the students/mathematics interaction. One central ob-
ject is the notion of “medium” presented by Brousseau as a system that reacts to stu-
dents actions, both in a collaborative and antagonist mode. This medium is defined in
terms of material objects and also in terms of knowledge. Knowledge in the medium is
knowledge stabilised, ensuring the required familiarity with the mathematical objects
at play, giving some kind of reality to the mathematical world. Generally mathematics
media are not very rich in material components but they are rich in knowledge compo-
nents. When students do not work in an isolated way, possible actions and reactions
from others have also to be integrated. Taking into account the characteristics of the
mathematical situation proposed to students and of the specific medium which shapes
their interaction with mathematics, the a-didactic model aims at giving account of pos-
sible actions (from the students), of their respective cost both cognitive and technical,
of the feed back students can receive from the medium, and the means of control or
self-validation these feed-back induce. Didactic variables are those which change the
economy of the interaction. At this stage, initially, the teacher was not introduced into
the model. This is no longer the case (Perrin-Glorian, 1999), but such integration re-
mains limited to what can enter the model of the students/medium interaction. For in-
stance, some teacher’s actions can be modelled in terms of enrichment of the natural
retroactions provided by the medium. Other can be modelled in terms of adding new
pieces of knowledge to the medium. One hypothesis at the basis of such a modelling is
that in order to understand students’ behaviour we have to understand their economy,
and also start from the principle that the most economical practices are those most
likely to appear.

Such a kind of modelling is limited: the student is seen as a pure mathematical
subject, which is far from being close to reality. But we all know that even very sim-
plified models can be productive. This is certainly the case with the a-didactic model
and I will try to illustrate this point in the third part.

The second level for modelling is the didactic level. At this level, students are also
modelled as institutional subjects. Thus their adaptation is constrained not only by the
characteristics of the mathematical situation and the way interaction with it has been
organised, but also by their knowledge of institutional norms which fix the respective
positions and roles of teachers and students. The concept of “didactic contract” which
labels the expectations from the teacher with respect to the students, and conversely, as
regards the mathematical content, is an essential tool for didactic analysis. Of course,
at this didactic level, the teacher is an essential part of the model.

Adaptive processes developed by students are in fact a subtle mixture of a-didactic
and didactic processes. Understanding that subtlety is essential in order to understand
and even to control what can be learnt in a given situation. By institutional adaptation,
indeed, students can learn to behave as good institutional subjects without learning the
mathematics we want them to learn.

One fundamental assumption of the theory of didactic situations is that some level
of a-didacticity is necessary to mathematics learning. When elaborating engineering
designs or observing classroom situations, researchers referring to the theory of didac-
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tic situations are thus especially sensitive to the processes, which allow the creation
and maintenance of such a-didactic phases. Taking into account the fact that both stu-
dents and teacher perfectly know that they meet in a didactic institution with specific
mathematical aims, the birth of an a-didactic phase requires what has been denoted by
Brousseau as a “devolution process”. Through the devolution process, the teacher tries
to give mathematical responsibility to students, and let them forget, at least for a mo-
ment, that the task given to them has a specific learning aim. The pressure of the di-
dactic contract has to be made as low as possible. All through the a-didactic phase, the
teacher has to maintain, through adequate decisions and mediations, which may differ
from one group of students to another, this devolution of responsibility.

“A-didactic” phases produce mathematical knowledge, but a form of knowledge
strongly dependent on particular actions and contexts attached to the a-didactic situa-
tion. Another essential role of the teacher is to help students relate what they have pro-
duced in the a-didactic work to more institutional forms of knowledge, those targeted
by the didactic institution. Thus, the necessity of the “institutionalisation” process,
which can be seen as an inverse process of the devolution process, is displayed.
Devolution and institutionalisation, in a given situation, organise the relationships
between the two levels we have introduced in the modelling, according to the follow-

ing schemata:
a-didactic knowledge

a-didactic situation

institutionalisation devolution

didactic situation

institutional knowledge

According to the theory of didactic situations, understanding, a priori, the mathe-
matical potential of a designed situation or, a posteriori, the mathematical life of an
observed situation, requires understanding this complex game between the respective
responsibilities of teacher and students, between the two layers in the modelling of the
situation.

This is not an easy task and appearance can be misleading. This explains why vali-
dation processes for didactical engineering cannot rely on the statistical comparison
between experimental and control group performance. Validation necessarily has to be
of an internal nature and to refer to the internal analysis and control of the engineering
design. It is thus mainly based on the confrontation between what is called the a-priori
analysis of the engineering design and the a-posteriori analysis based on the data col-
lected during the experimentation or after it.
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More globally, the different phases of an engineering work reflect these theoretical
bases: preliminary analysis, design of the engineering project with specification of
both macro-level and micro-level choices and associate variables, a-priori analysis,
experimentation and a posteriori analysis (Artigue, 1988). I will now illustrate this
theoretical presentation by some prototypical examples.

Some prototypical examples

Didactical engineering at elementary level

Didactical engineering research began to develop at elementary level and two proto-
typical examples are provided by the long term engineering designs elaborated inde-
pendently by Brousseau (1981) and Douady (1984), in order to tackle the extension of
the numeric field towards decimals and rational numbers. I cannot enter here into the
details of these engineering designs. I will only evoke two key situations in Brous-
seau’s engineering: the first one deals with the introduction of rational numbers, the
second one with the extension of the product operation to such numbers.

Brousseau’s engineering: Introducing rational numbers.

Rational numbers can be introduced through different problems and contexts, favour-
ing different conceptions of these. Epistemological analysis leads us to distinguish two
main conceptions: division and commensurability. The most common didactic choice
corresponds to the first conception (the traditional parts of tarts) and the didactic diffi-
culties it generates are now well known. Brousseau’s choice favours the second con-
ception: commensurability.

The problem proposed to pupils is the following: how to compare the thickness of
sheets of paper? Pupils are working by groups, each group is given different piles of
sheets of paper of different thickness, some of these being very close. Different groups
can have common and different types of papers. They are asked to find a way inside
the group to compare thickness, then to write a message allowing the comparison of
thickness between groups without any new manipulation.

One fundamental characteristic of the situation is that thickness is not directly
measurable. Of course, some comparisons can be made just by perceptive means but
the necessity to compare with other groups without more manipulation obliges the pu-
pils to look for other strategies. In order to classify the sheets according to their thick-
ness, pupils are thus induced to use piles of paper and a linear modelling of the rela-
tionship between number of sheets and thickness of the pile. The fact that piles are
available favours this strategy and, in that case, the approximate character of the linear
model does not prevent them making correct comparisons.

Through repeated experimentation, this situation has proved to be very robust and
its strong a-didactic potential has been evidenced. Finally, each type of paper will be
characterised by one or more couples of whole numbers, referring to the manipulations
made by pupils, for instance 12mm for 25 sheets and 21mm for 30 sheets for the types
below.
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30 feuilles

24 feuilles

21

12

Figure 1. Two piles of paper measured by the pupils

Comparison relies on simple proportional reasoning and, of course, corresponding
knowledge has to be part of the medium: for the first pile, we obtain 24 mm for 50
sheets, this paper is certainly thinner than the second one with 21 mm for 30 sheets ;
pupils can also say that, for the first paper, the number of sheets is about double the
thickness, which is far from being the case for the second pile. What is implicitly at
play in this situation is the ordered structure of rational numbers.

Note that, even if a lot of work can be developed in this context about equality and
order of rational numbers, even if pupils progressively discover and formulate a lot of
rules, test them on real piles, then use piles in a more metaphoric way in order to sup-
port mental and written calculations, knowledge is there strongly attached to this con-
text and not necessarily easily transferable to another context. Notations introduced by
pupils and progressively simplified for economical reasons are not necessarily the
conventional notations and it will be the responsibility of the teacher to decide when to
connect the vernacular notations of the classroom to the standard fractional notations
and move from the first semiotic registers to the standard one, while keeping for a time
the discursive support of the paper context.

In Brousseau’s engineering, the same context is then used in order to introduce the
sum of rational numbers, but the extension of the product law to rational numbers is
out of range in the same context. For this extension, once more, different conceptions
can be mobilised. Brousseau favours the conception of product as an external operator
through the situation known as “the enlargement of the puzzle”.

Brousseau’s engineering: The puzzle situation.

The problem proposed to pupils is the following: you have to construct an enlarged
puzzle similar to the given model; the length of 4 cm in the original puzzle has to be-
come ...cm in the enlarged puzzle.:

10
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4 2 5

Figure 2. The original puzzle used in the problem

Pupils work in groups. Conditions for enlargement can be different from group to
group. In each group, pupils share the construction of the different pieces. The material
medium provides them with a validation process, which is obvious. If they can put
together the different pieces and make a puzzle similar to the original one, they have
succeeded. In the medium of course, there is also some perceptual knowledge about
enlargement and similarity together with some geometrical knowledge necessary to
reproduce rectangular triangles and trapezia with given dimensions. The fact that stu-
dents work in groups prevents them from making uncontrolled adjustments and, at the
same time, makes the situation compatible with time constraints.

The mathematical variables of the situation are carefully chosen, taking into ac-
count what can be expected from the pupils in terms of basic strategies. Parallel sides
of the square are cut into two and three parts by the pieces. Thus, if pupils use an addi-
tive model for enlargement, they will not be able to make a square with the pieces.
Correspondences between lengths defining the enlargement are also important didactic
variables: for some choices, the situation will be easy, for instance if it is: 4 cm gives 8
cm. It will not lead to new mathematical knowledge. The correspondence: 4 cm gives
6cm, which is generally used, is an intermediate one in terms of complexity. Basic
strategies rely on additive models. Here the additive model (adding 2 cm to each di-
mension) does not lead to success. But this additive vision can be improved without
rejecting an additive conception, if pupils are able to see “6” as “4 plus half of 4”. Cor-
respondences such as 4 cm gives 5 cm, or 4 cm gives 7 cm are more complex. There is
little doubt that the mathematical aims of the puzzle situation cannot be achieved if
pupils are not faced with this complexity, but working in the classroom with different
correspondences help to approach this complexity, while preserving an a-didactic
functioning.

Once more, this situation has proved its robustness and adequacy. It has become a
“classic”, not only used with its initial aim, at elementary level, but also, at secondary
level, for supporting mathematical work on proportionality in the geometrical setting.
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In that case, it has been noticed that teachers were often tempted to present the data in
a table such as the following:

initial 2 4 5 6 7 9

enlarged 7

Table 1. Example of how teachers tend to present data

At first sight, this can appear as a simple notational choice but, using this semiotic
register, one kills the mathematical problem. For middle school pupils, indeed, this
semiotic register is strongly attached to proportionality in France, and introducing it is
like contractually saying to pupils: you are in a situation of proportionality, you have
to use a multiplicative model. One skips from an a-didactic adaptation process to a
contractual one.

These two situations illustrate the kind of work which researchers make when,
elaborating engineering research projects, they try to satisfy the commitments of the
theory, that is to say:

¢ to give students a maximal responsibility in the development of their mathe
matical knowledge ;

¢ to make, as much as possible, new mathematical objects and techniques appear
as optimal tools in the solving of mathematical problems ;

¢ to ensure that the meaning and interest of these problems can be easily per
ceived by students ;

¢ to ensure that expected solutions are accessible collectively to the group of stu
dents, mostly in an autonomous way, through their interaction with the medium;

¢ to ensure that the expected behaviours, if observed, necessarily result from the
targeted construction of knowledge.

In Brousseau’s engineering as in Douady’s engineering, such an ambition is rea-
sonably fulfilled. Extension of didactic engineering towards more advanced levels sets
up new problems. Such a nearly autonomous functioning is often out of range and
teacher’s mediations, even in a-didactic phases, are likely to play an essential role. In
the following part, we illustrate this point by referring to an engineering research car-
ried out at university level on differential equations (Artigue, 1992, 1994).

Didactic engineering at university level: Differential equations

After presenting the research project and the main choices attached to the engineering,
I will focus on two situations. The first one allows a functioning similar to what has
been described up to now: students’ interactions with the medium are sufficient to
produce the expected social construction of knowledge. In the second one, such a
functioning is out of range and didactical modelling of the situation has to include a
careful analysis of the teacher’s role and of the possible effects of the decisions (s)he
takes in order to overcome the cognitive limitations of the students’ interaction with
the medium.

12
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The didactic engineering project: An overview
From an epistemological point of view, in the solving of differential equations, one
can distinguish three essential settings :

¢ The algebraic setting in which one looks for exact solutions and their expression
through implicit or explicit algebraic expressions, series development or inte-
grals.

¢ The numerical setting in which one looks for approximate solutions and the
control of such approximations.

¢ The geometrical or qualitative setting in which one tries to identify the geomet
rical and topological characteristics of the phase portrait of the equation.

French undergraduate teaching was and is still focused on algebraic solving. Such
a course gives students the impression that differential equations always have alge-
braic exact solutions, that there is a specific recipe for each type of equation and that
the main aim of research in that area is to find the missing recipes. This is a stable ob-
ject but an obsolete one if we consider the present development of the field where
qualitative and numerical approaches are of growing importance.

Our ambition in the research project was to develop an engineering design more
satisfactory from an epistemological point of view, by opening teaching to qualitative
and numerical settings, to experiment and analyse their conditions of viability.

In the phase of “preliminary analysis”, we tried to understand the reasons for the
stability of such an obsolete object. Our first hypothesis was that, facing a stable equi-
librium point of a complex dynamical system, we had to understand the constraints at
the source of such a situation. That is, no change could be made viable without sub-
stantially modifying the system of constraints. Our second hypothesis was that stability
resulted from constraints of a different nature: epistemological, cognitive and didactic
which intertwined and reinforced mutually. If, for example, one considers the con-
straints, which act as an obstacle to an early introduction of qualitative setting:

¢ From an epistemological point of view, one can invoke the late and quite
autonomous development of this approach initiated by Poincar¢ in the late
nineteenth century. The difficulty of the mathematics problems which moti-
vated its development (the three bodies problem, problems of stability of dy-
namical systems...) and the impossibility of using directly such problems in an
elementary didactic transposition of this approach.

¢ From a cognitive point of view, one can invoke the strong flexibility between
the algebraic and the graphic semiotic registers required by qualitative solving,
the subtlety of qualitative proofs and their mathematical needs in terms of ele-
mentary analysis (proving that solution curves intersect or do not intersect,
analysing infinite branches...).

¢ From a didactic point of view, one can invoke the easiness of traditional alge
braic teaching. The fact that qualitative solving cannot be managed algorithmi-
cally, that it needs a strong graphic support which is not easy to develop and
negotiate taking into account the poor institutional status of the graphic register
at university level and, at that time, the limited number of books which could
inspire such an integration of a qualitative approach.
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Starting from this analysis, we entered the conception phase, trying to play with
the identified set of constraints in order to move them sufficiently enough to ensure the
viability of another equilibrium at a reasonable cost. The design was based both on
global and local choices. Global or macro-didactic choices govern the whole organisa-
tion, local or micro-didactic choices govern specific phases or situations. Our main
macro-didactic choices were the following:

¢ Deal with the cognitive and didactic constraints linked to the status of the
graphic register through a specific preliminary module on functions and graphs.

¢ Deal with the complexity of qualitative solving by using computer software as-
sistance for creating a progression in the complexity of the tasks proposed to
students, by officially introducing a set of methods for qualitative study and
specific geometrical arguments for managing qualitative proofs with limited
analytic competencies.

¢ Deal with time constraints by a reduction of the content in algebraic solving
and, more globally, a change in the status given to equations accessible to exact
solving: for instance, simple cases such as linear equations or equation with
separate variables were considered as simple cases which could serve as a refer-
ence or comparison tool in more complex situations.

Finally this resulted in the following seven-step structure:

1. To which needs do differential equations respond? (This part of the engineering
design relied on the results of previous research on differential and integral
processes in mathematics and physics (Alibert et al, 1989)).

2. An introduction to the qualitative approach assisted by computer drawings of
slope fields, isoclines and phase portraits.

3. The algebraic approach: exact solutions for first and second order linear
differential equations and differential equations with separate variables.

4. The complementarity of the algebraic and qualitative approaches.

5. An introduction to numerical solving, Euler’s method and refined Euler’s
method.

6. The basic tools and methods of qualitative approach: fences, funnels...

7. The integration of the different approaches in the solving of more complex
problems.

As announced above, after this global presentation, I will focus on two key situa-
tions in this engineering design, belonging respectively to phases 2 and 4.

Associating equations and phase portraits

During phase 2, students are introduced to the qualitative approach. This introduction
strongly relies on computer tools. The fundamental notion is that of tangent field asso-
ciated to a first order differential equation in the form y' = f(x,y) and the associated
notion of solution curve as a curve compatible with the tangent field at every point.
Students are asked to draw some very simple tangent fields, then they are provided
with tangent fields drawn with the use of computer software and they are asked to
draw solution curves. The aim of such an activity is to give meaning to the notion of
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solution curve by making students become physically aware of the constraints imposed
on the drawing by the tangent field.
Then students are faced with a task of association between differential equations
and phase portraits. They are given seven differential equations: y' = é,
p p y g q y (x+1)(x-1)

, , . ,_ Sin3x
y=y'-L y'=2x+y, y'=dn(y), y=T75
phase portraits, two of them corresponding to the same equation: y' =sin(xy) but with
different windows.

y'=sinx[&iny, Yy =y+1, and height

-2

-4

-6

/

Figure 3 b.

Figure 3 a.

Such a task, at first sight, looks very complex but its variables have been carefully
chosen in order to make success accessible to beginners working in small groups, in a
reasonable amount of time (about one hour). For each equation, four criteria at least
can allow association: existence of symmetries, periodicity, particular solutions, iso-
cline 0 easy to find, singularities, areas for increasing, decreasing solutions. In other
terms, the means of validation offered by the medium are very rich and, moreover, as
far as the associations progress, the task becomes less and less complex. Experimenta-
tion carried out with different kinds of students attests to the robustness of this situa-
tion and the fact that, coming after a first introduction as described above, it can be
solved by students in a nearly autonomous way. Let me add that equations have also
been chosen in order to prevent association by pure analogy of forms, for instance
waves and trigonometric functions. With beginners in the field who have not yet de-
veloped economical methods for qualitative study, this situation results in a very rich
set of criteria. These are then collectively discussed with the teacher, and a table of
conversion between their algebraic and graphic form (for instance: “in the equation
y'= f(xy), fdoesn’t depend on x” and “the set of solution curves is globally invari-
ant through horizontal translations”) is established and institutionalised. This provides
them with a basic toolkit for engaging in qualitative approach.
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Connecting qualitative and algebraic approaches

The second situation I would like to evoke in this engineering design introduces phase
4 dealing with the respective potential and limits of qualitative and algebraic approach
and their connection. Once more, the variables of the situation are carefully controlled.
As expressed in Artigue (1994):

(a) Starting a qualitative study must be easy, as what is at stake in the situation is not
located in difficulties at this level. For example, one could arrange things such as the
horizontal isoclinal line is made up of straight lines, and so that certain particular so-
lutions, which are relatively easy (e.g. isoclinal lines) allow the research to be organ-
ised by providing a division of the plane for the solution curves. (b) The algebraic
solving, while it does not give rise to any particular difficulties, must not be too easy;
in particular, the expressions obtained for the solutions should not be self-evident. (c)
The qualitative solving, although easy at the start, allows broad categories of solutions
to be determined, to foresee in what way they will vary, but must not allow all the
problems set to be solved: for example, the existence of such and such a type of solu-
tion, or the nature of such an such an infinite branch. (d) At least some of these prop-
erties should, however, be accessible to algebraic solving.

For instance, the equation: y' = x(y* -1) fulfils these conditions.

i
\p/

(=)

-

N

21

-4}

-6

Figure 4.

The isocline of slope 0 is the reunion of three straight lines, two of them, the horizontal
lines y=1and y=-1 being particular solutions. As fis a C’ function on the plane, the
theorem of existence and uniqueness of solutions is satisfied in the whole plane. This
allows to divide the plane into three different regions: y>1, -1<y<1 and y<-1
where solution curves necessarily stay. The sign of Y in the three regions is easy to
determine. Moreover the vertical axis is a symmetry axis for the phase portrait. Solu-
tions in the upper region are decreasing for negative x, necessarily cut the y axis, then
increase, but qualitative study doesn’t give in an immediate way the nature of their
infinite branches. Solutions in the intermediate region are increasing then decreasing
and it is easily proved that they have horizontal asymptotes when x tends towards in-
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finity. This asymptote is necessarily the particular solution y=-1 as, if not, the de-
rivative y' would tend towards infinity. In the lower region, the situation is a bit more
complex. For negative x, solutions are decreasing, some of them cut the y axis but one
cannot ensure that they all cut the y axis. Those cutting the y axis have y=-1 as an
horizontal asymptote both on the left and on the right. Thus conditions a) and c) are
satisfied.

As regards the algebraic solving, it doesn’t require a lot of technical knowledge,
just the decomposition of a rational fraction into its simple elements. But the expres-

: : : 1+ Ae” . . —
sion we obtain at the end is: y= —exz , A being an arbitrary real constant, which is
e

not obvious to interpret. Moreover, students can be trapped by the illusion that one
value of A corresponds to one solution which is only the case for negative 4 or A more
than 1. In fact, the connection with the previous qualitative work is here very helpful.
Solutions defined on R obtained for negative A correspond to the intermediate region.
Solutions defined on R in the lower region correspond to A>1. And to values of 4
between 0 and 1 correspond three different solutions, two in the lower region, one in
the upper region, with vertical asymptotes. Conditions b) and d) are thus satisfied.

Experiments carried out with first year students show that here, interactions with
the medium are not enough to make accessible all the required mathematical work in
an autonomous way and in a reasonable amount of time. An efficient management of
the session requires important mediations from the teacher, specially when students
have to point out what is left open by the qualitative study and what are the possible
conjectures, and then what has to be connected between the results of the qualitative
and the algebraic study. For some of them, additional help is necessary, for instance in
order to get exact solutions under the form y=g(x). Trying to provide the maximum
of responsibility to students through the piloting of these necessary mediations, in or-
der to maintain a certain level of a-didacticity, is not evident at all. Most often, for
such situations, what is left to the responsibility of students is the execution of some
technical parts of the mathematical work, the teacher taking charge of the reflective
and more conceptual part, through “ostension” techniques or techniques which, as the
“Socratic maieutic” give the impression that students are associated with the produc-
tion of knowledge, although this is not really the case.

The modelling of such situations requires the integration to the a-didactic / didac-
tic model of the teacher as a full actor of the situation, whose role cannot be reduced to
the management of devolution and institutionalisation processes. By her or his media-
tions, (s)he regularly modifies the medium, the way students interact with it and the
possible cognitive effects of this interaction. Understanding these changes is a neces-
sity if one wants to understand and even control the mathematical world open to the
students. It is far from being easy.

Potential and limits of didactic engineering as a research methodology

Didactic engineering, as a research methodology, entered the didactic scene with the
ambition better to take into account the complexity of classroom phenomena, the com-
plexity of relationships between mathematical learning and the social and institutional
characteristics of the environments where it takes place. Certainly, the ambition was
not only to understand but, beyond that, to find the ways of controlling some of the
resulting didactic phenomena, through the determination of key didactic variables and
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their control. There is little doubt that this approach has been productive for research,
both from fundamental and applied points of view. From an applied point of view, it
was the source of a great diversity of engineering products from elementary school to
university, covering a lot of mathematical topics, supported by a strong and coherent
theoretical background and benefiting from the development of the theory.

From a fundamental point of view, didactic engineering has also been productive.
For years, it has been a privileged means for testing the validity of the theoretical as-
sumptions upon which it relied: those of the theory of didactic situations. For instance:

¢ difficulties met at finding what Brousseau calls “fundamental situations”, that is
to say situations characteristic of some domain of knowledge, when working at
more advanced mathematical level,

¢ unexpected and resistant discrepancies between a priori and a posteriori analy-
Sis;

¢ difficulties met in the diffusion of engineering products, once validated by
research;

have certainly played an essential role in the evolution of the theory of didactic situa-
tions. Even if, as stressed above, the central construct of the theory was, from the be-
ginning, the “situation” seen as a complex of social relationships between various ac-
tors (students, groups, teachers) and mathematical knowledge, these different actors
were not considered in the same way. The complexity of the cognitive and affective
economy of students’ behaviour was highly recognised, but the teacher was not really
considered as a “problematic subject” who deserved the same attention. Seen as a
partner of the researcher, many often involved in the design of engineering projects,
(s)he remained in some sense an unquestioned, transparent subject. The complexity of
her or his role, of her or his personal and institutional determinations was not really
taken into account. The above mentioned difficulties contributed to change this sim-
plistic vision of the teacher and, as a consequence, the theoretical basis, the conception
and a priori analysis of engineering designs.

During the last ten years, research about teachers had an exponential increase, ad-
dressing their conceptions and beliefs first, then the way institutional and situational
constraints shape the decisions they take, analysing more globally their professional
gestures and their professional development (Margolinas and Perrin-Glorian, 1997).
Most of this research work was not carried out in the framework of didactic engineer-
ing but through more naturalistic methodologies, better adapted to the exploration of
such a new field of investigation. Indeed, and we touch here on one of the evident
limitations of didactic engineering as a research methodology, this doesn’t give us ac-
cess to the “natural life” of didactic systems. It works with constrained systems. Thus,
if it allows us to test our didactic constructs through the ability we demonstrate to pro-
duce or reproduce didactic phenomena, it is less adapted to empirical or semi-
empirical work in emergent field.

Didactic engineering can certainly be considered as an efficient means to approach
the complexity of didactic processes, both for theoretical purposes and teaching design
aims. But, as any methodology, it has both potential and limits and there is a necessary
complementarity between it and the more naturalistic methods which have taken in-
creasing influence in didactic research these last ten years (Sierpinska and Kilpatrick,
1998). Such complementarity is also at play today in French didactics. Naturalistic
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methods are used in order to refine for instance our teacher’s models, and such refined
models are then integrated into didactic engineering. Conversely, didactic engineering
is used to test theoretical constructs which may emerge from anthropological perspec-
tives relying on more naturalistic methodologies.
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Faces of Swedish research in mathematics education

Christer Bergsten
Link6pings universitet

Introduction

The recent appearance of international research reviews (Grouws, 1992; Bishop et al,
1996) as well as national (e g Arzarello & Bartolini Bussi, 1998; Blum et al, 1992; Douady
& Mercier, 1992; Kieran & Dawson, 1992) in the field of mathematics education is a
significant mark of the state of the art, showing that the field has become so vast and
complex that it has become difficult to overlook. This is also underlined by the fact that
its state as a scientific discipline has been the focus of a recent ICMI study (Sierpinska
& Kilpatrick, 1998). Swedish research studies were reviewed already in the general
overview by Werdelin (1973). More recently, information about the work of present
Swedish researchers, based on answers to questionnaires, was given in Johansson
(1991, 1994). A survey of recent Swedish research on mathematical disabilities is made in
Sahlin (1997). See also Engstrom (1999).

This presentation is based on looking at Swedish research publications from the
past, on the answers to questionnaires that were sent to Swedish researchers in the end
of 1997 (reply from 30 persons) and to departments of teacher training, education, and
mathematics in 1999 (reply from 10 departments), and comments from colleagues. By
showing different faces of Swedish research in mathematics education the product set
of their characteristics will display the varieties and potentials of the research efforts.
After a look at history, a short review of research problems and methods, examples of
research results, research communities, and future perspectives will be presented.

Beginning with a general outlook on the object of the research interest, i e the
teaching and learning of mathematics in Sweden, it has been said that before the time of
the "new math” there had been very little change in the way mathematics was taught at
schools (Magne, 1986). The teacher showed the students, using explanations and visual
tools (object lessons), how a mathematical technique worked (for example two digit
multiplication), and the students worked, under the guidance and help from the teacher,
through a number of tasks to practice this technique from a book of exercises, which
was the only “textbook™. This was called teaching by rules, and was considered the
most efficient method for mathematics teaching in the upper grades of compulsory
school. In the lower grades the heuristic method of learning' was considered to be more
adapted to the level of thinking of young children (Bergsten, 1939). Both these methods

' The student should first get so simple tasks that he is able to solve them by himself, with his own
methods, then by systematic training with more and more difficult tasks he will develop mathematical
skills. The key word was learning by practice. (Bergsten, 1939)
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were rooted in the strong Swedish tradition of elementary mathematics teaching to keep
the learning activities close to the reality of the young child, using concrete materials
and visual tools to make children develop their mathematical skills through their own
activities. (See e g Wigforss, 1952) The ideas behind the new math were therefore
strongly criticised (Lindstrom, 1968) already before its curriculum came into play in 1969,
but nevertheless it put a stop to a promising development of mathematics teaching in
the country. Now, it did not take long before the poor results of the new programme,
mainly on computation skills, were highlighted in the PUMP project (Kilborn, 1979), and
the low Swedish results (in international comparison) from the second IEA study 1980
(Skoldverstyrelsen, 1983), started intense activities on a national level to continuing
education of mathematics teachers in compulsory school. The emergence of the
electronic calculator during this time “complicated” the situation, and the time since
then in mathematics education in Sweden has been, as I see it, ”a search for identity”.
The need for research in mathematics education has therefore only been increasing
since the new math changed the scene, even the curriculum from 1980 (”back to
basics”), and from 1994 (again with more emphasis on mathematical thinking and under-
standing) have tried to put mathematics education in Sweden on a positive
development.” The Swedish results in the international TIMSS study (Skolverket, 1996)
indicated that the efforts made had got a positive pay off.

Face 1: History

The development of Swedish research and developmental studies in mathematics
education could be termed as a move from content oriented and experience based
”guidance” to research based “didactics” (didaktik). The title of the last book from one
of the nationally most well known mathematics educators in Sweden during the 19th
century, Karl Petter Nordlund, is ”Végledning vid den forsta undervisningen i rdkning”
(”A guidance to early arithmetic teaching”, my translation; Nordlund, 1910).

On the international level this move or shift parallels the paradigm shift in
mathematics education research around 1980, when positivistic models of hypothesis
testing gave way to methods more apt to the practitioner’s perspective. To quote
Kilpatrick (1992, p. 31), ’research in mathematics education was moving out of the
library and laboratory and into the classroom and school”. This also explains the shift:
When scientific research put itself outside the (strong) guidance tradition it did not
have any effect on it, when moving inside, it did. It was also at this period when
research journals in mathematics education appeared’ as well as research institutes®.

2See Wyndhamn (1997) for an analysis of the mathematics curriculum development in Sweden; see
Hastad (1978) for a description of the development of mathematics education in Sweden 1950-1980.
% Journal for Research in Mathematics Education, Educational Studies in Mathematics, Zentralblatt
fir Didaktik der Mathematik

“ Shell Centre, Institut fiir Didaktik der Mathematik, Instituts de Recherche de I’Ensignement des
Mathématiques.
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The book by Nordlund (1910) is a very detailed description of what lessons in
elementary mathematics topics should look like, with extensive use of concrete material
and student activity. It is interesting to note that the work by for example Bergsten
(1939) and much later the textbook by Anderberg (1992) still belong to the same
tradition. At the turn of the century (i.e. 1900) there was a strong movement to make
mathematics teaching more “askadlig” (it is hard to find an appropriate English word for
this Swedish word, which means making mathematics more clear or lucid, for example by
using visual means for displaying mathematical meaning), by mathematics educators like
Ehlin, Kruse and Setterberg, influenced by the Perry-movement in England (Wistedt et
al, 1992). Nordlund had already used that principle for 40 years by then (his first mathe-
matics textbook dates from 1867), possibly carrying on the tradition from Comenius’
work in Sweden 200 years earlier’.

Wigforss extended this tradition of “&skédlighet” (lucidity) by the development of
diagnostic testing materials of high quality that became widely used (e.g. Wigforss,
1946). The development of standardized tests on a national scale, by Wigforss, to
support the marking system, was another early significant contribution (see Kilpatrick &
Johansson, 1994). Other research studies during the period before the new math were
few and individual products rather than long term results from mathematical education
research groups or milieus, for example the ingenious early interview study by Jonsson
(1919) and the powerful factor analytical studies by Werdelin (1958, 1961).

The shift in mathematics teaching with the new math initiated, by the problems it
evoked, an increased interest in the nature of mathematical skills and knowledge, and
also in teacher training. This is shown by the increased number of projects and studies
in the field that appeared (e.g. Kilborn, 1979). Also in the US, there was an explosion in
the number of articles that appeared in the field (Kilpatrick, 1992). Subject matter based
didaktik was the focus of a conference in Marstrand (Marton, 1986), after which the
term matematikdidaktik’ was beginning to be widely used. The first course at univer-
sity level in Sweden by the name matematikdidaktik was organized by Wyndhamn and
Unenge in Linkoping in 1985 (10 credit points). During the 15 years that have followed
more than 15 PhD works have been presented, the largest number within the
phenomenographic approach, along with many other studies. Textbooks for teacher
training in this new research based matematikdidaktik like Unenge et al (1994) or
Bergsten et al (1997) look very different from those mentioned above in the ”guidance”
tradition.

In some of the national research reviews that have been presented a national
tradition” or “trend” has been able to identify. In Germany, for example, there is the
Stoffdidaktik tradition since the 1950:s (vom Hoffe, 1998), in Italy the two trends of

®Nordlund’s introduction of the heuristic method for teaching, as an alternative to the mechanistic
teaching methods by rules” that were common at that time, was inspired by his teacher Kjelldahl in
Uppsala (Bergsten, 1939).

® English translation didactics of mathematics or mathematics education.
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concept-based didactics and innovation in the classroom were identified (Arzarello &
Bartolini Bussi), in the Netherlands there is the realistic approach (DeCorte &
Vershafel, 1986), in France there is the well known conception of didactic engineering
(see the paper by Artigue in this volume). And so forth. Is it possible to find a typical
”Swedish” tradition in mathematics education research, an identifiable trend that domi-
nates, or has dominated, the national scene?

Face 2: Research problems

The range of problems that are studied in the field of mathematics education research
can be listed along several dimensions — focus on different actors (students, teachers...),
organisation of teaching (groupings, individualisation...), mental processes (reasoning,
visualisation...), focus on topic areas (geometry, algebra...), and many more. Within each
dimension the focus can be on a general level (how does understanding in geometry
develop?) or on a more specific level (how do students in grade 9 understand the
concept of similarity?). A look at 23 Swedish PhD works during the period 1919-1999 (of
which 15 are from the last ten years) that could be classified as belonging to the field of
mathematics education, showed an almost non-overlapping distribution of research
problem areas: problem solving (Wyndhamn, 1993), arithmetic with school beginners
(Neuman, 1987; Ahlberg, 1992; Ekeblad, 1996), structure of mathematical knowledge
(Werdelin, 1958; Bergsten, 1990), computers in mathematics education (Hedrén, 1990;
Dahland, 1998), long term development of mathematical ability (Pettersson, 1990),
students ways of solving arithmetic tasks (Jonsson, 1919), the organisation of learning
(Ekman, 1968; Dunkels, 1996), fractions and reflective thinking (Engstrom, 1997), effects
of curriculum change (Hastad, 1978; Kristiansson, 1979; Hellstrom, 1985), individua-
lisation (Larsson, 1973), mathematical modelling (Wikstrom, 1997), understanding graphs
(Aberg-Bengtsson, 1998), teachers’ and students’ conceptions of mathematics/
teaching and learning mathematics (Lothman, 1994, Sandahl, 1997), teachers’ different
ways of handling content (Runesson, 1999), influence of social factors on mathematics
achievement (Chen, 1996). Other studies focus, additional to the above mentioned areas,
on gender, communication between students and between students and tasks, informal
(“everyday”) knowledge, quality of children’s mathematical thinking, teacher students,
mathematical disabilities, and undergraduate mathematics education.

From a quantitative point of view, a big proportion of the Swedish research has
been made within a number of projects, sometimes on a large scale, often funded by the
National Agency for Education. Examples of such projects are (in alphabetical order)
ADM, ALM, ARK (including DIM and RIMM), BIM, DIS, DOS, GEM, GUMA, HOIMA,
MYT, PUMP, and “Matematik i en skola for alla” (Mathematics in a school for all),
”Problemldsning som metafor och praktik” (Problem solving as metaphor and practice),
and “Vardagskunskaper och skolmatematik” (Every day knowledge and school
mathematics).”

" For explanations of acronyms and references please contact present author.
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Problem areas in mathematics education that recently have attracted most interest
and research attention in Sweden are (according to the questionnaire from 1997 as
mentioned above) young children’s conceptions of mathematics and early number
learning, teachers’ and teacher students’ conceptions of teaching and learning, assess-
ment and evaluation of knowledge, technology in mathematics education, problem
solving and communication in the classroom, mathematical disabilities, gender issues,
and research approaches such as phenomenography and constructivism. Learning
issues in undergraduate mathematics have recently come into focus in some studies.
Topic oriented studies are very few, as well as theoretical studies of epistemological
character, and there is no stoffdidaktik tradition in the German sense (exceptions are for
example the work by Kilborn, 1979, and by Bergsten, 1990). Qualitative methods are
dominating, in particular in combination with the phenomenographic approach, and
more or less well structured methods of triangulation are often used to increase the
validity of the studies.

Face 3: Research methods and results

Methods of research in mathematics education in Sweden have followed the
international trend, i e from an early dominance of quantitative studies towards an
increasing number of qualitative studies. Experimental designs, with experimental and
control groups, using pre- and post-test techniques, have been used by for example in
Werdelin (1968), Hedrén (1990) and Ahlberg (1992). Examples of studies using
psychometric methods are Werdelin (1958, 1961), Bergsten (1990), Pettersson (1990), and
Chen (1996). A number of national survey studies have been produced by the National
School Board, for example on grades 5 and 9 in 1992 (Skolverket 1993a, 1993b). Some
interesting longitudinal studies have been conducted, for example on early number
conceptions (Neuman, 1987) and alternatives to standard algorithms (Hedrén, 2000).
Today interview techniques are dominating the scene, but Jonsson’s early study
(Jonsson, 1919) proves there is a long tradition in Sweden for qualitative methods.
Modern techniques such as video recordings have been used in Léthman (1994) and
Dunkels (1996).

Phenomenography (Marton, 1981) has a strong position in mathematics education
in Sweden, as in the studies by Neuman (1987), Ahlberg (1992, 1997), Ekeblad (1996),
and others. Piagetian constructivism has fewer exponents (e g Engstrom, 1997), and so
has the Vygotskyan perspective (Wyndhamn, 1993; the paper by Silj6 in this volume).
Studies on a more subject oriented theoretical level are also less frequent (e g Kilborn,
1979; Bergsten, 1990).

It is often said, by practitioners, that research is very interesting but not of so much
use in the daily work in classroom reality. Now, research results are always of a theore-
tical nature, and even if they sometimes are on a very general level, they can neverthe-
less form a basis for designing curricula, as well as teaching or learning situations. For
example, knowledge at different levels of the education system of the five examples of
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major findings of research in mathematics education, given by Niss (1998), would be a
safe basis to avoid many mistakes in the design of teaching and learning activities.

It is not possible, in this limited format, to list the ”Swedish results”. Instead some
sharp results that seem to have obvious teaching implications will be shown, ordered
chronologically from 1919 to 2000.

Mental calculation methods

In a study by Jonsson (1919) a series of interviews on mental calculation methods was
conducted. His results are still relevant for the discussion today when the teaching of
formal calculation methods (‘standard’ algorithms for addition, multiplication and so on)
in elementary school is questioned, in favour of building on children’s own methods.
Jonsson found that despite the extensive training on only one formal method for doing
additions fourteen out of fifteen students interviewed in grade 2 used other methods
when they were free to choose. He also found that students chose the methods, in each
calculation, that needed as little thinking effort and time as possible.

Rules first or discovery learning?

The effects on learning of different organisations of learning situations have been much
studied in pedagogical research. Since mathematics is, among other things, a rule-using
discipline, it has been common to use two different methods of instruction, i.e. rule first
(given by teacher or book) — then practice, or let the students themselves discover the
rule from the material (discovery or heuristic learning). Studies on this problem were of
interest for example for the design of programmed teaching in the sixties. This was
studied for example in the BIM project. In an experimental study by Werdelin (1968) with
211 grade 6 students, one group (A) got the principle (law of distribution) before the
examples, group B first some examples, then the principle, and more examples, and finally
group C only examples. To measure the effects of the different treatments one test was
given immediately after the experiment, one test two weeks later, and one test to measure
transfer effects. There was a significant difference at the immediate test to the advantage
of group A, a difference that however disappeared after two weeks. There was no
difference on the transfer test. The main conclusion (from this and other studies) was
that the advantages of the heuristic method become visible in a long term perspective,
when combined with other important more general aspects of learning, such as drawing
your own conclusions and make a synthesis of what you experience. One could
comment that this research provides scientific support to the ideas of Nordlund in the
19" century (cf above).

Doing mathematics without using understanding

In a study on the different steps involved in solving a complex mathematical task,
Ekenstam and Nilsson (1977) showed how students strongly depend on their familiarity
with certain standard patterns when solving mathematical tasks, rather than trying to
think what the problem was about, or consider the meaning of the mathematical
expressions as starting point for their reasoning. To construct their tests, Ekenstam and
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Nilsson chose a ‘top task’, e g an equation like x-2.X and broke it down to the

small steps that were used in solving the task. This produced a series of tasks like
3(3x-2)=2x, 9x—-6=2x, 7x-6=0 and 7x=6. To find out at which step the students
had problems, each of these five tasks were included in the test items, along with some
similar tasks that changed e.g. the x to a ¢, the - to a +, or the particular numbers
involved. From 10 top tasks 130 items were thus constructed, distributed over 10 tests of
mixed items. The tests were distributed to a sample of 2000 students beginning upper
secondary school so that each item was solved by approximately 200 students. It was
observed that the solution frequencies strongly depended on minor changes, from a
mathematical point of view, of the task characteristics. As an example, by rotating the
same right angled triangle, the solution frequency to an area calculation task changed

(mv)*

~— caused a

from 39% to 64%, or (in a simplification task) inverting the expression

change from 41% to 17%. Another remarkable observation was the big difference in
2

difficulty between the simplification tasks % and %, a difference that disappeared
3a° 6a
and —.
6a 3a
study 1is that the mathematical skills of many students are based on the application of
trained patterns rather than on understanding of what they are doing. A similar conclu-
sion is made in recent interview studies by Lithner (1998, 1999) on undergraduate mathe-

matics problem solving.

when visible coefficients were used: The main conclusion from the

The effect of using electronic calculators

In Sweden there were some early studies on a broad basis investigating the effects of
the use of the electronic calculator in elementary mathematics teaching. In a study
during the years 1977-1983, called the RIMM project (Hedrén & Kohlin, 1983), 7 classes
were studied during their years in the Swedish “middle grades” (grades 4-6). Using an
experimental design with experiment and control groups, it was clearly shown that the
experimental groups, where the calculator was consequently used, showed the same
ability as the control groups to do arithmetic calculations, mentally as well as with pencil
and paper, but showed significantly better results on number estimation, choosing
correct operation, and to use relevant information when solving word problems. The
explanation given for the results was the increased amount of training on problem
solving that was possible when the calculator reduced the time needed for performing
the necessary calculations. This idea also formed the basis of the longitudinal project
ADM, investigating the use of computers and later graphic calculators in secondary
school (Bjork & Brolin, 1995).

Connecting everyday knowledge to mathematics teaching
There has been a long tradition in Sweden to relate children’s mathematical work in
school to their every day world outside school, something that is also visible in Swedish
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curriculum texts. However, this has caused a tension in school mathematics between
every day mathematics (since ICMES known as ethno-mathematics) and “academic
math”, i.e. mathematics as a scientific discipline. In a three years project "Everyday
knowledge and school mathematics”, the aspect of using everyday knowledge to learn
mathematics was highlighted (Wistedt et al, 1992). The project was a co-work between a
teacher, a pedagogue, and two mathematicians, the main material videotaped and audio-
taped classroom activities, including group work, and discussions among teachers.

Using everyday knowledge in school mathematics means for students that their
reference world (everyday experience) in some way must connect to the world of
(school) mathematics. To do this connection the student has to create a reference
domain that picks out those aspects from the reference world that come into play in the
mathematics ”game” in school. This reference domain is a kind of model world (the terms
are from Schoenfeld, 1986). To use everyday knowledge for learning mathematics the
reference domain is the crucial link between the existing intuitive knowledge of the
student (his/her reference world) and the new knowledge (of mathematics) he/she is
trying to construct. The different modes of thinking and usage of words in these worlds
create conflicts in the learning process, and one main conclusion is that instead of being
a process of induction from the reference world via the reference domain to the world of
mathematics, learning mathematics by connecting everyday knowledge means that the
student is using knowledge and experiences from two worlds — the everyday world and
mathematics — when solving the problems. The results show that students use know-
ledge from both worlds, the reference world and mathematics, when constructing their
reference domain.

LEARNING TASK
REFERENCE DOMAIN
REFERENCE WORLD MATHEMATICS

This means that the learning paradox is coming into play, since it seems as the student
needs an existing conception of mathematical abstractions to move from reference world
to reference domain, a domain which is supposed to be the link to understanding the
mathematical abstractions. To use some kinds of manipulatives for learning, for example,
presupposes that the manipulatives be interpreted in a way that presupposes know-
ledge of the mathematics they are supposed to learn by the material. To come out of this
paradox, and to learn mathematics by connecting to everyday knowledge, a dialectic
view of learning in a cultural perspective is needed. Connecting everyday knowledge
can work as an instrument in a mutual communication between a personal world of
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experience and a cultural tradition such as mathematical thinking. The main result from
the study is the opening of a way to bridge the gap between everyday knowledge and
mathematics, by showing the way students construct reference domains that build both
from contexts of practice and of theory.

Young children’s mathematical thinking (pre-school and first school years)

This problem area has attracted several Swedish researchers, with the most extensive
studies by Ann Ahlberg and Dagmar Neuman. An increased interest in pre-school
mathematical experience can be noticed the last years, with a number of recent Swedish
publications.

As an example, Ahlberg’s study “Children’s ways of handling and experiencing
numbers” (1997) is showing the complexity of early number experience. The study is part
of the project “Numerosity and the development of arithmetic skills among visual
impaired children, hearing impaired children and children without these impairments”. It
is an interview study within the phenomenographic framework, where the interview is
treated as a conversation with a structure and a purpose. 38 children from 3 different
pre-schools (average age 6.7 years) were interviewed on 3 different kinds of tasks, every
day problems, decomposition problems (cf Neuman, 1987), and contextual problems (cf
Ekeblad, 1996). Children were not allowed to use any manipulatives. Interview outcomes
were classified into a number of main categories, in line with the phenomenographic
approach, and were analysed under the main headings Ways of handling numbers and
Ways of experiencing numbers. One of the main results is that there was not a one-to-
one correspondence between the way children handle numbers and the way they
experience them, as shown in the matrix on next page.

Five categories of handling numbers were identified, of which Saying numbers and
Counting were the most frequent. The four identified categories of experiencing
numbers all come into play, more or less, when children handle numbers by counting,
structuring, and using known facts. This pairing of different dimensions deepens the
picture of the complexity of early numerosity development, and Ahlberg concludes:

When trying to grasp numerosity children handle numbers in a vast array of ways, and
thereby experience different aspects of numbers. However, in spite of using different
ways of handling numbers, the numbers may appear in the same way to them and they
may experience the same meaning. Consequently, there is not only one pathway, but
many pathways to numbers.”

/...

Understanding numbers and learming arithmetic skills is not only a question of the
quantification of objects or fingers. Neither is it a matter of learning how to count on the
number sequence or developing logical thinking. It is instead, a question of being able to
explore and discern different aspects and possible qualities of the numbers - of
experiencing numbers in the sense of sensuously and simultaneously perceiving different
aspects of numbers. (Ahlberg 1997, p. 109)
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WAYS OF EXPERIENCING NUMBERS

Ways of Handling Number Extents | Positions | Composite
Numbers Words in Units
Sequence
SAYING NUMBERS
Random Number Words .
Equal Numbers .
Successive Numbers .
ESTIMATING . .
COUNTING
Double Counting . .
Counting and Tapping . . . .
Counting and Looking . . . .
Counting and Listening . . . .
Finger Counting
Using Fingers; Counting All . . . .
Using Fingers; Touching . . . .
Using Fingers; Looking . . . .
STRUCTURING
Seeing . . . .
Using Derived Facts . . . .
USING KNOWN FACTS . . . .

Table from Ahlberg, 1997, p 85

The results have clear implications for teaching.

Problem solving

Jan Wyndhamn, together with Roger Siljo, has done extensive work within the socio-
cultural and situated cognition framework. Wyndhamn, with Riesbeck and Schoultz, has
recently finished a project called “Problem solving as metaphor and practice”, where
problem solving activities in classrooms and teachers’ views on problem solving were
scrutinized using qualitative data techniques (Wyndhamn, Riesbeck & Schoultz, 2000).
Some of the results indicate that problem solving in practice most often reduces to
solving word problems in class, and that group work activities become just another
version of ordinary work with mathematical tasks. No transfer effects were found
between everyday mathematics and academic math (cf Wistedt et al, 1992). Problem
solving in school mathematics seems to reduce itself to a metaphor for a practice, related
more to the organization of teaching than to mathematical content.
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One critical question is the dissemination of research results. It is not always easy
to pick up a result” from a study and ask practitioners (e.g. teachers) to use it. It
depends, among other things, strongly on the origin of the research question and the
level of generality of the result. Bishop (1998) argues that researchers should become
more aware of the fact that practitioners are the only actors for change:

”The research site should be the practitioners’ work situation, and the language,
epistemologies, and theories of practitioners should help to shape the research questions,
goals and approaches.” (p. 43).

Many of the persons in Sweden doing research and developmental studies in
mathematics education have a background as teachers, keeping their research close to
the teaching and learning practice. Maybe this is the ”Swedish tradition” in mathematics
education research. The question of information and a common discourse still remains,
however. The only Nordic research journal in mathematics education, Nomad (Nordic
Studies in Mathematics Education) is still young and has not yet succeeded to reach a
broader audience among practitioners. The journal Ndmnaren for teachers of
mathematics has been the most important source in this respect in Sweden for the last 25
years (though not a research journal), as well as the mathematics teacher congress
Matematikbiennalen (every second year since 1980) and its regional follow-up
meetings, and meetings arranged by mathematics teacher associations. In some recent
publications Swedish research has been made available for a broader audience, primarily
for use in teacher training (e.g. Ahlberg, 1995; Gran, 1998; Neuman, 1989). Hopefully, the
present conference will contribute to an increased awareness and interest also among
practitioners what research can offer.

Face 4: Research communities

Before the ’shift” after the new math most Swedish research in mathematics education
took place at departments of education. At the end of the seventies some PhD
programmes also involved departments of mathematics, but it is not until recently that
departments of mathematics have begun to create research milieus in matematik-
didaktik, as in Umea. The first PhD thesis with a mathematics education content at a
department of mathematics in Sweden was Dunkels (1996) in Luled. Other sites in
Sweden for research activities in the field of mathematics education are the national
testing institutions in Stockholm (PRIM) and in Umeé (Nationella provgruppen). These
institutions do test constructions and research on assessment in mathematics, provi-
ding long term descriptions of mathematical skills and attitudes of Swedish school
children. In fact, results of such measurements often produce the strongest direct
influence on practice. As an example, the studies by Lindblad (1978), followed up by
Ljung (1987), caused a change of the prerequisites for entering teacher training colleges,
and the second IEA study started huge efforts on a national level to educate Swedish
teachers of mathematics (see Utbildningsdepartementet, 1986)
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There are also networks and organisations outside universities that play an
important role for research in mathematics education. The network Women and
mathematics under the leadership of Barbro Grevholm has organised a number of
international conferences in Sweden, with proceedings of research papers, one of which
was the ICMI study conference on gender issues in mathematics education (Grevholm
& Hanna, 1995; Hanna, 1996). The present conference was organised by the new and
independent Swedish society for research in mathematics education (SMDF®).

Face 5: Looking ahead

With this history behind, what might the future of research in math education look like
in a small country like Sweden? In fact, some opposite trends can be identified at
present. On the national level teacher education seems to move towards establishing a
more generalized educator profile, with less emphasis on teaching subject matter
towards a teacher as an administrator and supervisor of learning. On the local level, at
departments of mathematics and didactics, new research milieus for mathematics
education are being established, and teacher training programmes include courses of a
scientifically oriented matematikdidaktik. Again, on the government level, resources
have been given for researching and educating teachers of mathematics in subject
matter and didaktik.

The increased interest among teachers as researchers (as mentioned above), and the
increased emphasis of a research based teacher training, are important backups for the
future development of Swedish matematikdidaktik. For this we need people that can
inspire the way Andrejs Dunkels did, and Gudrun Malmer is doing. I also believe that
the expansion of research in matematikdidaktik into the departments of mathematics
will be a necessary and important factor for a promising development of the range and
quality, and in the search for an identity, of Swedish research in mathematics education.
Today, measured in number of publications, Swedish research in mathematics education
is hardly visible on the international scene in the increasing stream of articles and
books. No doubt a change is on the way. Using a metaphor one could say that research
in mathematics education in Sweden is a kettle of water heated up so that it, maybe,
soon will start boiling.

8 See the web page of SMDF at www.mai.liu.se/SMDF/
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The Student-Teacher-Educator-Researcher in the
mathematics Classroom

Co-learning partnerships in mathematics teaching and
teaching development

Barbara Jaworski
University of Oxford

Co-learning

A co-learning partnership derives from the idea of co-learning as presented in an article
by Jon Wagner (1997) analysing relationships between researchers and practitioners in
educational settings. One style of such relationship is called a ‘co-learning agreement’.
According to Wagner,

In a co-learning agreement, researchers and practitioners are both participants in pro-
cesses of education and systems of schooling. Both are engaged in action and reflection.
By working together, each might learn something about the world of the other. Of equal
importance, however, each may learn something more about his or her own world and its
connections to institutions and schooling. (Wagner, 1997, p. 16)

In this paper, I extend this notion of co-learning agreement to relationships between
educators and teachers, and between teachers and students. Thus ‘researchers and
practitioners’, from Wagner’s definition, become researchers and educators and teachers
and students. An important aspect of co-learning is the responsibility of the learner as an
agent of inquiry. Thus all participants might be considered researchers and this will be a
major theme of the paper.

The complexity of mathematics teaching and its development

What is mathematics teaching and what does it mean for mathematics teaching to
develop? Pearson (1989) suggests that teaching is intended to create learning, and this
seems a reasonable starting position. Mathematics teaching is intended to create the
learning of mathematics. In a similar vein we might say that mathematics teacher
education is intended to create the learning of mathematics teaching. It sounds easy and
straightforward. But, can we judge the success or effectiveness of teaching by assessing
the learning, which takes place?

In the UK in recent years the notion of judging the effectiveness of teaching through
assessing learning has become a dogma. We now have national statutory tests at every
stage of education from early primary to 16+. The most recent call for further tests means
that children will be tested formally every two years. The pressure on teachers to teach to
these tests is overwhelming.

Research has shown us the importance of studying children's learning; what the
individual child thinks, does, can achieve and so on. An impressive array of scholars has
contributed to our body of knowledge relating to children's learning of mathematics.
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Much of the research has had a psychological focus, largely deriving from the work of
Piaget, and caricatured by Bruner (1985) in his words "a lone child struggles single-
handed to strike some equilibrium between assimilating the world to himself or himself to
the world (p. 25)". More recently, scholars have gone back to Vygotsky in an attempt to
chart the social threads of human learning and increasingly to conceptualise mathematical
learning in a sociological frame. For example the constructivist movement of the 1980s
shifted into a socio-cultural domain in the 1990s and is still shifting in recognition of the
socio-political forces affecting learning. A simultaneous philosophical revolution has
challenged perceptions of mathematics itself, and provided alternative visions of
mathematical thought and its development — from a hard science to a sociological
phenomenon.

In mathematics education terms like social constructivism, inter-subjectivity, and
communities of practice have tripped liberally from the pens of theorists and researchers.
As a background to conceptualising mathematics teaching, there is recognition of a
counterpoint between the learner as an individual cogniser, and the learner as member of
a society encompassing diverse communities of practice. The mathematics classroom can
be seen as an intersection of social and cultural groupings and creeds, driven by political
forces and societal demands, and striving to create a mathematical discourse that enables
all students, whatever their personal and social trajectories, to learn mathematics. In all of
this, how does a teacher start to conceptualise and realise the learning of mathematics?
How can mathematics educators work with teachers to support an effective
conceptualisation and realisation?

Why is it that after 100 years, say (Piaget and Vygotsky were both born in 1896), of
research and theory into learning, and more recently into mathematical learning that
mathematics educators have not been able to convince politicians that mathematical
learning is not a simple matter ensured by frequent testing? And moreover, that teaching
is even more complex. Perhaps a significant difference between politicians and educators
is that politicians want the answers tomorrow and that educators revel in delving deeply
into complexity — trying to make sense, to analyse, to characterise, but rarely offering
answers. And teachers are somewhere in between, trying, sincerely in the main, to enable
children's learning of mathematics, coping with multitudes of pressures from external and
internal sources.

This introduction has tried briefly to paint the complexity of the classroom setting, the
knowledge brought by research and theory to this setting, and the problematic reality for a
teacher in constructing mathematics teaching. This paper proposes that no simplification
of the complexity (e.g., according to political dogma), or segmentation (e.g., according to
theoretical creed) is going to help conceptualisation of teaching and its practical inter-
pretation. The idea of co-learning partnerships is proposed as a means of acknowledging
and dealing with diversity to achieve a mathematical learning community.

Some problems in mathematics teaching and its development

In mathematics lessons, an environment needs to be created through which all students
can have the opportunity to gain access to mathematics, learn mathematical skills,
develop an ability to apply mathematics in everyday circumstances and experience joy in
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being able to do and understand mathematics. A question for this paper is what creating
such an environment entails, and what are the problems.

Walter Doyle (1986) suggested that teachers and students collude unconsciously to
reduce cognitive demand in classrooms — students behave better when tasks are easy and
straightforward, leading teachers to set easy and straightforward tasks. Thus the setting of
easy and straightforward tasks becomes a covert part of the didactic contract of the class-
room.

Celia Hoyles (1988) commented on "a transmission model of teaching and learning
[mathematics] where knowledge and expertise is assumed to reside with the teacher" (p.
156). She asks, “When, for example, we observe that there is little negotiation of
mathematical meaning between teacher and pupils, we must question whether this is due
to lack of initiative or confidence on the part of the pupils, to lack of diagnostic skill on
the part of the teacher, or to constraints built into the classroom situation” (p. 156). She
reflected on classroom constraints that obviate effective teaching:

We know that teachers and pupils tend not to search together in a genuine and open way to
uncover mathematical meaning. We know, for example, that pupils want teachers to 'make it
easy' or 'tell them the way' and we have to recognise the powerful influences on teacher
practice which almost compel an algorithmic approach. We need to find a significantly
different mode of education and practice in our classrooms, new roles for teachers which
they value and which they see as significant for the mathematics learning of their pupils. (p.
162)

Desforges and Cockburn (1987) reported, as a result of working with teachers
extensively over ten years, that they had seen no evidence of classrooms where what they
call higher order skills are seen to be operational consistently over substantial time
periods. According to their research, even ‘good’ teachers are so bound by the pressures,
constraints and demands on a teacher’s time and energy that they cannot sustain enquiry
methods, draw on the spontaneous skills and interests of children, and have the capacity
to monitor each individual child, seeing when to intervene and when to leave alone (p.
142). Their conclusion includes the following statement:

We set out on this investigation with the suspicion that the teacher’s job is more complex
than that assumed by those who advise them on how to teach mathematics. Put bluntly we
have found what teachers already know: teaching mathematics is very difficult. But we feel
we have done more than that. We have shown that the job is more difficult than even the
teachers realize. We have demonstrated in detail how several constraining classroom forces
operate in concert and how teachers’ necessary management strategies exacerbate the
problems of developing children’s thinking. (p. 155)

They claimed that the teachers concerned, although espousing belief in aspects of
good practice and striving to achieve the development of higher order skills in students,
nevertheless were unable to succeed within the current system.

David Reynolds (1997) made reference to the Third International Mathematics and
Science Study, in which countries of the Pacific Rim were more successful than those in
the UK. He pointed out those school practices that would prepare employees for collabo-
rative work, understanding and creativity are seen in the Pacific Rim to include 'the power
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of collaborative group work to deliver vastly improved traditional outcomes'. However,
he sees little in the Pacific rim countries to compare with the progressive methods
employed in British primary schools:

The Pacific Rim will choose to pull the lever of the group, a marked contrast to our British
inability to conceptualise and implement group-based learning, which remains simply a
progressive sound-bite.

. they have an agreed technology of practice as well as in the precise nature of what that
technology is. In Taiwan it would be inconceivable that their groups of students, who are
among their brightest in terms of achievement, would be encouraged to discover their own
home-made technologies of teaching. - [i.e.] to view themselves as philosophers engaged in
the constant debate and discussion on the nature of the goals of education.

Reynolds suggests that a solution to the problems of teaching mathematics effectively
might result from adopting methods of interactive whole class teaching, currently
practiced in Pacific Rim States. Yet anyone familiar with teaching will recognise that any
phrase such as 'interactive whole class teaching' will have a multiplicity of interpretations
in classrooms. Some might be effective, some not, but the rhetoric itself will not ensure
effectiveness.

These references point to some of the problems of conceptualising an effective
approach to teaching mathematics. Variously authors point to problems in lack of
cognitive demand, transmission teaching, making tasks 'too easy' for pupils, undirected
group work, and so on. The ‘pressures, constraints and demands’ on teachers become
worse rather than better. Mathematics might be seen to be a cognitively demanding
subject — hard to teach and to learn (Cockcroft Report, 1982). How are students to be
encouraged to engage with the cognitive demand? What approaches by teachers will
enable such engagement? And will such approaches provide equitable access for all
students? Peter Gates (1999) writes:

... unfairness, injustice and prejudice are not abstract concepts of macro-social analysis of an
internecine class struggle. They are felt through the disappointment, hopelessness and
frustrations of ordinary people as they get through their everyday lives....

Mathematics Education plays its part in keeping the powerless in their place and the strong
in positions of power. ... It does this through the authoritarian and divisive character of
mathematics teaching. (Gates, 1999, pp. 46-47)

It is relatively easy to point towards the problems, but what are the solutions — what is
that 'significantly different mode of education and practice in our classrooms' that will
overcome the problems and result in more widely effective mathematical learning?

I want to suggest, not answers or solutions to these and other problems, but an
approach to teaching that regards all participants in the teaching process, and its deve-
lopment, as learners, seeking together to overcome the problems. I will address the idea of
such an approach through a number of examples from research involving students,
teachers, educators and researchers.
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Examples relating to co-learning partnerships

Inquiry into mathematics and its learning and teaching
I shall present first a two-fold example of classroom and teacher enquiry into
mathematics, mathematics learning and mathematics teaching.

Episode 1: A group of girls have been set a task by their teacher, George. It involves
fitting together four squares of the same size in various configurations (all squares
touching at an edge or a corner, but not overlapping) and finding out what perimeters are
possible in the resulting figures. After doing this with four squares, the girls are asked to
extend their thinking to other numbers of squares, 2, 3, 5, 6, ... , and to try to generalise.
They conclude that perimeters will all be even numbers, and they justify this conclusion.
George then asks whether they can find an odd perimeter. In tackling this challenge they
arrange squares so that the edge of one square touches just half the edge of the adjacent
one. In the case of four squares, the perimeter is 9, an odd number.

Hence odd perimeters are possible when squares are arranged in this formation.
George now asks whether a non-integer perimeter is possible. The girls seem to think not.
But what if they could overlap the squares ... ? No, says George - no overlapping is
allowed.

Episode 2: A video-recorded sequence from this lesson is watched by the teachers in the
same mathematics department as George. They discuss what they have seen and raise
issues related to teaching and learning. They recognise, for example, the quality of the
girls' thinking, including elements of generalisation and testing of conjectures, and ask
how such thinking develops. One issue concerns George's intentions for the lesson — had
he planned that the girls would seek odd perimeters, use the half-squares method, or look
for a non-integer perimeter? One of his colleagues suggested that it seemed as it the girls
were "actually teaching you something". George's response to these questions was as
follows:

"The thing is, I was ad-libbing a lot of the time, so things were coming out that I hadn't
thought about before, which was good, because it was extending me as well, and extending
themselves, you know." (Open University, 1989)

Here we have two episodes of interaction. The first involves interaction between a
teacher and his students in the classroom where mathematical thinking and inquiry is
taking place.

The second involves interaction between teachers, reflecting on a classroom episode,
and inquiring into issues concerning the teaching and learning of mathematics. In the first,
the teacher creates a situation in which students inquire mathematically. Their inquiry is
guided partially by the teacher's questions and partially by their own directions of
thinking. It is the girls who suggest, with justification, that all perimeters will be an even
number, leading the teacher to ask whether an odd perimeter is possible. It is the girls who
try out the half-square shift, to discover an odd perimeter.

The teacher acknowledges that he too is learning from the students' direction of
inquiry. The teacher's wider mathematical experience influences the questioning and
guides the constraints. For example, when one girl suggests that the squares might
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overlap, the teacher rules out this possibility. On the other hand some discussion of what
they would then be finding if they had overlapping squares might have been fruitful for
the girls' wider conceptualisation. Here is a teaching issue.

When is it appropriate for the teacher to constrain the situation, and where might it be
appropriate to let students follow up and question their own ideas? Such issues are made
explicit when the teachers talk together as a group. The value of this seems to be in
drawing attention to a range of possibilities that might not be obvious in the pressures of
classroom interaction. Once highlighted, they can then be discussed separate from the
particular classroom incident from which they arose, leading to a developing
epistemology of classroom interaction.

In these two episodes we see mathematical knowledge growing for both students and
teacher, and we see knowledge of teaching growing for the teachers. Thus both of these
situations involve co-learning, although the notion of a co-learning partnership was not
explicit in either of them. The co-learning situation embodies individual as well as
common knowledge. Differential power relationships between participants are interpreted
through varying roles and responsibilities. Characteristics of a fruitful co-learning
situation might be seen to include elements of inquiry, reflection and critical questioning.
A co-learning partnership implies an explicit arrangement agreed between participants.

Creating classrooms norms

I worked, as a researcher, with a mathematics teacher, Ben, for nine months studying his
teaching and talking with him about his thinking and decision making in constructing
teaching (Jaworski, 1994, Chapter 9). One day he referred to a lesson that I had not
observed:

Episode 3: Did I tell you about the interesting incident which I had there? One was
explaining to the other about trig — it was Rachel to Pat, and I was sort of talking with
them and I went away, and then suddenly realised what I'd been saying. I was not talking
about trig — [ wasn't even talking about that. I was talking about the role of the teacher
and the learner, and their responsibility. And that's a really peculiar position for a maths
teacher to get into in some ways isn't it? You know, I've left my subject, in effect, for
other people to teach, and I'm there teaching how to take on different roles. It's a funny
situation. I didn't talk about any maths at all. Pat was saying, "I don’t understand", and
Rachel was getting really annoyed about this. I said to Pat — "As a learner you've got to
think about what she's saying and say: "Stop — this is where I don't understand." — that's
your responsibility, and if you can't do that, Rachel can't help you. And I said to Rachel,
"She’s having problems with what you're saying — can you say it in a different way?"
Then I walked away. I didn't talk about the real problem with the maths. (Jaworski, 1994,
p. 177)

This example illustrates co-learning between two students, their teacher and a
university researcher. The two students were working on problems in trigonometry. One
was trying to explain to the other, but the interaction was not proving successful. The
teacher's intervention did not involve sorting out the mathematical problems, but tried to
help the girls see how they might work together more effectively to sort out the problems
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themselves. Thus the teacher might be seen as creating norms for effective interaction
leading to mutual learning between students.

We might regard this episode as indicative of a higher-level of cognitive demand,
manifested, not just in encouraging students to think through a problem for themselves,
but also in challenging them to make decisions about their way of working on the
problem, and in many cases about the problem on which to work. The result of such
challenge in Ben’s classroom, and others that I studied, was that students were deeply
engaged in and reflective of their own thinking and learning. This contributed to their
active construction of mathematical concepts within a supportive social context whose
interactions ensured that constraints arose and were resolved.

The teacher's articulation of the episode for the researcher led to the teacher's
recognition of his teaching role and overt perception of its value in his teaching repertoire.
For the researcher, it provided further evidence of the nature of co-learning partnerships.
Interaction between teacher and researcher encouraged the articulation and growth of
knowledge on the part of the teacher, and the teacher's communication allowed the
researcher to contribute to a wider knowledge base in teaching.

Conceptualising the terrain to deal with diversity

In a research project overtly conceptualised as a co-learning partnership between two
teachers and two university researchers (Jaworski & Potari, 1998), one of the teachers,
Jeanette, articulated her vision of working with student diversity to enable progress in
mathematical learning:

Episode 4: In an investigative lesson, I provide the stimulus for the initial problem and
then give them some time to explore and so I now see a bit on a hill side, bit rocky, fairly
open, maybe a bit bleak. Some of them will stay very close to me not physically but close
to me metaphorically, not close to the problem or their friends. Others will start perhaps
to go round the problem, trying things, maybe coming back, making sure they are doing
alright and then go off again. One or two will skidaddle down the path and find something
very interesting or get nowhere and come back again.

And so my role will be making, I will make sure that the ones who want to stay with
me are walking with me round, maybe round or round about, encouraging them to go off.
Sometimes I feel I push them and they wont go, and perhaps I will leave them and come
back and they haven't gone anywhere. And then I will have to take them on with me a
little bit further and then try and push them off again and they will go. And other times |
will come back and ask something, that boy over there haven't seen him for a while, let's
go and see what's happening. And could be they are finding something quite nice. It’s
when they've gone off on their own track and, and they don't think they've got anywhere
and they ask for help to come back. That's fine. It's when they've gone off on their own
track and I'm not sure whether they are getting anywhere or not.

It could be like with Simon (a student in her top level Year 10 class), it's simply we
are just, are on different levels. He knows what he is doing and when he can eventually
explain it to me then it's absolutely fine, so I can just leave him to do it. But others sort of
seem to be going off in a sort of way but actually aren't getting anywhere. When do you
give them a rope and pull them back?" (Potari and Jaworski, in preparation)
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The metaphor of the hillside was used by this teacher to speak about student diversity
and her approach to working with her students, varying her interactions according to their
needs, and recognising questions this raised for her. It allowed the team of four to work
on issues of classroom interaction related to lessons that had been studied.

Episode 5: In one such lesson, Jeanette had set a problem to groups in her class to design
a box, using a minimum of material, to hold 48 cubes, each of side 2cm. Her aim here was
to address concepts of volume and surface area from the mathematics curriculum. The
lesson had shown Jeanette's interactions with various groups in the class to be related to
the particular thinking of the students concerned. However, as time progressed Jeanette
became more aware of the particular mathematical goals of the task and achieving these
goals with the whole class. One such goal was that students should perceive the properties
of a box with minimum surface area. However, only some of the groups had come close
to appreciating these properties. Jeanette was therefore faced with shifting into direct
instruction mode and explaining the concept to the class, or of leaving many students in
their current lack of resolution of the problem, neither of these particularly satisfactory.
Jeanette's approach for tackling diversity had come up against time constraints in
addressing the curriculum, indicating the need for more time or alternative approaches.
(For further details of this lesson, see Jaworski & Potari, 1998)

My purpose here is not to offer solutions for the identified dilemma. A long
experience of teaching and working with teachers makes clear to me that such dilemmas
occur every day in a teacher's life. As these issues came to light among the four
participants of the research, the inherent teaching dilemmas were discussed.

The nature of a co-learning agreement is that the dilemmas can be recognised and
tackled. However, in this case, students were not central to the recognition and tackling of
the dilemma, but rather passive recipients of its consequences. It might be that the
students themselves could have contributed to its resolution.

Teacher as researcher in tackling dilemmas

The Mathematics Teacher Enquiry (MTE) Project studied the contribution of teacher-
research to the development of mathematics teaching (Jaworski, 1998). One teacher,
Sam's research focus was on students who were "productive' or 'resistant' to his teaching.
He wanted to find out what cause these reactions and how he might overcome resistance
to enable more effective learning.

Episode 6: This episode is taken from a lesson in which activity was based around
exploring the effects of placing operators (+, -, X, =) and pairs of brackets between the
three numbers 6,3,2 and inspecting the outcomes (e.g., (6+3)+2 or 6+(3+2)). An object of
this lesson was perception by students of generality in the use of brackets in algebraic
expressions (Jaworski, 1998).

Sam discovered that some students readily moved from their activity in trying special
cases, to a generalisation of the process, which was what Sam had hoped for. This group
he termed 'productive'.

However, one group became very cross with Sam, and resisted when he tried to push
them beyond their specific cases. They felt some success in discovering that there were 32
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distinct cases of placing brackets and operators, which had been one of the questions of
the lesson. It seemed, to them, that they had achieved what they had been asked. To be
asked, subsequently, to do more, seemed to devalue what they had achieved so far. Thus,
not only did this resistant group not perceive the need for generalisation, they felt
unhappy with the teacher’s apparent lack of appreciation of their effort and achievement.

For Sam this was extremely salutary. His personal focus as a result of the event was
how to adapt his teaching so that it would be more sensitive to the needs of these students.
The mathematical issues were somewhat implicit in this focus.

Sam, the mathematician, had in mind the generality behind specific examples of
concepts — in this case, algebraic representations and the need for brackets. Mathema-
tically, it seems essential for students, to appreciate the generalities involved. For those
who remain at the level of the particular, their mathematical development is limited.
However, pushing students too rapidly towards such generality may result in their losing
interest or confidence both in their mathematics and in the teacher's teaching.

Thus a question arises: what tasks, questions, or classroom activities will enable most
students to move less problematically to mathematical generality and abstraction? How is
this recognisable by a teacher? For Sam, how does it link to his perceptions of students
being resistant to his teaching? Such questions might be a part of Sam's further research.

Sam's engagement in research, his identification of research questions regarding
productivity and resistance, led to his recognition of characteristic of learners resistant to
his approach. He subsequently interviewed students in the resistant group to try to
understand better their perspectives and learning needs. His interactions, in the MTE
project, with other researchers provided a forum for airing and discussing the issues he
recognised.

Such discussion in the MTE group led to wider awareness of such issues, of research
approaches to learn more of students' perspectives, and of the value of talking with
colleagues about teaching issues. The project charted a growth of knowledge through
such interactions identifying them as a kind of co-learning activity.

Co-learning agreements or partnerships. Partnerships between teachers and
learners.

A co-learning partnership in mathematics teaching or in the development of
mathematics teaching may be expressed by an adaptation of the quotation from Wagner
earlier. The italicised words are the ones I have changed.

In a co-learning partnership, teachers and learners are both participants in processes
of education and systems of schooling. Both are engaged in action and reflection. By
working together, each might learn something about the world of the other. Of equal
importance, however, each may learn something more about his or her own world and its
connections to institutions and schooling. (adaptation of Wagner, 1997, p 16)

The focus on education, institutions and schooling is significant because mathematics
education is taking place within these systems. The focus on the 'worlds' of the
participants is significant because it is these worlds from which they gain their
experiences, which form their historically derived knowledge, and according to which

44



Jaworski

they make decisions and judgements (Scribner, 1985). According to socio-cultural
theorists, Jean Lave and Etienne Wenger, learning takes place through participation
within communities of practice, these communities having their own socio-cultural norms
into which newcomers have to be socialised. Initially the newcomer is (legitimately)
peripheral to the practice, but is drawn into the practice through participation. Thus we
might see students and teachers being socialised into the norms of schools and
classrooms, into mathematics classrooms and the operative practices of mathematics
teaching and learning.

Jill Adler (1996) has questioned just what the practice is, in the mathematics
classroom, into which its participants are socialised. It is clearly not the practice of being
a mathematician. It is a practice of learning and teaching mathematics within the
particular worlds impinging on school and classroom, governed by cultural, societal,
economic and political forces. All of these influence the ways in which mathematics is
perceived and communicated. For example, whether the focus is on basic number, on
utilitarian factors, or on rules and algorithms; whether motivation is in the tests or
examinations driving the curriculum. If the practice has anything to do with acting or
thinking mathematically in the style of a mathematician, then the norms for such a
practice have to be created relative to these powerful influences.

Thus we might see a co-learning partnership being a community of practice with its
own norms. It is important to recognise that Wagner’s definition was talking about a
research relationship. So, although this is not explicitly stated, it must be recognised in
reinterpreting his words. Wagner's definition talks about action and reflection and
working together. An interpretation for the mathematics classroom would put the word
mathematics in front of each of these: i.e., mathematical action, mathematical reflection
and mathematical working together.

We saw one manifestation of these norms in George's classroom in which his students
acted, reflected and worked together on mathematics. Where George and his colleagues
were concerned, the focus was mathematics teaching: thus George engaged in the action
of mathematics teaching, reflected on his mathematics teaching and worked together with
his colleagues on issues related to mathematics teaching. George and his students were
co-learners of mathematics, as George acknowledged overtly. George and his colleagues
were co-learners of mathematics teaching. In both cases, as the participants worked
together knowledge grew and the community developed. A question to be asked here, is
to what extent may these participants be seen to engage in research?

Didactic contract
Guy Brousseau (1984) has talked about a didactic contract between a teacher and
students in a classroom from which the activity of the classroom derives, and which in its
turn is strengthened by this activity. In George's classroom, for example, questioning and
enquiry seemed to play an important role. In the brief episode described, the teacher
questioned and students engaged in inquiry.

However, students' own questioning could have resulted from the prevalence of
questions. In Jaworski (1994, p. 113), T described a classroom where the teacher stopped
himself from giving an instruction and asked the question "what am I going to ask you to
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do?", one student spoke for many in the response "ask questions". In this classroom
asking questions was one of the norms of mathematical activity. Terry Wood and Tammy
Turner-Vorbeck (in press) have written about argumentation being an explicit classroom
norm — the expectation that students would challenge each other to explain and justify
their solutions to problems.

Thus the didactic contract is a recognition of the norms in the community. These
norms are developed and strengthened as activity proceeds. In one classroom, described
in Jaworski (1994, p. 152/3) a boy tells his group he has a prediction for the 5 by 5 case
he has just been working on. One of his peers says to him, "don't you mean a conjecture
in maths it's a conjecture". Later the same boy said, "are you sure 6 by 6 is 37, because
that was my conjecture". In this classroom the norm of 'conjecturing' was being developed
and reinforced through this dialogue, as it entered into and became a part of classroom
discourse. We might say that expectations of conjecturing were a part of the didactic
contract.

The didactic contract is an expression of the (agreed?) expectations between students
and their teacher. It might be overt, or implicit. In the examples just mentioned,
questioning, argumentation and conjecturing were overt. Although, how they became
overt is significant and not obvious. Sometimes norms are covert. Walter Doyle (1986), as
I said earlier, suggested that teachers and students collude unconsciously to reduce
cognitive demand. Thus reduction of cognitive demand becomes a covert part of the
didactic contract of the classroom.

Mathematical and pedagogical power

Whether norms are developed overtly or covertly, the didactic contract is an evolving co-
construction by all participants in a classroom. Bauersfeld (1994) suggests that "Teacher
and students interactively constitute the classroom culture". Thus, its participants
constitute the classroom culture through co-construction. In a co-learning partnership, this
co-construction needs to support or engender co-learning — i.e., it needs to includes
elements of inquiry, reflection and working together. These elements might be seen to
encourage what Tom Cooney has called Mathematical Power. For the learner of
mathematics, this is "the ability to draw on whatever (mathematical) knowledge is needed
to solve problems".

Mathematical power is “the essence of intelligent problem solving within the context
of teaching mathematics” (Cooney, 1994, p. 15). In George's classroom we might see the
students (and George himself) as developing mathematical power, both in the
mathematics they are learning, and in their appreciation of the processes through which
they are learning it. Simultaneously, through George's participation in the classroom
activity and in raising issues with colleagues, George might be seen to develop what
Cooney has called Pedagogical Power, — the ability to draw on whatever pedagogical
knowledge is needed to solve problems.

Cooney writes "pedagogical problem solving has to do with recognizing the
conditions and constraints of the pedagogical problems being faced" (1994, p. 15). 1
would add to this the aims, possibilities and opportunities provided by such problem
solving. Pedagogical power is vested in such pedagogical problem solving through
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processes of reflection and analysis. George gains pedagogical power through
engagement in classroom activity, reflection on this activity, and analysis of the situations
in which he engages together with both his students and his colleagues. Development of
mathematical and pedagogical power can be seen as an outcome of the co-learning
partnership in George's classroom.

George's learning is recognisable from his own words in the episodes described. This
might be regarded as a social construction: i.e., through inter-subjectivity with students
and colleagues, George constructs personally his knowledge of mathematics and
pedagogy (Jaworski, 1994). However, this knowledge does not exist in isolation from
knowledge deriving from all the other communities in which George participates. Lave
and Wenger (ibid) see learning as a process of enculturation where learners as “peripheral
participants” in the community grow into “old stagers”, those who represent the
community of practice. They write, “... newcomers legitimate peripherality ... involves
participation as a way of learning — of both absorbing and being absorbed in — the “culture
of practice” ... mastery resides not in the master, but in the organization of the community
of practice” (Lave and Wenger, 1991, p 95).

Thus, knowing, or cognition, is situated in the practice. Teachers might be seen as
growing into the practices of the community where their teaching is situated — those of
schools and classrooms. These classrooms are situated within a wider socio-political
community with a variety of cultural influences. The development of knowledge of
teaching can be seen as a fundamental part of participating in teaching within this social
setting.

So, George, as an old-stager in the school and classroom environment might be seen
as thoroughly socialised into its practices. However, he can also be seen overtly to
influence his own growth relative to these wider practices. To what extent these various
influences are harmonious or in conflict in a teacher's growth of knowledge deserves
further study. Central to this paper is the influence of the teacher's complexity of
knowledge on the classroom environment in which he operates and its implications for
students' mathematical development. How is a co-learning partnership constituted and
how does it operate? What are the roles and responsibilities of its participants?

Developing norms for co-learning
In order for the co-learning partnership to operate effectively for mathematical learning,
students have to participate as co-learners of mathematics, engaging together in inquiry
and reflection. If they are to be socialised into such participation, how are the norms
created? It seems that creation of norms must be first of all the responsibility of the
teacher, but that students need to be active in the longer term construction of norms. For
example, for questioning to become a norm, someone first has to ask questions, or to ask
for questions to be asked. A teacher might initially lead by asking the questions herself,
then encouraging questions from students. Or she might begin by seeking overtly to
engender a questioning culture.

Julie Ann Edwards (2000) contrasted two situations, one in which particular norms
developed over time through example and encouragement by the teacher as part of
mathematical activity, and another in which the requisite norms were 'taught' overtly
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before mathematical activity could begin. She found that the overt teaching of the norms
did not show more success that their covert encouragement. Sometimes, overt teaching
leads to what Mason, adapting Brousseau, has called the didactic tension; the problem
that,

The more explicit I am about the behaviour I wish my pupils to display, the more
likely it is that they will display the behaviour without recourse to the understanding
which the behaviour is meant to indicate that is the more they will take the form for the
substance (Mason, 1988, p. 33).

For example, the teacher wanting his students to conjecture might have them
conjecturing in given situations but never appreciating the value of conjecturing as part of
mathematical justification and proof. The didactic tension is just one problem that
teachers face in striving to establish the norms that seem essential to the activity they
would promote. Teachers can become aware of such problems through their own inquiry
into teaching. This might involve some form of research into their own practice, as in the
case of Edwards mentioned above, or it might emerge through collaborative reflection as
seen in the case of George and his colleagues.

In the case of Ben, quoted above, it was reflection alongside an external researcher
that resulted in his recognition of the norms he wanted to promote, and his approach to
'teaching' them. Sam, in the 6+3+2 lesson, was overtly researching his teaching to
discover the source of students' resistance to his ways of teaching. Through this explicit
inquiry, he was able to learn something about his own teaching approach as a result of
finding out the students' perspective. Jeanette, in her metaphor of the hillside, was able to
articulate aspects of her role in working with the needs of different students.

We see here teachers here taking responsibility for creation of norms and also
inquiring into students' interaction with norms. Students in Ben's class were divided on
whether he knew the answers to the questions he asked them (Jaworski, 1994, p. 153).
Some felt he did, others not. However, their tackling of the questions went beyond a
ritual response: there was substance as well as form (Mason, 1988). George's students
were socialised into engaging in an inquiry approach and providing justification for their
conjectures. It seems clear that the way students respond is crucial to the development of
norms. The extent, to which students appreciate their own role in the process, and its
contribution to co-learning, seems worthy of further study.

Roles, relationships and responsibilities within the co-learning process are complex. It
seems that a position of greater power would carry more responsibility. Thus a teacher
would have responsibility for drawing students into questioning and decision-making, and
a teacher-educator would have responsibility for drawing teachers into the processes
involved.

Teachers' engagement in inquiry and reflection at a pedagogic level is central to the
development of a co-learning partnership. It is a question for teacher-educators how such
activity by teachers originates. In what ways are teachers 'socialised' into the norms of
inquiry and reflection? In most of the examples discussed, this 'socialisation' became
evident through interactions with a researcher from outside the school environment.
Discussion with the researcher encouraged reflection and stimulated inquiry.

48



Jaworski

The researcher's questions often led teachers to deep searching of reasons for
decisions and judgements which then led to further inquiry. As the researcher in these
situations, I recognised the potential for teaching development of this asking of questions,
as well as the role of the researcher in encouraging a teacher to sustain inquiry and
reflection. The examples quoted from Sam and Jeanette arose as part of projects that were
collaborative between teachers and researchers.

Researcher as educator

Wagner talks about the ‘unavoidable intervention’ of the researcher in educational
practice. Thus a researcher is not a neutral outsider but a full participant influencing the
directions of social practice in education — even when no overt intervention is planned.

My own involvement as a researcher working with teachers in various research
projects has indicated ways in which the researcher influences teaching through the
research process. In fact, it has often seemed that more effective engagement by teachers
in educational issues of deep significance has resulted from a researcher’s naive
questions, than is achieved through specifically planned courses for teachers.

By ‘naive’ questions I means those that seek genuine information rather than those
that are designed to elicit particular answers. It is the struggling with these naive
questions that leads to real engagement with issues. These might be mathematical issues
as learners seek to engage with mathematics and to learn mathematics; they may be
pedagogical issues as learners struggle with the teaching-learning process and ways in
which teaching might support mathematical learning.

A start to conceptualising co-learning

I have tried to make sense of the many factors and concepts discussed above to start to get
a grip on this notion of co-learning at so many levels. Inevitably there are still more
questions than answers, but this is a characteristic of the epistemology of co-learning
agreements. The following diagrammatic representation of participants, concepts and
relationships is a starting point for further dialogue between those interested in developing
teaching of mathematics through co-learning at all levels.
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A co-learning community in developing mathematical learning
and teaching
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From natural language to mathematical reasoning:
Word problems and the socialisation of children's thinking'

Roger Silj6
Goteborgs Universitet

Introduction

The background of my presentation is an interest in how people reason, argue and act in
different communicative practices in various corners of our complex society, and how
they learn to do so. The ability to learn is one of the most significant features of human
beings. Ten thousand years ago, our ancestors living in this part of the world dwelled in
caves, had to endure very hard life conditions, and had an average life expectancy of
about 25 years. Biologically, genetically, in terms of brain capacity and in most other
respects, we are identical to these people. However, at a socio-cultural level almost
everything is different. And all of these differences in how we live, work, travel and
communicate are rooted in our ability to learn at a collective and at an individual level.

Starting from a socio-cultural perspective (Vygotsky, 1987; Wertsch, 1991; Sil;o,
2000) on human development, which is my background, reasoning and arguing imply
using linguistic and physical tools to analyse and make claims about events in the world -
be they real or imagined. Thus, I am not taking the perspective of considering learning,
for instance, mathematics as a question of acquiring an essentially ready-made body of
knowledge that can be applied - as the metaphor goes - to various problems in ’real life’
or in the ‘real world’ (which are two other dubious metaphors in this context). Instead, my
main interest here is to offer some reflections on how people reason and argue, and how
they quantify, maybe even mathematise, in order to make a claim or to prove a point in a
conversation or when they solve a problem inside or outside the formal school setting.
And, in addition, I want to say something about how we understand a particular kind of
difficulty that people might have, that of moving between everyday discourse and
analytical languages.

To give a more digestible introduction to my presentation, and to get me to the point
more quickly, I will give a straightforward illustration of what I mean by learning as an
issue of learning to reason. In 1997, the Swiss scholars Reusser and Stebler published a
study of mathematics achievements amongst ten to twelve year old students in which the
following items were included:

A boat sails at a speed of 45 km/h. How long does it take this boat to sail 180 km?
John's best time to run 100 m is 17 seconds. How long will it take him to run

1 km?

! The research reported here has been financed by the Swedish Council for Research in the Humanities
and Social Sciences (HSFR).
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This problem pair, and many similar ones, has been used in several studies (cf., e.g.,
Verschaffel, De Corte & Lasure, 1994) over the past two decades. What is interesting
about them is the dramatic difference in which the children manage to handle these
problems successfully. In Reusser’s and Stebler’s study, and in the one by Verschaffel,
De Corte & Lasure (1994), the first problem was correctly solved by between 85 and 90
per cent of the participants. Viewed as an instance of mathematical reasoning, and
disregarding for the moment the referential problem of what is said in the text, the second
problem was solved by an even higher percentage of students. The only catch was that
their response was a simple multiplication of 10 by 17. Only a tiny fraction of the students
in both these studies, 4,5 and 2,5 per cent respectively, indicated in some manner that
there was something problematic about the second item.

In parenthesis, even the first - and ‘standard’ problem - in this pair is a bit strange to
someone coming from the West Coast of Sweden. A sailing boat that sails at a speed of
45 kilometres an hour is a rare and quite expensive piece of equipment! But let me leave
the realism of this aside.

Together with my mathematician colleague Jan Wyndhamn I made a study in the
mid-1980’s (Sdljo & Wyndhamn, 1988) in which we were after the same problem of how
students interpret word problems. We asked the following pair of questions to the same
age groups:

A cow produces 18 litres of milk per day. How much milk does the cow produce
during one week?

Lisa goes to school and she has 6 lessons per day on the average. How many les
sons does she have per week?

Again the first item is essentially unproblematic. About 90 per cent of the students
performed the multiplication 7 by 18. In the second case, the situation turned out very
differently. Among low achievers in mathematics, for instance, about 40 per cent
managed this problem in the sense that they realised that the reference of the concept of
week in this case (in Sweden) is five.

The problem I want to address in what follows is: What does this tell us about how
children learn to reason? Why do these items result in such differences in performance? I
think that if we analyse such performance differences in some detail, we might get
somewhat deeper in our understanding than establishing that children do not know how to
solve word problems, or, alternatively, that they cannot read properly, which is the
explanation preferred by some mathematics teachers. Such explanations are not
particularly useful, since they give us no clues as how to guide people when they attempt
to master complicated forms of reasoning. So let us stay open, at least initially, and not
resort to the usual argumentation that these differences can be explained by referring to
some abilities and knowledge that people do not have. Instead, what items of this kind in
all their simplicity illustrate, is something very fundamental about how difficult it
sometimes is to move between describing the world in our natural everyday language and
using other models of that reality (since everyday accounts of the world are also models).
Underlying these differences in performance on tasks that are identical in terms of how to
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quantify, there is a story about an educational discourse in schools and classrooms that
has become increasingly abstract.

The situated nature of human reasoning
Over the past ten years or so, there has been much discussion about the situated nature of
knowledge. The general line of argument has been that the assumptions of general
cognitive skills, transferable knowledge and/or nicely bounded developmental stages of
the Piagetian kind have been overrated. Context and situational specifics determine how
people reason to a much larger extent than the dominant cognitivist paradigms have been
willing to accept. Thus, and to return to the problems above, it is inconceivable, or at least
highly unlikely, that children watching a 100 metres race in an athletics competition
would assume that the runner could keep the same speed for 1 kilometre, which is the
‘real world’ interpretation of the mistakes they make on the first kind of problem about
John running. This kind of mistake they would only make in school. The world, and all its
various social practices, are much more complicated than the notions of a general
cognitive processing device or a developmental stage would imply. Thus, during the
1980’ies and 1990’ies we have seen work that illustrate that what children can do in terms
of counting when acting as street vendors, they seem unable to do when given a test in a
school-like setting of the same kind of problem (Carraher, Carraher & Schliemann, 1985).
To many, these findings about the situatedness of knowledge and understanding seem
to undermine the very possibility of making claims about regularities across domains
and/or situations. Indeed, it was seen as a threat to the ambitions of most established
educational approaches. How can learning be meaningful and powerful, if skill and
knowledge are local and dependent on circumstance? Is not the very definition of
knowledge and, as we sometimes call them ’facts’, that they are true and verifiable
independently of where they occur? What is the point of teaching people skills and
methods, if they are not transferable? These were the kinds of worries raised by some.
However, the realisation that human knowledge is relative to circumstance and premises
is, of course, no threat to our possibilities to learn about human learning and development.
It just forces us to leave simplistic mechanistic notions about what human thinking and
acting are all about, and to accept the fact that we transfer knowledge and skill in a
somewhat more subtle manner than was assumed by the behaviourists, the cognitivists
and Piaget. Human beings, like no other creature on this planet, are able to learn both
individually and collectively, and they do take knowledge and skills from one situation to
the next. If they did not, we would not meet here today, as the systematic creation of
knowledge that we deal with as researchers and teachers would not be possible.

The tool-producing and tool-using animal

In a sociocultural theory of learning and development, individual intellectual growth as
well as the increase in mastery of physical skills occur mainly in three different
dimensions. Thus, people develop:

1. Intellectual/discursive tools (concepts, theories, systems of measurement,
ideologies, discourses about nature and society etc.)
2. Physical tools (technologies and socio-technologies)
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3. Social institutions (i.e., enduring collective practices where knowledge and
skills are developed and reproduced)

Perhaps the most impressive element in our intellectual history is the manner in which
we have been able to transform intellectual, or as I prefer to call it: discursive, knowledge
into physical tools. Watches, compasses, computers, mini-calculators and thousands of
other artefacts are repositories of human knowledge and insight. We have managed to
convert our number system and a set of mathematical operations into a physical device
that we know as a mini-calculator. By using this device, tasks that were very difficult and
time-consuming to do in your head, such as multiplying or dividing four digit numbers,
immediately became simple and easy to deal with.

However, my ambition here is not to go into this fascinating story of how people are
able to convert their knowledge into physical artefacts. Instead, I want to dwell on the
manner in which we appropriate certain intellectual and/or discursive tools, and how we
move between everyday discourse and mathematical modes of reasoning.

The issue of how people learn to use analytical tools of the kind offered by
mathematics and logic are interesting from a socio-cultural perspective. First, mathema-
tics and logic are analytical also in the sense that truth conditions of expressions are not
dependent on references to real world events. In mathematics and logic, meaning is
established internally within the system itself. Mathematics is in itself a universe of
meaning in which concepts are defined by relations to other concepts and operations.
However, when you put such resources to use for making claims about real world events,
as in the problems above, you run into the problem of referentiality in an empirical sense.
Or, expressed differently, when mathematical notations and expressions are co-ordinated
with an outside world - be it physical or imagined - and when you begin to count money,
distances or whatever, the problem of reference to an outside world appears. Learning in
this setting thus implies being able translate between expressions in mathematical or
logical terms, and expressions that are made in everyday language (or in various kinds of
institutional languages). This is precisely what so-called word problems are all about.
Learning how to do this is a powerful socialisation of people’s minds, and if you look at it
in terms of our cognitive history, it is a very advanced kind of skill.

The second point I want to mention here is that learning to mathematise or to do
logical reasoning is very clearly an issue of mastering a set of communicative or discur-
sive rules. One must learn how to make claims and argue systematically within one or
more discourses, and realise what is a valid claim to make in a particular situation and
what is not. This is a fascinating learning process, and it is a matter of learning what
Wittgenstein calls ‘language games’. But before continuing on this line, let me just give
two brief illustrations of what I mean by learning a particular form of discourse.

The first example is meant to illustrate the general idea of what it means to learn a
particular form of discourse, and how you can use it to make claims about something you
have seen, heard or read. Although, in this case, the outcome of the mastery of a particular
form of discourse was perhaps not a very big success. It is about the economist, the Total
Quality Management Consultant, of a company that was offered a cultural experience by
his boss.
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Tom goes to the symphony

A company president who had been given tickets for the performance of Schubert’s
Unfinished Symphony couldn’t attend, so he passed them to his Total Quality
Management Consultant. The next morning, when the president asked the consultant
if he had enjoyed the concert, he was handed the following memorandum.
For considerable periods of time, the four oboe players had nothing to do. The
number should be reduced and their work spread over the whole orchestra, thus
eliminating peaks of activity. All of the 12 violins were playing identical notes. This
seemed unnecessary duplication, and the staff of this section should be cut
drastically. No useful purpose is served by repeating with horns the passage that had
already been played by the strings. If all such redundant passages were eliminated,
the concert could be reduced from two hours to twenty minutes. If Schubert had
attended to these matters, he would probably have been able to finish his symphony
after all.

What makes this story funny, and the unknown author very perceptive, is how clearly
it illustrates how the discursive tool — i.e., the ways of reasoning and thinking of
economics — do not co-ordinate very well with the event that is being described. If this is
what our Total Quality Management Consultant assumed that going to a concert was all
about, he lives a rather strange life. But the general point is clear, to learn is to master
systems of discourse as intellectual and practical tools, and to be able to apply them to
what you encounter.

My second example concerns the learning of what we call logical reasoning. In a very
famous study in the history of psychology, the Russian psychologist Luria (1976) in the
early 1930’s travelled to the southern republics of what was then the Soviet Union. He
was interested in what he called illiterate peasants, i.e., people who did not have any
formal schooling and who could not read and write. What he observed, to make a long
story very short, was among other things the problems the indigenous farmers had in
handling so-called syllogisms:

In the Far North, where there is snow, all bears are white. Novaya Zemlya is in the
North and there is always snow there. What colours are the bears there? (p. 108)

In response to such exercises, participants would often respond in the following
manner:

”There are different sorts of bears.” [Interviewer repeats syllogism]

”T don’t know; I’ve seen a black bear, I’ve never seen any others. Each locality has
its own animals: if it’s white, they will be white; if it’s yellow, they will be yellow.”
Interviewer: But what kind of bears are there in Novaya Zemlya?

”We always speak only of what we see; we don’t talk about what we haven’t seen.”

If we look at the nature of the communicative problems in this situation in detail, and
the difficulties that our cautious farmer has, they are quite interesting. What the respon-
dent is doing is in some sense not unreasonable. He is arguing that he does not know what
the bears are like in this strange northern place that the interviewer is talking about, since
he has not been at that particular place. He prefers to speak about what he has seen and
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what he knows of through personal experience. In many respects this is a commendable
strategy for how you should argue; do not claim to know how things are in a place where
you have not been. However, what our cautious friend does not realise is that in this
particular kind of language game, the rules are different. In this discursive tradition,
invented by the Greeks, you are supposed to see if the conclusion follows - as we put it -
logically from the premises.

The problem for the respondent is that he is arguing about the world, while the test
assumes that you limit your attention to what is in the text. Thus, this exercise should be
read with the attitude: “if we assume that all bears in the North are white, and if Novaya
Zemlya is in the North, what does then follow about the bears in Novaya Zemlya?” In
other words, to answer this question you have to temporarily disregard the issue of how
the world is organised and whether all bears up north really are white or not. The states of
fact in the physical world are temporarily immaterial, and you should not appeal to your
knowledge or lack of knowledge about the world in order to establish if the reasoning is
logical or not. Expressed differently, what we have to learn to do in this kind of reasoning
is to disregard the real world, and to argue in a textual reality. And text worlds are often
very different from physical worlds.

Attending to the world and attending to texts about the world

From a psychological point of view, and as an instance of problems of learning, the
manners in which we use texts and concepts to refer to the physical reality are extremely
interesting. To learn how to co-ordinate an expression or a claim with an outside world,
one has to be aware of the nature of the discourse that is expected, and what claims that
are being made in a specific situation. It is a matter of discerning what is figure and what
is ground, what is assumed and what is claimed. This is, I will argue, a typical skill in
identifying and moving within and between different kinds of discourses. It is not about
what we know about the world in any abstract sense. All the children in the little study
that Jan Wyndhamn and I did know that they go to school five days a week and not seven.
The problem is one of realising this at the very moment in which you are doing word
problems.

What learning implies in this case, or in many instances of logical reasoning, can be
described as a particular kind of alienation from our normal, everyday attitudes to
language and symbols. In a literate knowledge tradition, such as ours, one must learn
when to appeal to the real world for confirmation of what is true and not true, and when to
attend to the inner logic of a claim or a statement. This is an extremely complex learning
process in a modern society, especially when we consider all the new manners in which
we are able to model and mathematise the world by means of simulations using
information technologies. In what sense is what happens on the screen real or true?

If we return to the so-called word problems, and the difficulties children have when
being cognitively socialised, we can reflect on some of these complexities. The most
frequent explanation of why children fail on the kind of difficulties that the example with
John running and Lisa going to school above present them with, is that they fail to make
what is called realistic considerations (Reusser & Stebler, 1997; Verschaffel, De Corte &
Lasure, 1994), i.e., they fail to keep in mind what the world is like. However, this is an all
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too simple explanation, and it actually begs the question as it assumes that there is a
transparent and indivisible world to refer to. Even if we all believe, I hope, that there is a
real physical world out there, the manner in which people refer to this world when talking
and writing 1s very complex (Greer, 1997). In another famous example in the literature on
word problems (the example is drawn from the Third National Assessment of Educational
Progress on thirteen year-olds in the US), we find that children often respond to the
following item without considering what it means as a statement about the real world:

1128 children are going on a trip in buses. Each bus can carry 36 children. How
many buses are needed?

In the original test, less than a quarter of the students who correctly performed the
division 1128 divided by 36 gave the correct answer 32 (cf. Greer, 1997). The majority of
the rest gave answers that would imply that they operated with fractions of buses, an
interesting physical entity in this setting. However, even though the numerically correct
expression 31 and a third of a bus is a strange utterance about the world in this case, one
cannot argue that it is absurd. There is no problem in finding equivalent statements that
make perfectly good sense. For instance, today there is a big political concern in this
country about the fact that currently the birth rate (measured in terms of children per
woman) has dropped to a low of 1.6 children per woman from 2.1 which was the figure
we had some years ago and which allegedly is healthier for a social system such as ours.
Again, one could argue that 1.6 or 2.1 children is a strange entity. However, in a world of
national statistics this is a perfectly natural mode of reasoning and quantifying. National
statistics is one kind of reality, living children of flesh and blood is another kind. None of
these two realities is per se more real than the other, they are simply different.

What is interesting about these word problems from my point of view is that they
reveal some of the extreme complexities of learning in a literate culture that has at its
disposal many powerful discourses and ways of referring to reality. It is therefore
important to realise and to classify correctly the problems that children have when dealing
with these abstract exercises. From a psychological point of view they are at best learning
to establish what is assumed and what is claimed, i.e. to single out what the assumptions
in a problem are and how they relate to some specific conclusion. Often mathematics
teachers seem consciously to avoid the kind of ill-formed problem that I have pointed to.
They intuitively realise that these are much more difficult. By avoiding such problems,
they unknowingly give precedence to one kind of mathematical reasoning and one kind of
theory of learning; the kind where the semantics and extra-mathematical references
should not pose a problem (Lave, 1992). In the standardised version it is basically the
internal logic of the mathematical expressions and operations that counts as mathematics.
However, it is extremely important to assist children in bridging this gap between a text
about the world on the one hand, and the real world on the other. This is not a problem
about learning how to apply mathematical reasoning, as the metaphor goes, it is an issue
of being made aware of precisely how models relate to physical reality, and this is crucial
to all learning in our scientific culture.

To a large extent this is something which has to be learned through interaction,
arguing and discussion. The communicative mode in which children have to be made
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aware of such difficulties is in discussions. Only later can they be assumed to master this
in the text version. Thus, there is not very much to practise in the traditional sense. To
manage these kinds of difficulties you urgently need dialogue and interaction, a
knowledgeable person who can draw your attention to what is assumed and what is
claimed in a particular kind of textual version of the world. Thus, the problems that
children have in this context can be described not as the lack of knowledge, but as a
reflection of the fact that they are somewhat lost in a communicative sense.

Let me add two final observations. This skill of realising how to co-ordinate models
and mathematical expressions is a discursive skill, it is not a skill that resides in our brain
as a biological entity. You have to be socialised through communication in order to
master these kinds of difficulties as is evidenced by the problems that the farmers without
schooling had in Luria’s study (cf. Wistedt, 1994a, b). The acquired nature of this skill is
also what the Greeks realised by forcing their students to practise on syllogisms. But it is
not a skill that emerges solely through drill and practice. It is an analytical insight that has
to do with discovering what you can do in texts and what you can do in the physical
world, and what you have to think of when moving between. The second observation is
also quite interesting in my opinion. Normally international comparisons, such as IEA and
TIMSS, reveal that children at the ages that I have been using as illustrations in Eastern
countries (Japan, Hong Kong and other countries) outperform children in Western Europe
and the US in mathematics achievement. However, it is interesting to note that in a study
by Yoshida, Verschaffel and De Corte (1997), it is shown that this does not apply to these
kinds of problems. When the semantics are problematic, and when the reasoning implies
that children have to connect statements with an outside reality, the Japanese children
were no better than their Belgian colleagues. This also testifies to the very basic
psychological difficulties that are involved when learning to master these kinds of
problems. Learning how to move around in text based realities is an important aspect of
our cognitive socialisation, but it is a very complex one that requires systematic
challenges as well as guidance.
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Abstract

The research project ’Girls and mathematics” will run for the academic year
1999/2000. The aim of the project is to suggest actions to increase recruitment and
level out gender differences in mathematics at upper secondary level. This article
consists of two parts, first it will briefly outline findings in research literature and
second it will describe some findings in a qualitative classroom study. Four different
groups of students and their teachers have been chosen for observation and interviews.
What reasons do students give for choosing mathematics when it becomes optional?
Other issues such as seating and teacher commitment will be commented on shortly as
well.

Introduction

The research project “Girls and Mathematics” was initiated by the Norwegian Ministry
of Education based on findings in the TIMSS-survey. The project period is the
academic year 1999/2000. The aims of the project are:

* to investigate attitudes towards mathematics among students, especially girls,
who have chosen to take mathematics

* to suggest actions to be made to make more students, especially girls, choose
mathematics when it becomes optional

* to suggest actions to be made to level out differences in achievement

The results of the TIMSS-survey pointed to some important results but it also
raised questions. A qualitative research approach is suitable to investigate these
questions more deeply and to work towards the aims of this project. The main sources
of information for the project are:

e research literature

e classroom observation

* small surveys among students

e the TIMSS-results

e interviews with teachers and students

Mathematics in the Norwegian school system

At present Norwegian children start school at the age of six (since 1997). They do
seven years of primary school and three years of lower secondary school before
entering upper secondary school. Students attending upper secondary school are of age
16+ - 18+,
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An academic stream is offered as well as a vocational. Mathematics is compulsory
in the first year for all students. For students in the academic stream this means five
lessons of mathematics each week throughout the year. This course is divided into two
parts. The curriculum in the first part of the course is the same for all students, while
the students choose between two different curricula depending on whether they want
to continue to take mathematics or not for the last part of the course.

Matlhematics is optional the next two years, and students can choose between two
streams :

* MX — for students preparing for studies in mathematics, the natural sciences
a.o.
* MY —a more social sciences oriented course

The TIMSS results report that while an equal amount of boys and girls choose to
follow the offered course 3MY, only 35% of the students in 3MX are girls. The
TIMSS-results also revealed significant gender differences in achievement among the
students in the 3MX course. The differences found in the TIMSS-material are not
mirrored in the students’ grades, but still the Norwegian Ministry of Educational
Affairs considers these findings alarming.

Research literature

One of the goals of the project is to give a review of international research literature on
gender and mathematics. The focuses of the project have been to get a clearer picture
of explanations to why girls tend to have more negative attitudes towards mathematics
and why girls in some countries and/or under certain circumstances achieve less in
mathematics than boys do. The following is a short review of such explanations.

These explanations can be placed on different levels. Because of the consequences
of where one chooses to focus the explanations it is important to be aware of this. If
for instance, one chooses to emphasise biological explanations, this will imply that
there 1s nothing “we” can do to change the situation. If on the other hand, one chooses
to focus on the curriculum it implies that there is a potential for change.

The different levels of explanations can be summarised as follows:

* biology
* with the girls themselves
* parents

* society/ culture

e curriculum

* books and teaching material
* mathematics as a subject

* the classroom

* assessment format

' Both streams qualify for studies at colleges and universities to the same extent.
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Biology

Media has given biological differences between boys and girls and how this influences
achievement and attitudes in mathematics a lot of attention lately. The project has
chosen not to focus on these explanations for several reasons. These are:

* The differences between girls’ and boys’ attitudes and achievement have
changed over time, which indicates that biological differences can not have a
larger impact on the differences than the environmental factors

* The differences between girls’ and boys’ attitudes and achievement vary
between countries, which indicates that society and culture affect these results
to a greater extent than biological factors

* If biological factors would show to have an influence on these matters then
these factors are hard if not impossible to change

With the girls themselves

One kind of explanation that falls into this category is that girls have their own
cognitive way of learning in mathematics, which is different from the way in which
boys learn. Many of these kinds of explanations argue along with Belenky et al (1986).
In “Women’s way of knowing” Belenky et al argue that the research on the brain and
cognitive development has mainly been conducted on the male brain. This implies a
belief in that girls’ experiences influence their brain in such a way that they develop
different cognitive abilities.

Others argue that girls learn in a better way when they experience knowledge in a
connected way while boys have a more separate way of knowing. This research often
argues with Gilligan’s (1982) “In a different voice” from which the concepts of
“connected” and “separate” ways of knowing are taken.

A substantial amount of the research in the field of “gender and mathematics™ has
focused on girls’ lack of confidence in their ability to do mathematics®. This lack of
confidence makes girls not take mathematics when it becomes optional. Some research
results also point to the fact that the lack of confidence can have a negative impact on
future learning and the development of attitudes towards mathematics.

Meyer and Koehler (1990) in Revak (1995) focus on what they call “attribution
system”. When girls do well in mathematics they tend to say that it was because the
test was easy etc instead of like boys have a tendency to do, to say that it’s because
they are good at mathematics. On the other hand when girls don’t do well they tend to
blame themselves while boys tend to blame external factors like the test, having a bad
day or the teacher.

Some researchers have focused on girls’ so-called learned helplessness (see for
instance Beyer, 1995). These explanations point to that girls are taught to be helpless.
This implies that when girls work with mathematics they need a lot of support from
their peers and teacher. Boys on the other hand are taught to be more self-reliable and
autonomous in their learning.

? See for instance Willis (1996), Hanna (1995), Fennema (1995), Finne (1996), Niederdrenk-Felgner
(1996).
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Parents

Parents influence their children when it comes to choosing a career. Parents may have
different expectations regarding daughters and sons that again may influence the
daughters’ and sons’ choice to take mathematics (Adda, 1995). Parents may also
contribute to what girls and boys consider as appropriate gendered behaviour and this
might not include girls doing mathematics (Elwood & Murphy, 1998).

The society

There are some widespread myths about gender and mathematics in the society today
and these myths have a negative impact on girls’ attitudes towards mathematics. One
such myth is that girls and boys have equal opportunities when it comes to
choosing/not choosing mathematics when it becomes optional when they in reality
don’t (Willis 1996). As mentioned earlier many factors influence boys and girls in
different directions in their education.

Another such myth is that girls are born without an interest in mathematics and
that they are not as good at doing mathematics as boys are (Kreinberg & Lewis 1996).
This again can make girls feel deviant if they like mathematics.

In our society there also exist certain ideas about what is considered “feminine”
and “masculine”. Mathematics is often associated with masculinity, which may
influence girls in another direction because in taking mathematics they will feel less
feminine®. As Niederdrenk-Felgner (1996) writes:

Still decisive are traditional ideas in their environment about roles and gender-specific
attributions: mathematics, science, and technology subjects tend to be linked with the
masculine domain,...

These myths and expectations from society around them influence girls in such a way
that they do not take mathematics when it becomes optional. Girls tend not to see the
relevance of mathematics to their future life to the same extent as boys do (Beyer,
1995; Reilly et al, 1995; Revak, 1995).

The teacher may also have a certain influence on students’ choices. Some research
indicates that teachers tend to expect higher grades from girls than from boys before
they recommend students to take mathematics (Adda, 1995; Smart, 1996).

The curriculum

Another level to look for explanations is in the curriculum. Traditionally it has been
written by men and some would say for men. The argument would then be that since
men have written it, it influences both content and language (Willis, 1996; Forbes
1996). One consequence might be that teaching according to this curriculum could
alienate girls.

Books and teaching material

Textbooks have traditionally been written by men and the examples used are often
taken from boys’ world of experience. This makes it hard for girls to identify
themselves with “the mathematical world” found in books and other teaching material
(Solar, 1995; Niederdrenk-Felgner, 1996; Smart, 1996).

? See for instance Willis (1996), Hanna (1995), Niederdrenk-Felgner (1996).
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Mathematics as a subject

Some researchers criticise mathematics as a science. They focus on the fact that
mathematics has been constructed by white middle-class men and that this has
influenced what mathematics has become and also the school subject and the teaching
(see for instance Fox Keller, 1985). This has affected mathematics in such a way that
girls don’t feel that mathematics is relevant to them.

The classroom

The classroom is a complex arena for finding explanations when it comes to girls and
mathematics. Some research has been done on the classroom processes but it has
proved difficult to find clear relationships between what happens within four walls and
consequences in achievement and attitudes. Some researchers have for instance
documented that girls receive less attention than boys do in the classroom (Leder,
1996; Fennema, 1995; Solar, 1995; Niederdrenk-Felgner, 1996). Intuitively this would
imply that girls don’t get the same opportunities for learning and that they would
develop more negative attitudes towards mathematics. This has so far not been
documented.

Jungwirth (1995) has analysed the communication between teacher and students in
the classroom and found that there are certain patterns of communication typical for
the mathematics classroom. The communication and hence the patterns are dominated
by the teacher. It seems that boys are better at following these patterns than girls and
that may give the teacher the impression that the girls are not as good at mathematics
as the boys are. Thompson (in Murphy & Elwood, 1998, p 164) suggests that when
“communicative style does not reflect ability, observer bias seems very likely to
occur.”

Some research results also indicate that girls seem to be more comfortable with
questions that are taken directly from what they have learned in class rather than
questions that demand more thorough analysis (Reilly et al, 1995).

In connection with this some research results indicate that encouragement from
their teacher is more important for girls than for boys (Grevholm, 2000). This can be
seen as an effect of girls’ lower confidence in their ability to do mathematics than
boys, and the “learned helplessness”™ factor referred to earlier.

In connection with research results that indicate that girls may have their own
cognitive way of thinking and/or learning, separate girl classes in mathematics have
been suggested and tried out. So far there are no clear results pointing to that this is an
advantage for the girls when it comes to learning outcomes and attitudes (Harding in
Saif, 1995).

Assessment format
Some research has been conducted on gender and assessment but not necessarily in
connection with mathematics and mathematics teaching. Some research indicates that
girls are more comfortable with coursework assessment (Clark, 1996; Smart, 1996;
Leder, 1999). This is in sharp contrast to the strong tradition of final written exams in
mathematics.

Other research focuses on the context of tasks. When the context of the task is
taken from boys’ world of experience the girls’ may feel alienated because the context
is unfamiliar (Elwood & Murphy, 1998).
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Elwood & Murphy (1998) also mention communication in connection with
assessment:

Students’ learned styles of communication and ways of working combined with their
preferred choice of reading material exert a powerful influence on their solutions and
form of responses they consider appropriate. (p. 178)

Summing up

What will be most interesting for this project is the research being done on gender and
assessment besides research on boys’ and girls’ view on mathematics as a subject.
Also results from research on the classroom processes will be taken into account. As
stated earlier in this article the explanations that give potential for change are of main
interest. In the next project period project members will have two main considerations
when choosing literature to be reviewed. The first main consideration will be practical
ones as to what can be changed in Norwegian classrooms. The second consideration
will be to search for literature that can give additional information to observations in
the qualitative study.

Qualitative study
The mandate of the project group is to suggest actions to increase recruitment, among
girls especially, and to level out gender differences in achievement. In the qualitative
study the aim is to investigate students’ attitudes towards mathematics in order to try
to isolate what makes mathematics a preferred choice when choosing subjects for your
studies. In order to understand what makes mathematics a favourable subject, it is
important to gain insight into what students already choosing this subject think of it.
The project group follows four different groups of students during the school year
1999/2000:

e The Blue school : 2MX: Male teacher (B1)
2MY: Female teacher (B2)

* The Green school: 3MX: Female teacher (G1)
3MY: Male teacher (G1)

The Green school is situated in the countryside while the Blue school is situated in
a rural area. In choosing the school in the rural area schools where the applying
students had extremely high or low grade averages were ruled out. Schools with
certain cultural profiles were ruled out as well.

The four groups will be observed approximately ten school lessons each, and in
addition some students and all teachers will be interviewed at three different occasions
during the school year. All students (about 80) will be given simple questionnaires on
occasions such as starting school, mid term exams, deciding what to do next year, final
exams and others. The observations and the questionnaires will form the basis for
choosing students to be interviewed as well as determining themes for the interviews.

The four groups are of variable group size, the smallest group consisting of only
six students and the largest of 29. The number of girls varies between one’ and eight.
The students are familiar with the project aims, those of them that are 18+ have given

* Another girl dropped out of the smallest group just a few days before the presentation. Her reason for
doing so was that she had been elected president of the class. In addition she was already attending
more classes than what is asked for according to norms for secondary schooling.
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their own consent to participate in the research project. For students under the age of
18, the parents have given their consents. The climate of all groups is friendly, and we
perceive them as including. Some students will sit in pairs or small groups in all
classrooms, but in their teaching the teachers use this to a different extent. Mainly the
students themselves choose whether to sit on their own or in pairs. If seated in a pair
they are usually offered the choice of whom to co-operate with as well.

In the autumn term of 1999 we have been focusing on the following:

* Reasons for choosing mathematics

* Teaching/the organisation of the classroom
* Assessment/evaluation

* Plans for further education

This article will mainly focus on the first point giving a summary of students’ reasons
for choosing mathematics and presenting some students’ voices. The importance of the
teacher to the students will be briefly touched upon and some issues about the
organisation of the classroom will be presented.

Reasons for choosing mathematics
All students have answered a questionnaire as to why they have chosen mathematics.
Mainly four different reasons are given:

* Extra credits

* Mathematics is needed or beneficial for further education or employment

* Students are interested in the subject

* Mathematics is helpful in order to understand other subjects, for instance
physics

Students give these reasons as single arguments or in combination with one or
more of the others. No gender differences are found in the students’ reasons. The two
first reasons are the most frequent ones, but even to claim to have a special interest in
the subject is common among the students who have opted for mathematics. Only a
few students report mathematics as a supporting subject to their other choices. The
following quote from a questionnaire illustrates how students give multiple reasons for
choosing mathematics.

In the second grade mathematics was all right, with a good class climate and a teacher we
felt at ease with. The most important reason however, was the extra credits I will get by
doing Mathematics. They will come in hand when I try to become a Physician (Medical
Doctor). Rose 3MY

Extra credits

For the past few years students completing optional mathematics courses have been
given extra credits. These come in hand when applying for popular programs at
universities or colleges. Especially students wanting to go into medical school or to
study media report this as a reason for choosing mathematics.

To do Mathematics for two years gives four extra credits. So it pays well. I could have
chosen German as well, now, but I believe Mathematics is more interesting than German.
Lilly 3MX
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Usefulness

Other students report that mathematics is required (one or two years of mathematics in
addition to the compulsory curriculum depending on what you want to qualify for) or a
benefit for further education or employment. Students wanting to qualify for specific
studies report that mathematics is required or asked for. Other students report that they
have a feeling of it being helpful.

I want to be a Physician (Medical doctor), and [so I] must do Physics, Maths and

Chemistry Violet 2MX
Because I have a feeling of Mathematics being asked for at a later stage. A lot of
companies prefer that you know some Mathematics. Onslow 2MY

Interest

Both boys and girls in both streams report that they have an interest in the subject or
that they enjoy mathematics more than other subjects.

Because I am quite good at mathematics. Emmett 2MX

MX or MY?
As reported earlier, while comparable numbers of boys and girls go into the MY
program fewer girls than boys choose to take MX courses. Why do students choose to
follow one stream or the other? Are these choices strategic ones or are they based on
knowledge of the content of the curricula or demands in future studies’ or
employment?

Among the students in the MX program, there are students who claim that they did
not consider this question when choosing. Others claim that they have a special
interest in mathematics as a discipline or that doing this course is a way for self-
fulfilment. Lilly is a good example of a student demonstrating this view. She is not
planning to go on studying mathematics; she wants to study social sciences at the
university. She offers this explanation in an interview. I had not yet questioned her
upon this issue, but she apparently found it important to share this information with
me.

You might wonder why I have chosen MX, not MY? 1 did MX in the second grade, and
then I was going to have this subject for two years, because I wanted to prove to myself
that I could do it as well. Because I had heard that it was soooooo difficult.

.... And it is difficult in the third year, it is particularly difficult, but I wanted to prove to
myself that | was smart enough. In a way I could do it for self-fulfilment.
Lilly 3MX

Some of the students in the MY program indicate in their reasoning that they
conceive their curriculum as

* easier

» offering more time to work on different parts

* being for the students that are interested in mathematics without conceiving
themselves as specialists

> These demands are not formal ones, but as to what will be helpful in order to understand better.
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Also choosing this stream is considered a tactical choice among some students. Rose
clearly reports tactical reasons as well as other more personal considerations. Rose
switched from 2MX to 2MY just before the end of 1st term last year.

... I started out doing 2MX.

... Well, T is very energetic when she is teaching and all that. And it is, with her, well it
became an even more stressing subject than it really is meant to be, so I went there for
three months, then, but I found out that I rather wanted to switch over if it was possible.
Well, it was to get a better grade as well.

Interv: Yes, you thought that MY would be easier?

E: Yes, it was too.... I am glad I switched over. Rose 3MY

What do students report as positive?

The students observed in the classroom study report to be relatively positive towards
mathematics. In interviews they offer opinions on mathematics learning and teaching
in general as well as their own experiences as mathematics learners. What do students
report as positive in regard to the teaching? What do they report positive attitudes
towards? All the issues raised by the students are about their teacher or the organising
of the teaching.

For the students in the third year (3MX and 3MY) keeping their second year
mathematics teacher is reported as positive. They are familiar with this teacher, and
they have clear expectations as to how their school year will be. For instance they
know something about what they can expect of help, about what tests will look like, to
what extent their teacher will be supportive and connected matters.

This last point is also of great importance to the students that are in their second
year. They report that their teacher is important for their learning. Some of them go
into such issues as the teachers’ competence as a mathematician. The students in all
four groups describe their teachers as being very able. A couple of the students even
characterise their teacher as a “genius”.

In their descriptions of the teachers the students describe them as caring persons.
Caring in this context could mean both about students’ socially well being and about
students’ learning. In the students’ descriptions the teachers employ these qualities to a
different extent, but they sincerely see their teachers as caring.

This is probably the reason why students’ quotes tell that they (the students)
conceive their teachers as important for them in order to feel good about school. All
students interviewed have reported that they feel comfortable about being in the
mathematics classroom, and that the opportunity to ask the teacher questions is one
very important part of this. All teachers allow their students to ask questions during
blackboard demonstrations. What we observe is that while in some classrooms
questions are raised frequently, in other classrooms students rarely ask why and how®.

Some students tell that they do not feel comfortable asking the teacher for further
explanations in front of the whole group. Instead they raise questions during individual
or group work. All teachers dedicate at least half their lessons to work on items or
problems. During this time they move about in the classroom approaching students at
student requests or to check on students. The two female teachers and one of the male

% One explanation to this might lie in the nature of the answers provided by the teacher, but this
material is not sufficiently analysed to draw such a conclusion at this stage.
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teachers will regularly check on all their students during a period of independent work.
The last male teacher teaches a group consisting of only six students. In this classroom
the teacher and the students appear as a learning community together. Except during
blackboard demonstrations the teacher sits in the middle of the room and participates
in a group discussion with the students when they work on exercises. Students will ask
both fellow students and the teacher for help when needed.

In all groups students are free to approach other students with questions, or to
work in pairs or groups of three. For some students this is comforting, especially when
given the opportunity to choose themselves among their classmates exactly who they
want to work with. All teachers are flexible on the organisation of students’ seating,
even though one of the teachers have chosen to split up a group that was more off task
than on.

Students feel secure about asking their peers. Some report that they feel more
comfortable asking a peer for an explanation since he or she is likely to have the same
kind of questions and because there will probably be similarities among the students in
regard to reasoning about the mathematical content. Several students claim that their
teacher knows too much mathematics to recognise the problems the students face in
trying to make sense. When working with peers they are given the opportunity to
discuss and reason on equivalent levels.

Among the students working in pairs and the reasons they give for choosing
partners, the most frequent argument for their specific choice is to work with a friend.
Again students make choices that make them feel secure.

A few students report that the grouping is accidental, an effect of where they found
a free seat on their first day in the autumn term. What is crucial for going on working
together is that they feel they are on a comparable level, making it possible to discuss
troublesome items.

Only one pair, two girls, report that they have actively chosen each other for
pedagogical reasons. These students also find time to work together after school to
work on exercises or to prepare for tests, exams or just the next period. These girls
organise their work as a discussion oriented co-work with equal responsibilities to
offer explanations. They also feel free to pose questions. The line of work after the
common reasoning may take two paths: Sometimes they work out solutions on
exercises on their own before coming together again, other times they work out the
solutions together. These girls also report that they through their work discover
alternative algorithms to what the teacher and the teaching offers.

For several of the other students working in pairs working together means working
individually until you face something you can not solve on your own. Then you ask
your peer. Other students prefer to work individually all the time and direct their
questioning to the teacher when they need help or just a hint. What we suggest is that
the opportunity to choose for yourself how to work satisfies the needs of a large
quantity of the students and help provide a positive class climate.

Girls and mathematics — where do we go next?

In order to work towards the aims of the project, further information on some aspects
of mathematics teaching needs to be collected. Deeper insight into both student and
teacher attitudes towards testing is required. Some interviews have been conducted
where students were asked to reflect upon different aspects of testing and alternatives
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to written tests and exams. Still findings in transcripts provide more questions than
answers.
Future interviews will focus on

e assessment format

» attitudes and expectations towards testing
e self evaluation

e alternatives to traditional written tests

* teaching aides

In order to collect information about some of these issues we will conduct student
and teacher interviews on the “Red” school as well as the Blue and the Green. The Red
school is participating in the extension of an OECD project titled “Assessment as a
link between instruction and learning in mathematics”’. As a part of this project all
students write their own “book of rules” where they are free to write examples,
descriptions, make drawings, explanations, rules etc of their own choice. Students are
encouraged to bring this book to tests and exams and use it as an active aid. Will these
students’ attitudes towards assessment (written tests) differ from the attitudes
described by the students in the Blue and Green schools? Do the students in the Red
school give other reasons for choosing mathematics in the first place?

At the Blue and the Green school we would like to question students and teachers
as to what they consider important in order to increase recruitment in mathematics. An
interesting question in this context is as to while the girls already doing mathematics
mainly feel good about their choice, why are they so few?

Some of these answers might be found in the explanations of students dropping
out of mathematics. So far two girls and one boy have dropped out of the groups we
are observing. These students will be interviewed. Also students in their second year
not continuing with mathematics in their third year will be questioned on this matter
before school ends in June.

It is also in our intentions to interview school counsellors at the Blue and Green
schools to see what they do to recruit students. Are actions schools take in order to
recruit students the same actions as teachers and students suggest? What information
do counsellors report that students ask for? What information can counsellors provide?

So far the observation and interviews cumulate more questions and a few answers
to the original research questions. Clearly in addition to more observation and
interviews more searches through research literature will be helpful to suggest actions
to made to increase student recruitment and level out gender differences in the
Norwegian upper secondary school. A further review of research literature and a
linkage between literature and observations are also part of future plans. A full project
report will be written in July 2000.

7 Readers can find a description of the OECD project in “Changing the subject” edited by Black and
Myron Atkin (1996, p 211).
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A study of students’ ways of experiencing
ratio and proportion

Per-Olof Bentley
Goteborgs Universitet

Introduction

At the University of Gothenburg there was a one-year preparatory course for students
who planned to attend the teacher-training programme in mathematics and natural
science. These students joined a seven-week course in mathematics.

Proportion is considered to be one of the most important concepts in mathematics
and is useful also in several other subjects. Due to the high applicability it is probably
especially important for teachers to understand this concept. Ratio is linked to
proportion and therefore inevitable to avoid in this approach. It became natural to
examine the students’ apprehension of both ratio and proportion.

Aim

The aim of the study is to try to understand ways of experiencing ratio and proportion
for a certain group of students. The focus is on how this group of students apprehend
the concepts of ratio and proportion. It is important to point out that my ambition has
not been to look for every way of apprehending these concepts. Marton and Booth
(1997) have shown that even small groups of subjects present a variation of
apprehension.

Background

Extensive and Intensive Quantities

In modern research within the topic of problem solving it is common to distinguish
between extensive and intensive quantities. (Harel & Confrey, 1994)

An extensive quantity consists of a number and a referent. The referent is the measure
in some unit or element in a discrete set of objects. The number is multiplied with the
referent or “unit”.

The ratio of two extensive quantities can make an intensive quantity. An intensive
quantity can be a ratio in different forms, for instance “2 parts of concentrated
lemonade for 5 parts of water”. But also scale and unit conversion factors are
examples of intensive quantities. A lot of things can be described by the expression “x
pery”.

Homogeneity

The concept of homogeneity refers to the character of the data. If you for instance have
a series of data of how the price of a specific thing depends on the weight and when
every ratio of the price and the quantity is constant, homogeneity is prevailing.

75



Papers

Price Amount Ratio
$2.50 2 Kg 1.25
$3.75 3Kg 1.25
$5.00 4 Kg 1.25
$10.00 8Kg 1.25

It is therefore possible to conclude that 12 Kg cost $15.00. The price is not constant,
however, because when you buy a bigger amount of something the price per unit often
goes down.

Lybeck’s Study
Lybeck (1980) studied students’ ways of experiencing proportion. He used the volume
of water in one experiment and weight (or power) and length in another.
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The first experimental situation consisted of two different cylinders of water.
There was a scale on each cylinder. The diameter of them was different. In the first
case there was water in the first cylinder up to 6 on the scale. It was then poured into
the second cylinder and rose to 9. The water was then poured out and new water put
in. This time it was up to 4 on the scale in the first cylinder. If we now pour the water
from the first cylinder into the second cylinder, how high would it be on the scale?

In the second experiment missing value problem was also used. An object was
weighed on a spring-balance. You could check on a scale the weight of the object.

The following table was presented to the subjects:

Length Mass

4dmm 20¢g Every weight was converted to a corresponding
10mm 50g length on the spring balance. What would the weight
20mm 100 g of an object with the length of four on the scale be?

S50mm 250¢g
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Both problems led to proportional reasoning. Several different ways of reasoning were
found. The outcome space was two-dimensional with two main categories:

»  A-form, a so-called within-measure comparison, and
= B-form, an across-measure comparison.

Each of the main categories had four subcategories, which referred to more or less
implicit forms of reasoning.

In the first subcategory a way of more direct proportional reasoning was found. It
could be expressed as a ratio or as a constant multiplied by one of the variables:

y:lSD( or X:E
X 2

The second subcategory was a proportional increase or a decrease expressed as an
addition or subtraction of a ratio or a factor like

1 1
=Xx+—[k or y—-x=—I[X
Y 2 Y 2

In the third subcategory the subjects realise that the increase or decrease could not
be absolute but they are, however, unable to quantify it.
In the fourth subcategory the increase or the decrease is seen as absolute:

y=x+3 or y—-x=3

In all the subcategories the expressions could be seen in an inverted way.

The concept of homogeneity is implicitly hidden in the experimental situation and
therefore not dealt with at all.

Lybeck’s study was a further development of the research done by Karplus et al
(1975).

Kaput and West’s Study
Kaput and West found four different, but not completely different, patterns of
reasoning, namely the build-up strategy, the abbreviated build-up strategy, the unit-
factor approach and the formal equation-based approach.

The approach of the study seems to be procedural, as procedure is focused and not
apprehension.

Build-up strategy
The build-up strategy is a type of co-ordinated increment of quantities by the
following problem from Kaput and West:

A restaurant sets tables by putting seven pieces of silverware and four pieces of
china on each placemat. If it used thirty-five pieces of silver-ware in its table
settings last night, how many pieces of china did it use?

Here we have two quantities that is to say “number of silver” and “number of china”,
which increment by different numbers, seven and four respectively. The solution of the
problem is built up gradually by incrementing the two different quantities.

For seven silver, there is four china;

For fourteen silver there is eight china,

For twenty-one silver there is twelve china;

For twenty-eight silver there is sixteen china;

For thirty-five silver, there is twenty china. (Kaput & West, 1994)
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Abbreviated build-up strategy
In the abbreviated build-up process a structure of division and multiplication is
prevailing.

In the above-mentioned problem you first examine how many placemats that were
laid:
35 silverware

_ = 5placemats
7 silverware / placemat

This is of cause the division structure. It will be followed by a multiplicative structure.
5placematse 4 china/ placemat =20 china

This two-step approach, division and multiplication, is a more efficient way of
reasoning. It is therefore termed an abbreviated build-up strategy. (Kaput & West
Maxwell,1994)

The unit-factor approach
This approach is usually used in problems with continuous variables. Kaput and West
therefore use another problem called the “Italian dressing problem™:

“To make Italian dressing you need four parts of vinegar for nine parts of oil.
How much vinegar do you need for 16 decilitres of oil?”

First it is necessary to find the amount of vinegar per parts of oil.
4 vinegar
9 ail
Then how much vinegar do you need for 16 decilitres of 0il? For one decilitre of oil
you need 0,44 decilitre of vinegar, for 16 decilitres you need

16 dl « 0,44 dl vinegar /dl oil =7,04 dI

=0,44 vinegar /oil

By using the approach to find the amount per unit you make it possible to scale up to
the requested amount. It is therefore termed the unit-factor approach. (Kaput & West
Maxwell, 1994)

The formal equation-based approach

In this approach an ordinary equation is used. This means according to Kaput and
West that the subject does not fully need to understand the actual problem and the
different concepts used. They actually claim that it is easier to solve the problem by
this approach.

7 silverware _ 4 china
35dglverware X china

The approach is of course termed due to the use of equations. (Kaput & West
Maxwell, 1994)

Lamon’s Study

Lamon (1994) studied twenty-four sixth-grade children’s pre-instructional thinking.
She used missing value problems and found that students have a lot of pre-
instructional thinking, but they were not using the formal symbols in an equally
developed way. In the balloons-problem the students were asked the following:
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Ellen, Jim and Steve bought 3 helium filled balloons and paid $2.00 for all three.
They decided to go back to the store and get enough balloons for everyone in their
class. How much did they have to pay for 24 balloons?

Lamon found four different ways in which the students solved the problem.

* The subjects grouped the balloons in groups or sets of three and then stated that
you need eight such groups in order to get all twenty-four. Eight times two make
sixteen.

= They used the build-up strategy.

= The subjects first calculated the price per unit. Then they multiplied by the total
number. This is the unit-factor approach.

= Three balloons were $2.00 and 2 divided by 3 is */;. How many 24ths is */5? It is
'/,4 and therefore the answer is 16.

The last approach is a within-strategy. The scaling factor in the first measure space
was calculated and then it was applied in the second measure space. The majority of
the children used the first strategy.

The subscription problem:
y=x+3 or y—-x=3
The student was shown a card in a magazine that offers three plans for
subscribing the magazine. (1) You may subscribe for a 6-month period, during
which time you will receive three bills each for the amount of $4.00. (2) You may
subscribe for a 9-month period, during which time you will receive three bills each
for the amount of $6.00, each. (3) You may subscribe for a 12-month period,
during which time you will receive three bills each for the amount of $8.00, each.
Do you get a cheaper rate if you buy the magazine for a longer period of time?

Only thirteen students of twenty-four were successful. Six different strategies were
found. The two predominant were:

=  Compare the price for 12 months with the cost for two six-month periods and then
the 9-month period is in the middle.

= Group the months’ periods in sets of 3 months. For a 6-month period the price per
3 months is the same as for each 3-month period in the 9- and 12-month periods.

Fifteen out of twenty-four students solved the next problem.
The apartment problem:

In a certain town, the demand for rental units was analysed and it was determined
that to meet the communities’ needs, builders would be required to build units in
the following way: every time they build three single units, they should build four
two-bedroom units and one three-bed unit. Suppose a builder is planning to build
a large apartment complex containing between thirty and forty units. How many
units should be built to meet this regulation? Suppose one built 32/40 (choose
one). How many one-bedroom units, two-bedroom units and three-bedroom units
would the apartment building contain?

Eleven students used a unitising approach.
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The unit was:

1-bedroom apartments
2-bedroom apartments
3-bedroom apartments

The units of units were:

Three units of 1-bedroom apartments
Four units of 2-bedroom apartments
One unit of 3-bedroom apartments

The units of units of units were:

Those units of apartments together form one eight unit of apartments.
The units of units of units of units were:

How many 8 units are needed?

4 or 5 of that 8 unit.

Lamon concludes that unitising and norming processes play an important roll in
developing more advanced strategies for proportional reasoning. (Lamon, 1994)

Method

Approach
The basic assumption in this study is mainly post-positivistic. The ontological
assumption is that the world is real and possible to observe, however not fully
objectively. Yet it is necessary to strive for as high a degree of objectivity as possible.
Epistemologically knowledge is seen as non-falsified hypotheses. These
hypotheses could be considered as facts or probable laws. (Guba & Lincoln, 1994) In
this paradigm the focus is not on experimental arrangements, but rather on studying
reality as it is, in this case how students solve maths problems. Apprehension is not
possible to study directly, since it is not possible to study what is going on inside their
heads.
Both quantitative and qualitative data have been used. Quantitative data were the
result of an inquiry test and qualitative data were transcribed interviews.

Pilot Study

First a pilot study was conducted. In order to examine the students’ knowledge or
ability in ratio and proportion they were given a diagnostic test. There were indications
from the test that some problems were severe. The problems used were standard
“missing value proportional reasoning word problems”. This is a particular case of
“reasoning in a system of two variables between which exist a linear functional
relationship”. (Karplus, Pulos & Stage, 1983, p. 219)

The Interview Study

In-depth interviews were then carried out with ten students and the interviews were
tape-recorded. Having summarised the recordings, a qualitative analysis was applied to
the data. In “The Discovery of Grounded Theory” Glaser and Strauss (1967) describe
how a theory can be generated directly from the data. The theory in this case is not
generated by the testing of hypothesis but is successively growing from the data. This
growth takes place step by step according to a certain ritual. The first step is to
conceptualise the data, a process called “open coding”. Different ways of reasoning are
attributed to a concept.
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In order to sharpen the limits of every concept a comparative analysis and a
dimensional analysis are used.

The concepts are then arranged into categories due to their character. The
categories are then compared in order to further define the category-limits. By use of
the comparative and the dimensional analysis relations between the categories can be
established.

The theory, which in this way is developed out of the data, is called grounded
theory.

Theoretical sampling means that the theory that is successively developed out of
the data is also the basis for the sample of subjects or for new questions that should be
put. In this case the interviews were made in intervals. In the meantime analyses were
carried out which led to changes of the sample. Special attention was also paid to the
way the subjects reasoned about the concept of “parts™.

Theoretical saturation means that after collecting a certain amount of data, new
data will not develop the theory further, since saturation is reached.

Problems
The tasks given the students to solve were the following two “missing value
problems”.

The lemonade problem:

You are about to make lemonade. On the bottle you read: 2 parts of concentrated
lemonade and 5 parts of water. You wish to get 8 litres of mixed lemonade. What
amount of concentrated lemonade should you add?

The vinegar problem:

We are going to mix vinegar, 2 parts of vinegar and 5 parts of water. We have 8
litres of water. How much vinegar shall you add?

Results
Three qualitative different categories were found namely “Explicit Proportionality”,
“Implicit Proportionality” and “Absolute Proportionality™.

Explicit Proportionality

The concept of “parts” was expressed as a ratio for a/l quantities. This ratio was also
possible to apply to different quantities and not only to a specific quantity. One of the
students, Peter said when trying to solve the lemonade problem:

That % of 8 litres is the concentrated lemonade

Another student, Anna said:

There are 2 parts of lemonade in 8 litres.
Two sevenths should be concentrated lemonade of 8 litres.
Then it makes

23=20-52 |ipres
7 7 7
. . : 2 16
Sven claimed that: Two sevenths of eight litres F] [B= 5

You can also take a proportional percentage multiplied by 8 litres.
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This way of experiencing ratio or proportion is usually considered to be the most
developed category. Lybeck (1980) termed it A-forms. This is also known as “within
approach”. Ratio is composed of quantities within the same dimension or “unit”.

B-forms or the “between approach” are also represented in this category. In this case
the ration is composed of quantities of different dimensions or “units”. When Kate
solved the lemonade problem, she said:

8 divided by 7.

Concentrated lemonade 27
Water @
7

Notice that eight has the unit “litres” and seven “parts”. Kate used the same
approach for the vinegar problem. She answered immediately:

204

—— = 1.6 litres.

Implicit Proportionality
The students representing this apprehension did not operate with ratio at all.
When attacking the lemonade problem Per said:

2 dl and 5 dl make only 7 di
He argued in the following way:

2 parts make 5 litres
3 parts make 6 litres
1 part makes....

Per transformed “parts” into litres and then operated in this dimension not scaling it
properly to reach other quantities. Per seemed unable to deal with quantities of more
than one dimension.

At first Lena stated that she ought to get a relation for 1 litre and then multiply by
8.

2 dl concentrated lemonade and 5 dl water makes 7 dl mixed lemonade.

Then she tried to multiply with some number in order to get as close to 8 as possible.
She found 11 and got 77dl that was the closest she got to 8 litres. She concluded.

This means 22 dl concentrated lemonade.

Absolute Proportion
In this category the concept of proportion was used as if the “parts” did not express
anything about other quantities than one litre.

The students changed the “parts” in order to describe proportions for other
quantities. This inability not being able to transfer the information in the “parts” to
other quantities into other dimensions is characteristic to this category. This is termed
“absolute proportion”(my definition) due to the fact that the students operated only in
“parts”, not in any other dimension.

Kim concluded the following:
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That the lemonade is 16 parts and the water is 40 parts.
Roger on the lemonade problem:
1 litre to be divided into 7 parts
but he did not seem to complete this way of reasoning. Instead he said:
2[8=16 parts
On the Vinegar Problem Roger said:
2[4 =8 parts
But then he switched approach and continued:

1 litre with 7 parts makes a certain number (x).
2k +5[X make 4 litres

This is the only equation-based approach in the group. (Kaput & West Maxwell, 1994)

Discussion
The aim was to try to find out the students’ ways of experiencing ratio and proportion.

This aim was fulfilled. Three different categories were found and several
subcategories. The first category contained the sub-categories, a “within” subcategory
and a “between” subcategory. It seemed to me that due to the experimental situation or
the character of the problems, the two other categories, “implicit proportionality” and
“absolute proportionality”, emerged.

A majority of approaches in these categories would be classified as “wrong” or not
successful. These categories seemed new but could, however, depend on the
interpretation of the data. My analysis is of course only an attempt to interpret these
data.

Lybeck’s main categories A-form and B-form were found in the category of
“explicit proportionality”. The character of his experiments seems to hide the other
two categories. Probably due to the concepts of “parts” and the relativity of that
concept, the two other categories, “implicit proportionality” and “absolute proportio-
nality” are exposed. It seems natural to conclude that these categories are more or less
linked to the concepts of “parts”.

Of Kaput and West’s four approaches, “the build-up strategy”, “the abbreviated
build-up strategy”, “the unit-factor approach” and “the formal equation-based
approach”, only three were found.

It seems that Kaput and West could have had a different epistemological approach
than T have had in this paper. They focus on approaches. They seem to have a more
procedural focus. With a focus on approaches it is possible to conclude that three of
their approaches were found.

The build-up approach could be identified in one of the examples in the category
of “implicit proportionality”. Per argued in the following way:

2 parts make 5 litres, 3 parts make 6 litres, 1 part makes....
This is clearly the “build-up approach”.

The “abbreviated build-up strategy” was also found. When Kate solved the
lemonade problem, she said:
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8 divided by 7.

Concentrated lemonade g

Water @
"

The “unit-factor approach” was not found.
The “formal equation-based approach” was represented by one student, Roger,
who first started with another approach and then switched strategy and said:

1 litre with 7 parts makes a certain number (x).
2k +5[Xk make 4 litres

The use of an equation is evident.

The result from Lamon’s investigation shows that unitising and norming processes
play an important roll in developing more advanced strategies for proportional
reasoning. (Lamon, 1994). This is also found in my investigation but not to a large
extent. In the “explicit proportionality” category several students create a ratio like
“two sevenths”. For instance several students also try to find out how many litres there
are per part. This seems to be congruent with as the “abbreviated build-up strategy”.

Part of the result seems to be similar to that found earlier. What could be new in
this paper is the category of “absolute proportionality” in which the subjects operate
with “parts” all the time. It is also possible that in the category “implicit propor-
tionality” the conversion from parts to litres in order to avoid operating in two
different quantities is a new strategy.

In future research it would be interesting to focus on students who have not
successfully solved the problems. This is of course not a new approach but if one
focuses the aspects of relativity of the concept of “parts” it would still be interesting.

Educational Implications

Ratio and proportion should be devoted bigger attention in class. It seems to be
necessary to apply proportion to several different quantities more or less simul-
taneously. It is also necessary to use exercises with quantities of at least two different
dimensions. The key issue seems to be an inability to relate quantities of different
dimensions to each other.
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Rationalitet och intersubjektivitet —
nigra preliminira utgangspunkter i ett forsok att forsta
matematikundervisningens kommunikativa karaktar

Arne Engstrom
Orebro universitet

Inledning
Mathematik ist keine Menge von Wissen.
Mathematik ist eine Tatigkeit, eine Verhaltensweise,
eine Geistesverfassung.
Hans Freudenthal, 1982

I det inledande avsnittet ges utifrdn en bestimning av matematiken en bakgrund till de
fragor om rationalitet och intersubjektivitet 1 matematikklassrummet som denna
uppsats avser att diskutera. Avsikten dr att utarbeta en teoretisk begreppsram for
empiriska studier av klassrumsinteraktion. Jag kommer att relatera matematik-
undervisningen till upplysningens idéer om bildning och medborgarskap. Det dr en
vidareutveckling av vissa tankar som redan fanns 1 mitt avhandlingsarbete (Engstrom,
1997).

Matematik

Matematik spelar en viktig roll 1 vart samhélle. Den kan anvéndas for att studera och
analysera samband 1 omvérlden. Den &r ocksa en av véra dldsta vetenskaper. I modern
naturvetenskaplig forskning dr matematik en viktig hjdlpvetenskap. Forstéelsen av
avancerade modeller som ofta anvinds inom den naturvetenskapliga forskningen
forutsatter mycket goda kunskaper 1 matematik. Detta nidra samband mellan matematik
och naturvetenskaperna fir dock inte forleda oss att tro att matematik dr natur-
vetenskap.

Naturvetenskaperna syftar till att beskriva och studera foreteelser 1 vér fysiska
omvirld. Naturvetenskaperna uppstéller teorier vars sanning och forklaringsvirde
visas genom experiment. Naturvetenskapliga teorier bevisas inte genom detta, utan de
gbrs mer eller mindre troliga. Det finns dock alltid en mojlighet att modellen eller
teorin inte géller, att man via experiment fir resultat som strider mot modellens
forutségelser.

Matematik diaremot dr en minsklig konstruktion, dir man utifran ett litet antal
givna forutsdttningar, s.k. axiom, kan bevisa att olika utsagor ar sanna. Till skillnad
frdn méanga andra vetenskaper, t.ex. samhéllsvetenskaperna, som ofta ar flerparadig-
matiska, gir det inom matematiken att avgdra om ett resonemang &r riktigt eller
felaktigt utifrén givna villkor. Ddremot kan man vara oense om huruvida en viss metod
ar att foredra framfOr en annan, eller hur ett visst problem ska formuleras och om hur
ett visst resultat ska tolkas.

Det dr, som Damerow (1996) betonar, en vésentlig skillnad mellan att undervisa 1
matematik och i t.ex. biologi. Nir en ldrare 1 biologi demonstrerar ndgonting péd en
vixt sa forsoker han/hon ldra ut ndgot om vixter. En matematikldrare ddremot som
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demonstrerar ett begrepp pa verkliga objekt avser inte att arbeta med verkliga objekt
utan forsoker kommunicera en mental konstruktion som inte har ndgon motsvarighet i
den verkliga virlden. Ett trdd pa klassrumstavlan dr en ikonisk modell av ett verkligt
trdd, medan en triangel ritad pd tavlan dr en modell av en abstrakt idé. Liarandet 1
matematik bygger pa bade abstraherande och generaliserande processer.

Matematik ar ytterst ett medel for den enskilde att beskriva och analysera
omvdirlden och sin egen situation. Formigan att anvinda matematik dr av samma
karaktdr som formégan att anvdnda det egna spraket (Hogskoleverket, 1998). Upp-
fattad péd detta vis ges matematikutbildningen en humanistisk dimension dir med-
borgarskap och bildning ses som viktiga aspekter av matematiken.

Matematik brukar uppfattas som universell och logiskt nédvédndig. Den
amerikanske matematikern Benjamin Peirce' definierade matematik som ”science of
drawing necessary conclusions” (citerat i Steen, 1999, s. 270). Jag kontrasterar min
egen uppfattning mot dels platonism®, dvs. att denna universalism skulle dga en
motsvarighet 1 en idévérld, dels mot social idealism, att matematiken &r situerad 1 den
meningen att exempelvis vad vi uppfattar som logik dr avhingigt sociala omsténdlig-
heter. Samhdllet spelar en roll for hur vi kommer att uppfatta vad logik och fornuft &r,
men inte hur som helst, for som Piaget (1965) sdger, det vore att forvidxla fornuftet
med ”statens fornuft”.’ Lat mig tillbakavisa den sociala idealismen med den
amerikanske filosofen Mark Bickhards ord:

If all knowledge is just whatever society says it is, why don’t we agitate or persuade
society to simplify mathematics? Wouldn’t our rhetoric be better directed in that way?
Wouldn’t our world be much simpler if pi (7) simply equalated the integer 3?
(Bickhard, 1995, s. 257).

Piaget betonar inledningsvis 1 sin essd Sociologiska forklaringar (Piaget,
1965/1974) att den minskliga kunskapen vésentligen dr kollektiv och att det sociala
livet utgdér en av de viktigaste faktorerna i de forvetenskapliga och vetenskapliga
kunskapernas uppkomst och tillvixt. Men vilka dr sambanden mellan logik och det
sociala livet? Jag kommer att diskutera detta nedan.

Lat oss jamfora nio 1 foljande satser:

a) Runt vér sol ror sig nio planeter.
b) Tre ganger tre ar nio.

Till skillnad fran i sats a dr nio en nddvindighet 1 sats b. Vad ér det som gor denna
nodvindighet? Beror det pa konformitet eller dr det bara konventioner? Det dr
ingendera. Matematiska sanningar dr logiskt sanna och barn utvecklar en forstielse for
sddana sanningar. Men pa vilka grunder?

' Benjamin Peirce var professor i matematik och astronomi vid Harvard och far till Charles S. Peirce.

* Det finns enligt platonismen en unikt korrekt matematik. Sa uppfattades Euklides geometri linge
som sjdlva grundvalen for allt vetande om rumsliga férhallanden. Under 1800-talet uppkom ett antal
s.k. icke-euklidiska geometrier. Vid sekelskiftet uppticktes ett antal paradoxer inom mingdliran,
vilken hade utvecklats av Cantor i slutet av 1800-talet. Tillsammans kom de att i grunden foridndra
synen pa matematik. Platonismen dr inkorrekt och oforenlig med matematikens senare landvinningar
att det existerar skilda, men lika giltiga former av talteori, algebra, topologi — beroende pé vilket
mingdbegrepp som anvénds. Eftersom varje sddant mangdbegrepp dr matematiskt lika giltigt sé
existerar ingen unikt korrekt matematik. Platonismen &r darfor falsk.

* Tl est clair, en effet, que n’importe quelle action de «la société» sur Iindividu n’est pas source de
raison, sans quoi celle-ci se confondrait trop souvent avec la «raison d’Etat» (Piaget, 1965 s. 146).
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The growth of knowledge is always something undertaken by a subject where the
function of that knowledge is to build up a viable set of presentations, including re-
presentations over time. The child who believes that 7 + 2 = 9 but that 2 + 7 = 5 has
the task not of checking out one of these beliefs against an otherwise mysterious
reality but rather of constructing a self-consistent system of knowledge (Smith, 1993,
s. 509).

Nodvindig kunskap dr universalia. Den kunskap som en individ har utvecklat dr inte
en personlig egendom. Alla kan utveckla och dirmed ”dga” kunskapen 7 + 5 = 12.
Nodvindig kunskap ar sjélvidentisk, dvs. det d&r samma kunskap som forvérvas av alla
dem som forvérvar den. Nodvéndig kunskap ér sann 1 alla mojliga véirldar (se fotnot
13). Man kan ocksd, som Wittgenstein hdvdar, sdga att logiken avspeglar vart sétt att
tinka.

131. Die logischen Gesetze sind allerdings der Ausdruck von »Denkgewohn-heiteng,
aber auch von der Gewohnheit zu denken. D. h., man kan sagen, sie zeigten: wie
Menschen denken und auch, was Menschen »denken« nennen (Wittgenstein,
1956/1994, s. 89).

133. Die Sitze der Logik sind yDenkgesetze«, Weil sie das Wesens des menschlichen
Denkens zum Ausdruck bringen< — richtiger aber: weil sie das Wesen, die Technik des
Denkens zum Ausdruck bringen, oder zeigen. Sie zeigen, was das Denken ist, und
auch Arten des Denkens (Wittgenstein, 1956/1994, s 90).

Under senare ar har reasoning, ett lite svardversatt ord 1 detta sammanhang, fatt en
allt storre uppmérksamhet i den internationella matematikdidaktiska diskussionen.*
Det handlar om det for matematiken s& centrala — att resonera, att argumentera, gora
slutledningar och leda nagot i bevis — med andra ord om att kommunicera det som vi
har mgjlighet att veta ndgot om. Det dr intressant att notera att det amerikanska
matematikldrarsillskapet, NCTM, 1 sitt ldroplansarbete, Standards 2000, har fort in
reasoning som ett viktigt moment 1 matematikutbildningen fran forskolan och uppat.
NCTMs senaste drsbok (Stiff, 1999) har just frdgan om hur man utvecklar reasoning 1
matematikundervisningen som tema. Reasoning ges hér en betydligt vidare betydelse
dn den traditionellt har for matematiker (deduktion och formell bevisforing). Steen
(1999) varnar for att okritiskt anamma reasoning som slagordet for 2000-talets
matematikutbildning och gor paralleller till tidigare satsningar pd problemldsning,
back-to-basics etc. Jag menar dock att det finns goda skél att uppmérksamma
reasoning 1 den vidare inneborden. Dess tydliga kommunikativa karaktir reser fragor
om forhédllandet mellan rationalitet och intersubjektivitet. Maher (1998) ger ett
illustrativt exempel pd hur man kan arbeta med att resonera och argumentera 1 de lagre
arskurserna 1 grundskolan som dr taget frdn hennes egen klassrumsforskning.

Piaget diskuterar 1 essdn Les opérations logiques et la vie sociale (Piaget,
1965/1995) logiken utifran de skilda klassiska sociologiska utgdngspunkterna hos
Tardes sociologiska individualism och Durkheims sociologiska holism. Han pladderar
for ett tertium quid:

* Se t.ex. Drouhard et al (1999), Krummheuer (1999) och Wood (1999).
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If logical progress goes hand in hand with progress in socialization, is it because the
child becomes capable of rational operations due to the fact that social development
makes him capable of cooperation; or, on the contrary, is it because his individual
logical acquisitions permit him to understand other people and thus lead to
cooperation? Since the two sorts of progress go completely hand in hand, the question
seems to have no solution except to say that they constitute two indissociable aspects
of a single reality that is at once social and individual (Piaget, 1965/1995, s 145).

Hur matematiken uppfattas har viktiga implikationer for undervisningspraktiken. Aven
om denna aspekt inte dr 1 fokus for detta paper sé lat mig dnda fa berdra detta med en
hianvisning till den tyske matematikdidaktikern Heinrich Bauersfeld som menar att
fundamentalt olika undervisningspraktiker uppkommer om matematiken uppfattas
som en objektiv sanning, en samhéllelig skatt, ndgot existerande, eller som en praktik
av gemensam matematisering, som styrs av de regler och dverenskommelser som
uppkommer ur denna praktik.

The first conviction will lead teachers to “introduce” children, to use “embodiments”
and “representations”, which are structurally as “near to the structure mathematically
meant” and as little misleading or distracting as possible. Children’s errors will find
corrections toward the expected correct answer and so forth. Objectively existing
structures and properties also give space for “discovery” activities, given that the
expected findings are in reach of the present cognitive aptitudes (e.g., “zone of
proximal development”).

The latter conviction will lead teachers to organize their activities as part of a
practice of mathematizing, that is, as a challenging and supportive “subculture”
specific to this teacher and these children in this classroom, which functions toward
developing the students’ “constructive abilities”, their related self-concept, and self-
organization, rather than as a management through product control and permanent
external assessments. The diversity of subjective constructions of meaning and the
necessity to arrive at viable adaptations — “taken-as-shared meanings” and “taken-as-
shared regulations” — requires optimal chances for discussions based on intensive
experiences and aiming at the negotiation of meanings. (Bauersfeld, 1993, s 140)

Dérmed blir matematikens relation till upplysningens idéer om medborgarskap och
bildning synliggjorda.” Jag vill knyta matematikutbildningen till upplysningens
klassiska tankar om bildning som myndiggérande och medborgarskap 1 en demokrati.
Jag stéller detta i bjart kontrast till de mélrationella och individualistiska synsitt som
idag breder ut sig i det allménna skolvisendet.

Bildning

Borde vi dteruppritta ordet bildning, fragade sig Gunnar Bergendal (1985), da rektor
vid Lérarhogskolan 1 Malmo, for 15 ar sedan — frdgan kédnns lika aktuell idag — och
fortsatte:

> T de nordiska linderna &r det framst Stieg Mellin-Olsen (1987) och Ole Skovsmose (1994) som
anlagt ett sociologiskt perspektiv pd matematikutbildningen. I det senmoderna samhéllet med dess
konvulsioner (migration, globalisering, etc) for nationalstaten vill jag hidvda att det inte ldngre &r
mojligt att undandra matematikutbildningen dessa aspekter. Fragor som ror demokrati, medborgarskap
och bildning dr centrala for matematikutbildningen i det senmoderna samhéllet.
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Ga tillbaka till dess ursprungs killor — att bildas, formas. D& blir bildning det skeende i
vilket min kunskap formas. Frén livets borjan till dess slut. Kunskapen bildas i
skdrningen mellan min livsvandring och de traditioner jag moter, gar in 1, fods in 1 —
ddrav kunskapens pd en gang individuella och kollektiva karaktdr. Och da dr det sé
tydligt att god kunskap bildas bara i levande traditioner, med personligt
ansvarstagande och personlig tolkning, och inom den helhet som ménniskors villkor —
politiska, ekonomiska, kulturella, ... — utgor (Bergendal, 1985, s §82).

For bildningen — i motsats till utbildningen — finns inte ett pa férhand uppsatt mal,
bildning dr sokande, provande, virderande. Bildningen tillhor livet sjdlvt, den berikas
av erfarenheter, mot- och framgingar i familjen, skolan, arbetet, kort sagt i
mangfalden av méinskliga gemenskaper (Bergendal, 1985, ss 82—83).

Situationen for skolmatematiken &r bekymmersam. Allt for ofta leder matematik-
undervisningen 1 vara skolor till leda, angest och utslagning bland eleverna. Det dr nog
fa elever som upplever matematiken som frigérande. Kanske ligger en av orsakerna
déri att vi forsdker undervisa 1 &mnet som om det fanns en matematik fri frén alla de
kulturella och sociala sammanhang vi ménniskor lever 1? Bergendal (1985) pekar pa
att matematiken, alltsedan den antika grekiska kulturen, har burit pd en spdnning
mellan den rena matematiken som en logisk struktur och den verklighet som vi méter
och paverkar. Man kan sédga att med den icke-euklidiska geometrins framvéxt 1 borjan
av forra seklet lyfte matematiken fran verkligheten och utvecklades till en rad
abstrakta system som kunde fyllas med olika verklighetsinnehdll. T det véxelspel
mellan denna matematik och de exakta naturvetenskaperna har den utveckling skett
som fort den ménskliga kunskapen till materiens innersta och universums yttersta.
Men, inflikar Bergendal,

... for kunskapen om ménniskan och ménniskans samhille dr vetenskapen matematik
utomordentligt problematisk. Ty denna kunskap beror pd méngtydigheten 1 spraket
och andra uttrycksformer och pé att entydiga grinser mellan subjekt och objekt inte
kan dras, medan matematiken bygger pd sina begreppsbildningars entydighet
(Bergendal, 1985, s 64).

I konflikten mellan formallogikens universella ansprak och ménniskornas framhaller
Bergendal att

... en skolmatematik som star p4 ménniskornas sida handlar om verkligheten genom
mainniskornas egna erfarenheter och ér inbdddad i vardagsspraket och andra minskliga
uttrycksformer. Den har andra vérderingar och meningsskapande sammanhang dn den
matematiska vetenskapen, bestdmda av det vartill kunskapen skall anvidndas
(Bergendal, 1985, s 64).

Vid sidan av en formell skolmatematik har det naturligtvis alltid funnits en informell,
en folkets, matematik. Folkliga rdkne- och problemldsningsmetoder har funnits 1 de
flesta yrken. Langs véra kuster har det byggts bétar och skepp allt sedan vikingatiden.
Katedraler och sockenkyrkor har byggts runt om 1 landet sedan 1100-talet. S&dd och
skord, smide, snickeri och fiske — alla dessa verksamheter har inbegripit en folkets
matematik som utvecklats utan formell skolgéng. Det har varit en matematik som
baserat sig pa pa en ingdende kunskap om och handhavande av de hantverksprocesser,
ramaterial och verktyg, som anvénts. Skolmatematiken har 1 stor utstrickning kommit
att fjairma sig frdn denna informella och kontextbundna matematik.
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Matematikklassrummets fenomenologi’

Som ldrare slits vi ofta mellan elevens egen, ofta idiosynkratiska, forstaelse av
matematiken och var egen uppfattning av d&mnet baserad pa en “korrekt” forstaelse av
vad matematik dr. Det kan vara svirt som ldrare att skapa sig en mening eller innebord
1 den matematik som eleverna ger uttryck for. Jag ska hér diskutera hur en individ
konfronteras och arbetar med matematiska idéer. I detta sammanhang ska matema-
tiska idéer inte uppfattas som universella objekt utan de fir sin mening pa det sétt som
en elev uppmérksammas pd dem. Det innebér ett avvisande av den cartesianska
dualismen mellan subjekt och objekt, mellan eleven och det matematiska objektet.

Fokus 1 min diskussion ligger pa socio-kognitiva aspekter av larandet. Avsikten ar
tudelad. Dels géller det att forsoka forstd hur en individ skapar sig en forstéelse av den
virld som framtrider for henne/honom 1 klassrummet. Det dr individens erfarenhet av
véarlden, av matematikklassrummet, av den sociala interaktionen, som végleder
hennes/hans handlingar, snarare 4n yttre bestimda begrepp av matematiken i sig. Dels
giéller det att forsta villkoren for hur ldrandet 1 matematik, uppfattad som en kommuni-
kativ rationalitet, kan beframjas.

Det kan vara viktigt att hdr gora ndgra avgrinsningar. Jag avser inte att diskutera
t.ex. Piagets centrala begrepp reflekterande abstraktion och konstruktiv generalisering,
begreppsbildning 1 matematik, matematikens essens eller liknande frdgor dd dessa
faller utanfor ramen f6r denna uppsats.

Aven om jag sjilv utgar fran ett radikalkonstruktivistiskt perspektiv dr det sannolikt
sd att de teoretiska utgdngspunkter jag har, for att forstd rationalitet och inter-
subjektivitet, kan delas eller omfattas i olika utstrdckning av andra ansatser. For en
hianvisning till andra forskare som utifrdn liknande utgdngspunkter diskuterat for-
hallandet mellan radikalkonstruktivismen och interaktionismen se t.ex. Cobb &
Bauersfeld (1995) och Bauersfeld (1998).

Grundliggande utgangspunkter

Hér ska mina grundldggande utgingspunkter for en forstdelse av rationalitet och
intersubjektivitet 1 klassrummet diskuteras utifrdn Jirgen Habermas teori om det
kommunikativa handlandet, Jean Piagets sociologiska arbeten’, Alfred Schiitz sociala
fenomenologiska teori om livsvirld, Ludwig Wittgensteins sprékspelsteori och Charles
S. Peirce teckenteori (semiotik). En sddan diskussion 0ppnar naturligtvis for kritiska
anmdrkningar om eklekticism. Men en sddan kritik vore att missforstd min avsikt. Jag

% Den ursprungliga idén till denna uppsats fick jag av ldsningen av Tony Browns (1996) artikel The
phenomenology of the mathematics classroom samt hans bok Mathematics education and language
(Brown, 1997). Brown diskuterar dér utifrdn Alfred Schiitz’ sociala fenomenologi hur en individ erfar
och skapar sig en matematisk forstdelse utifrén ett livsvirldsperspektiv. Min framstéllning nedan av
Schiitz arbeten bygger i huvudsak pid Browns bida arbeten. Aven om jag i flera avseenden delar
Browns perspektiv sd har jag genom arbetets géng, bl.a. genom att ta upp centrala idéer hos framfor
allt Jirgen Habermas och Jean Piaget kommit att gora en ndgot annorlunda ldsning av fenomenologin
dn den Brown gor.

7 Piagets sociologiska arbeten 4r av ndgon anledning inte sirskilt uppmirksammade, frimst kanske for
att de flesta arbeten inte funnits tillgdngliga annat &n pé franska. Piaget innehade under ett antal &r bl.a.
en stol i sociologi vid universitetet i Genéve. Den tredje delen av hans chef d’ceuvre (Piaget, 1950)
dgnades bl.a. at sociologin. Etudes Sociologiques, som ir en samling essier, utkom 1965 och i engelsk
oversittning forst 1995. En svensk dversittning av den inledande essdn kom redan 1977! Det finns ett
flertal mycket initierade genomgéngar av Piagets sociologiska arbete, bl.a. Mays (1982), Chapman
(1986, 1988), Kitchener (1991/1996) och DeVries (1997).

91



Papers

avser att i min diskussion behandla ett antal gemensamma berdringspunkter som jag
funnit hos dessa forfattare. Det vidare arbetet kan komma att visa pd oforenliga
ansatser eller antaganden bakom dessa vilket jag dé far ta stéllning till.

Kommunikativ handling — Habermas och Piaget
Mainniskors atgirder och handlingar far sin mening och giltighet genom det tanke- och
asiktsutbyte som sker. For ett sddant samspel krdvs en kommunikativ kompetens — en
formiga att granska tankegéngar kritiskt utan Oppen eller dold styrning av de
maktintressen som samhillslivet genomsyras av. "Mit dieser kommunikativen Praxis
vergewissern sie sich zugleich ihres gemeinsamen Lebenszusammenhangs, der
intersubjektiv geteilten Lebenswelt (Habermas, 1981/1997, s 32).

Min diskussion om de gemensamma utgangspunkterna hos Habermas och Piaget tar
avstamp 1 Piagets essd Sociologiska forklaringar:

Varje socialt samspel [interaction sociale, min anm.] framtrdder sdlunda som om det
manifesterade sig i form av regler, viarden och tecken. Sjdlva samhillet utgor a andra
sidan ett system av interaktioner som bdrjar med relationerna mellan individerna tva
och tva och utstrackes dnda till interaktionerna mellan var och en av dem och samtliga
andra. Det utstrdckes ocksa till den paverkan som alla foregdende individers
handlingar, dvs handlingarna i alla historiska interaktioner, utdvar pa de som utfors av
de aktuella individerna (Piaget, 1965/1974, s. 38).

Piagets inflytande pd Habermas mérks pa flera sétt. Dels 1 direkta hdnvisningar till och
diskussioner av Piagets arbeten som 1 Habermas (1976, 1981a/1997a). Dels i1 de klara
paralleller som finns mellan Habermas och Piagets syn pd t.ex. kommunikation och
deras distinktioner av sociala kriser (se t.ex. Chapman, 1986)."

Nér man talar om handlingars rationalitet avses vanligtvis en malrationell innebdrd.
Men detta dr bara en aspekt utifrdn vilket handlingar kan goras rationella, dvs. utforas
mer eller mindre rationellt, menar Habermas. Nir man anvinder sig av termen
rationell forutsdtter vi ett ndra samband mellan rationalitet och vetande, men [...]
Rationalitét hat weniger mit dem Haben von Erkenntniss als damit zu tun, wie sprach-
und handlungsfihige Subjekte Wissen erwerben und verwenden (Habermas,
1981a/1997a, s 25).

Begreppet kommunikativ rationalitet gar tillbaka till

. die zentrale Erfahrung der zwanglos einigenden, konsensstiftenden Kraft
argumenta-tiver Rede, in der verschiedene Teilnehmer ihre zundchst nur subjektiven
Auffassungen iliberwinden und sich dank der Gemeinsamkeit verniinftig motivierter
Uberzeugungen gleichzeitig der Einheit der objektiven Welt und der Intersubjektivitiit
ihres Lebenszu-sammenhangs vergewissern (Habermas, 1981a/1997a, s. 28).

¥ Habermas (1981/1997a) diskuterar, med hénvisning till Austin, kommunikationens dubbla struktur i
sprakbruket — dels i det lokutiondiren, dvs. det propositionella, sakinnehaéllet, i sprikakten och dels en
illokutiondren komponent, dér talaren fullfoljer en handling genom det han séger. Det dr genom detta
senare som Verstdindigung kommer tillstdnd, en process av 6msesidig forstéelse. Hér ska framfor allt
en jimforelse goras med Piagets essd Les opérations logiques et la vie sociale. Aven om Habermas
diskussion dr betydligt mer utvecklad och utforligare dr d4nda parallellen sldende. Detsamma géller
Habermas distinktion mellan ekonomiska kriser och legitimitetskriser. Se framfor allt Piagets essa
Essai sur la théorie des valeurs qualitatives en sociologie statique («Synchronique»).
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Habermas hénvisar till Piagets begrepp decentrering och skriver att kognitiv
utveckling allmént innebdr en decentrering av en egocentriskt priglad vérldsforstielse.
Han for in begreppet livsvirld som ett korrelat till forstdelseprocessen. ”Kommuni-
kativ handelnde Subjekte verstidndigen sich stets im Horizont einer Lebenswelt”
(Habermas, 1981a/1997a, s. 107).

Wenn wir in dieser Weise Piagets Begriff der Dezentrierung als Leitfaden beniitzen,
um den internen Zusammenhang zwischen den Strukturen eines Weltbildes, der
Lebenswelt als dem Kontext von Verstdndigungsprozessen und den Mdoglichkeiten
rationaler Lebensfithrung aufzukldren, stoBen wir wiederum auf den Begriff
kommunikativer Rationalitédt. Dieser bezieht das dezentrierte Weltverstdndnis auf die
Moglichkeit der diskursiven Einlosung kritisierbarer Geltungsanspriiche (Habermas,
1981a/1997a, s. 110).

Habermas knyter vidare explicit an till bl.a. Wittgensteins sprakspelsbegrepp 1 sin
kommunikativa handlingsmodell.

Der Begriff des kommunikativen Handelns setzt Sprache als Medium einer Art von
Verstiandigungsprozessen voraus, in deren Verlauf die Teilnehmer, indem sie sich auf
eine Welt beziehen, gegenseitig Geltungsanspriiche erheben, die akzeptiert und
bestritten werden konnen (Habermas, 1981a/1997a, s.148).

Med ordet Verstindigung (forstielse) avses inte ett tillstdnd utan en process av gradvis
okande uppskattning av varandras utgangspunkter (se Israel, 1999). Nar skiljaktiga
meningar klaras ut kan man nd samf6rstand (Einverstdndnis). Kommunikation och
handling ska inte likstdllas Spriket dr ett kommunikationsmedel som tjanar forstiel-
sen, medan aktOrerna genom att gora sig forstddda (verstdindigen) samordnar sina
handlingar for att uppnd bestimda mdl. Kommunikativa handlingar dr komplexa
darigenom att

... die gleichzeitig einen propositionalen Gehalt, das Angebot einer interpersonalen
Beziehung und eine Sprecherintention ausdriicken” (Habermas, 1981a/1997a, s. 143).

Samverkan (coopération), skriver Piaget,

. 1s the source of three sorts of transformation in indvidual thinking, all three of
which are of nature to permit individuals to have greater consciousness of reason
immanent in all intellectual activity.

In the first place, cooperation is a source of reflection and of self-consciousness. On
this point, it marks an inversion of meaning, not only in relation to specifically
individual sensory-motor intelligence, but also in relation to social authority, which
engenders coercive belief and not true deliberation.

In the second place, cooperation dissociates the subjective from the objective. It is
thus a source of objectivity, and rectifies immediate experience into scientific
experience, whereas constraint is limited to consolidating the former by simply
promoting egocentrism to the rank of sociomorphism.

In the third place, cooperation is a source of regulation. Over and above simple
regularity perceived by the individual and heteronomous rule imposed by constraint in
the areas of both knowledge and morality, it installs autonomous rule, or the rule of
pure reciprocity, a factor in logical thought and the principle behind notional systems
and signs (Piaget, 1965/1997, s. 239).
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Wittgensteins sprakspelsteori

I Filosofiska undersokningar (1953/1998) gor Wittgenstein upp med sin tidigare
uppfattning, framford 1 Tractatus, dér han sdg spraket som ett avbildande system av
refererande namn. I stillet hdvdar han nu att spriket primért utgor ett samspel, ett
sprdkspel.

Meningen hos ett sprakligt uttryck bestims av dess anvéndning, dvs. de regler som
utvecklats 1 denna sprakliga praxis. Harav foljer dd naturligtvis fragan hur vi kan forstd
eller mena ndgot med ett uttryck ndr meningen av det dr bestimd av anvdndningen,
vilket i sin helhet inte kan vara ndrvarande vid anvidndningen eller menandet.
Wittgenstein for hér ett resonemang om regelfoljande. Sjidlva mojligheten att folja en
regel och att anvdnda ett sprakligt uttryck forutsitter en redan etablerad offentlig
praxis. Att tala om meningen av en sats ar att tala om den roll den spelar i ett bestdmt
sprikspel. Att forstd denna mening (i en sats) handlar om att kunna delta i det aktuella
sprakspelet 1 de aktuella situationerna (se Svensson, 1992).

23. Men hur manga arter av satser finns det? Kanske pastdende, fraga och befallning?
— Det finns otaliga sddana arter: otaliga sdtt att anvianda allt det som vi kallar "tecken”,
”ord”, 7satser”. Och denna méngfald &r inte ndgot fast avgrdnsat, ndgot en gang for
alla givet; utan nya typer av sprak, nya sprékspel, kan man sidga, uppstir och andra
foraldras och blir bortglomda. (En ungefdrlig bild av detta kan matematikens
forvandlingar ge oss.)

Ordet “sprakspel” ar hir avsett att framhéva att falandet av spraket dr en del av en
aktivitet eller av en livsform (Wittgenstein, 1953/1998, s. 21).

Hérav skulle man kunna dra slutsatsen att sprakspelsteorin handlar om
vardagssprdket, men det avvisas av Svensson (1992). Denne hdvdar att Wittgenstein
framst var logiker, och inte dgnade sig &t empirisk sprdkvetenskap. De kommentarer
Wittgenstein ger till den faktiska sprikanvindningen dr endast avsedda att belysa
aprioriska, logiska, forhallanden. Det 4r vart tdinkande och véra tankeformer Wittgen-
stein undersoker, inte vart sprak och vara sprakliga uttryckssitt.

For vart vidkommande dr det av stort intresse att Wittgenstein dven karakteriserade
matematiken som ett sprdkspel. Hans arbeten innehdller ocksd méanga matematik-
filosofiska avgodranden, sd avvisar han t.ex. de dittillsvarande matematikfilosofiska
forsoken att ge matematiken en siker grundval.’

? Inom matematikfilosofin har dirvid olika riktningar framtritt:

* Logicismen, som betecknar matematiken som en komplex struktur av rent logiska samband, en
gren av den symboliska logiken. De foretrdddes av framforallt Frege och formulerades klarast av
Russell och Whitehead i deras arbete Principia Mathematica, 1910-1913.

* Intuitionismen/konstruktivismen, som avvisar logiska slutledningars regler och foredrar att bygga
upp matematiken pé intuitiv grund genom konstruktioner. Den frdmste foretrddaren var
holldndaren Brouwer. Intuitionismen kan ses som en renodlad version av Kants syn pd matematik
som apriorisk begreppskonstruktion. Fér ordningens skull bér man kanske pépeka att det finns
viktiga skillnader mellan Brouwers och Kants konstruktionsbegrepp.

¢ Formalismen, som ser matematiken som ett system av formaliserade axiomatiska teorier.
Matematiska resultat ses som logiska konsekvenser ur givna axiom. Den framste foretrddaren vad
David Hilbert. Ett avgérande grundskott mot formalismen gjordes av Kurt Godel 1931 da han
publicerade sitt Ofullstdndighetsteorem som lade Hilberts forsok att upprétta ett sammanhéngande,
motségelsefritt och uttommande system i ruiner. Teoremet la fast granserna for var kunskap.
Numera anses forsoken att upprétta en siker grundval for matematiken som missriktade. Inom den
matematik-filosofiska diskussionen har ocksa en annan riktning framtritt med en fallibilistisk och
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16. Wozu braucht die Mathematik eine Grundlegung?! Sie braucht sie, glaube ich,
ebenso wenig, wie die Sitze, die von physikalischen Gegenstinden — oder die, welche
von Sinneseindriicken handeln, eine Analyse. Wohl aber bediirfen die mathematischen,
sowie jene andern Sitze, eine Klarlegung ihrer Grammatik.

Die mathematischen Probleme der sogenannten Grundlagen liegen fiir uns der
Mathematik so wenig zu Grunde, wie der gemalte Fels die gemalte Burg trigt.

»Aber wurde die Fregesche Logik durch den Widerspruch zur Grundlegung der
Arithmetik nicht untauglich?< Doch! Aber wer sagte denn auch, daf3 sie diesem Zweck
tauglich sein miisse?! (Wittgenstein, 1956/1994, s. 378).

Wittgenstein inte bara tillbakavisar absolutism och apriorism, utan hdvdar ocksa
att matematiken &r syntetisk apriorisk:

43. Man konnte vielleicht sagen, dall der synthetische Charakter der mathematischen
Satze sich am augenfalligsten im unvorhersehbaren Auftreten der Primalzahlen zeigt.

Aber weil sie synthetisch sind (in diesem Sinne), sind sie drum nicht weniger a priori.
Man konnte sagen, will ich sagen, daf3 sie nicht aus ihren Begriffen durch eine Art von
Analyse erhalten werden konnen, wohl aber einen Begrift durch Synthese bestimmen,
etwa wie man durch die Durchdringung von Prismen einen Korper bestimmen kann.

Die Verteilung der Primzahlen wére ein ideales Beispiel flir das was man synthetisch a
priori nennen konnte, denn man kann sagen, daB sie jedenfalls durch eine Analyse des
Begriffs der Primzahl nicht zu finden ist (Wittgenstein 1956/1998, s. 246).

Ovanstaende foljer egentligen utifrdn uppfattningen att matematiken inte dr en upp-
tdckt utan en uppfinning, "Der Mathematiker aber ist kein Entdecker, sondern ein
Erfinder” (Wittgenstein, 1956/1998, s. 111).

Vari ligger det specifika 1 en matematisk diskussion till skillnad frén t. ex. en
politisk? Drouhard et al (1999) pekar pa tva avgorande aspekter — motsdgelser och
motstand. 1 en matematisk diskussion erfar individerna motsdgelser, dvs. att andra kan
vara sdkra pd en motsatt uppfattning och inte lata sig dvertygas med auktoritdra
argument eller maktansprdk. Den andra aspekten &r att det karaktaristiska i
nodvédndigheten 1 en matematisk utsaga &r att den bjuder motstdand. En vigg bjuder
motstdnd om du forsoker gd igenom den. Du kan emellertid forcera viggen med en
yxa. For en matematisk utsaga finns ingen yxa, eller annat verktyg, som kan gora att
du uppfattar en falsk utsaga som sann. Wittgenstein for ett liknande resonemang;:

”Wenn du diese Regel annimmst, mu/f5¢ du das tun”. — Das kann heiflen: die Regel 143t
dir hier nicht zwei Wege offen. (Ein mathematischer Satz.) Ich meine aber: die Regel
fiihrt dich wie ein Gang mit festen Mauern. Aber dagegen kann man doch einwenden,
die Regel lieBe auf alle mogliche Weise deuten. — Die Regel steht hier wie ein Befehl;
und wirkt auch wie ein Befehl (Wittgenstein, 1956/1994, s 406).

Det finns invindningar att resa mot Wittgensteins betoning péd regelfoljandet for att
karakterisera matematiken. Mojligtvis gor Wittgenstein en felaktig analogi mellan

kvasi-empirisk syn pad matematiken (se t.ex. Tymoczko, 1986; Ernest, 1991, 1998 och Hersh,
1998). En relativt lattillgdnglig och mycket initierad introduktion till matematikfilosofin ges i
Sandmel (1995a, 1995b). Sandmel redovisar dock bara kort de nyare kvasi-empiriska
stromningarna, vilka han bestdmt avvisar.
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sprak och matematik. Som Hersh (1998) understryker sa har bade sprdk och matematik
regler, men till skillnad frén sprak s& dr matematikens regler inte godtyckliga, utan har
en inre nodvdndighet.

It’s true, school and society tell us,
3+5=8.

But in politics, in music, or in sexual orientation, some people reject the dictate of
school and society. Some people dare question the Holy trinity, the American flag,
whether God should save Our Gracious Queen, and so on. But nobody questions
elementary arithmetic. A few poor souls trisect angles by compass and straight-edge,
despite a famous proof that it can’t be done. But in that problem the discoverer easily
confuses himself. We never get letters claiming that

3+5=9
If arithmetic can be whatever you like, why has no one in recorded history written
3+5=9?

Anthropologists in the Sepik Valley of New Guinea finds surprising practices and
beliefs about medicine, about rain, about gods and devils. Not about arithmetic.
(Hersh, 1998, ss 206-207).

Alfred Schiitz’ sociala fenomenologi

Inom samhéllsvetenskaperna har intresset for att utforska ménniskors vardagsliv vuxit
sig starkt framfor allt under det senaste decenniet. Darigenom har det fenomenologiska
begreppet livsvirld kommit 1 fokus. En av de mer framtrddande forskarna, vars studier
av vardagslivet, dess strukturer och samhéllsvetenskapernas relation till denna
verklighet, dr den tyskfodde, sedemera amerikanske, sociologen Alfred Schiitz. Som
grundare av fenomenologin brukar annars den tyske filosofen Edmund Husserl
riknas.'” Inom svensk matematikdidaktisk forskning har den fenomenografiska
ansatsen en stark stdllning och inom den har producerats ett antal avhandlingar (se
Engstrom, 1999); den senaste dr Runesson (1999).

Habermas anvénder sig som vi visat ovan av livsvérlden som en grund for sin teori
om det kommunikativa handlandet. Han 4r dock kritisk till en del aspekter av Schiitz’
livsvérldsbegrepp (se framfor allt kapitel sex 1 Habermas, 1981b/ 1997b).

Schiitz skiljer sig pé en del visentliga punkter frdn Husserl fr.a. i vad géllde frigan
om livsvérldsforskningen kan aterforas pa ett transcendentalt medvetande vilket
Husserl ansdg eller om den faktiska livsvérlden dr yttersta grund (Bengtsson, 1999).
Schiitz forsokte jdimka samman de, som han uppfattade, vetenskapliga kraven pa
objektivitet med de subjektiva dragen 1 den fenomenologiska metoden.

Hos Schiitz utgors livsvérlden av de vérldsliga hidndelser och sociala konventioner
som konstitueras och rekonstitueras genom méinniskors vardagliga och oreflekterade
handlande. Schiitz kallar detta for kunskap av forsta ordningen. Den dr bestimd av
livsvirlden och dr ordnad i for oss kdnda idealtypiska monster, eller #ypifieringar.
Kunskap av den andra ordningen utgdrs diaremot av den vetenskapliga expert-
forstdelsen med vars hjilp samhéllsvetaren tolkar och forstar livsvéirldens vardagliga
monster.

' Utmérkta introduktioner till fenomenologin, och Alfred Schiitz’ arbeten finns i Bengtsson (1998,
1999). Fenomenografin som vuxit fram vid Goteborgs universitet har ett speciellt forhéllande till
fenomenologin, vilket inte diskuteras hér, utan jag hinvisar till dess foretrddares egna arbeten fr.a.
Marton och Booth (1997).
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Nar Schiitz tar avstand fran Husserls sitt att soka sanningen i de oreflekterade
fenomenen utgar han frdn ménniskors formiga att kommunicera och forstd varandra.
Livsvérldens vardagskunskap bygger pd en intersubjektiv forstaelse baserad péd tva
principiella antaganden om ménniskors upplevelse av omvérlden: For det forsta
perspektivens omsesidighet och for det andra perspektivens meningskongruens (Béack-
Wiklund, 1998).

Perspektivens omsesidighet dr ett antagande om att for att ett samtal skall bli
meningsfullt mellan tvd ménniskor sd maste deras perspektiv vara utbytbara. De skall
kunna inta varandras stdndpunkter och positioner och fortfarande vara i stdnd att forsta
varandra. Som medlemmar av ett samhalle, en kulturkrets, utgar vi fran forestillningen
att olika skeenden, foremél, handlingar och personer har samma innebord for andra
som fOr oss sjdlva.

Antagandet om perspektiven meningskongruens innebér att tva parter 1 ett samtal
antar att de bada tolkat situationen lika. I stdllet for att behandla frdgan om
intersubjektiviteten som ett filosofiskt problem behandlade Schiitz det som ett
praktiskt problem som handlar om mdjligheterna till mellanmdnsklig forstdelse (Back-
Wiklund, 1998).

Tecken och teckensystem

Klassrummet kan ses som bestdende av olika ménniskor vilka var och en handlar 1
enlighet med hur virlden framtridder for henne eller honom. Matematiska fenomen
forstas genom tecken snarare dn som fakta, vilket innebér att matematiska idéer som
utvecklas inte har ndgra stabila forkroppsliganden (embodiments) — yttre framtradelser
(laborativ materiel, skrivna symboler, eller de ramar inom vilket de anvidnds) kan
tolkas pd olika sétt. Klassrummet dr den vérld som &r inom rackhall (Welt im
reichweite) vilket forstds genom de tecken som anvénds. Tecken i1 denna mening
hinfors inte till de Saussure’s begrepp tecken utan snarare till Peirce. De olika tecknen
ingdr 1 ett system av meningssammanhang (jamfor med Peirce teckenteori nedan 1
avsnitt 2.4).

Tankescheman

Med hjilp av typifieringar kdnner vi igen olika situationer i1 vardagsvérlden och vi
utvecklar olika tankescheman for detta. Schiitz uppfattar tankescheman av fyra
ordningar:

Tankeschema av forsta ordningen: apperceptuellt schema.

Detta schema omfattar vérlden av yttre framtradelser. Objekt ses som saker 1 sig
sjdlva utan nagon referens. Ett barn kan t.ex uppfatta x> + y> = 1 som en blandning av
bokstidver och siffror utan ndgon betydelse. En mer erfaren elev ser det som ekvationen
for en cirkel.

Tankeschema av andra ordningen: appresentativt schema.

Virlden uppfattas som en vérld av tecken. Skolklockan uppfattas inte som en sak 1
sig utan som en signal att det 4r dags att gd hem. Uttrycket x> + y*> = 1 uppfattas som
en representation av en cirkel.

Tankeschema av tredje ordningen: refererande schema.

Det hér dr den vérld dér jag ser mig sjdlv handla, den vérld som jag forestéller mig
att jag arbetar i, givet min ldsning av yttre framtridelser. Om jag anvénder mig av en

97



Papers

algebraisk notation, s& forestdller jag mig en geometrisk figur. Det refererande
schemat omfattar omradet av mentala bilder dir mina tankar fungerar. x* + y* = 1 ses
som en cirkel

Tankeschema av fjarde ordningen: tolkande schema.

Det hér dr den relation jag antar mellan vérlden av yttre framtriddelser och vérlden
jag forestdller mig existerar. Oerfarna och erfarna matematiker kan ha olika sétt att
framkalla mentala bilder till algebraiska symboler. Det tolkande schemat bestar av
omradet av personliga sitt att kombinera mentala bilder med algebraiska symboler.

Charles Sanders Peirce semiotik

Jag har ovan diskuterat hur socialt samspel framtrader som regler, viarden och tecken.
Det som jag kommer att intressera mig for hér dr inte hur dessa tecken overfors utan
meningsskapandet av dessa tecken 1 Habermas’ och Piagets efterfoljd pd kommu-
nikation som skapande av mening. Jag kommer hérvid att diskutera Peirce teckenteori
(semiotik). Charles Sanders Peirce (1839-1914) var grundare av pragmatismen och
anses vara en av den nordamerikanska kontinentens storsta filosofer.

Abduktion

Piaget och Peirce har béda sina rotter i den Kantska filosofin. Det finns en intressant
parallell 1 hur de bada forsoker ersitta de aristoteliska begreppen om abstraktion och
generalisering'' i sina respektive diskussioner om en matematikens epistemologi.'” Det
finns en paradox 1 matematikfilosofin som avser hur man kan avvisa empirismen som
grund och samtidigt forklara matematikens stora tillimpbarhet pa verkligheten. Kants
vég ut ur detta dilemma mellan rationalism och empirism var konstruktivism."

"""Med abstraktion avses i denna tradition att bortse frén egenskaper som ir tillfdlliga och individuellt
sdregna och se till det vdisentliga, det som dr gemensamt for en klass. Genom att minska innehéllet
eller antalet kdnnetecken kan man oka omfénget och ddrmed stiga till en hogre abstraktionsniva.
Generalisering innebdr att frén enskilda iakttagelser sluta sig till partikuldra eller universella satser,
dvs man sluter sig fran iakttagna fall till icke-iakttagna fall, ev. till samtliga fall.

' Se framfor allt de arbeten som utvecklats vid IDM i Bielefeld av Hoffmann (1996), Otte (1998).

" Kant gor i sina kunskapsteoretiska arbeten en distinktion mellan tvé typer av kunskap, a posteriorisk
kunskap som grundas pé erfarenheten, dvs. empirisk kunskap, och a priorisk kunskap, som é&r
oberoende av erfarenheten. Han for ocksa in distinktionen mellan analytiska och syntetiska omdomen.
De analytiska omdomena kan avgdras genom en logisk analys av det omdomet sdger. ”En kropp har
en utstrickning” &r ett analytisk omddme d& det innefattas i begreppet kropp att det har en
utstrackning. Det vore sjdlvmotsdgande att tala om kroppar som inte har en utstrickning. Ett sddant
omddme &r ett nodvéandigt sant omdome, ett analytiskt a priori omdéme.

Syntetiska omddmen utsdger ndgot som inte ligger i sjdlva begreppet. De &r i viss mening
sammansatta. I mitt inledande exempel om nio planeter sa ligger det ingen nddvéandighet i att det &r
nio planeter som ror sig kring var sol. Det ligger inte i sjdlva begreppet sol att det finns nio planeter.
Ett sddant omdome &r syntetiskt aposte-rioriskt.

Finns det syntetiskt aprioriska omdomen? Ett sddant omddme skulle inte vara sjdlvmotségande att
forneka, likvél skulle vi kunna avgora apriori om det &r sant eller falskt. Vi maste, enligt Kant, foreta
en kopernikansk vidndning, dvs. vinda uppmairksamheten mot de erfarna tingen och mot erfarenheten
sjilv. Vara erfarenheter formas och struktureras utifrdn askadningsformer som tid och rum och
kategorier som ting och orsak-verkan. Alla medvetandeformer uppvisar en tidslig och rumslig ordning.
Matematiken, ndrmare bestdmt aritmetiken och (den euklidiska) geometrin &r, enligt Kant, exempel pa
syntetisk aprioriska omdomen da de kan foras tillbaka till dessa dskddningsformer. Genom detta ar det
inte mojligt att nd erfarenhet om tinget i sig (das Ding an sich) utan alla de olika formerna och
kategorierna kommer att finnas i varje erfarenhet eftersom det dr ndgot som det erfarande subjektet
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Piaget overskrider Kant genom att visa att de Kantska dskadningsformerna och
kategorierna inte dr aprioriska utan konstrueras genom reflekterande abstraktion och
konstruktiv generalisering (se Piaget, 1975/1985, 1977). Piaget gor en stark distinktion
mellan empirisk och reflekterande abstraktion och forklarar matematikens tilldmpa-
ningar i att den matematiska kunskapen har en grund i konkreta handlingar som att
ordna, gruppera, fora samman etc, vilka sedan utgdr utgdngspunkt for vidare
abstraktioner och generaliseringar.

Peirce diskuterar ett tredje alternativ till slutledning vid sidan av deduktion, att
folja en “regel” pé ett enskilt fall for att uppnd ett “resultat” och induktion, en omvind
slutledning fran ett enskilt fall och resultat till en regel. Induktionen ar visserligen
anvidndbar 1 mdnga sammanhang, men &r ingen logiskt giltig slutledningsform. Peirce
kallar sin tredje slutledningsform for abduktion. Enligt Peirce dr abduktionen varda-
gens slutledningsform som leder oss till den mest sannolika forklaringen till ett feno-
men som vicker var forvaning. Peirce kallar sitt begrepp hypostaserande abstraktion.
Abduktionen innebér hypotesbildning och sanningsantagande av denna hypotes.

Det finns en annan intressant parallell mellan Peirce och Piaget. Deras respektive
teorier om abduktion respektive reflekterande abstraktion &r ett svar pa frigan om hur
ny kunskap utvecklas. Platon hidvdade att idén om ny kunskap var en paradox i sin
dialog Menon. I stillet handlar det om en atererinring. Genom den speciella samtals-
teknik, fragor och provningar av svaren pa fragor, later Platon Sokrates utveckla sin
majevtiska metod, dvs. forlsa vetandet som redan finns."

Habermas diskuterar i sin Erkenntnis und Interesse (1968) Peirce abduktions-
begrepp som en vetenskaplig utvecklingsprincip. Habermas uppfattar abduktion som
en 1 grunden kollektiv process, som inte endast gdller vetenskapen utan dven
vardagslivets kunskapsinhdmtande. Dess giltighet tryggas genom dialog och sam-
stimmighet inom kollektivets grinser.

Semiotik

For Peirce rader det ett triangulért forhdllande mellan tecken, objekt och interpretant.
Ett tecken dr ndgot som for ndgon stér for ndgot 1 viss bemérkelse eller kapacitet. Det
ar riktat till ndgon det vill sdga skapar ett motsvarande tecken 1 personens medvetande,

sjilv bibringar sinneserfarenheterna. Héri ligger Kants distinktion mellan tingen i sig, das Ding an
sich, (noumenon) och fenomenen, das Ding als Erscheinung, (phaenomenon).

Den amerikanske filosofen Saul Kripke har i sin Naming and Necessity (1980) utvecklat en formell
semantik for modallogiken (s.k. mojlig-vérlds-semantik) dir han starkt kritiserat uppfattningen att
distinktionerna nodvéndig-kontingent och apriori-aposteriori sammanfaller. Begreppen nddvandig-
kontingent, apriorisk-aposteriorisk (empirisk) och analytisk-syntetisk bildar motsatspar som é&r
omsesidigt uteslutande och uttémmande. Begreppen nodvéndig, apriorisk och analytisk ar inte
synonyma, dvs. de har inte samma extension. Nodvéndig betyder sann i alla méjliga varldar, medan
kontingent betyder sann i ndgon, men inte alla vérldar, dvs. mgjlig, men inte nddvén-dig.

For Piaget dr utvecklingen av modal (dvs. nddvédndig) kunskap det centrala i hans genetiska

epistemologi (se Smith, 1993, for en genomgang).
" En nutida foresprakare for nativismen och kritiker av konstruktivismen &r den amerikanske filosofen
Jerry Fodor. Begrepp dr medfodda och darfor oberoende av erfarenheten. Bereiter (1985) har
diskuterat det som kommit att kallas "inldrningsparadoxen". Hur kan en struktur generera en annan
struktur mer komplex &n sig sjalv? Konstruktivismen &r darfor omojlig.

Det finns manga argument mot nativismen. Den innebér ju t.ex. att Newtons fysik skulle ligga
latent redan hos Aristoteles. Det finns kunskap som inte beror pa arv, perception eller erfarenhet,
ndmligen nodvéindig kunskap. Nativismen ger i detta fall ingen forklaring alls. Se min avhandling
(Engstrom, 1997) for en genomgang av Piagets teori.
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eller mojligen ett mer utvecklat tecken. Tecknet som det skapar kallar jag inter-
pretanten av det forsta tecknet. Tecknet star for ndgot dess objekt (Peirce, citerat i
Fiske, 1990, s. 63). Foljande figur kan illustrera detta forhallande:

Tecken

interpretant < » objekt
Figur 1. Forhéllandet mellan tecken, objekt och interpretant hos Peirce (Fiske, 1990, s 63)

Att pilarna dr dubbelriktade syftar pd att varje term mdste forstds i relation till de
andra. Interpretanten dr inte tecknets anvdndare utan syftar pd “den egentliga beteck-
nande effekten” (Peirce, citerat i Fiske, 1990, s. 63).

Interpretanten av tecknet dr resultatet av anvéndarens erfarenhet av tecknet och de
sammanhang dér detta ingdr. Grinserna sétts av sociala konventioner. Variationerna
inom dessa dr en frdga om sociala och psykologiska skillnader mellan anvidndarna
(Fiske, 1990).

Peirce behandlade ocksé tre teckenkategorier, dvs. olika forhallanden mellan
tecknet och objektet det hdnvisar till. En ikon liknar objektet pa nagot sitt; 1 ett index
finns ett direkt samband 1 verkligheten mellan tecknet och objektet; i en symbol saknas
bade likhet och samband. Ett fotografi dr en ikon, rok ett index som é&r kopplat till
(indikerar) eld och ett ord dr en symbol (Fiske, 1990).

Aven teckentyperna kan visas i en triangulir modell

ikon

/N

Figur 2. Forhéllandet mellan ikon, index och symbol enligt Peirce (Fiske, 1990, s 70).

index symbol

Vid IDM 1 Bielefeld arbetar en forskargrupp med att tillimpa Peirce semiotik
inom matematikdidaktiken, se t.ex. Hoffman (1996) som redogor for hur laroprocesser
kan modelleras semiotiskt enligt Peirce teori.

Avslutande reflektioner

Matematik dr en social konstruktion. Den utdvas och praktiseras av minniskor som
lever och verkar 1 bestimda historiska skeenden. Matematik priaglas av de sociala och
kulturella villkor under vilka den har véxt fram. Trots detta dr matematikens resultat
oberoende av tid och plats, av genus och etnicitet, av social klass och kultur.
Matematiken uppvisar en inre nodvindighet vilket skiljer den frdn andra manskliga
uppfinningar och kunskapsomraden.
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Mitt intresse dr att forstd de villkor under vilka en elev utvecklar och konstruerar
kunskap som hon/han uppfattar som nédvéndig. Detta i en social interaktion i klass-
rummet, vilket ger matematikundervisningen en kommunikativ karaktir. Harigenom
reses frdgan om forhdllandet mellan rationalitet och intersubjektivitet. Jag relaterar
skolans uppgifter till upplysningens klassiska tankar om bildning som myndiggdrande
och medborgarskap i en demokrati.

Matematikundervisningens kommunikativa karaktar

I min diskussion om matematikundervisningens kommunikativa karaktir har jag tagit
en utgadngspunkt i ndgra gemensamma berdringspunkter hos ett antal forskare som
Habermas, Piaget, Wittgenstein, Schiitz och Peirce, vilka alla behandlat fragor om
rationalitet och intersubjektivitet.

Rationellt handlande forutsitter en Omsesidig forstdelse mellan méanniskor.
Rationella 6verviganden, argumentation och tinkande, utvecklas genom ett socialt
samspel. Socialt samspel framtrader som virden, regler och tecken 1 vid mening. Det
sociala samspelet uppfattas hir som en process mot dkad forstielse (Verstindigung).
Spraket dr det medel varmed denna forstdelse utvecklas och etableras. Genom social
samverkan sker en decentrering av det individuella tdnkandet till en férhandlad
verklighet baserad pa Oomsesidighet och meningskongruens. Matematiska fenomen
foreter inte ndgra stabila forkroppsliganden. Yttre framtrddelser och ramar kan tolkas
pa olika sétt. Vad vi uppfattar som rationellt och fornuftigt fir sin mening i det sociala
samspelet.

Vill vi studera hur fornuft och logik 1 vid mening — att resonera, att argumentera,
att gora overvdganden och dra slutsatser — kan stimuleras och utvecklas hos eleverna
bor vi ocksa studera forutsittningar for att etablera detta sociala samspel och dess
utveckling. Det 4r meningsskapandet av dessa virden, regler och tecken vilka
framtrader genom det sociala samspelet som bor sittas 1 fokus. Problem med att fa
matematikundervisningen meningsfull och relevant for eleverna bor kanske 1 storre
utstrackning sokas i1 misslyckanden att uppritta ett fungerande socialt samspel i
matematikklassrummet &n 1 bristande formagor hos eleverna.
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Using symbol-manipulating calculators (SMC)
in upper secondary schools

Gunnar Gjone
University of Oslo

Introduction

In the school year 1998-1999 the National Examination Board (Eksamenssekretariatet)
in Norway initiated a study with symbol-manipulating calculators (SMC) in
mathematics. The main purpose was to investigate the conditions concerning the use of
this type of calculators for final exams in mathematics in the second year of upper
secondary school. "’

The Project

The project was announced by the National Examination Board in a letter to schools.
Here we find the rationale for the study:

The purpose with this experiment is to find out if it is possible to construct
examination problems and organize test situations that mirrors real challenges and
possibilities, and at the same time provide a basis for giving individual marks.

Schools (teachers) could then register to participate. For the study the schools
themselves had to get or borrow the calculators from companies importing the SMCs.
The National Examination Board had some limited funds available for supporting the
teachers, and had more of a coordinating function. The study was part of a larger study
on the use of information technology in different school subjects (eg. Norwegian,
English).'

Five classes from five different schools in the southern part of Norway took part in
this study. The teachers had volunteered to participate — hence there were teachers
interested in technology participating. There were four male and one female teacher.

The calculators

Two types of calculators were used: The TI-89 and the TI1-92. Four classes used TI-89
and one class used the TI-92 as tools through the school year and for their final exam.
It should be noted that the students did not get their calculators until mid-October.
These calculators have built in versions of the computer algebra system (CAS) Derive.
The program is a somewhat restricted version of the computer (PC) version, but
sufficient for the symbolic computations found in the course.

" In the upper secondary school in Norway there are two streams in mathematics — MX and MY. The
MX stream is for mathematics and natural science studies, whereas the MY stream is more for social
science studies. The courses in the second year are denoted 2MX and 2MY.

' The study was evaluated by Nils Voje Johansen, Dept. of Mathematics, and Gunnar Gjone, Dept. of
Teacher training and School Development at the University of Oslo.
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The exam

Much of the project was focused on problem construction and the exam. This type of
exam in Norway is usually a 5 hour written exam. For upper secondary mathematics
all students have graphic calculators. The students had the regular exam in mathema-
tics, except that one of the problems was replaced by a problem especially designed for
the use of this type of calculator.

The exam papers were graded at the same time as for the other students. Three
persons graded the exam papers, so that each individual paper was graded by two
persons. This is the usual procedure for Norwegian exams. As graders were the two
persons evaluating the study, as well as one of the participating teachers (who of
course did not grade his own students). The graders were only grading exam papers
from the project. This turned out to be a shortcoming of the study.

Data

The main data for the study were the students’ exam papers. They were marked with
school name, and also the sex of the students. We, nor the graders, had not access to
the name or sex of the students at the time of the grading. Analyzing differences
relating to these factors, however, has not been performed for this presentation.

We also provided a questionnaire for teachers. The answers gave us information
on how the teachers reacted. The teachers were in general positive (which they had
been from the start). We asked specifically about problem types suitable for these
calculators. Here not many concrete suggestions were presented.

Going through the exam papers of the students, we found several interesting
relations on how the students used their calculators. Some of these findings relate to
the SMCs especially, whereas others relate to graphing calculators in general. By
grading the exams we found that actually the regular problems (for the use of ordinary
graphic calculators) provided the most interesting material. The special problem for
SMCs did not give as many interesting results. Moreover, the special problem was not
good for differentiating among students.

Findings
In this presentation I will concentrate on three aspects of using SMCs and graphic
calculators, relating to some of the regular exam problems.

Solving graphically

We found that the students used graphic representations of functions to a large extent
in solving mathematical problems. We were struck how students in several problems
used a more complicated (graphic) approach, instead of using a simpler and quicker
analytic approach.

Equality

Use of the symbolic-manipulating calculators also presented us with some surprises:
The students were very “inventive” in using the calculator to show equality between
expressions.
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Concept formation — limits

We observed that several students had difficulties with the limit concept trying to use
the calculator directly. The study of these three elements is based on the analysis of
three problems in the set.

Solving problems graphically
We studied the solution of the following problem:

PROBLEM 1

d) The depth of water in a harbour varies with the tide. In a certain 24-hour
period the depth is given by the function fwhere

4
f(x)=850+0.70 cosz—;[ X

where x is measured in hours and f(x) is measured in meters.

1) What is the difference in depth between high and low tide?
2) How long time is it from one high tide to the next?

Figure 1. Problem 1d) from 2MX exam, spring 1999. The text translated by the author.

Solution of this problem is straightforward without using a graphic calcula-tor.
The answer to the first question could be obtained by noting that the cosine function
varies between —1 and +1, hence the answer is 0.70 m + 0.70 m = 1.40 m.

What the majority of the students did was to graph the function, then using either
the TRACE function or MAX/MIN of functions to find the difference.

To present the correct answer to this problem the students would draw or sketch
the graph indicating which calculator functions they had used. The following
instructions are stated on the second page of the exam:

Graphs — use of graphing calculator

State which calculator functions you have used. It is not necessary to give
detailed use of keys.

Remember to write the scale and units on the axes if you draw graphs as
part of your answers. You do not need to include a table of the values you
have calculated for the function unless specially asked to do so.

If you use the calculator to construct graphs, it is sufficient to sketch the
shape of the curve in your answer. The sketch must show clearly how you
arrived at the answer.

Figure 2. Official translation of instructions to students.
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Some of the solutions contained very elaborate graphs. For some, writing up the
solution to the problem took more than a full page of written text. Many also included
quite extensive description on how they used the TRACE-function or the MAX/MIN —
functions on the calculator.

Since this was one of the first problems on the test, it was considered an easy task
and most students in our sample presented a correct solution. The graders would not
differentiate between different types of solution.

Equality
Derive has the possibility for testing equality of expressions. The following problem
was on the test:

PROBLEM 4
In the triangle ABC we have [JA = x, [IB=2x0g AB=5.

a) Sketch the triangle ABC for different values of x. Explain why
x O [0, w30

b) Use sin(2x + x) = sin(3x) to show that sin(3x) = 3 sinx — 4sin®x

Figure 3. Problems 4a) & 4b) from 2MX exam, spring 1999.
The text translated by the author.

We will here especially consider problem b). The straightforward “’traditional” solution
of the problem would be something like the following:

sin 3x = sin (2x + x) = [using the formula for sin to a sum, and then simplifying to
obtain the desired result]

We give here some of the students’ answers (in translation)

Since sin 3x = sin (2x + x), we can write on our calculator
tCollect(sin (2x + x)) = tCollect (3*sin(x) — 4*(sin(x))"3)
=2 true. This means that the expressions are equal for all values of x.

A similar but simpler (?) way of writing the solution was found in some students’
“solutions”:

I use TI-89 and write
(sin (3x) = sin (2x + x)) = (sin (3x)= (3*sin(x) — 4*(sin(x))"3))
Pressing ENTER I get true. This shows that the expression in the first large

parenthesis is equal to the expression in the second large parenthesis. TI-89
simplifies the expression to (sin (3x)= (3*sin(x) — 4*(sin(x))"3))

Some of the students used the traditional approach, but the number of students
were attempting a solution similar to the ones presented above. For this problem it
was quite clear that the committee making up this examproblem had not taken into
account the use of SMCs.
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Another type of solution that was found used the graphic capabilities of the
calculator. They were drawing two graphs: One graph of the function sin 3x or of sin
(2x + x) and then another graph of 3 sinx — 4sin’x. Observing that the graphs coincided
they concluded that the functions were equal.

The solutions raises several important problems.

The last "method” of solving the problem, by observing coinciding graphs, is easy
to argue against. The solution is depending on the resolution of the screen. On the
other hand it is a ’solution” that can easily be obtained on a graphing calculator.

Second, is the solution by having the calculator collecting terms “correct”? How is
the calculator arriving at the answer? Could we in general trust the test for equality for
functions? This leads to the principal question how the calculator-algorithm is
constructed.

The third problem that we looked into is the last part of problem 4.

Concept formation — limits
The concept of limit is important in calculus. Derive on the TI-89 and TI-92 is able to
compute values of limits.

PROBLEM 4

d) Show that the area of the triangle can be written as

I:()():12.55|r_1(§x) X£<0’7_T>
3-4sin” x 3

e) Investigate if the area F has a maximum value. What happens
with the area when

>
!
wly

Figure 4. Problems 4d) & 4e) from 2MX exam, spring 1999. Translation by the author.

We will concentrate our discussion on problem 4e). The function in d) is given so
that students can answer question e) without having arrived at the correct expression in
d). We first note that the solution is straightforward knowing something about the

properties of the sin function. As x approaches 7—; the denominator approaches zero,

whereas the numerator approaches a number different from zero. Several students
observed this fact. We also observe that the result can be obtained from a geometrical
reasoning about the triangle (4BC). However, a number of students keyed in the
expression directly, knowing that the SMC was able to calculate limits.
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When I was looking at the graph I adjusted the (view)window as follows:

xmin = 0 xmax = gsince x[J [0, gD Then I went to the graph again, on

F2 zoom and A(?) zoom Fit. Then an "undelicat” graph appeared. I went to F5
maximum og pressed enter. Then I went to the left and pressed enter and then to
the right and pressed enter. Then I got maximum value of F when

x = 1,0471976 and y= 1,080110"

There is a certain rationale to approach the value from left and from right.
However, the important element here is the dependency on the calculator, not trying to
reason without it. This was observed for several of the students. Several would arrive
at the answer “undef(ined)” and then just say that the answer is undefined. One
conclusion would be that they were very limited by the SMC, and not trying to reason
without it.

These examples raise question about what kind of knowledge of mathematics we
found in the students using the calculators. We will discuss this question with
reference to the two forms of knowledge — structural and operational — as discussed
by Anna Sfard (1991).

Forms of knowledge

Sfard argues that abstract mathematical notions can be conceived in two different
ways, structurally as objects or operationally as processes. For most people the
operational comes before the structural, and the transition from a ”process” conception
to an “object” conception is difficult.

Seeing a mathematical entity as an object means being capable of referring to it as if it
was a real thing — a static structure, existing somewhere in space and time. It also
means being able to recognize the idea “at a glance” and to manipulate it as a whole,
without going into details. (Sfard, 1991, p 4)

In several papers Sfard has written about the operational — structural duality of
mathematical conceptions, e.g. Sfard (1991, 1992). Looking at the historical
development of mathematical concepts she introduces the notion of reification.

...the idea of turning a process into an autonomous entity should emerge, and finally
to see this new entity as an integrated, object-like whole must be acquired. (Sfard,
1991, p 18)

She states that reification is difficult to attain, but also needed to attain relational
understanding (Sfard, 1992, p. 4). We will now consider the use of SMC and graphing
calculators for working with functions in the light of the duality between operational
and structural knowledge.

Graphing functions the traditional way (on paper) is basically a computational
process (operational). Working with functions the structural conception of a functions
develops gradually through secondary education.

Working with functions on a graphing calculator (or SMC) introduces new
elements in this development. The graph of a function is automatic from the function
expression. Entering

4
f(x)=8.50+0.70 - cos%x
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gives the graph immediately. However, I will still argue that a graphing calculator is
basically an operational device. The graph of a function is drawn”. On some SMCs
one can see the graph appearing in steps on the screen.

On the other hand the graph could also be more easily viewed as an object
(structural) with a graphing calculator. It can to some extent be manipulated, e.g.
moved or transformed (as an object).

In the example with the cosine function (Problem 1d) I will argue that the
solutions based on reading off the graph is based on an operational knowledge of
functions. They do not see the cosine function as an object with some properties, it is
looked upon mainly as a process. This raises a number of questions. In (Sfard, 1992)
we find two priciples for teaching:

(1) New concepts should not be introduced by help of their structural description
(I1) Structural conception should not be required as long as the student can do
without it. (Sfard, 1992, p 6)

Based on the second principle we can ask the question if students with a graphing
calculator can do without a structural conception? Where one earlier relied on seeing
mathematical entities as objects, the graphing calculator — for these students and for
this problem — has eliminated the need for a structural conception of a function.

Many will argue that technology has the possibility of helping students form
structural conceptions, but they might be different than the “traditional” ones. In the
case of functions perhaps a more graphical structural conception of a function is
developed.'” Tt should be noted that the problem in question (Problem 1d) was a
standard type of problem, solved most efficiently with a traditional structural
conception of function. In the second problem on equality (Problem 4b) some students
also used a graphical approach — drawing both graphs and observing they were the
same”. It is however, unclear if they considered the graph of a function as a process or
an object. Looking for differences in the graphs suggests that they considered the
graph as some kind of object.

The use of the test for equality on the SMCs shows that the student can do without
the traditional” conceptions.

This is even more obvious in the problem with limits. Even if many of the students
just keyed in the expression, the way they tried to handle “undefined” suggests that
they looked upon limit as an operational conceptions. This is probably sufficient at this
stage, but one can ask if there will be a need for the “traditional” structural conception
of limits when the students will work with an SMC. If we want the students to build a
structural conception of limit, what should it be like?

Perspectives

I find the notions of structural and operational conceptions helpful in discussing
knowledge relating to the use of technology in mathematics education. It is necessary
to ask if “’structural” and “operational” should be somewhat “redefined” with respect
to the new technology.

"7 We can see this aspect clearly in how some calculators handle the graphs of functions. The graphs
are objects that can be manipulated. Some graphing calculators have a kind of “variable graph”
function that will vary constants in the equation of the graph.
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Alternatives to standard algorithms —
A Study of three pupils during three and a half years

Rolf Hedrén
Hogskolan Dalarna

Introduction
In many countries the role of the standard algorithms is discussed today. Is it really
necessary to teach pupils in elementary school to compute 503 - 287 with the
following algorithm or something like it?
10
503
— 287
216

Perhaps it is better to ask them to find their own ways to do the computing. Some
of them may do it in this way: 287 plus 13 is 300, 300 plus 200 is 500, and 500 plus 3
is 503. The answer is thus 13 plus 200 plus 3, which is 216. Will this method and other
similar ones be sufficient in the pupils' future lives?

I carried out a research project in one class to try to get an answer to the above
question. The pupils of this class were not introduced to the standard algorithms during
their first five school years, i. e. when they were up to 12 years old. Instead, they were
encouraged to find their own computational methods, sometimes on their own and
sometimes working together in small groups. Only whole numbers were involved in
the computing.

One of the reasons for this research is, of course, that many computations are
carried out with the help of calculators and computers today. This reduces the need for
paper and pencil procedures, but, on the other hand, it might increase the demand for
man's ability to do computational estimation and, thus, mental arithmetic. The
technical aids do computations very fast, but at the same time, they also make it
possible to make miscalculations just as fast. The calculator or the computer will not
check our calculations; we will have to do that ourselves.

To be able to do mental arithmetic and/or computational estimation our pupils will
need number sense, an ability to operate with numbers in a skilful way. We might ask
if our pupils acquire better number sense when they are allowed to find their own ways
of computing than when they are taught the standard algorithms.

It should be mentioned from the very beginning that by "mental arithmetic" or
"mental computation" I mean computing that is done entirely in a person's head so that
only the original exercise and the answer are recorded. When a person uses some kind
of drawing or records intermediate results (support notes), I will use the term "written
computation" (or "alternative written computation" to distinguish it from standard
algorithms). Although people tend to use the same kind of strategies in alternative
written computation as in mental computation, I find the above distinction essential.

Many researchers and many teachers, as well, see constructivism, especially social
constructivism, as the guiding rule of their work. I see this theory of learning as one of
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the reasons for my research as well. I would like to summarise it in the following three
principles:

1. The learner actively builds up her/his own knowledge.

2. The learner's previous experience plays a vital role during that construction.

3. The learner's interaction and dialogue with others is crucial for her knowledge
construction.

Presupposing these principles, it is difficult to see how mere teaching of standard
algorithms can help our pupils to construct their own meaning of numbers and
operations with numbers. It seems more appropriate to allow pupils to find their own
computational methods, alone or in cooperation with others.

It should also be mentioned that I made social constructivism my guiding rule not
only when designing the project but also when analysing and discussing its results.

Previous Discussion and Research

In the introductory article of the proceedings of a working group: "A Curriculum from
Scratch (Zero-Based)" in the eighth international conference in mathematics education,
Anthony Ralston, the organiser of the group, writes

So, if we were inventing primary school arithmetic today, should there be any p-p-a
(paper-and-pencil arithmetic) at all? The answer to this question could be, no, only if
each of the following questions has an affirmative answer:

1. Can you teach children all they need to understand about arithmetic without
p-p-a?
2. From the standpoint of efficiency only, are all arithmetic calculations better or,

anyhow, as well performed either mentally or by calculator than with p-p-a?
(Ralston, 1997, p 4)

By p-p-a the author means computing carried out with traditional standard algorithms.
However, he also writes that paper and pencil (or ballpoint pen) are indispensable tools
for recording intermediate results or for drawing pictures. As he sees mental arithmetic
and use of the calculator as the only alternatives to p-p-a, his definition of mental
arithmetic also includes the possibility to make support notes and drawings.

According to the author, a curriculum from scratch should contain other essential
components than arithmetic, although arithmetic should remain the most important
portion of it. "But is understanding of the operations of arithmetic ... not facility with
arithmetic computation which is crucial to the further study of mathematics." (Ibid, p
6).

In this connection I cannot avoid citing what Plunkett (1979) wrote on standard
algorithms as far back as the end of the 1970:s.

* (The algorithms) are analytic. They require the numbers to be broken up, into tens
and units digits, and the digits dealt with separately.

* They are not easily internalised. They do not correspond to the ways in which
people tend to think about numbers.

* They encourage cognitive passivity or suspended understanding. One is unlikely to
exercise any choice over method and while the calculation is being carried out, one
does not think much about why one does it in that way. (Ibid p. 3)
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Besides, the author goes on, they are used very little even by children. They are also
often applied unthinkingly to computations like 1000 - 995 or 100[26. He points out
that, in these cases, it would be better to look upon the numbers holistically, for
instance 995 is very near to 1000.

A lot of research projects have been carried out, where pupils were taught the
standard algorithms. T will here only mention one of them, the CAN-project
(Calculator Aware Number) in Britain (Duffin, 1996). In this project the children,
besides using their own methods for written computation, always had a calculator
available, which they could use whenever they liked. Exploration and investigation of
"how numbers work" was always encouraged, and the importance of mental arithmetic
stressed.

One of the reported advantages of the CAN-project was that the teachers' style
became less interventionist. The teachers began "to see the need to listen to and observe
children's behaviour in order to understand the ways in which they learn". (Shuard et al,
1991, p 56) The teachers also recognised that the calculator "was a resource for
generating mathematics; it could be used to introduce and develop mathematical ideas
and processes". (Ibid, p 57).

It ought to be stated, however, that there are also researchers with a quite different
opinion. Jeromy Kilpatrick writes in an editorial of one of the issues of Journal of
Research in Mathematics Education:

A neglected yet critical item both in implementing the NCTM standards and in gaining
a better grasp of the role skill development plays in learning mathematics concerns the
folk wisdom in today's school practice. Why is it that so many intelligent, well-trained,
well-intentioned teachers put such a premium on developing students' skill in the
routines of arithmetic and algebra despite decades of advice to the contrary from so-
called experts? What is it the teachers know that the others do not? (Kilpatrick, 1988)

Bauer (1998) is also critical of letting the pupils use their own computational methods,
which are often called "halbschriftliches Rechnen" (half-written computing) in
German. He points out that these methods might, in everyday school practice, often
fall into the decay of normalisation and automatisation, 1 e the development of new
algorithms. These algorithms will, however, be much less effective than the traditional
ones, and therefore there will be no reason to abandon them.

I will also say a few words about number sense. In my country there recently
appeared a lot of articles on this subject in our journal on mathematics education,
Nimnaren (Emanuelsson & Emanuelsson, 1997; Reys & Reys, 1995; Reys, Reys &
Emanuelsson, 1995; Reys et al, 1995a, 1995b).

Various authors have emphasised different aspects of number sense, and I will
here restrict myself to four of them, which I believe have been especially important in
my research. A pupil with good number sense

1. understands the meanings and magnitudes of numbers;

2. understands that numbers can be represented in different ways;
3. knows the divisibility of numbers;

4. knows how to use the properties of arithmetic operations.

I will discuss some applications of each of these aspects that are appropriate in
connection with alternative written computation and mental arithmetic.
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1. The understanding of place value is a part of this aspect, both in whole numbers
and in decimal numbers. For instance, a pupil should understand that 998 is very
near to 1000, and that 0.05 is greater than 0.0375. She should also acquire a good
conception of very big and very small numbers, one thousand, one million, one
thousandth, one millionth.

2. Above all, the connection between whole numbers, decimal numbers, and fractions
belongs to this aspect. A pupil knows that 12.0 is mathematically the same as to 12,
9/3 as 3, and 2/5 as 0.4. The ability to partition numbers in different ways belongs
to this aspect as well. It is sometimes practical to realise that
8=6+2=5+3=4+4;36=208=302=409; 316 =320 - 4.

3. This aspect stresses the advantage of knowing, for instance, that 25 is a divisor of
175, that 4 is a divisor of 16, and that 4-25 = 100. In such a case I can easily
compute 16175 as 40704125 = 2800. (In this case I also had to use some of the

properties of arithmetic operations).

4. This aspect contains the ability to transform arithmetic expression with the help of
among others the commutative, associative, or distributive properties of arithmetic
operations. A pupil can look upon 27 +8as27+ (3 +5)= (27 +3)+ 5. And 6[83
can be computed, either mentally or with support notes, as 6[80 + 603. (The first
and the second aspect have been used as well.) The computing of 25[7[4 will be
easier, if the order of the factors 7 and 4 is reversed.

Purpose and Questions
As I have mentioned earlier there were mainly three reasons for starting the project:

1. The existence of calculators and computers to make computing faster, simpler, and
more reliable.

2. An increasing demand for a citizen's number sense and skill in estimation, partly
due to what is mentioned in 1.

3. Social constructivism as a theory of learning.

Research has shown that the pupils' own methods for computing in the four arithmetic
operations are more like effective methods for mental computation and estimation than
standard algorithms are. It has also been shown that pupils will acquire better number
sense by inventing their own methods for computing than by following given rules.

I therefore wanted to investigate, what effect teaching might have in a Swedish
classroom, where the pupils were not taught the traditional standard algorithms during
their first five years at school (ages 7 - 11), might have in a Swedish classroom. As |
have already mentioned, a lot of research in this area has already been carried out. I
wanted, however, to follow the process in one class very thoroughly and for a long
period of time. My research questions were:

1. How is the pupils' number sense affected?

2. How is the pupils' ability to do mental computation and estimation affected?

3. How is the pupils' motivation for mathematics affected?

4. Ts there a difference between girls' and boys' number sense and ability in mental
computation and estimation?

5. Is there a difference between girls' and boys' motivation for mathematics?
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Method
I followed one class from their spring semester in year 2 up to and including their
spring semester in year 5. The reason that I started in year 2 was that in Sweden we
generally start teaching the standard algorithms during that year at school. Due to
some pressure from parents, the pupils who wanted were given the opportunity to learn
standard algorithms during year 6. I therefore met a few of the pupils at the end of this
year for clinical interviews and to ask some other questions.

To give a better picture of the experimental design, I summarise it in the following
way:

1. The pupils were encouraged to use their own written methods (including the use of
drawings) for all kinds of computations that they could not do mentally.

2. Mental computation and estimation were encouraged and practised.

3. The pupils had calculators in their desks. They were used for number experiments,
for control of computations and for more complicated computations.

4. In all other respects, the pupils were taught in, what I would call a traditional way.

I want to add that the calculators played a minor role in this experiment. However,
I chose to let the pupils have them in their desks, because they were one of the reasons
for the realisation of the project.

The research and evaluation methods were mainly qualitative:

- Clinical interviews

- Observations

- Copies of the pupils' computations during observations
- Ordinary interviews with pupils

- Interviews with teachers.

I supplemented these methods with tests and questionnaires.

Three girls and three boys were picked out for clinical interviews. They were
chosen to represent different levels of achievement in mathematics. The three girls
formed a special group during the observations, just as the three boys did, but in order
to be fair to the other pupils and also to get as much information as possible, I also
made observations in groups formed by the other pupils in the class.

Clinical interviews, interviews with pupils, tests and questionnaires were
undertaken at the beginning of the spring semester in year 2 and in the middle of the
same semester in years 3, 4, and 5. In the clinical interviews I spoke to one pupil at a
time.

In this paper I will concentrate on some activities, procedures, and achievements
of the three girls mentioned.

Results and Comments
The three girls are here called Ann, Britta, and Cecilia. Especially in the beginning
most of the computing was done mentally, but I always asked the girls to explain their
reasoning. In this paper, everything that was said, has been translated from Swedish
into English as literally as possible. In Sweden, the school year starts in August and
goes on until June in the following calendar year.

As space is limited, I will only discuss multiplication. However, I want to add that
the pupils came across special difficulties in all the four arithmetic operations, except
perhaps addition. In subtraction, many of the pupils thought that this operation is
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commutative. 25 - 18 was thus solved as 20 minus 10 plus 8 minus 5, giving the result
13. For some pupils it took very long time to overcome this difficulty. In division, the
main problem was that the pupils could generally not partition the numerator into
hundreds, tens and units to do the computing in a suitable way. They had to find other
and better ways to partition the numerator, which was sometimes very difficult for
them. Therefore, they often tried a more primitive trial and error strategy.

Multiplication did not appear until year 4. The exercises were sometimes solved
with the help of the distributive property but as often with repeated addition or a
mixture of both.

I gave the exercise 3[28 in the clinical interviews in April in year 4. Ann and
Cecilia used a mixture of methods, reasoning 20 + 20 + 20 = 60; 8 + 8 + 8 =24; 60 +
+ 24 = 84. Britta's strategy was a little different: 20 + 20 + 20 =60; 8 + 8 = = 16; 76;
76 +4 =280; 80 + 4 = 84.

In the same clinical interviews, I wanted to see if the girls could multiply with 10,
100, and 5 in a fast and effective way. I therefore gave them the exercises 10002,
10002 and 5002. All three girls computed the first one as 1000 + 210. Ann wrote
100 twelve times in the second one. She had to count these hundreds in pairs, 200,
400, 600 etc., to get the product. Britta and Cecilia wrote 10100 = 1000; 2100 = 200
and gave the correct answer. None of the girls could see that the answer of the third
computation should be half that of the first. Instead they started once again to compute
the product in different ways.

In May in year 4, to solve the exercise 2[212 both Ann and Britta wrote: 2[200 =
=400; 200 = 20; 212 = 4; giving the answer 424. Cecilia wrote: 22 == 4 = 400;
20 =2=20; 2[2 =4 and arrived at the same answer.

On the same occasion, however, they, resorted to addition when the multiplication
facts got a little more complicated. To solve 6[27, Britta wrote
20+20+20+20+20+20=120; 7+7=14; 7+7=14; 7+ 7 = 14. In the same
exercise Cecilia wrote 27 + 27 =54; 54 + 54 =108; 108 + 54 = 162. Cecilia told me
that she knew the multiplication fact 6 times 7 is 42, but she declared that she was not
certain enough to be able to use it. Ann solved the exercise in a manner similar to
Britta's.

In September in year 5, I could again see a mixture of the two methods. Ann and
Britta solved 5[44 writing: 5[40 = 200; 5[4 = 20; 200 + 20 = 220, but they reasoned 80
plus 80 is 160; 160 plus 40 is 200. Cecilia, on the other hand, could do the
multiplication involved directly. Britta told me that she knew that it was possible to do
the computation in the same way as Cecilia but that she found it too complicated.

Cecilia showed another mixed method in November in the same year. She was
asked to compute 7[24 and wrote 324 =20 + 20 +20=60; 60 + 12 =72; 72+ 72 =
=144 + 24 = 168. She told me that 3 plus 3 is 6 plus 1 is 7.

When I gave the exercise 10035 on the same occasion, none of the girls found the
expected shortcut. Ann and Cecilia wrote 1030 = 300; 1008 = 50; 300 + 50 = 350.
Ann explained that 1030 = 300, because 1000 is 100. Britta also computed 10030 and
10(3, but she even had to write 30 + ... + 30 (10 times) and to add these numbers in
pairs and handle the other multiplication in about the same way. When I asked her
about the other girls' way of doing the multiplications, she said that it was a good way.
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I asked her which way she thought was the fastest one, but she only answered: "Yes,
but I do like this".

In the clinical interviews in March/April in the same year at school, Ann and Britta
wrote the solution of 7(39 as 60 + 60 + 60 + 30 and 18 + 18 + 18 + 9. Cecilia, on the
other hand, used the distributive law in the following way: 6[30 = 180 + 30 =210 + 69
=54+ 9 =63+ 210=273. She declared that it was easier to multiply by 6 than by 7. I
want to add that, in this case, I thought it was more important for the pupil to be
allowed to work out her own method at ease than it was for me to interrupt her and tell
her that she was misusing the equal sign.

When asked to compute 7(199 in May in year 5, none of the girls tried the shortcut
7(200 - 1). Cecilia noted down 7000 = 700; 790 = 630; 719 = 63. She could give the
answer of 709 directly but not that of 7(90. The other two girls tried to use a mixture of
repeated addition and the distributive law with mixed success.

The same behaviour was repeated in the last observation in April in year 6. I will
cite the discussion between Cecilia and me. Obs. is observer and C. Cecilia, ... means
a short pause.

C. It was 8 times 298, sure, and then I took ... To make it a little simpler I
divided 8 so that it became 4 times 200, and then I double it, as it is half of ...
Yes, so it was 1600, and then I took 90 times fo ... or two (inaudible) four so it
... I don't know why, but I took 2, then I took 18 and then 18 plus 18 is 36 and
then 36 plus 36, it is 72, and then it became, as there was a zero there behind,
it became 72 ... or 720, and then I took 8 (inaudible) 8, it is 64 like that
(inaudible) only, then it became 2384.

Obs.  Yes, only a little question there.

C. Mmm.
Obs.  You took 8 times 90.
C Mmm.

Obs.  What is 8 times 9.
C. 8 times 97 72.
Obs.  Yes. Why didn't you ... Why didn't you take 8 times 90 is 720 at once then?

C. No, 'cause I think it was simpler, 'cause it is the multiplication table itself,
sure, and then ... Then it became ... It was simpler so, and then I only put a
zero after.

It was probably too complicated for her to use the multiplication table when
computing 8 times 90. Ann wrote 4[200 = 800 twice; 1600 + 720 + 56 = 2300 + 70 + 6
= 2376. She found her mistake and could give the correct answer while Cecilia was
discussing her solution.

Comments

I cannot say that the girls became very skilful at doing multiplication, at least not in
finding a fast and accurate way, for instance using the distributive property throughout.
There were a lot of good attempts to do it, but as soon as the numbers involved and/or
the multiplication facts to be used became more complicated, the girls resorted to
repeated addition. We can see this very clearly in the observation of May in year 4,
when the girls solved 2[212 by using the distributive property but stuck to repeated
addition in one way or the other when solving 6(27. In the dialogue between Cecilia and
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me at the end of the section, she clearly declared that she could multiply 8 times 9, but
that it was too complicated for her to multiply 8 times 90 in a corresponding way.

We can also see that the girls, especially Cecilia, preferred to use what they saw as
simpler multiplication facts to more complicated ones. In March in year 5, Cecilia thus
multiplied 6 times 30 and added 30 instead of multiplying 7 times 30 directly.

During these observations, they did not try any shortcuts that might come naturally
to people more used to computing. For instance, they could not compute 10 times 35
directly, nor could they use this product to find the result of 5 times 35. Another
example is the computation of 7(199. None of the girls took advantage of the fact that
199 is very near to 200.

Thus, we might ask if the girls learnt anything at all in multiplication. I believe
that they did, although they would have needed much more time and practice to be
able to understand and master the use of the distributive property. It might also be true
that the class teacher and I should have given them more hints and examples to
encourage them to use this property and above all to be able to find shortcuts like the
ones just discussed. As I have interpreted social constructivism, such behaviour would
not be in opposition to the theory, if only we could make sure that the pupils had a
chance to understand our suggestions and make them fit in their own previous
knowledge schemes.

Discussion

In this paper I have chosen to let the readers follow a part of my project, the
performance of three girls, who were generally working together during the obser-
vations, in multiplication. This means, of course, that a lot of results of the project
have been omitted.

We can see that the girls' solutions could sometimes be very primitive and
complicated, e.g. Britta's solution of the multiplication exercise 6[27 in May of year 4.
However, I could also see, at least in addition and subtraction, that awkward solutions
sooner or later developed into smart methods that could be used for almost all
problems of a similar kind.

That did not mean, however, that the girls always used the same method for all
exercises in a given arithmetic operation. They often looked at the numbers involved
and tried to adjust their methods to them. In the interview of year 4, Cecilia very
clearly declared that she had a supply of different methods and that it depended on the
exercise which one she chose.

Sometimes the girls were hesitant about changing methods, although they were
shown more effective ones. Britta made this very clear when she was asked to multiply
35 by 10 in November in year 5. She stuck to her method of adding 30 ten times,
although the other girls directly computed 10 times 30 is 300. I see this as a
demonstration of the ideas of social constructivism. Britta felt a need to construct /zer
method. Although she could understand and presumably even appreciate her peers'
method, she was not ready to make it her own.

Although, as stated above, the girls' methods were sometimes rather primitive, we
could see many examples of how they practised and developed their number sense.

Finally I will try to sum up the most important points that I think I saw when
following this group of three girls.

120



Hedrén

* Although the girls sometimes had difficulties with some of the arithmetic
operations, after a longer or shorter period of time, they could overcome these
difficulties and find methods, which they understood and which could help them
solve the exercises.

* The methods that the girls used, were mostly less effective than the standard
algorithms. On the other hand, they were more like those used for effective mental
arithmetic and computational estimation. Thus, the pupils could avoid thinking in
one way when doing written computing and in quite another way in mental
arithmetic and estimation.

* From the methods the girls used, it could be seen that they acquired and developed
good number sense.

* Even after they had been taught the standard algorithms, the girls preferred their
own methods.

Anyhow, I think we have to consider whether, in the age of calculators and computers,
it would not be wiser to take the chance to let our pupils develop their number sense
and their skill in mental computation, even if it might cause a deficit in the use of the
most effective written computational methods.

However, I think it is very important that our pupils feel that the methods which
they use are really their own. To teach our pupils alternative methods instead of the
standard algorithms, would, in my opinion, be totally wrong. In such a case, the
algorithms would only be replaced by less effective methods, which would most
probably be as unfamilar and difficult to understand to our pupils. We would land up
in the situation that Bauer (1998) fears, mentioned in the paragraph "Previous
Discussion and Research".
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How can we describe young children’s arithmetic abilities?

Ingemar Holgersson
Hogskolan Kristianstad

Background

My interest in how children develop arithmetic abilities began about 15 years ago
when I became engaged in teacher training. Students often asked for a developmental
scheme for the early arithmetic development like the one they had become acquainted
with for reading abilities. My answer always was one of disappointment, that nobody
had formulated such a scheme that I knew of, at least not in Swedish. This was the
time when Dagmar Neuman presented her dissertation called “The Origin of
Arithmetic Skills” (Neuman, 1987). Being a phenomenographic investigation it
exposed different categories of uses or meanings of numbers that children show, and
although they were logically ordered according to their “complexity”, they were never
intended to describe an individual child’s development of arithmetic knowledge. What
I wanted was a description of the cognitive development involved in learning
arithmetic founded on empirical data on that development and not on logic. So when I
in 1994 got the opportunity to do an investigation my search for a developmental
scheme went abroad.

Critique of Piaget

Piaget’s influence on the common view of children’s development of numerical
capacities has been immense stressing the ability of number conservation as a sign of
having the necessary logical maturity for understanding number. One difficulty with
Piaget however is that he founded his analysis of number competencies on the
definition of number formulated by Russell and Frege at the end of the 19" century.
This definition was set forth as a part of their ambition to formulate mathematics in
terms of logic. It is noteworthy that although humans have been able to count and
speak, write and think about numbers for many centuries, it was not until hundred
years ago that someone found a logical consistent (although the class concept leads to
paradoxes) definition for number. A number, e.g. four, is seen as the equivalence class
of all sets containing four elements. So the definition is built on set theory, formulated
mainly to be informative about infinite sets where one-to-one-correspondence (and not
counting) plays the vital role for establishing equivalence relations. And so Piaget’s
investigations about children’s conceptions of number are dominated by tasks that
interrogate children’s ability for one-to-one-correspondence and for ordering different
things including number.

In the second half of the 70’s researchers began to question the findings of Piaget,
or rather the interpretations of his findings. There were psychological research
stressing the ability to count, research directed to the cognitive abilities that the
development of numerical skills demand, and research into children’s problem solving
strategies for simple addition and subtraction word problems (Geary, 1994).
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Much of these research efforts have been summarised in Fuson (1988), Fuson
(1992b) and Geary (1994). Fuson also formulated developmental schemes for different
number competencies. These schemes have been the starting point for my research.

The formulation of an analysing scheme
Karen Fuson (1988, 1992b) summarised much of the research on cognitive develop-
ment in connection with number. This research on children’s thinking

... unequivocably reveals children to be constructors of their own knowledge who see

a given situation according to their own conceptual structures for that situation.
(Fuson, 1992a, p 54)

When you analyse children’s arithmetic abilities you find that there are several
abilities involved (Fuson, 1988). There are abilities connected to

* Number sequence - such as the ability to count forwards and backwards, to step
count and to start from whatever number you wish.

* Counting - such as being able to point at one object at a time synchronised with
uttering the number words and being able to keep track of which objects you have
counted and which you have not.

e Cardinal numbers - such as the ability to break up a number into smaller
numbers.

* Solution procedures — such as the ability to count on from first or largest, to count
back or to count up and to use known “number facts” for solving different kinds of
problems.

In table 1 different developmental levels are summarised. In sequence structure
abilities develop from string (where words are not separated), to separate words, to
being able to start anywhere, to using number words as items for your counting, and to
seeing the words as both cardinal numbers and as parts of an ordered sequence that
you can mentally move on forwards or backwards at your own will. When you count,
the objects or items that you are able to count change from concrete perceptual items
like counters or fingers to more abstract items like the number words themselves or
mental representations of perceptual items and mental objects like numbers. The
cardinal structures presented in column three can be seen as a pictorial representation
of the solution procedures in column four. Objects with filled contour represent those
that are first or simultaneously attended to.

As can be seen these abilities are developed in parallel and are dependent on each
other. This interdependence is rather intricate and not always straightforward. This
makes the analysis somewhat complicated. Another difficulty is that children do not
always use their most sophisticated procedures for solving a task, but depending on the
situation choose to use a less sophisticated procedure (Fuson, 1988). The strategies
children use are also strongly dependent on the numbers involved (Fuson, 1988;
Geary, 1994). With small numbers they generally perform on a “higher” cognitive
level than with larger numbers.
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Sequence Counting and Cardinal Solution procedures
structure conceptual units conceptual
structures
String
No units
Unbreakable list | Perceptual unit items
Separate words; Single
Start from one representation
addend or sum
Unbreakable list | Perceptual unit items Level
Separate words; Single Counting All
Start from one representation [ 1 [
addend or sum
Breakable chain Perceptual unit items Level I
Separate words; Simultaneous Counting on,
Start anywhere representation I R — first addend
addend within sum abbreviated
Numerable chain | Sequence unit items Level IIT
Sequence unit Simultaneous Counting on, with
items representation 1 first or last addend
addend within sum abbreviated using a
general keeping-
track-method
Bidirectional chain | Cardinal numbers | o | Level IV
Can be Derivations or known
decomposed into | | facts
ideal unit items

Table 1. Developmental levels (adopted and reworked from Fuson (1988) and Fuson (1992a).

Method and objectives

My objectives with this work have been to investigate whether the schemes for
cognitive development of numerical abilities developed in the US can be used for
analysing Swedish children on an individual level, and to see how these abilities
develop for 6 year olds during their time in pre-school.

Data were collected in the form of two video-taped interviews with 16 children
born in 1988, the first in October-November in 1994, and the second with the same 16
children and one more child in May 1995. All the children participated 3 hours a day
in what was called “6-arsverksamhet” (activities for 6 year olds). They co-operated 3
days a week with a Form 1 school class (7 year olds) in activities including some
practical work in mathematics. Interview questions included tasks examining their
abilities in number sequence, counting, number abstraction and problem solving. Data
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have then been analysed using different kinds of protocols to record abilities according
to the analysing schemes presented above.
In order to analyse a child’s abilities we have used tasks on:

» Sequence
(forwards, backwards, before, after)
» Counting
(linear, circle, unordered sets)
» Abstraction
(including the Guessing Game introduced by Neuman (1987))
* Problem solving
(join - result unknown, separate - result unknown, join - change
unknown, join — beginning unknown)

Preliminary results

The tasks were created to reveal the level of development for each child. In a general
sense our investigation shows that this is possible, but the analysis is not always an
easy one. The solution procedure a child uses varies depending on the numbers used in
the task. Another feature complicating the analysis is the child’s ability to keep track
for small numbers without having to use a general keeping track procedure, i.e. their
ability to subitize small numbers.

Comparing the outcomes for the two interviews it is noticeable that there is only a
small difference in individual children. Our expectation was that the development
would be more easily detectable. The clearest change is in the length of their number
sequences, where all but 3 children show an increase between the two interviews.
Overall the length of their number sequence is comparable with data from the US
(Fuson, 1988), with results for the autumn interviews fitting the Kindergarten data and
results for the spring interviews fitting the Gradel data.

What is striking however is the great span in ability between different children.
This is consistent with Fusons findings:

We have been struck in all of our number work by how wide the age span is for
correct performance on any task. There is frequently a span of as much as 1 % or 2

years in the age at which children respond correctly to some number task. (Fuson,
1988, p 416)

There is also consistency between the abilities. Generally speaking, if a child performs
on a high level on e.g. solution procedure it also performs on comparable high levels
on sequence, counting and cardinal number. However it seems as if the type of
problem a child is able to solve and the solution procedures it uses are more
consistently informative on the developmental level than the other abilities
investigated, including the Guessing Game used by Neuman (1987).

Discussion

As children grow older they develop numerical abilities. This is a development that
takes time. When we speak of development it is easy to impose some sort of one-
dimensional image of the process. Starting from one stage, going through others, and
reaching a mature, grown-up understanding. If you have a constructivist view you
know that this is something you as a researcher impose on reality. This is your
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construction, your pattern. The interview data recorded on video are rich, but once you
start to classify or categorise the answers these classifications or categorisations
themselves start to become your data imposing a more definite image of the
phenomenon you are investigating than is really there. Thus we have to be somewhat
humble interpreting our results, cf. Mason (1998).

Although the schemes presented by Fuson are an important contribution to our
understanding of children’s development of number concepts, they are not always easy
to apply. One of the reasons for this is children’s ability to subitize small numbers that
get in the way for the use of what Fuson sees as more cognitively demanding
procedures. A consequence of this is that

... many children clearly function at multiple levels that vary by the size of numbers in
addition and subtraction situations. (Fuson, 1992a, p 97)

Children do use different methods for solving different tasks depending on a number
of reasons. Among these is their cognitive ability. With small numbers they can use
known facts or a short counting on procedure, because it is effortless. With medium
numbers they may use a counting procedure with a perceptual keeping-track-method,
and with big numbers they perhaps do not have a method.

However there appears to be a crucial step in children’s development of arithmetic
abilities that have not been exposed well enough yet. The problem is why some
children spontaneously come to use known facts in derivations of other number
relations, while others do not. Instead they resort to counting procedures, where the
keeping-track-methods become cumbersome. Gray and Tall (1994) give evidence for
this phenomenon. They have also introduced the concept of a procept to stress the
double roles played by mathematical symbols. E.g. 3/7 can denote either a rational
number or the division of two natural numbers. In the same way they claim that 5 can
stand for the number 5 or for the result of the process of counting 1, 2, 3, 4, 5. In this
way mathematical symbols often stand for shorthand notations for some process that
then becomes objectified into a concept that we can speak about in its own right.
Symbols that have this double role of denoting both a process and a concept they call
procepts. Gray (1997) argued that a child’s ability to see a number not only as the
result of a process, but also as an object that can be decomposed into smaller parts, is
vital for its possibility to find mathematics a manageable task.

It is this possibility of compression of processes into new objects that can mentally
be operated on, that lies at the heart of mathematical abstraction. As can be seen in our
study, those who are “gifted” spontaneously seek shortcuts or patterns that they can
use in solving a task. Here the ability to subitize is vital, but which role it plays and
how it is used needs to be investigated further. Fuson’s (1988, 1992b) schemes for the
development of solution strategies presupposes the development of a general keeping-
track-method as a prerequisite for the use of derivations. We propose that there might
be parallel processes going on: a child is engaged in establishing number relations for
small numbers using processes where subitizing plays an important role and at the
same time use counting while dealing with situations involving bigger numbers. The
operations with smaller numbers seem to play an important role in the child’s
development of understanding different properties of numbers such as the
commutativity of addition. It is to our mind not clear what role the development of a
general keeping-track-method plays for the development of what Gray (1997) calls
proceptual understanding of number.
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Fennema et al (1998), investigating grade 1 to grade 3 children in the US, have
found that there is a qualitative difference in the solution procedures that boys and
girls use in problem solving. Boys do more derivations, while girls use more counting,
generally speaking. These results are rather puzzling and bring in another dimension as
well into why different children seem to do “different kinds of mathematics™ in the
primary school, to use an expression from Gray and Tall (1994).

Conclusions

Developmental schemes are useful for analysing children’s arithmetic skills. But this
analysis is often not an easy task. The development is not straightforward and one-
dimensional, but rather consists of parallel processes of expansions and integrations,
resulting in what can be seen as “inconsistent” behaviour. In this process counting and
perceptual aids are important. Abstraction is dependent on “well-digested” experiences
with well-known objects. For the small child counting experiences provide such
experiences and the use of fingers can serve as a good concrete aid. But later on
fingers also can get in the way for thinking (Gray, 1997), keeping your awareness on
the counting procedure and keeping-track-method you use, instead of allowing it to
operate on and notice relationships between numbers.

An important issue is to learn more about why some children spontaneously use
derivations based on a growing number of number relations, while others resort to
counting procedures for even basic number relations. In order to do so we need to
follow the growth of arithmetic knowledge in individuals and how this growth varies
between individuals. We think an important contribution to the understanding of this
phenomenon can be gained by longitudinal studies focused on the important key
questions.

127



Papers

References

Fennema, E., Carpenter, T.P., Jacobs, V.R., Franke, M.L. & Levi, L.W. (1998). A
Longitudinal Study of Gender Differences in Young Children’s Mathematical Thinking.
Educational Researcher, 27(5), 6-11.

Fuson, K. C. (1988). Children's Counting and Concepts of Number. New York: Springer-
Verlag.

Fuson, K. C. (1992a) Research on Learning and Teaching Addition and Subtraction of Whole
Numbers. In G. Leinhardt, R. Putnam and R.A. Hattrup (Eds), Analysis of Arithmetic for
Mathematics Teaching (pp 53-188). Hillsdale, NJ: Lawrence Erlbaum.

Fuson, K. C. (1992b). Research on Whole Number Addition and Subtraction. In D. A.
Grouws (Ed), Handbook of Research on Mathematics Teaching and Learning (pp. 243 -
275). New York: Macmillan.

Geary, D. (1994). Children’s Mathematical Development: Research and Practical
Applications. Cambridge: Cambridge University Press.

Gray, E. (1997). Compressing the Counting Process: Developing a Flexible Interpretation of
Symbols. In I. Thompson (Ed), Teaching and Learning Early Number (pp. 63 — 72).
Buckingham: Open University Press.

Gray, E. M. & Tall, D. O. (1994). Duality, Ambiguity, and Flexibility: A ”Proceptual” View
of Simple Arithmetic. Journal for Research in Mathematics Education, 25, 116 - 140.
Mason, J. (1998). Researching from the Inside in Mathematics Education. In A. Sierpinska &
J. Kilpatrick (Eds), Mathematics Education as a Research Domain: A Search for ldentity

(pp 357 — 377). Kluwer.

Neuman, D. (1987). The Origin of Arithmetic Skills: A Phenomenographic Approach..

Goteburg Studies in Educational Sciences. Goteborg: Acta Universitatis Gothoburgensis.

128



Mathematical modeling and prospective teachers

Thomas Lingefjdrd
Goteborgs Universitet

Introduction

The study reported here arose from my experience in teaching mathematics to
prospective mathematics teachers and from the ongoing evolution of technology.
During the past three decades, personal computational technology has evolved from
four-function calculators in the 1970s through scientific calculators in the 1980s to
graphing and symbolic calculators in the 1990s. Today, most students who study high
school or college mathematics also have easy access to computers equipped with a
variety of mathematical tool systems. The evolution in technology has affected the
content of some of the courses in mathematics for prospective teachers and many
times also the way they are taught.

During the past 4 or 5 years, there has been a distinct change in some of the
courses in the program for prospective mathematics teachers at the University of
Gothenburg. At the beginning of this period, the technology was introduced as an
isolated part of the course, often through a visit to the computer lab. Today, the
program includes courses in which the technology is an integral part of the syllabus,
including the assessment. In my case, the course in mathematical modeling I teach
every semester has changed dramatically during that time. As a consequence, I started
to look more closely at the students’ conceptions of mathematical modeling.

Thanks to the technology, students can model more complicated situations today,
but as a consequence they seem to encounter more and more problems with
interpreting and understanding the results provided by that technology. 1 have
observed students mistaking model for reality, trusting the computer more than
themselves, shifting the authority for mathematics to the computer, and being
unwilling to take full responsibility for their own learning and performance. These
observations led me to search for answers as to why students seem to forget reality
when using sophisticated software to model problems and to lose faith in their own
mathematical knowledge, thereby trusting in obvious distortions of the relation
between mathematical model and experiential reality.

Three Studies
Two research questions led me to conduct three different studies:

= How do preservice teachers relate mathematical models to reality when using
software tools to generate the models?

=  What conceptions and misconceptions lie behind the decision to believe more
in a mathematical model than in real-world phenomena?

The first study, in 1997, explored how students modeling with technology relate their
models to reality and included 71 students, of whom 5 formed a special study group.
The second study, in the spring of 1998, investigated the question of students’
conceptions and misconceptions when modeling with technology. Thirty students
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participated, of whom 8 formed a special lab group. Finally, 70 students participated in
the third study, in fall 1998, which dealt with the change of authority when modeling
with technology. In this study, 5 students formed a special study group.

The data collected in the three studies came from multiple sources:

= Questionnaires

Videotaped interviews

=  Observations of the lecture sessions and the labs
Students’ lab reports

Students’ written assignments and their final exams.

The questionnaires revealed some of the students’ knowledge of mathematical
models when they entered the course. For example, the 250 students who responded to
the following problem gave a variety of functions:

You drop a chocolate bar from the top of the 330-meter-high Eiffel Tower in
Paris. The distance of the bar above the ground depends on the number of
seconds that have elapsed since you dropped it.

Exponential curve: 8%
Right half of an inverted parabola: 47%
Straight line: 42%
Don’t know: 3%

Some Results from Study 3

I will briefly discuss some of the results from the third study with a study group of five
students: Nina, Olga, Patricia, Robert, and Sarah (pseudonyms). The results are related
to the students’ responses to one of the final exam problems. Students attempting this
kind of problem in an examination should, as much as possible, focus more on
qualitative reasoning and less on reproduction of facts and basic routines. The fact that
the students were allowed to use graphing calculators and mathematical software in
their examination further stressed the importance of selecting problems that were
relevant in the presence of this aid. Just as the problem should remain non-trivial in the
presence of the technological tools, so the use of the technology should not be
essential and the only success-creating component in the performance of the student. A
relevant problem should encourage the student to make different assumptions and use
different strategies where technology can serve as an aid, never as a goal. Based on
these assumptions and perspectives, the following problem was selected as part of the
examination. The problem concerns the heating of houses and the effect of insulation

Part A
Table 1 gives the weekly gas consumption (m®) and average outside
temperature (°C) for a particular house before the installation of cavity wall

insulation.

Table 1

Temperature ( °C) -1 0 2 4 5 7 10
Gas (m°) 206.6 195.6 173.2 149.4 115.7 116.0 82.4
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Construct the simplest possible model to describe the correlation between
weekly gas consumption and outside temperature.

Step 1: y=193.2 - 11.6x

S =9.47900096
r =0.98216220
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Figure 1: A model for Part A

Part B
Table 2 gives similar data for the same house after insulation.
Table 2
Temperature (°C) -1 0 1 3 6 8 10
Gas (m°) 134.4 127.6 120.6 110.1 894 72.7 594

Construct the simplest possible model to describe the correlation between
weekly gas consumption and outside temperature after insulation.

Step 2:y=128.2 - 6.8x

S =1.57961699
r =0.99873868

X Axis (units)
Figure 2. A model for Part B
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Part C
Table 3 gives monthly averages of the outside temperature at the location of
this house from October to May.

Table 3
Month O N D J F M A M
°C 103 6.7 44 34 38 57 87 115

Find an appropriate model to describe the annual variation of the average
temperature over the year.

Part D
Write an expression for the amount of gas saved in one year by having
insulation, and calculate a numerical answer for the amount of gas saved.

Authority and Responsibility

At the end of the course and when the final take-home exam was given, the students
were relatively well trained in using the technology, with no visible hesitation when
shifting between different software programs to draw graphs or identify models. Only
one student of the five in the study group maintained a sceptical attitude throughout
the course, namely Sarah, who argued that the more complicated the models became,
the more dangerous it was to use computers. She said:

It’s as though we become seduced by the fancy graphs and the quickly generated
results with all the decimal places. And if the model is complicated, you really don’t
have any chance to follow the calculations.

Sarah’s observation — that the more complicated the situation, the harder it is to see
through the modeling process supported by computer software — was reinforced in the
final exam problem above. The gas problem began as an easy problem, but then it
created unexpected difficulties for all the students in the study group, as well as most
of the rest of the class.

After finding the two linear models in Parts A and B, the students ran into
difficulty in Parts C and D because they needed a periodic model from October to May
to illustrate the temperature changes. As a consequence, a majority of the class (and all
students in the study group except Sarah) indicated that in every part of the problem,
the model should be chosen exclusively by the technology. The selection principle
they used relied most heavily on ranking the values of the correlation coefficients.
Nina wrote:

In order to find a model, I used the software CurveExpert. I picked a continuous and
periodic function since that would also provide me with temperature values for the
summer months. I decided that the function y = a + bldin(ct + d) was most suitable.
After further investigation, I found that this function is not quite periodic.

Sarah, on the other hand, decided rather early in the modeling process to chose or to
construct her own model, not to select one of those offered. She wrote on her exam:

I enter those values into CurveExpert and apply curve fitting of a model like
y=a+ b cos(cx + d), in which I define ¢ = 21712. That will force a periodicity equal to
12 months. Then I get the following model:

132



Lingefjird

y =9 + 5.8cos(1v6x + 0.86)

$=0.21571385
r=0.99857791

8.7

X Axis (units)

Figure 3. A model for Part C

Three of the other students in the study group, Nina, Olga, and Patricia, selected a
model based on the calendar year, which meant that they arranged the monthly
averages of the outside temperature from January to December, thereby yielding the
following illustrative figure:
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Figure 4 A different model for Part C

Both Nina and Olga became so confused by this modelling process that they
subsequently employed the computer again, apparently without really needing it.
Having obtained a pretty good model in Excel, they took all the points used to draw
the sine curve there and generated the same model in CurveExpert. Then they
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integrated over the year. Presumably because they did not have the Excel figure in
front of them, they then forgot to exclude the “summer gap” and got at least twice as
much gas saved, as they should have. Patricia, in contrast, used the possibility of
making interpretations of the graph. She wrote:

When 1 see the graph and that the curve is “empty” during the warmest months of the
summer, then I realize that it would be very stupid to use gas for heating when it is
warmer outside than inside. And I just exclude this interval from my calculation.

In fact, the mean temperature in Table 3 over the 8 months can be roughly estimated as
7 °C. Tables 1 and 2 indicate that the amount of gas saved for a temperature of 7 °C is
about 35 m’® per week. A very rough estimate would be that the amount of gas saved
over a year will probably not exceed 1200 m>. On the other hand, Table 3 indicates
that 5 months have average temperatures below 7 °C and therefore that the amount of
saved gas will not be below 700 m”.

The only student in the study group who did anything along the lines of a simple
arithmetic calculation and stayed with it was Sarah. That approach helped her during
her modeling process to make important and influential decisions. On her exam, Sarah
wrote:

Using an estimate based on the values from my diagram [from the fitted model], one
can see that the area is about 1200 m®. This in turn suggests that the calculated value
of 1159.38 m’ is a reasonable value for the amount of gas saved during a year.

Robert got very upset after receiving back his take-home final exam. He had neglected
to take into account that the gas consumption was expressed in weeks whereas the
average outside temperature for the geographical location was in months. His model
thus became a mixture of two different units of time, and his result was about a tenth
of what it should have been. He expressed his dismay in the final interview:

Robert: 1 know this, I know this stuff. I know that I know this. I’'m good with
integrals. I can’t believe that I made this error and that I didn’t do a rough check
before. I’ve spent hours and hours making nice graphs and formatting the
mathematical text. And then everything is wrong!

I: What happened to your strategy of always doing a mental and paper-and-pencil
check first?

R: 1don’t know. I guess I got carried away, and for some reason I thought that I didn’t
need the common-sense check. I just became obsessed with the problem!

I: Do you think the problem was too complicated?

R: No, the problem was great. It’s just that I’'m upset with myself. The problem sort of
rips your clothing off and shows how much of the mathematics you have understood.
I think it is healthy to face problems like this and to be forced to write about them, but
at the same time it is almost too revealing!

I: So what is your opinion about the trust you now put in computer-generated results?

R: 1don’t know. I think that I’m as sceptical as before; at least I still know that I need
to be in control. At the same time, when you learn to use computers, it is hard not to
use them all the time. I have heard about people who have problems writing letters by
hand after using computers for a long time, and now I can believe that.

It is almost the same with me. Now I’ve learned to make nice graphs in Excel and
CurveExpert, to cut and paste into Word documents, I hesitate to do mental or paper-
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and-pencil estimates first. It is like I’'m drawn to the computer first instead, and then it
is hard to stop or look back.

When students are forced to explain and argue for their models, they disclose
inaccuracies and misconceptions in a way that may very well be hidden otherwise.
Olga was as open about her feelings as Robert was. She and Nina had arrived at the
amount of 4000 m>. Olga had major difficulties understanding the link between the
models in Parts A, B and C and the model she needed to construct for Part D. On her
exam, she had written the following:

Also in this problem I employed CurveExpert to do the heavy work and just entered
the given values.... Then I took the integral of f{x) from 0 to 52 to get the amount of
gas saved during one year.

Like some of the other students, Olga neglected to consider that no heating was
during the summer months. In the final interview, she expressed her feelings about not
just the problem but the whole course:

Olga: 1t’s so typical of you guys in this course. It’s always complicated and hard,
never easy. It is just so typical.

I: Do you mean the integral?

O: I mean the whole thing. How do you think we are supposed to use computers
and the results we get from them when you teachers criticise us this way? I worked
a lot on this problem, and I used both CurveExpert and Excel to generate models.
So how could it be wrong?

For a detailed discussion of this study and the two others, see my dissertation,
“Mathematical Modelling by Prospective Teachers,” completed at the University of
Georgia in May 2000.

Conclusion

In short, it could be said that teachers at all levels need to be cautious about what
students actually understand about the modelling process and how they interpret it. A
clear focus on the validation part of mathematical modelling is undoubtedly more
essential in the presence of technology than ever before.
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Killer-equations, job threats and syntax errors
A postmodern search for hidden contingency in mathematics

Allan Tarp
The Royal Danish School of Educational Studies

The difference between Modern research and Postmodern counter research
Modern research and post-modern counter research are both working in the borderland
between nature and culture, between what is given and what could be different,
between necessity and contingency. Out of the breakdown of pre-modern order,
modernity saw the emergence of contingency. Scared by the idea of a contingent
world modernity desperately began to reinstate order (Bauman, 1992). Modern
research sees contingency as hidden necessity, and tries to discover the nature of this
necessity wanting to produce new convincing knowledge claims “A is B”. On the
other side post-modern counter research tries to uncover hidden contingency in
necessity wanting to produce new inspiring knowledge suggestions “A could also be
B”.

Although some post-modern thinking might see both culture and nature as social
constructions this paper recognises a borderline between nature and culture to be
drawn between numbering nature and wording culture. Nature can speak through
number-meters, rulers, but since no word-meter exists, the world cannot word itself,
hence all phrasings are contingent, except this meta phrasing. Phrasing is freezing, and
re-phrasing is de-freezing or freeing. It is a post-modern point that a phrasing
constructs what it describes and that humans are clientified by ruling phrasings and
discourses (Foucault, 1972). Our convictions might be not universal truths but local
truths depending on the ruling phrasing, and they might change through a rephrasing.
An example of a post-modern rephrasing is seen in the following case.

Killer-equations in paradise
Once I was invited for a two-month stay at a new four years Secondary Teacher
Education College in South Africa created to solve the local 1% success problem in
mathematics: 90% of the students did not enter the final exam in mathematics and
90% failed. The mathematics curriculum at the college and at the high schools
followed a tradition of a Platonic Top-Down mathematics describing concepts as
examples of more abstract concepts all originating from the mother concept “Set”. In
the science education classes at the college the educational theory-tradition was that of
curriculum 2005, Outcome Based Education (OBE) and Vygotskian constructivism.
After the first month I followed some students in their teaching practice at a high
school in a local village called Paradise. The student-teachers received a textbook and
a number of pages they were supposed to cover. In a grade 10 class two equations
were written on the board by the student-teacher and solved by students in the
following way:
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Equations: M—M:B y*2_y-6_1
5 2 4 3 2
Solutions: M =3 6+24 =2
10 12
M=-10(3) y=122
M=-30 y=14

Figure 1. Equations and solutions

After the period the student-teacher complained: “You ask them if they understand it
and they say yes, but next day they have forgotten it all. They don’t study at home,
they have too much free time and no parent support. Their friends say mathematics is
not interesting. 30 minutes lessons are too short, in private schools they have 60
minutes. The ministers take their children abroad. The new curriculum 2005 also asks
us to teach these equations. Something has to be done.”

Other student teachers and teachers had similar complaints: Mathematics is
difficult and can only be learned through hard work, but today’s students don’t like
hard work. First year high school students lack fundamental mathematical knowledge
from the primary school. The teaching material is outdated and in low supplies. Many
secondary school teachers are not trained in mathematics. The teachers need to be
workshopped in OBE. The classrooms are too crowded to practise OBE and
constructivism. The instruction has to be in English, which is not the mother language.

Designing an alternative: Rephrasing equations

In these explanations the blame for the “bad play” is placed with external factors
outside the teacher’s influence: “the manager, the director and the actors”. Inspired by
a postmodern view looking for alternative silenced explanations I suggested looking at
“the script” by rephrasing equations into two groups: Top-Down “killer-equations”
and Bottom-Up “calculation stories”.

Killer-equations are equations you never meet outside the classroom and which
only serve one purpose, to kill off the interest of the students. Killer-equations are
examples of Top-Down equations being examples of the general equation “A = B”,
where A and B are examples of arbitrary expressions. Calculation stories or practice-
equations are questions arising from social practices: the social practice of shopping
e.g. contains questions like “3 kg @ ? R/kg total 14 R including a 2 R fee” leading to
the calculation story or equation “x-3+2 = 14”.

Also “solving an equation by doing the same to both sides” can be rephrased as
“reversing a calculation”. The multiple calculation x-3+2 is reduced to a single
calculation by means of a “hidden parenthesis”: x:3+2 = (x-3)+2. This calculation
consists of two steps: First the R/kg-number x is multiplied by the kg-number 3 to
produce the R-number x:3. Then the fee 2 is added to produce the Total x:3+2, which
is 14. Reversing the calculation consist of the two opposite steps: First the fee 2 is
subtracted from the Total 14 to produce the R-number 12. Then the R-number 12 is
divided by the kg-number 3 to produce the R/kg-number 4.

The reverse calculation method is identical to the old “Move & Reverse”method: a
number can be moved across the equal sign from the forward side to the backward side
of an equation and vice versa by reversing its calculation sign.
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Cglculgtlon Forward Backward Forward Backward
direction:
Total (x-3)+2 = 14 x3)+2 = 14
+21 12
R x3 = 14-2=12 x3 = 14-2=12
31173
R/kg X = 12/3=4 X = 12/3=4
The “Walk & Reverse” method The “Move & Reverse” method

Figure 2. Two traditional methods

Practising the alternative

After having discussed this rephrasing of equations with the student-teachers one of
them asked me to try it out in the classroom. I accepted to take over a standard 30
minutes lesson in a grade 10 class with 50-60 students. Following the design I started
to present three Bottom-Up questions:

“3 kg @ 5 R/kg total ? R” leading to the equation T =5-3
“3 kg @ 5 R/kg total ? R including a2 R fee”  leading to the equation T = (5-3)+2
“3 kg @ ? R/kg total 14 R including a 2 R fee” leading to the equation 14 = (x-3)+2

Then I introduced the reverse calculation method mentioned above. The class did a
similar problem with other numbers. I then took the class to the schoolyard and asked
them to line up facing me: “We start with an R-number 5 each. Now we walk forwards
to steps, a “-3 step” and a “+2 step” calculating the new R-number each time”. This
produced the final R-number 17. “If the final number had been 14 R what did we
begin with? We can guess, or we can calculate by walking backwards reversing the
calculation steps.” After a “-2 step” and a *“/3 step” had produced 4 R we went back to
the classroom and saw the resemblance between the “Walk&Reverse” method and the
reverse calculation method on the board.

By erasing the arrows the reverse calculation method became the “Move &
Reverse” method. Some homework problems were given for the next period, where
the student-teacher took over again after the students had written down their solution
of the equation 4+3-x=19 on the back side of a questionnaire.

Evaluating the alternative
The questionnaire contained a traditional quantitative opinion question and two open
questions allowing for the self-phrasing of the students:

Dear Learner. I have had the pleasure of showing you a Bottom-Up understanding
of an equation 2+3x=14 seeing an equation as a story telling about the total and how
it is calculated.

1. What do you think about the idea of introducing the Bottom-Up understanding
of an equation in the classroom of South African secondary schools. Draw a
circle around your answer (-2: Very Bad, —1: Bad, 0: Neutral, 1: Good, 2: Very
Good).

2. If you have other comments to the bottom-Up understanding of an equation you
can write them here.
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3. You have been living with mathematics for many years now. I would be glad if
you could tell me a little about your learning life with mathematics. Just write
whatever falls into your mind.

I collected 50 answers. The correctness of the method and the result were graded on a
(-2, -1, 0, 1, 2) scale giving the distributions (0, 3, 7, 19, 21) and (2, 9, 1, 5, 33). The
answers to question 1 were (-2, -1, 0, 1, 2): (0, 0, 2, 6, 40). As to question 2, 12
answers praised the method for being easy, 25 for being understandable and 3 for
being short. As to question 3 I was amazed to find among the answers 24 occurrences
of a “No math - No job” myth.

So one way of motivating equations is by job threats. Another is to keep killer-
equations out of the classroom only allowing practice-equations to come in.

Why might Bottom-up mathematics be user-friendlier?

As other forms of life humans need to be connected to nature’s flow of matter and
energy (food) and information. In premodern agriculture humans add a cultural flow of
food to nature’s flow. In the modern industrial culture electrons are used to carry
energy, and in the postmodern information culture electrons are used to carry
information. The introduction of global TV into local cultures has uncovered the
contingency of local traditions creating a post-traditional globalised society (Giddens
in Beck et al, 1994). With the loss of external traditions to echo, identity becomes self-
identity, a reflexive project, where the individuals have to create their own bio-
graphical narrative or self-story looking for authenticity and shunning meaninglessness
(Giddens, 1991).

By referring upwards a Top-Down sentence (“a function is an example of a
relation”) can give only one answer thus creating “echo-teaching” and “echo-
reluctance”. Top-Down sentences become “unknown-unknown” relations that cannot
be anchored to the students' existing learning narrative. They become meaningless and
only accessible as “echo-learning” (Tarp, 2000).

By referring downwards a Bottom-Up sentence as e.g. “a function is a name for
calculations with variable quantities” (Euler, 1748) can give many examples thus
becoming an “unknown-known” relation that can meaningfully be anchored to the
students' existing learning narrative, thus extending this. Inspired by Ausubel
(Ausubel, 1968) we could say that Bottom-Up learning takes place when students get a
meaningful answer to their learning-question: “Tell me something I don’t know about
something I know”.

Why might Bottom-up mathematics be unrecognised? —

Rephrasing mathematics

Mathematics education is about education in mathematics - or is it? Can mathematics
be rephrased and can education be rephrased? Are the actors (students and teachers)
and the system clientified, caught and frozen in a “mathematics” discourse forcing
them to subscribe to a Top-Down "mathematics before mathematics application”
conviction?

Humans communicate about the world in two languages. A word-language
assigning words to things and practices by means of sentences: “This table is high”.
And a number-language assigning numbers to things and practices by means of
number- or calculation-sentences called equations: “The height is forty five
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centimetres (h=45-cm)”, “3 kg @ 4R/kg total 3-4-R (T=3-4-R)”. And humans
communicate about the languages in two meta-languages, the grammar describing the
word-language, and mathematics describing the number-language. And humans
communicate about the meta-languages in two meta-meta-languages, meta-grammar
describing grammar, and meta-mathematics describing mathematics.

Meta- Set
meta- Meta-grammar Chomsky Relation Meta- .
language Function mathematics
Grammar Subject Number Mathematics
Meta- of the Verb Operation Grammar of the
language word-language Object Calculation | number-language
Word-language Word stories | Number stories | Number-language
Language  applications of Sentences Equations Applications of
grammar mathematics
WORLD THINGS & PRACTICES

Figure 3. Mathematics as part of a language-house

The phrasing “Mathematics and applications of mathematics” creates a Top-Down
conviction “Of course mathematics must be learned before it can be applied”. A
rephrasing to “Grammar of the number-language and number-language” creates the
opposite Bottom-Up conviction “Of course language must be learned before its
grammar”. So in this case the truth is dependent upon the ruling phrasing.

Frozen by the “Mathematics and applications of mathematics” phrasing modern
mathematics implements a “grammar before language” practice (or even “meta-
grammar before language”), which would create global illiteracy if spread from the
number-language to the word-language, thus preventing a number-language from
becoming a human right. Most humans are fluent in their mother language but unable
to make explicit the grammatical rules they apply, grammatical competence is mostly
tacit.

So mathematics education can be about education in mathematics, but it could also
be about securing the human right for a number-language respecting the tacity of
grammatical competence. Forcing an explication of a definite unrelatable mathematics
might be blocking for this human right.

Mixing different abstraction levels creates syntax errors

The word-language is able to differentiate between the three language levels through
the three words “language, grammar and meta-grammar”. Unwilling to use the two
words “number-language” and “meta-mathematics” mathematics is unable to
differentiate between the three language levels. It thus creates syntax errors violating
Russell’s type-theory saying that mixing concepts from different abstraction levels
creates nonsense. We can meaningfully ask “Where in France is Paris?” but not
“where in Paris is France?” And self-referring sentences like “This statement is false”
are meaningless. Godel makes the same point: mathematics can prove statements, but
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not itself. Non the less mathematics keeps on making syntax errors by mixing different
abstraction levels. Humans might accept syntax errors through “echo-learning” but
computers refuse to accept syntax errors: computer programs like MathCad thus have
to operate with several different equal signs.

“2+3” is a calculation and “5” is a number. A number can be counted, read and
measured. A calculation can be calculated respecting priority and sometimes in reverse
order. Exchanging the words “number” and “calculation” creates meaningless
sentences, hence the two words are of different type. The syntax of writing “2+3 = 57
is “<calculation><identical-to><number>“, i.e. a syntax error. One way of avoiding
this syntax error is to write “(2+3) = 5” meaning the result of the calculation 2+3 is
identical to 5 according to the calculation “2+(3+4)” where “(3+4)” means the result
of the calculation “3+4”. Another way is to write “2+3 — 5” meaning “2 and 3 gives
5”.

As with “24+3 = 57 also “x+3 = 5” is a syntax error. Writing “x+3 = 5-x” is a
normal error since “x+3” and “5—x” are not identical calculations. Writing “(x+3) =
= (5—x)” 1s meaningful asking when the results of the two calculations x+3 and 5—x are
identical.

Writing “f(x): x+2”” meaning “let f(x) be a label for the calculation “x+2” having x
as a variable number” is meaningful, but writing “f(x) = x+2” is a syntax error since
x+2 is a calculation and f(x) is a label. Writing f(3) = 5 is a double error saying that 5
is a calculation with 3 as a variable number. Writing f(2x) is a syntax error since “2x”
is a calculation and not a variable number. Writing 2-f(x) is a syntax error since f(x) is
a label and not a number. Writing y = f(x) is a syntax error and should be written e.g. y
= (x+2), or y = (<f(x)>) where <f(x)> = x+2.

Talking about ’the value of a function” is as meaningless as talking about “’the
mood of a verb”. Talking about mathematics describing the world is as meaningless as
talking about grammar describing the world. Mathematics and grammar describe
languages, and languages describe the world. To “mathematize” the world is as
meaningless as to “grammatize” the world. Mathematical models of the world are as
meaningless as grammatical models of the world. The world is described by
qualitative or quantitative or graphical models.

Many proofs in mathematics are based upon the power-set, the set of all subsets in
a given set. A subset is meaningful, but a set of subsets cannot be a set. A set is
defined by a property shared by its elements. Since no or one element cannot share
anything, it is problematic to talk about an empty set and a single element set. Hence
set theory and the proofs using it need a revision.

Abstraction errors
We can say that an abstraction is true if it is true whenever you meet instances of it.
An abstraction is false if there are instances where it is not true.

2 meters 3 times is always 6 meters, and 2 something 3 times is always 6
something. Hence “3-2 = 6” is a true abstraction.

Although 2 meters and 3 meters are 5 meters, 2 meters and 3 centimetres are 203
centimetres, 2 days and 3 weeks are 23 days etc. Hence “2+3 = 5” is a false
abstraction. Still it is taught in school as a universal truth.

In the world we always meet numbers situated in contexts carrying units, and these
units have to be alike before adding. Three apples mean an apple three times: 3-apple.
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It is not the number “3” but the operator “3-” that is abstracted from below. Addition
only has meaning if the two operators operate on the same unit, i.e. addition only has
meaning within a parenthesis:

T=23+53=(2+5)03=73
T=2-3+4-5 = 2-3-144-5-1 =6-1+20-1 = (6+20)-1 = 26°1

Adding fractions suffers from the same problem as adding numbers without units.
According to the principle of a common denominator 2/3+4/5 = 22/15. Adding
numerators and denominators 2/3+4/5 = 6/8 is considered a meaningless mistake.
However 2 cokes out of 3 cans and 4 cokes out of 5 cans total 6 cokes out of 8 cans,

and not 22 cokes out of 15 cans. Now the meaningless becomes meaningful and vice
versa.

Again the point is that the units should be the same before adding. 2/3 of 3 cans
and 4/5 of 5 cans total 2 cans + 4 cans, i.e. 6 cans out of 8 cans, i.e. 6/8 of 8 cans.

T =2/3 of 3 cans and 4/5 of 5 cans = 2/3-3-can+4/5-5-can = 2-can+4-can = 6-can =
6/8-8-can

In the word-language we always use full sentences to evaluate the truth of a
sentence. Instead of “green” we say e.g. “This table is green”. For the same reason also
the number-language should use full sentences from day one, saying “T = 3:5” instead
of just “3-5” thus specifying both what is being calculated and the calculation.

Standard formulations from first year mathematics as “3+5” is a third order
abstraction being abstracted from reality, from the units and from the equation. Such
abstractions construct mathematics as encapsulated and create serious problems to the
students when they later meet wor(1)d problems.

Equations can also be solved by reverse calculations

A Top-Down approach will phrase “2+3-x=14" as an equation only solvable after
equation theory has been introduced thus showing the relevance and applicability of
modern abstract algebra.

2+3-x =14

(2+(3-x))-2 =14-2 +2 has the inverse element -2
((3-x)+2)-2 =12 + is commutative

(3x)+(2-2) =12 + is associative

(3x)+0 =12 0 is the neutral element under +
3x =12 by definition of the neutral element
(3x)1/3 =12-1/3 3 has the inverse element 1/3
(x-3)-1/3 =4 i1s commutative

x:(3-1/3) =4 is associative

x-1 =4 1 is the neutral element under -

X =4 by definition of the neutral element
L = {x(ER | 2+3-x = 14} = {4}

Figure 4. Solutions steps in a top-down approach.
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Alternatively a Bottom-Up approach will phrase “2+(3-x) = 14” as a calculation story
reporting both a calculation process (2+3-x) and a calculation product (14), thus
accessible together with calculations and solvable by reversing or walking the calcula-
tions as shown above.

Bottom-up mathematics education through the social practices that created
mathematics

A Platonic Top-Down understanding sees mathematics as being created by and being
examples of eternal universal ideas. Alternatively a nominalistic Bottom-Up under-
standing sees mathematics as being created by and abstracted from social practices.
According to Giddens the competence or practical consciousness developed through
exposure and participance in social practices is mainly tacit (Giddens, 1984). A
rephrasing of “mathematics education” could be “number-language competence”
coming from bringing into the classroom the social practices of bundling, totalling and
earth measuring that raises the questions creating the number language, algebra and
geometry. And respecting mathematics as partly tacit knowledge. This way allows the
gradual growth of tacit competencies through gradual participance in social practices
(Lave and Wenger, 1991) in which the students are allowed to sense an authentic being
or “Dasein” (Heidegger, 1926). This “sociological social constructivism” is different
from Vygotskian “psychological social constructivism”. The former accepts the meta-
language to be tacit, the latter believes in a Platonic scientific meta-language to be made
discursive. Another option is to give the stories of these social practices the form of
fairy tales, in which case we might experience automatic assessment-free learning,
suggested by the long survival of fairy tales in the non writing culture of pre-pre-
modernity.

The social practice of bundling and stacking

By totalling different bundling and stacking practices are used. Thus in the case of
eight apples different Total stories can be told: A 2-bundling leads to the Total story T
= 4-2-apple or T=1-stack @ 4-rows per stack @ 2-apple per row. A 9-bundling leads to
T = (8/9)-9-apple, a 3-bundling gives T=2-3-apple+2-apple or T= (2 2/3)-3-apple. These
stories emerge from doing a rebundling or from calculating using the “rebundling-
equation” T = (T/a)-a. Standardising 10-bundles leads to the decimal numbers being
“Grand Totals” in disguise: T = 234 = 2:100+3-10+4-1. In Top-Down mathematics
natural, integer, rational and reel numbers are existing Platonic entities. In Bottom-Up
mathematics the attributes of matter, space and time might be Platonic ideas, but
numbers are bundling stories abbreviated as decimal numbers able to describe these
attributes with any accuracy.

In this way multiplication comes before addition and fractions before two digit numbers.
Hence a Bottom-Up curriculum is different from a Top-Down curriculum from day one
(Tarp, 1998).

The social practices of measuring earth and uniting totals

Geometry means earth-measuring in Greek. The earth is where we live and what we
live from. We divide the earth between us, and geometry grows out of questions like
“How do we divide and measure earth and space?”
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Algebra means reunite in Arabic. If we buy five items in a store we don’t have to
pay all the single prices, we can ask for them to be united into a total. If the total is 17
$ we are allowed to pay e.g. 20 $. This new total is then split into the price and the
change. To check we can reunite these numbers. So living in a money based culture
means being constantly engaged in a “social practice of totalling” consisting of uniting
and splitting totals, and algebra grows out of the question “How much in total?” This
question can be answered in four different ways:

Totals unite/split into variable constant

unit-numbers T =atn T =an

$, m,s, ... Error! = a
T—n = a

per-numbers DT =Ufdx T =a"

$/m, m/100m=%, ... \/n;T = a
Error! = f logaT =

Figure 5. One question, four different answers

The operations “+” and “-” unite variable and constant unit-numbers; “f” and “*” unite
variable and constant per-numbers. The reverse operations “~” and ““/” split a total into
variable and constant unit-numbers; “d/dx” and “V and log” split a total into variable
and constant per-numbers

“5$and 3 $ total ? $” T=5+3 or T=atn

“5 days @ 3 $/day total 2 $” |T =53 or T=an

“5 days @ 3 %/day total 2 %” | 1+T = 1.03° or 1+T=a"

“ntimes @ (3 %/n)/time total | 1+T = (1+0.03/n)" | . 14T = m LI,
%" = (1+1)"®" where e' = 1+t for t small

=V(1+t) *P =e*”  |e.g. e'is locally linear

“5 sec. @ 3 m/sec increasing | DT = Error! or DT = Error!
to 4 m/sec total 7 m”

Figure 6. Practice based questions lead to calculation stories or equations

When Will the logy Button be Included on Calculators?
A central question as “ 5%/year in ? years total 50%” leads to the equation 1.05X =

1.50 with the solution x =log| 5 (1.50) = 8.3. This however cannot be calculated

directly on a calculator. Why not?

Figure 7. An “unsolvable” problem.
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The social practice of building and evaluating models

The word-language and the number-language are used to describe or model the world.
Word-stories are differentiated into different genres as fact, fiction and fiddle.
Fact/fiction are stories about factual/fictional things and practices. Fiddle is nonsense
containing syntax errors as e.g. “this sentence is false”. In the Top-Down tradition
number-stories are called mathematical models or applications of mathematics. As
mentioned above this phrasing is a syntax error since mathematics describes the
number-language, not the world. A Bottom-Up approach can avoid this error by
phrasing “number-language description” as “quantifying and calculating model” and
reuse the genre distinction from the word-language by talking about fact, fiction and
fiddle models (Tarp, 1999).

A fact model could also be called a “since-hence” model or a “room” model. Fact
models quantify and calculate deterministic quantities: “What is the area of the walls
in this room?” In this case the calculated answer of the model is what is observed.
Hence calculated numbers from fact models can be trusted.

A fiction model could also be called an “if-then” model or a “rate” model. A
fiction model contains contingent equations that could look otherwise. Fiction models
quantify and calculate non-deterministic quantities: “My debt will soon be paid off at
this rate!” Fiction models are based upon contingent assumptions and produces
contingent numbers that should be supplemented with calculations based upon alterna-
tive assumptions, i.e. supplemented with parallel scenarios.

A fiddle model could also be called a “risk” model. Fiddle models quantify and
calculate qualities that cannot be quantified: “Is the risk of this road high enough to
cost a bridge?” The basic risk model says “Risk = Consequence - Probability”. In
evaluating the risk of a road statistics can provide the probabilities of the different
casualties, but casualties cannot be quantified. Still in some cases they are quantified
by the cost to public institutions as hospitals etc. This is problematic since it is much
cheaper to stay in a cemetery than in a hospital. So risk-models might be fiddle
models. Fiddle models should be rejected asking for a word description instead of a
number description.

Rephrasing mathematical concepts
In the Top-Down tradition the names of mathematical concepts come from above. A
Bottom-Up approach could respect these names but supplement them with other
names coming from below. “Algebra” could also be called “reuniting totals™.
“Geometry” could also be called “earth measuring”. “Velocity, density etc.” could also
be called “per-numbers” as the opposite of “unit-numbers”. “Stochastic variables”
could also be called “unpredictable numbers” as the opposite of “predictable
numbers”. “Linear and exponential functions” could also be called “change by adding
and multiplying”. “Differentiable” could also be called “locally linear”. “Continuos”
could also be called “locally constant” as the opposite of “interval constant” resulting
from interchanging the € and 0 in the €-0 definition. “Differential equations” could
also be called “change equations”.

Top down names containing syntax errors should be avoided by saying “quantify
and calculate” instead of “mathematize” and “mathematical modelling”, and by saying
“the value of a variable” instead of “the value of a function™.
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Has mathematics become the God of late modernity?

Premodernity institutionalised the worship of God, the metaphysical creator, in the
premodern story house, the church, and the rhetoric of this worship can still be heard
preached in today’s churches. When Newton discovered that the nature of forces was
physical and not metaphysical, and that their effects could be quantified, calculated
and predicted, the basis for the industrial culture of modernity was created. This made
the quantifying and calculating number-language as important as the word-language in
early modernity under names as “regning” in Danish, “Rechnung” in German etc.

The metaphysical counter reformation of the mid 1900 fuelled by the technology
shocks of the risk society (Beck, 1986) and by the cognitive turn with constructivism
(Piaget, 1969; Vygotsky, 1934) reintroduced a metaphysical creator in mathematics,
Set, to be worshipped and teached in the story house of modernity, the school. The
rhetoric of late modern Mathematics is close to that of late feudal God, e.g. “No Math-
No job” and “No God-No salvation”, “Mathematics is present everywhere” and “God
is present everywhere”. It is numbers and calculations that are used everywhere, not
meta-stories about them. And such statements will marginalise all those who cannot
see it. Dehumanised mathematics dehumanises humans. It is one of the challenges of
postmodernity to revive the enlightenment dream of human empowerment: Humans
become educated not by meeting metaphysical creators but by meeting the social
practices that provide the daily bread.

Conclusion

Mathematics holds on to its dream of being precise and consistent in spite of its
inability to fulfil it. This could be one of the hidden reasons behind today’s exodus
away from mathematics and math-based educations. This paper suggests the border
between necessity and contingency within mathematics is moved quite considerably
leaving only decimal numbers and multiplication as necessities. Inspired by Rorty we
could ask: Maybe its hidden contingency should make mathematics a little self ironic
and change its solidarity from the world above to the world below, from orthodoxy to
human rights (Rorty, 1989). Maybe a rehumanised, Bottom-Up, meaningful, syntax
error free, user-friendly mathematics will make many of today’s learning problems
disappear by themselves.

Fiction: “A New Curriculum for a New Millennium” —

A curriculum architect contest

Last year a school in Farawaystan decided to arrange a “curriculum architect contest”
in mathematics: “A new curriculum for a new millennium”. Below is a fictitious
response to this contest.

Organic Bottom-up mathematics:

A three level bundling and totalling curriculum

The holes in the head provide humans with food for the body and knowledge for the
brains: tacit knowledge for the reptile brain and discursive knowledge for the human
brain. This proposal sees a school as an institutionalised knowledge house providing
humans with routines and stories by making them participants in social practices and
narratives, and by respecting conceptual liberty.
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The chaotic learning of tacit routine knowledge can be guided by attractors (Doll,
1993), in this case by social practices providing authenticity. In the case of mathema-
tics the social practices will be those of bundling and totalling according to the Arabic
meaning of the word Algebra: reunite.

In today’s post-traditional society (Giddens in Beck et al, 1994) humans can no
longer obtain identity by echoing traditions, they have to create their self-identity by
building biographical self-stories looking for meaning and authenticity (Giddens,
1991). Each individual student has his own learning story, a network of concept-
relations, sentences. Resembling a widespread organic carbon structure a learning
story steadily grows by adding new sentences to existing words: Tell me something I
don’t know about something I know (Ausubel, 1968). Stories can tell about the
metaphysical world above and about the physical world below. Top-Down stories
from above connecting metaphysical concepts cannot be anchored to the existing
learning story, they become encapsulated rote learning. Bottom-Up stories from below
can, 1.e. stories about the social practices providing the daily bread. The three Bottom-
Up mother stories are the stories about nature, culture and humans.

First the strong gravity force crunched its universe in a big bang, liberating the
medium nuclear force trying to crunch the atoms of a star in small bangs liberating
light. In the end the strong force crunches the star in a medium bang filling space with
matter and planets and liberating the weak electromagnetic force neutralising the
strong force by distant electrons. Light makes motion flow through our planet’s nature
creating random micro-motion and cyclic macro-motion. Molecules transfer motion
through collisions and are recycled when carbon-hydrogen structures have oxygen
added and removed. The weak light helps the green cells to split the weak carbon-
oxygen link. The strong light, lightening, splits the strong nitrogen-nitrogen link in the
air adding strength to the extended carbon-nitrogen structures from which life is build.
The three life forms are black, green and grey cells. The black cells survive in oxygen
free places in stomachs and on the bottom of lakes only able to take oxygen in small
amounts from organic carbon-structures thus producing gas. The green cells use the
weak light to remove the oxygen from the inorganic carbon dioxide structure thus
producing both organic matter storing motion and the oxygen needed by the grey cells
to release the motion again. Green cells form cell communities, plants, unable to move
for the food and the light.

Grey cells form animals able to move for the food in form of green cells or other
grey cells thus needing to collect and process information by senses and brains to
decide which way to move. Animals come in three kinds. The reptiles have a reptile
brain for routines. The mammals having live offspring in need of initial care have
developed an additional mammal brain for feelings. Humans have developed human
fingers to grasp the food, and a human brain to grasp the world in words and
sentences. Thus humans can share and store not only food but also stories, e.g. stories
about how to increase productivity by transforming nature to culture.

The agriculture transforms the human hand to an artificial hand, a tool, enabling
humans to transform the wood to a field for growing crops. The industrial culture
transforms the human muscle to an artificial muscle, a motor, integrating tools and
motors to machines enabling humans to transform nature raw material to material
goods. The information culture transforms the human reptile brain to an artificial
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brain, a computer, integrating the artificial hand, muscle and brain to an artificial
human, a robot, freeing humans from routine work.

Human production and exchange of goods has developed a number-language
besides the word-language to quantify the world and calculate totals. Agriculture totals
crops and herds by adding. Trade totals stocks and costs by multiplying. Rich traders
able to lend out money as bankers total interest percentages by raising to power. And
finally industrial culture calculates the total change-effect of forces through
integrating: by adding a certain amount of momentum per second and energy per
meter a force changes the meter-per-second-number, which again changes the meter-
number.

A three level bundling, stacking and totalling curriculum

This proposal presents an organic bottom-up mathematics growing out of the social
practices of bundling, stacking and totalling. It is organised in three levels, level 1: 6-
10 years, level 2: 10-14 years and level 3: 14-18 years. It is activity and question
driven limiting the amount of written material. It is learner centred limiting the amount
of in-service teacher training.

The curriculum metaphor is a tree with a trunk consisting of five fundamental social
practices: bundling, stacking, totalling, coding and reporting fed by a root of basic
activities. From the trunk two branches grow out, a “totals in space” branch and a “totals
in time” branch reintegrating into a “totals in space and time” at three levels.

The basic activities are carried out with different piles of pellets or beads arranged and
rearranged in sand or plastic boxes or frames always followed by the question “How
many in total?” The pellets are bundled in different ways, illustrated graphically,
reported as a Total-story, controlled on a calculator and finally coded.

One pellet only leads to one Total-story: T = 1. Two pellets bring the names “bundle”,
“times” and “stack”. Two pellets can be bundled as a 2-bundle one time or as a 1-bundle
two times. And a 2-bundle can be stacked. This produces two Total-stories:

T=12 T=21 T=12

Figure 8. Three pellets bring the names “add” and “minus” and lead to
four Total-stories:

-0
T=13 T=12+11 T=11+12 T=3:1 T=3-1-1-1
T=3 T=2+1 T=1+2 T=3 T=3-1

(in some cases the ““1”" and “I1-” can be left out)

Figure 9. Four pellets bring the names “square”, “per” and “@” when the
two 2-bundles are stacked
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T=22 T =2-2 = 1-stack @ 2-rows/stack @ 2-1/row
Figure 10. Eight tiles can lead to fractions. Some fractions can be reduced througha
rebundling:
T= 42 T=2-3+(2/3)-3=(2 2/3)-3 T=24 T=4/6=2/3

Figure 11. Four patterns.

Ten is used as the maximum bundle size called “X” in the beginning, T = 3-X+4-1.
Later it is abbreviated to T=34 using the sign “0” for “none”. Likewise the Roman
tradition can be reused by calling hundred “C” and thousand “M”: T = 3-M + 4:C +
+5-X +6:1 =3456.

A Total-story can be coded to hide the numbers so others will have to guess:

T=2-5+1 thus becomes T=2-a+ 1

Coded total-stories are later called equations or functions. They can be analysed in
tables and illustrated in figures on squared paper, where the ruler is introduced as a
“counting stick™ (fig. 1). The numbers of the table is calculated by walking on the
floor or by “finger walking” on the table:
a=3,T=?2a=3 0O (2)- 6 O D) T7=T
Walking backwards reversing the calculation signs checks the result:

a=2T=7a=3 <(2)0 6 ()0 7 =T

T =2-a+l 3 5 7

a 1 2 3 4
T=3-a-2 1 4 7 10
a 1 2 3 4

Figure 12. Two codings are needed to find the two numbers a and T
(see attachment fig a)

Bundling in b-bundles and d-bundles gives the Total-story the form T = a-b+c-d. Also
double coding like T = 2-a + 2-b + 1 can be analysed in tables and illustrated in space
using centicubes or blocks made out of paper (see attachment fig. ¢). Squares with the
same number can be coloured alike.
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T=2a+2b+1: 3 9 11 | 13
2 7 9 11

1 5 7

b/a| 1 2

Figure 13. An analyse table for T=2-a+2-b+ 1

Totals in space
This has three branches: Rebundling totals, adding totals and totalling forms and
figures, geometry.

Rebundling totals, Level 1
Rebundling or restacking questions as “T = 2-:3 = ?:5” come from e.g. sharing
questions. The answer can be found by a physical rebundling using pellets or beads:
2-3 = 6-1 = 1-5+1 or by a mental rebundling using a suitable calculator as e.g. Texas
Instruments Math Explorer.

From such activities a general “rebundle story” grows: 6 = (6/2)-2, 6 = (6/5)-5, 6 =
(6/9):9 or T = (T/a)-a. A rebundling into 2-bundles give birth to the names “even” and
“odd”.

Rebundling totals, Level 2
On this level, pellets become units, numbers become decimals, countable and
measurable things become quantities and stories become equations.

Three apples become an apple three times T = 3-apple, and the counting stick now
becomes a ruler counting centimetres, which can be bundled in decimetres and which
has millimetres as sub-bundles: 1-dm = 10-cm and 1-cm = 10-mm. A rebundling thus
can always produce a whole number giving meaning to multiplication of decimals: T =
4.3-cm =4.3-100mm = 43-mm.

If one of the quantities in the Total equation is a variable so is the Total:
T = a-b+c'd = a-x+e. This variation can be illustrated by tables and graphs now using
points instead of tiles (see attachment fig. b and d).

Calculation stories now are equations solved by reversing the calculation, i.e.
moving numbers to the other side of the equal sign and reversing its calculation sign
according to the rebundle story.

6=175 6=72+5
6=x5 6=x+5
6/5=x 6-5=x

Figure 14. A short rebundling story

Now rebundling takes place between units thus changing e.g. kilograms to $ by a
rebundling to known quantities.
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T=9kg=17$

T =9kg = (9/6)-6-kg = (9/6)-4-$ = 6-$

T=10-$=?kg

T=10-$=(10/4)-4-$ = (10/4)-6'kg =
15-kg

T=100-cm=1'm

Figure 15. Rebundling to known quantities

T=32-cm=7?m

T=4.1'm=?cm

T =32-cm=(32/100)-100-cm = 0.32'm T=4.1'm=(4.1/1)-1'm=4.1-100-cm=410-c

m

Figure 16. An example of rebundling between meters and centimetres:

T=100-% = 40-$

T=20%="?$

T=10-$=2%

T=20-%=(20/100)-100-%=(20/100)-40-$= | T=10-$=(10/40)-40-$=(10/40)-100-%=25-

8-$

%

Figure 17. An example of rebundling between percent % and $:

An alternative would be to use equation tables telling both what quantities to be
calculated, what equation to use, what numbers to use in the calculation and how the
calculation is done.

$=? $=($/kg)kg | |m=? m=(m/cm)-cm | |$=? $=($/%)%
$/kg=4/6 |$=4/6-9 m/cm=1/100 |m=1/100-32 $/%=40/100 |$=40/100-20
kg=9 $=6 cm=32 m=0.32 %=20 $=8

Figure 18. The quantity asked for, the equation to use, numbers and how it is done.

Also adding percentages can be considered an example of a rebundling, e.g. adding

5% to 40-$ two times:

To =100-% =40-$
T1=105% = (105/100)-100-% = 1.05-40-$ which now becomes 100-%
T2 =105% = (105/100)-100-% = 1.05-1.05-40-$ = 1.0572-40-$ etc. until
Tn=To-(1+r)"n

Figure 19. Adding 5% to 40-§ two times:

Another but slower way is to rebundle the 40-$ to 100-$ and then add 5-$ per 100-$:
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40-$ = (40/100)-100-$, so we add 5-$ 40/100 times i.e. 2-$ totalling T1 = 40+2 = 42-$

42-§ =(42/100)-100-$, so we add 5-$ 42/100 times i.e. 2.1-$ totalling T1 =42+2.1 =
44.1-$

Figure 20. How to rebundle the 40-$ to 100-§ and then add 5-§ per 100-$:

Rebundling totals, Level 3
On this level power calculations are reversed as logarithm and root:

6="7 6=>5"
6=x 6="5"
1/5;6=x logs 6 =x

Figure 21. Logaritm and root

The quantities in the Total equation can themselves be Totals:

T =abtc-d=aT2+T3-T4 = a-(mx+ny) + (px+qy)-(rx+sy), or

T = a-b+c-d = (kx+1)-(mx+n) + (px+q)-(rx+s) = A-x*2 + B:x +C

Figure 22. The next level of tools

In such cases the Total is called a “polynomial” to be illustrated in a two or three
dimensional co-ordinate system (see attachment fig. e). A polynomial can be
considered a mix of quantities controlling the appearance of a curve: The constant
controls the initial level, the x the later direction, the x*2 the still later curvature, the
x”3 the still later curvature or counter curvature etc. (see attachment fig. f).

AT = (AT/Ax) Ax in the case of macro changes, and

dT = (dT/dx)-dx = T’-dx in the case of micro changes

Figure 23. The change of T, AT can be rebundled into a change of x, Ax

AT = Aa‘b + a-Ab + Aa-Ab or as per-numbers:
AT/T = Aa/a + Ab/b + Aa/a-Ab/b in the case of macro changes, and
dT/T = da/a + db/b in the case of micro changes

Figure 24. Considering T = a-b a stack we can find the change AT

DT/T =n-dx/x or

dT/dx =n'T/x =n'x ™" ie. d/dx (x") =nx""

Figure 25. The result in the case of T = x"
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If T = ¢, where the Euler number e is locally linear: e' = 1+t for t a micro number,
then

dT = e”(x+dx)—e"x = e”x-e"dx—e"x = e"x:(edx—1) = e"x*(1+dx—1) = e"x-dx or

dT/dx = e”x L.e. d/dx (e"x) = e”x

Figure 26. The result if T = ¢, and e is locally linear

In the case of more variables we have e.g.

pV=nRT

dp/p + dV/V =dn/n + dT/T since R is a constant

Figure 27. The result in the case of more variables

Adding totals, Level 1
Totals at different locations can be added remembering that only like bundles can be
stacked

Figure 28. To add different locations
TI=53 + 12 T2= 24 + 22 2T = 244 + 53 + (1+2)2

Tl = 53+ 12 =1-10+ 7-1
T2 = 24 +22 =1-10 +2-1
T=3T= [24+53+(142)2 = (1+1)-10 + (7+2) 1

Figure 29. The next step

Adding totals, Level 2

Totals coming from different shops can be added remembering that per-numbers never
add only unit-numbers do.

T1: 6 kg @ 4 $/kg total 24'%
T2: 4 kg @ 7 $/kg total 28 $
T=2T= |10kg @ x $/kg total 528
x $/kg is 52 $/10 kg =5.2 $/kg

Figure 30: Examples from different shops
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Adding totals, Level 3

Totals coming from different time intervals can be added remembering that the m/s
numbers are only locally constant. In this case the question is: “5 sec at 4 m/s
increasing to 6 m/s total 7m”.

dT1: dt sec @ v1 m/sec total vl-dt
dT2: dt sec @ v2 m/sec total v2-dt
dT3: etc.
5 -
Ivmt, v=4+ u-t e.g.
AT = 0 5
>dT=

Figure 31. Examples from different time intervals

Geometry, Level 1

Geometry means “earth-measuring® in Greek. So geometry grows out of questions and
activities related to dividing and measuring the earth we live on and from. A squared
paper can be thought of as an island to be divided between two or more persons. Each
person places a dot at a random location or starts a 6-step walk from a corner
determined in some way by a dice. Then the paper has to be divided so they have
equal distances to the border. Finally the question “How much did I get?” is posed.
From this activity grows names as points, lines, midpoints, midlines or normals,
triangles, “fourangles”, rectangles, size etc. All figures can be divided into triangles,
and all triangles can be wrapped into a rectangle being a stack of squares and having
the double size of the triangle. A ruler becomes a square counter bundling squares into
2-bundles. Different forms as cubes and cylinders or bottles are covered with paper
counting surface size. Water is poured from cubes to cubes, from cylinders to
cylinders and between cubes and cylinders discussing how to count the content size of
water.

Geometry, Level 2

Different figures and forms get different names. Surface and content size now
becoming area and volume can be calculated by equations. Rebundling stacks become
reshaping areas leading to the construction and calculation of the mean and fourth
proportionals. A rectangle can be divided by the diagonal producing a right-angled
triangle with an outside bundled in meters and an inside bundled in diagonals c
(a=sinA-c and b = cosA-c) or in sides (a = tanA-b, b = tanB-a).
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Figure 32. Triangle geometry
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Design tasks lead to the golden section. Technical drawings can be made from front-,
top- and side view and on isometric paper. All geometrical jobs are performed both on

paper and in space.

Geometry, Level 3

Geometrical questions are translated to equations and vice versa by means of the co-
ordinate system. Conic sections are put into equations. Technical drawing can now be
made in perspective. Vectors are used to move and rotate figures in two and three

dimensions.

Totals in time, Level 1

A total T may change in time by being added a change-number AT. This leads to two
stories, a change-story about AT and a Total-story about T. Counting by 1’s, 2’s, 3’s
are examples of change stories: AT = 1, 2, 3 etc. Other examples are as follows in the

figure.
Constant Walk, e.g. a “+2” walk AT =+2 T =6+2+2+2+....
Walking backwards provides a “-2” AT =-2 T=14-2-2—....
walk
Constant Percent Walk, e.g. a “-2” walk | AT =+100% T=6222-....
Walking backwards provides a *“/2” AT =-50% T =32/2/2/....
walk
Decreasing Walk, e.g. “ato—a” walk |AT=+3,...,-3 T=

10+3+2+1+0-1-2-3

Swinging Walk, e.g. “ato —ato a” walk |[AT=+3,...,-3,..,+3 |T=

10+3+2+1+0—-1-2-3-2
—1-0+1+2+3

Random Walk, e.g. by adding the green
even dice-number and subtracting the
red odd dice-numbers

AT =random

T=10+4-5-1+2+...

Figure 33. Examples of how to walk
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A variation to the random walk could be “dice-number six means report-time” i.e. time
for a graphical report to be made both physically with beads or pellets together with
the question “rearrange so the sticks have the same length ”, giving birth to the word
“mean”.

Another variation could be “dice-number six means tax-time” where you receive
or pay 1 per 3 of your fortune depending on the next dice-number is even or odd.

Alternatively a bank could be included to receive or pay out money. If both
players and bank report money transferrals the names “debit” and “credit” are
introduced together with the observation that debit and credit entries always go
together, thus introducing accounting at an early level.

Totals in Time, Level 2
On this level five change equations appear:

An=1,AT=+a$ leading to linear change T=b+an

An=1,AT =+r % leading to exponential change |T=Db-a",a= l+r
An=1%,AT=+r% leading to potential change T=bn'
An=1,AT=+r%+a$ leading to annuities T =a/rR, I+R = (1+r)"
AX = random leading to statistics X = Xmean + 2-Xdev

Figure 34. The five change equations on level 2.

The first three total equations give linear graphs on “++paper”, “+-paper” and
“-paper” , where the “+” means a “+scale” (0,1,2,3,...) and the “-” means a “scale”
(1,2,4,8,...).

An unpredictable number X is called a stochastic variable. A variable which is not
“pre-dictable” might be “post-dictable”, i.e. its previous behaviour might be described
in a table from which its mean and deviance can be calculated. Based upon these
numbers the variable then can be interval-predicted as a confidence interval
X = Xmean + 2-Xdev. The cumulated values of a stochastic variable might give a
linear graph on a normal distribution paper.

Totals in time, Level 3

On this level the change AT is not constant but predictable, e.g. AT/Ax = x*2 or
dT/dx = x*2. Such change equations are called difference and differential equations.
They can all be solved by constantly adding the change: final number = initial number
+ change or Tf = Ti + AT. In the case of micro changes this means an enormous
number of addings unable for a human to perform. A computer however can do it
easily in no time.

Totals in space and time: the quantitative literature

Humans communicate about the world in languages. A word language with sentences
assigning words to things and actions. And a number language with equations
assigning numbers or calculations to things and actions. “Word-stories” are differen-
tiated into the genres fact, fiction and fiddle. Fact/fiction are stories about factual/
fictional things and actions. Fiddle is nonsense like “This sentence is false”. “Number-
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stories” are often called mathematical models. Also these can be differentiated into the
genres: fact, fiction and fiddle. Fact models quantify and calculate predictable
quantities. Fiction models quantify and calculate non-predictable quantities. Fiddle
models quantify qualities that cannot be quantified. As with word-stories also different
number-stories should be treated different: Facts should be trusted, fiction should be
doubted and fiddle should be rejected.

Level 1: Rebundling practices reported as Total-stories and illustrated on squared
paper are examples of number- and calculation stories. Other examples are dice games
of different kinds, e.g. the dice-tax-game mentioned above.

Level 2: Micro science and microeconomics. In both areas a typical question is
that of rebundling one type of numbers to another kind. In physics meters are
rebundled to seconds, seconds to joules, joules to degrees, volts to amperes etc. In
chemistry moles are rebundled to kgs, kgs are rebundled to litres, moles to joules etc.
In economics dollars are rebundled to kgs or to litres, dollars to pounds, dollars to
percent etc. Statistical yearbooks are filled with tables showing quantities distributed
in space and varying in time.

Level 3: Macro science and macroeconomics. In both areas the dynamics and
interaction between subsystems are described and analysed, both ecological systems
and economical system. Examples are Limits to Growth, Fishing Models and National
Fiscal Policy Models (Tarp, 1999).
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T T

a 1 2 3 4 a 1 2 3 4
Figure a

The coded Total-stories T=2-a+1 and T=3-a-2
illustrated on squared paper

Figure c

The coded Total-story T = 2-a+2-b+1 build on squared
paper. The level-9 tiles are coloured

Figure e

. 2 2 . .
The equation T =x —y —x+y+0.3 illustrated in a co-
ordinate system
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Figure b

The equations T=2-a+1 and T=3-a—2 illustrated in a co-
ordinate system

Figure d

The level-9 line of the equation T = 2-a+2-b+1
illustrated in a co-ordinate system

3+ T1
21
-
To
1
T5
0 1 T2
0 0,5 1
X
Figure f

2
The equation To= 1, Tl = 1+2-x, T2 = 1+2-x -3-x and

5 . .
TS5 = 1+2-x-3-x illustrated in a co-ordinate system
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