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Preface 

This volume contains the proceedings of MADIF 5, the Fifth Swedish Mathema-
tics Education Research Seminar, with a short introduction by the editors. The 
seminar, which took place in Malmö January 24-25, 2006, was arranged by 
SMDF, The Swedish Society for Research in Mathematics Education, in co-
operation with Malmö högskola. The members of the programme committee 
were Christer Bergsten, Morten Blomhøj, Barbro Grevholm, Mikael Holmquist, 
and Kristina Juter. The local organiser was Per-Eskil Persson at Malmö högskola. 

The programme included two plenary lectures (Werner Blum, Barbro 
Grevholm), one plenary panel (Gerd Brandell, Erkki Pehkonen, Jeppe Skott), 
eleven paper presentations (Christer Bergsten, Rita Borromeo Ferri, Gerd 
Brandell, Torbjörn Fransson, Johan Häggström, Håkan Lennerstad, Lisbeth 
Lindberg, Thomas Lingefjärd, Alistair McIntosh, Tine Wedege, Magnus 
Österholm), and two short oral presentations (Eva Riesbeck, Allan Tarp). In this 
volume the plenary addresses and ten of the papers are included. We want to 
thank the authors for their interesting contributions. In addition to the pre-
conference peer-review process, the revised final papers were submitted after the 
conference and re-reviewed by the editors. The authors are responsible for the 
content of their papers.   

We wish to thank the members of the programme committee for their work 
to create an interesting programme for the conference, Per-Eskil Persson for his 
valuable help with the preparation and administration of the seminar, and the 
special reactors to the papers for initiating stimulating discussions during the 
paper sessions. We also want to express our gratitude to the organiser of 
Matematikbiennalen 2006 for its valuable financial support. Finally we want to 
thank all the participants at MADIF 5 for creating such an open, positive and 
friendly atmosphere, contributing to the success of the conference. 
 
 
 
Christer Bergsten, Barbro Grevholm 
Editors 
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1 

Developing and Researching Quality  
in Mathematics Teaching and Learning  

Christer Bergsten, Linköpings universitet 
Barbro Grevholm, Universitetet i Agder 

Some notions related to characteristics of human activities are extensively used 
and seen as important, even critical, but are nevertheless difficult to grasp or de-
fine, and even more so, measure in clear and undisputable terms. Quality is no 
doubt one such notion. In our professional efforts we strive for quality mathe-
matics teaching, expecting that it will result in quality of learning on behalf of 
our students. However, there are at least three problematic issues involved in this 
enterprise – how can quality in teaching be described, how can quality in learn-
ing be described, and how are these two dimensions related? There are two rele-
vant dimensions of activities, that is one dimension of practice related to how 
teaching and learning can be developed toward a higher quality, and one dimen-
sion of inquiry related to researching the notion of quality of teaching and learn-
ing mathematics. At the research seminar reported on in this volume, both of 
these dimensions were discussed during the plenary and parallel sessions.  

In his plenary address Investigating quality mathematics teaching – the 
DISUM project, Werner Blum discussed general criteria for quality in mathema-
tics teaching. He outlined three strands, which are seen as critical, based on sup-
port from empirical research: Demanding orchestration of the teaching of 
mathematical subject matter, cognitive activation of learners, and effective and 
learner-oriented classroom management. In his and Dominik Leiss’ paper, some 
modelling tasks used in large scale German development projects are discussed 
to illustrate how these criteria can contribute to the development of quality 
learning outcomes. Barbro Grevholm offered a general discussion of the question 
What is quality in mathematics teaching and learning? in her plenary address. 
Based on meanings of the terms involved and some views from the literature, she 
concludes that existing knowledge about what constitutes effective teaching is 
insufficient and that teachers lack means of successfully sharing such knowledge. 
She suggests relating learning quality to competence models of mathematics 
knowledge and finally points to many critical issues that need to be investigated 
in future research.  

The papers discussed several different aspects of quality in the teaching and 
learning of mathematics. The teaching format of large group lectures was the 
focus of the paper Lecture Notes – On lecturing in undergraduate mathematics 
by Christer Bergsten. Based on the literature and data from a case study he iden-
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tifies some critical aspects of quality. Rita Borromeo Ferri is in her paper The 
teachers’ way of handling modelling problems in the classroom – What we can 
learn from a cognitive-psychological point of view using a cognitive perspective, 
and the notion of thinking styles, on teachers’ way of handling mathematical 
modelling in the classroom. In the study by Torbjörn Fransson, Students devel-
oping utilisation schemes for an artefact to solve problems in three dimensional 
analytic geometry, some aspects of the influence of the use of concrete material 
on the quality of learning geometry are investigated. Not only the variation of 
teaching material may influence the quality of learning, but also what features of 
the mathematical content are possible to experience by students, as investigated 
by Johan Häggström in the paper The same topic – Different opportunities to 
learn. According to Håkan Lennerstad in his paper Completing mathematics by 
teacher and student reflection, to achieve quality in the learning of mathematics 
the formal mathematics normally taught in school settings needs to be comple-
mented by a reflective mathematics, where the dialogue is seen as an important 
tool. Lisbeth Lindberg aims to research teaching and learning of mathematics in 
the vocational subjects in the Swedish upper secondary school, and has in her 
paper To search for mathematics teaching and learning in vocational education a 
focus on quality of research approaches and methods. In the step towards more 
advanced mathematical thinking, Thomas Lingefjärd sees in his paper The use of 
Langford’s problem to promote advanced mathematical thinking generalization 
as a key process, and in particular generic abstraction was embodied in this 
problem as seen from students’ protocols. At a more basic mathematical level 
competence in mental computation was investigated by Alistair McIntosh in 
Mental computation of school-aged students: Assessment, performance levels 
and common errors. In his big Australian project, aimed at improving students’ 
quality of mental computation, a scale to measure such competence was devel-
oped. In adult mathematics education the issue of developing numeracy has been 
a goal, and Tine Wedege provides in Numeracy as a tool in adult education: 
Success or failure? reflections on an evaluation of the quality of a new Danish 
programme for adult education. In the final paper by Magnus Österholm, A 
reading comprehension perspective on problem solving, it is found from a lit-
erature review that the relationship between reading comprehension and problem 
solving is complex and that the reading process can affect as well as act as an 
integral part of the problem solving process. However, not much research has 
focused on this relationship. 

The contributions in this volume taken together illustrate how the notion of 
quality enters into all levels of mathematics education, and we hope that the 
reading will provide some insights as well as lead to a deepened interest in pur-
suing further investigations into the important and complex issue of quality of 
teaching and learning mathematics. 
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Investigating Quality Mathematics Teaching – 
the DISUM Project 
Werner Blum, Dominik Leiß 
Universität Kassel, Germany 

Abstract: In this paper, we will first give our definition of “quality mathematics teach-
ing”, and then discuss the role of appropriate tasks for quality development. After-
wards, we shall introduce the project SINUS which aims at quality development as well 
as the project DISUM which aims at investigating research questions that have come up 
in the context of SINUS, especially how students and teachers actually deal with de-
manding mathematical modelling tasks and how this can be improved. As an example, 
we shall present and analyse the “Filling Up” task. Then, we shall report on how stu-
dents treated this task and other tasks from DISUM. Thereafter, we shall report on how 
experienced SINUS teachers dealt with this task in the classroom. In both cases, 
strengths and difficulties are analysed. We shall close by discussing some implications 
of our findings on teaching and for further research. 

The aim: quality teaching 
The teaching of mathematics in school is, from the beginning, aimed toward sup-
plying students with knowledge, skills, competencies and attitudes so as to be-
come intelligent and responsible citizens and to be able to use mathematics in a 
well-founded manner when solving real world or intra-mathematical problems. 
There is a wealth of empirical evidence from educational research indicating that 
the desired effects of mathematics teaching can only (at most) be achieved if the 
teaching obeys certain criteria for “high-quality teaching”. The following set of 
quality criteria constitutes our definition of “Good Mathematics Teaching” and 
is the basis of all our research and development activities. The ultimate yardstick 
is how mathematics teaching contributes towards students’ mathematical 
achievement. It is based both on theories about learning and teaching mathema-
tics, and on empirical findings. We distinguish between three categories, with 
associated criteria: 

I. Demanding orchestration of the teaching of mathematical subject matter 

(1) Providing multiple opportunities for learners to acquire competencies such as 
mathematical modelling or reasoning mathematically. 

 The bases for criterion (1) are (a) the normative assumption that the quality of 
an individual’s mathematical education is demonstrated in certain competen-
cies (in the sense of the Danish KOM Project, see Niss 2003); and (b) broadly 
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documented empirical insights from studies into situated learning that the ac-
quisition of competencies does not happen in some magical transfer from 
other activities such as performing algorithms, but only (at best) by means of 
well-aimed, direct competency-oriented activities. 

(2) Creating manifold connections, within and outside mathematics. 

These two criteria – and all the others to follow – may sound trivial and self-evi-
dent, but they are not at all trivial as they are violated in the world’s classrooms 
every day. 

II. Cognitive activation of learners 

(3) Permanently stimulating cognitive activities of students, including meta-
cognitive activities - the conscious use of strategies and reflections upon 
one’s own activities. 

 The basis for criterion (3) is obviously a constructivist view of learning, and 
the effectiveness of meta-cognitive activities has been shown by numerous 
empirical studies. 

(4) Fostering students‘ self-regulation and independence as much as possible, 
and, based on firm diagnoses, reacting adaptively to needs of individual stu-
dents. 

The criteria in category II and in particular in category I, are close to the subject 
material, in contrast to many other definitions of quality teaching. In addition, 
there are several criteria concerning general “classroom management”: 

III. Effective and learner-oriented classroom management 

(5) Distinguishing clearly between learning and assessing, and using students’ 
mistakes constructively as good learning opportunities. 

(6) Varying teaching methods and using media flexibly, while fostering students’ 
communication and cooperation. 

(7) Structuring lessons clearly and using time effectively. 

In all aspects, the teacher has a crucial role to play, so that we can speak (in the 
words of Weinert, 1997), of “learner-centred and teacher-directed” teaching. 

Unfortunately, these criteria are not sufficient to assure students’ achieve-
ment, since there are many other factors that influence achievement, such as wil-
lingness to expend effort, or the general status of education in society. These cri-
teria are deemed necessary, in that disregarding them guarantees failure, as can 
be observed everywhere every day. Fortunately, there is sufficient empirical evi-
dence suggesting that these criteria are weakly sufficient. This means that taking 
into account certain non-trivial combinations of these criteria will (other condi-
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tions being stable) result in better learning outcomes. Stated more simply, re-
search suggests that efforts to realise good mathematics teaching are worthwhile! 

Empirical studies show that everyday mathematics teaching in our country 
(Germany), is often far from good teaching in the above sense. This holds also 
for most countries in the world, even for some of the best-performing countries 
in the TIMS Study, as can be clearly seen from the TIMSS Repeat Video study. 
The unsatisfactory TIMSS and PISA-2000 results have led to efforts in Germany 
to improve mathematics teaching (we shall say more about this below), and since 
then, the German results have improved, so that in PISA-2003, the German per-
formance nearly reached that of Sweden (the two means are no longer signifi-
cantly different). However, there is still a lot to do to implement good mathe-
matics teaching, and this holds also for most countries in the world. 

Tasks as a vehicle for quality development 
How can mathematics teaching be improved? An important vehicle is provided 
by mathematical tasks (see Christiansen & Walther, 1986, for the crucial role of 
tasks in mathematics teaching). By far, the most important activity for students in 
mathematics lessons and tests is dealing with tasks, and students’ mathematical 
competencies are advanced by appropriate activities when solving tasks. Mathe-
matics teachers have to select or construct appropriate tasks and to create learn-
ing environments guided by these tasks. So the key to improving mathematics 
teaching is through the “New culture of tasks” which involves treating (What?) a 
broad spectrum of competency-oriented tasks, in ways (How?) obeying the afore-
mentioned quality criteria. 

“Competency-oriented” means that the given task requires not only know-
ledge and technical skills, but also some additional competencies such as model-
ling or ‘reasoning’. Here are four examples of tasks, suitable for 14-15-year-olds. 

Example 1: 

“Filling Up” 
Mister Stone lives in Trier, 20 km away from the border 
of Luxemburg. To fill up his VW Golf he drives to Luxem-
burg where immediately behind the border there is a pet-
rol station. There you have to pay 1.05 Euro for one litre 
of petrol whereas in Trier you have to pay 1.30 Euro. 

Is it worthwhile for Mister Stone to drive to Luxemburg? Give reasons for your 
answer. 
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In order to solve this task, one has to – explicitly or implicitly – define what 
“worthwhile” should mean and to make some assumptions, for instance about the 
petrol consumption of the car. 

Example 2: 

“Sugarloaf” 
From a newspaper article: 
The Sugarloaf cableway takes ap-
proximately 3 minutes for its ride 
from the valley station to the peek 
of the Sugarloaf mountain in Rio de 
Janeiro. It runs with a speed of 30 
km/h and covers a height difference 
of approximately 180 m. The chief 
engineer, Giuseppe Pelligrini, 
would very much prefer to walk – as he did earlier, when he was a mountaineer, 
and first ran from the valley station across the vast plain to the mountain and 
then climbed it in 12 minutes. 

How far is the distance, approximately, that Giuseppe had to run from the valley 
station to the foot of the mountain? Show all your work. 

Most people will use the Pythagorean theorem here, but this is not necessary. 
Again one has to make some assumptions, perhaps tacitly. An appropriate solu-
tion could be “1.4 km (approx)”. 

Example 3: 

“Lighthouse”  

In the bay of Bremen, directly on the coast, a lighthouse called 
“Roter Sand” was built in 1884, measuring 30.7 m in height. Its 
beacon was meant to warn ships that they were approaching the 
coast. 

How far, approximately, was a ship from the coast when it saw 
the lighthouse for the first time? Explain your solution. 

This kind of task is rather well known. After some obvious assumptions (earth as 
a sphere etc.) one gets a solution with the aid of Pythagoras, something like “20 
km (approx)”. 
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Example 4: 

“Giants’ shoes” 

In a sports centre on the Philippines, 
Florentino Anonuevo Jr. polishes a pair of 
shoes. They are, according to the Guinness 
Book of Records, the world’s biggest, with a 
width of 2.37 m and a length of 5.29 m. 

Approximately how tall would a giant be for 
these shoes to fit? Explain your solution. 

One has to make assumptions about the ratio between men’s shoe size and 
height, and “the rule of three” leads to something like “30 m (approx)”. 

These are all modelling tasks, that is, a substantial demand within these tasks 
is to simplify and structure the given real situation, to translate it into mathema-
tics and to interpret mathematical results obtained (see, for example, Blum et al., 
2002). We will return to modelling later.  

Another common demand within these tasks is reading and understanding a 
given text (this is part of the communication competency in the sense of Niss, 
2003). In addition, one has to use representations, to argue and justify what one is 
doing, and of course to use mathematics technically and symbolically. 

 
The SINUS project 
The afore-mentioned “New culture of tasks” was a constituting principle of the 
SINUS project. SINUS is an abbreviation of “Steigerung der Effizienz des mathe-
matisch-naturwissenschaftlichen Unterrichts”, that means “Increasing the effi-
ciency of mathematics and science teaching”. SINUS was established by the 
German government (both federal and all 16 states) in 1998, soon after the re-
lease of the unsatisfactory German TIMSS results, with the central aim of im-
proving mathematics teaching, and hence improving students’ mathematical 
achievement. SINUS started with 180 schools, and at present nearly 2000 schools 
are involved. The guiding principles of SINUS are: 

• The “New culture of teaching”; that is following consistently the quality 
criteria in all teaching activities. 

• The “New culture of tasks”; that is treating a broad spectrum of compe-
tency-oriented tasks in ways that obey the quality criteria, and using such 
tasks also in written tests and examinations. 

• The “New culture of cooperation”; meaning that the whole staff of each 
school participates in these efforts to improve teaching quality - not only 
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individual teachers. Moreover, teachers cooperate across schools, and 
schools cooperate with universities or even with the school administration. 

The SINUS programme is regarded by politicians as the most successful educa-
tional programme in Germany ever. Probably this is true, and the reason why 
SINUS has been so substantially extended and is still running. The improved 
German performance between PISA-2000 and PISA-2003 is certainly also due to 
SINUS. However, classroom observations indicate numerous shortcomings even 
in the SINUS programme. For example, there is still a big gap between actual 
teaching practices and the quality criteria. It is important to say that most of these 
shortcomings are not due to a lack of practical realisation of existing knowledge 
and expertise by the SINUS teachers. Rather than being due simply to an insuffi-
cient implementation of quality teaching in the classroom, shortfalls are identi-
fied with a lack of knowledge concerning both 

• actual procedures and difficulties encountered by students when solving 
such cognitively demanding tasks, and 

• actual and appropriate ways for teachers to act when treating such tasks – 
such as how to diagnose students’ solution processes and how to intervene 
in case of students’ difficulties. 

A trivial prerequisite for both of these is knowledge of the following: 

• the cognitive demand of given mathematical tasks (which competencies 
are needed on which cognitive level for solving a task). 

• hard empirical data about outcomes – that is evidence of actual effects of 
task-driven learning environments on students‘ achievements and atti-
tudes. 

So, there is a lack of corresponding research – it is really surprising how little we 
still know about the micro-structure of students and teachers dealing with cogni-
tively demanding mathematical modelling tasks. 
 
The DISUM project 
This lack of knowledge was in 2002 the starting point for the research project 
DISUM (see Blum & Leiß, 2003, and Leiß, Blum, & Messner, 2006). DISUM is 
an abbreviation of “Didaktische Interventionsformen für einen selbständigkeit-
sorientierten aufgabengesteuerten Unterricht am Beispiel Mathematik“, that 
means ”Didactical intervention modes for mathematics teaching oriented towards 
self-regulation and guided by tasks“. DISUM is an interdisciplinary project bet-
ween Mathematics Education (W. Blum), Pedagogy (R. Messner) at the Univer-
sity of Kassel, and Educational Psychology (R. Pekrun) at the University of 
München. It concentrates on modelling tasks, mainly in grade 9, and investigates 
how students and teachers deal with such tasks and how this can be improved. 
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Among the DISUM activities that have been or are being carried out are the fol-
lowing: 

1. The construction of appropriate modelling tasks. 
2. Detailed cognitive and subject matter analyses of these tasks (constructing 

the “task space”, based on the modelling cycle). 
3. A detailed study and theory-guided description of actual problem solving 

processes of students in laboratory situations (involving pairs of students, 
sometimes with and sometimes without a teacher). 

4. A detailed study and theory-guided description of actual diagnoses and in-
terventions from teachers in these laboratory situations. 

5. A detailed study of regular lessons with such modelling tasks, taught by 
experienced teachers from the SINUS project, and a theory-guided de-
scription of these lessons, emphasising our quality criteria. 

6. The construction of various instruments to measure students’ achieve-
ments and attitudes. 

7. The construction of manageable and promising tools for the training of 
teachers in “well-aimed coaching” of modelling. 

Among other things, we have developed a classification system for teachers’ in-
terventions (see Leiß & Wiegand, 2005) which is very helpful, both analytically 
and constructively: We distinguish between interventions related to 

• students’ interactions and the organisation of work 
• students’ affects and motivation 
• the content itself 
• the strategic meta-level 
• mere diagnosis 

What we have also achieved is a further development of existing learning stra-
tegy models, to increase tractability for students. Our model is comprised of five 
components: 

• Goals (“What do I wish to achieve with this task?”) 
• Volition (“I do not wish to be diverted from solving this task”) 
• Organisation (“How do I distribute my time? Who can help me, whom can 

I help?”) 
• Strategy (“Can I imagine the situation? What is known, what is unknown? 

Do I know similar tasks? What are the next steps?”) 
• Evaluation (“What have I achieved so far? Is this reasonable?”) 

During 2006/07 our plans for DISUM include: 

8. A detailed study into the influence of the training of teachers in well-
aimed coaching, for purposes of enhancing mathematical achievement and 
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affects, especially the modelling competencies of students, in comparison 
with the effects of “normal” instruction or of no teaching at all (students 
working totally on their own). 

9. The implementation of our instruments and findings in school classrooms 
and in teacher education programmes, in order to improve both everyday 
teaching and teachers’ expertise, in particular in the SINUS context and in 
the context of the implementation of our new national Educational Stan-
dards (“Bildungsstandards”) for mathematics. 

An example: analysis of the “Filling Up” task 
A global cognitive analysis of “Filling Up” (see above) yields the following 
ideal-typical solution, oriented towards the so-called modelling cycle (see Blum 
& Leiß, 2006): 

 
First, the text has to be read and the problem situation has to be understood by 
the problem solver, that is, a so-called situation model of the given problem 
situation has to be constructed. Then the situation has to be simplified, structured 
and made more precise, leading to a real model of the situation. In particular, the 
problem solver has to define what “worthwhile” should mean. In the standard 
model, this means only “minimising the direct costs of filling up and driving”. 
Mathematisation transforms the real model into a mathematical model. Working 
mathematically (calculating, solving equations, etc.) yields mathematical results, 
which are interpreted in the real world as real results. A validation of these re-
sults may show that it is necessary to go round the loop a second time, for in-
stance in order to take into account more factors such as time, pollution or real 
costs for driving (e.g. obsolescence, insurance, repairs). The process ends in an 
exposition containing a recommendation for what Mr. Stone should do. Depen-
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dent on which factors have been considered, the recommendations might be quite 
different. 

This version of the modelling cycle we use has been influenced by various 
sources, among others by the cognitive theories of Reusser (1998) and Verschaf-
fel, Greer, and de Corte (2000). It is more oriented towards the problem solving 
individual than other versions. In particular, step 1, reading and understanding, is 
individually shaped, meaning that the resulting situation model is an idiosyn-
cratic construction of the problem solver. This version of the modelling cycle has 
proved extremely helpful for our purposes. In particular, it shows potential cogni-
tive barriers for students, and enables good predictions with respect to problem 
solving processes. Thus, it gives teachers an invaluable basis for diagnoses and 
interventions. Of course, actual individual problem solving processes are usually 
not as linear as suggested by this model, as they often go several times back and 
forth between the real world and mathematics. It is an interesting task to study 
individual modelling processes and to identify individual “modelling routes” (see 
Borromeo Ferri, 2006). 

Here are two typical solutions of students to the “Filling Up” task: 

Standard model: comparing (only) 
the costs of driving and filling up  

Traditional “solution”: extract all  
numbers from the text and calculate  
these somehow, no matter what it 
may mean  

 
How do students deal with demanding modelling tasks? 
As mentioned above, we have observed, videographed and interviewed 9th-
graders solving modelling tasks, working in pairs. We have selected pairs of stu-
dents for each of four “competence levels”, from weak Hauptschule to strong 
Gymnasium students. 

Generally speaking, all difficulties of students can be represented in the mod-
elling cycle, and all steps in the modelling process have been observed as actual 
cognitive barriers, though with different emphases in different tasks. Let us take 
the “Sugarloaf” task as an example. Here, the first step, reading the text and un-
derstanding both situation and problem, was the most difficult part of the whole 
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task. Here is an example (with two students from level 2, strong Hauptschule 
students, see excerpt 1). 
 

Excerpt 1 (Hauptschule students) 
O.: How many kil... How long that takes with the three minutes, that is when it 

drives 30 km/h, that thing. 
P.: Yes. 
O.: And is over here in three minutes – how much does it cover then? How many 

kilometres or how many metres? How should I know that? 
P.: Wait, wait. That is … 
O.: 15 km, with 15 km/h it takes half an hour. 
P.: Rule of three! 
O.: Rule of three! 
The pupils calculate with the ”rule of three” (proportions) that the distance is 
1.5 km. 
O.: 1.5 km. 
P.: How long does it take ...? 
O.: 1500 meters. That is the distance that it takes approximately. 
P.: That is it takes him 1.5 km. 
O.: Yeah but what – perhaps the 12 minutes mean something as well. 
P.: Here they ask how far he has run and not how long! 
O.: 1.5 km, 1500 m. 
P.: Yes. 
 
After successfully calculating the distance from the given velocity and time, the 
students think they are done with the task, which means, they switch to a com-
mon strategy: “You don’t have to actually understand the situation, just use the 
given data in some way.” In other words: The students do not construct an ap-
propriate situation model.  

A similar and very typical problem solving strategy can be seen in the next 
example where the “Giants’ shoes” task is “solved” (by two students from level 
2, strong Hauptschule students; see excerpt 2): 
 

Excerpt 2 (Hauptschule students) 

C.: Well, to calculate, from these two figures, the height, the size of the man – 
If the width of the shoe is 2.37 m and the length 5.29 m, then should, I believe, 
2.37 m times 5.29 m – then you have the height of the man, I believe. 
 
The students do not know what to do, and so they just calculate an area by multi-
plying the width and the length of the shoe. More generally speaking: They use a 
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schema that is immediately at hand. Another couple uses the Pythagorean theo-
rem, and since they forget to draw the square root they get a result which seems 
numerically reasonable. 

The last mentioned mistake (forgetting the root) is not typical since a com-
mon relative strength exhibited by the students was – not surprisingly in Ger-
many – the procedural part of the modelling process, that is numerical calcula-
tions, solution of equations, application of the “rule of three”, use of the Py-
thagorean theorem and the like. On the other hand, a uniform shortcoming of the 
students was the lack of validation and substantial reflection in the end of the 
process. We know from research into teaching and learning how important it is to 
look back and to reflect on one’s own problem solving process, that is – in the 
words of Reusser (1998) – “to extract the relevant conceptual-schematic and 
processual-strategic characteristics of a problem solution in an abstracting way” 
(abstraction réflechissante in the sense of Jean Piaget). More generally, no con-
scious use of problem solving strategies by the students was recognisable, in par-
ticular, no student seemed to have some version of the modelling cycle as a 
strategical guiding tool at his or her disposal. As a consequence of the absence of 
validation, the students did not try in the end to improve a solution they had 
reached but were all satisfied with any solution whatsoever. 

How do teachers deal with demanding modelling tasks? 
The following examples are taken from a “Best Practice Study” in the DISUM 
context where experienced teachers from SINUS included our modelling tasks in 
their regular lessons. Here are a few results of our observations. 

First of all, most lessons clearly stood out positively from typical German les-
sons. Most lessons had a structure like the following: 

1. Presentation and short discussion of the task 
2. Dealing with the task individually 
3. Solving the task in small groups 
4. Writing solutions individually or as a group 
5. Presentation of the students’ solutions, in the whole class or in new groups 
6. Reflection on the solutions 

In these lessons, 
• students had opportunities to model, to argue, to communicate, 
• mental activities were stimulated, 
• students, for the most part, could work independently, 
• the atmosphere was tolerant towards mistakes and free of judgmental as-

sessment, 

to mention only a few of our quality criteria. Here is an example of how a teacher 
handled a mistake in a very productive way. It is a lesson in a grade 10 Gymna-
sium class with the “Lighthouse” task. The students had refined their model by 
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including the height of the ship, and the result was that the higher the ship, the 
shorter the distance, that is the later the lighthouse can be seen from the ship – an 
obvious nonsense! The reason for that result is that the students used a wrong 
model, which, in effect, involves 

! 

H " h  instead of 

! 

H " h  in the distance 
calculation (here H, h are height of lighthouse and ship – the students used only 
concrete figures in their calculations, no variables). The teacher lets the students 
finish their work and makes his own calculations in parallel, and only in the re-
flection phase does he point to this mistake. Thus, the teacher reveals the inherent 
cognitive conflict, and then asks the students to deal with this problem and find 
the mistake by themselves. In fact, the students discover their mistake and correct 
it independently. 

The next example shows, in the context of the “Filling Up” task, how a stu-
dent’s question can lead to fruitful reflections. A student says “That’s strange, if 
we say 8 litres [for the consumption of the car], and other groups say 6 or 7 litres, 
then we will all get different results later on.” Later on, the teacher uses this 
question for functional reflections: How does the result depend on the initial data 
and how accurate can the result then be? This is an important question in all   
examples. 

However, this was an exception. In most cases, there were no further reflec-
tions on the solution processes, in particular no functional reflections. However, 
such functional analyses are necessary for real understanding and an indispen-
sable part of the abstraction réflechissante in the sense of Piaget and Reusser. 
Often, even the teachers seemed to be satisfied when students had any right so-
lution. Equally, the counterpart of the afore-mentioned absence of problem solv-
ing strategies on the students’ side was the absence of the stimulation of such 
strategies by teachers. Such stimulation seems not to be a part of teachers’ every-
day repertoires, even not of these “Best Practice” teachers. 

Another interesting aspect observed in several lessons is also less positive: the 
strong influence of the teacher’s own conceptualisation of the task on his or her 
interventions and thus on the students’ solutions. Here is an example, again in the 
“Filling Up” context. In an interview before the lesson, the teacher had solved the 
task by using the standard model which takes into account only the direct costs of 
filling up and driving, nothing else. Right at the beginning of the lesson, a student 
asks what “being worthwhile” means. The teacher responds “whether it finan-
cially makes sense” and “whether it is cheaper”, thus leading the students directly 
(if unintentionally) to the standard model. Later on in the lesson, the following 
dialogue arose (see excerpt 3): 
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Excerpt 3 (Gymnasium class) 
S2: You could also ask if maybe his workplace is past the gas station in Luxem-
burg because then he’d have to go that way, anyway. 

T: Yeah, okay, we still have to be realistic. If we take too many assumptions into 
account it’ll get too tricky. 
 
So, the teacher again prevents the students from extending the standard model. In 
the end, it was even possible in our study to identify within a mixture of students 
(from various classes) students from particular classes, just by the kind of solu-
tion they had achieved. 
 
Some consequences for teaching and research 
Our observations show – in accordance with other studies such as TIMSS video – 
that there seems to be a lot of room for improving mathematics teaching, for in-
stance: 

- more opportunities for students’ competency-oriented activities and less 
algorithmic exercises, 

- more connections, 
- more reflections, 
- a better balance between independent and teacher-directed phases. 

These aspects have to be integrated systematically into teacher education. More 
than at present, teachers have to be expert in quality teaching as well as expert in 
selecting and using tasks; for analysing the cognitive and didactical potential of 
tasks, and for providing quality-oriented treatments of these tasks. How this can 
be adequately implemented in teacher education is not only a developmental but 
a research question. Other research questions involve: 

- undertaking detailed cognitive analyses of mathematical tasks used in eve-
ryday teaching and everyday examinations, the empirical testing of these 
tasks, and analysis of competency-based explanations for assessing the 
difficulty of the tasks; 

- further studies into the cognitive processes of students while solving com-
petency-oriented tasks; in particular identifying the role of various prob-
lem solving strategies; 

- further studies into the effects of teachers’ interventions in task-based 
learning environments on students’ achievements and affects. 

We hope to be able to report on some of these questions at some other events in 
the near future. 
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What is Quality in  
Mathematics Teaching and Learning? 

Barbro Grevholm 
University of Agder, Kristiansand 

Abstract: In this paper the meanings of the terms quality, teaching and learning are 
discussed, and some views from the literature and interview data on quality in the 
teaching and learning of mathematics from different actors in the educational enter-
prise are highlighted. These data all point in the same direction, indicating a state of 
the art as insufficient existing knowledge about what constitutes effective teaching and 
that teachers lack means of successfully sharing such knowledge. A number of 
unanswered questions on these issues still remain to be investigated. 

Introduction 
The theme of this Madif5-conference is Developing and researching quality in 
mathematics teaching and learning. Thus a natural question is ‘What is quality in 
mathematics teaching and learning?’ The word quality indicates that we are 
dealing with good properties of a phenomenon. But ‘good teaching’ or ‘learning 
in a good way’ does not mean the same thing for all of us. What have researchers 
written about good teaching and learning? I will discuss some views from re-
searchers on the issue. If we ask students, student teachers or teachers what they 
consider to be good teaching and learning, we might get different kinds of 
answers. Then whose conceptions of quality are we researching? Are we 
developing quality in teaching when we are developing teaching? Do we achieve 
improved learning when we have developed quality in teaching? Maybe some of 
the concepts we normally use here are too ill-defined or vague to enable us to 
reach any conclusions? I will discuss arguments from research and views from 
practice. Are there implications for practice or suggestions for future research to 
be found here? 

This research seminar is the fifth in order organised by the Swedish Society 
for Research in Mathematics Education, in addition to the one that took place in 
1998 before the society was formally established. Themes of earlier research 
seminars have been Research and action in the mathematics classroom (2000), 
Challenges in mathematics education (2002), and Mathematics and language 
(2004). These seminars have been documented in the SMDF Newsletters and 
books of proceedings (Grevholm, 2002; Björkqvist, 2002; Brandell, 2002; 
Bergsten, Dahland & Grevholm, 2002; Bergsten & Grevholm, 2003, 2004). This 
time focus is on quality in both the process of teaching and of learning mathe-
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matics. Three crucial concepts are involved: quality, teaching and learning. What 
do these concepts mean to us? Let us start by trying to capture the meaning of 
them. 
 
About terminology or the crucial concepts 
Quality 
Central in the discussion must be what we mean by quality. My largest dictionary 
(Websters College Dictionary, 1992) gives the following meanings, which are 
relevant in this context: 

1. An essential characteristic, property or attribute; 
2. Character or nature, as belonging to or distinguishing a thing; 
3. Character with respect to grade of excellence or fineness; 
4. Superiority or excellence. 

To excel means to do very good and when we discuss quality in mathematics 
teaching and learning we primarily mean excellent, good or distinguished teach-
ing and learning. 

We are investigating the good properties of mathematics teaching and learn-
ing. Of course one can also mean inquiring into the essential character or nature 
of mathematics teaching and learning. 

Now, in the terms ‘excellent teaching’ or ‘essential character of teaching’ 
there is evaluation built in. What is excellent and what is essential? This judge-
ment must depend on the person who evaluates, on his or her personal values as 
based in the theoretical foundations the person uses. We cannot expect to find a 
unified view on these concepts. I will come back to this fact later. 

Learning 
Consulting the dictionary again we get the reply on learning: 

1. knowledge acquired by systematic study in any field of scholarly applica-
tion 

2. the act or process of acquiring knowledge or skill 

And it adds that in psychology it means the modification of behaviour through 
practice, training or experience.  

The learning theories could be grouped along individualistic, collectivist or 
interactionist perspectives (Bauersfeld, 1994). Different metaphors have been 
used such as acquisition or participation (Sfard, 1998). Judging from all the dif-
ferent theories about learning that have been developed during the last century 
this phenomenon and concept is a complicated one, which is hard to capture.  

We can observe that it is difficult to know when learning takes place, where it 
takes place, why it takes place, what it actually means to the learner, who is 
learning, what is actually learnt, if the learning is stable and what the learning 
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influences in the learner’s future actions. Why do we need so many different 
theories about learning? Why do we need behaviourism, information processing 
theory, constructivism (radical, social), interactionism, activity theory, socio-
cultural theory, and many others not mentioned? Is it because learning is such a 
difficult phenomenon to model? Is none of the metaphors good enough to capture 
the concept? Are there so many different aspects of learning? Or do researchers 
feel that the theories we have used so far are not doing justice to the phenome-
non? 

Teaching 
The dictionary again says: 

1. to impart knowledge of or skill in; give instruction in 
2. to impart knowledge or skill to 
3. to impart knowledge or skill; give instruction, especially as one’s profes-

sion or vocation. As synonyms to teach are given:  instruct, train, educate 

Normally a learning theory has a companion among theories about teaching. But 
it seems that researchers are more eager to bring forward new learning theories. 

In contrast to learning it is easy to capture teaching, at least formal teaching. 
It is normally well known who is teaching, when the teaching takes place, where 
it takes place, why it takes place, what is taught (at least intended to be taught), 
who are taught and what the aim of the teaching is. 

What teachers and researchers know much less about is the relation between 
the teaching offered and the learning that is supposed to be a result of that teach-
ing. 
 
Researchers writing about good teaching and learning 
Let us start by listening to some researchers’ voices about good mathematics 
teaching and learning. Stigler and Hiebert (1999) state that “The teaching profes-
sion does not have enough knowledge about what constitutes effective teaching, 
and teachers don’t have means of successfully sharing such knowledge with one 
another “ (ibid., p 12). This is s strong claim that indicates that teachers need new 
tools to talk about their knowledge of good (effective) teaching. 

Krainer (2005) asks what good mathematics teaching is and how research can 
inform practice and policy. He claims that telling what is understood by good, 
relevant or successful teaching is going beyond describing and interpreting 
things, it means establishing a norm. He asks who should define these norms, for 
whom and with what consequences. What role can research play? According to 
Krainer researchers in mathematics education can choose among at least three 
positions concerning the question of good teaching (ibid., p. 76): 

Refusing norms. [...] Each school, each class, each teaching situation is 
unique, has its genuine context and thus needs specific norms. [...] Good 
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teaching is a matter of particularization and of local knowledge generation by 
teachers. [...] 
Establishing norms. [...] it is the task of researchers to discuss and systema-
tize the results [...] and to work out general norms. Good teaching is a matter 
of adapting to prescribed norms, it is a result of “generalization” by 
researchers. [...] 
Negotiating norms. [...] The negotiation needs evidence-based support and 
orientation. Good teaching is a matter of “particularization” and “generaliza-
tion” [...] Research is about increasing our understanding of teaching and 
about making normative assumptions about good teaching explicit, and also 
about further developing teaching. 

Krainer sees the future of research in mathematics education as belonging to this 
third position. Researchers are expected to contribute to the improvement of 
mathematics teaching not only by descriptions and interpretations but also by 
working in teacher education and informing the wider public. Suggestions by 
researchers might include norms for good teaching. He claims that the goal is to 
raise our society’s expertise for good mathematics teaching. Thus researchers, 
teachers, students, policy makers are expected to be experts in arguing what con-
stitutes good teaching. And the difference between experts and laymen is the art 
of precise observation by experts. Observation can be defined as noticing the 
relevant differences. Krainer concludes that noticing differences is an important 
means of increasing the knowledge of teachers and policy makers. A contribution 
to improve teaching can be made by doing, presenting and sharing research in 
mathematics teacher education. Thus let us share one research report on good 
mathematics teaching. 
 
Quality in teaching mathematics, one example from research 
In their paper, Wilson, Cooney and Stinton (2005) discuss what constitutes good 
mathematics teaching and how it develops. They use the perspectives of nine 
high school teachers. The authors’ notion of good teaching is presented as the 
converging views of Dewey, Polya, Davis and Hersh, and the NTCM Standards. 
According to them Dewey would define good teaching as that which enables stu-
dents to realize broader educational goals of becoming a literate citizen capable 
of directing one’s own life through informed and reasoned choices. Polya argued 
that the primary aim of mathematics teaching is to teach people to think. Polya 
emphasized among other things that teachers should be interested in the subject, 
know the subject, know about ways of learning, give students “know how”, focus 
attitudes of mind and habits of methodical work and he suggested not to force it 
down the students’ throats. The authors see Polya’s commandments emphasizing 
a process-oriented teaching style as consistent with Dewey’s notion of education. 
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For Davis and Hersh the ideal teacher is the one that invites the students to 
‘come and let us reason together’. These scholars envision teaching as an activity 
that promotes thinking and problem solving rather than the accumulation of in-
formation. That is also the perspective of the standards developed by NCTM. 

The authors point to the fact that what characteristics best capture good 
teaching seem to vary according to the philosophical underpinnings of the re-
search. Thus they relate to both deterministic studies and to interpretative studies. 
These are some of the research results they classify as deterministic: 

Associated with effective teaching eleven variables were found: clarity, vari-
ability, enthusiasm, task-oriented or business like behaviours, opportunity to 
learn, the use of student ideas and general indirectness, criticism, the use of 
structuring comments, types of questions, probing and the level of difficulty of 
instruction (Rosenshine & Furst, 1971). The first five variables are more impor-
tant. The construct of clarity and variability attracted most attention from re-
searchers (Cooney, 1980). 

A model representing good teaching was developed by Good, Grouws and 
Ebmeier (1983). It concerns the time allocation for one class period: review and 
practice of mental computation (8 minutes), developmental portion of the lesson 
(20 minutes), seatwork (15 minutes), and assignment of homework (2 minutes). 

Other studies have investigated behaviours of expert and novice teachers and 
quantified differences between them in time used for correction of homework (2-
3 and 15 minutes, respectively) and number of problems covered per day (40 and 
6-7, respectively). Expert teachers were more efficient in organizing and con-
ducting lessons, had a better knowledge of content, had clearer lessons, and were 
more adapt to explain why, how and when mathematical concepts are used. 

Interpretative studies, on the other hand, emphasize teachers’ beliefs and ac-
tion in the classroom. Good teaching must be inferred from what the researcher is 
studying in such cases. Thus Wilson and Goldenberg (1998) can be assumed to 
see good teaching as involving student-centred instructional style in which 
mathematics is treated conceptually. Schifter (1998) sees the notion of good 
teaching as that in which teachers reflect on their own understanding as well as 
on their students’ understanding. 

Wilson, Cooney and Stinton (2005) worked with nine high school teachers, 
who participated in a project, PRIME (Partnerships and reform in mathematics 
education). The teachers participated in three audio-recorded interviews, where 
the overarching questions were: 

What constitutes good mathematics teaching? How do the skills necessary for 
good mathematics teaching develop? All nine teachers emphasized that good 
teaching requires prerequisite knowledge (about mathematics and about stu-
dents), promotes mathematical understanding, engages and motivates students, 
and requires effective management of the classroom environment. Seven of the 
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nine teachers made explicit reference to connecting mathematics (to enhance stu-
dent understanding). Four of the nine teachers referred to helping students 
visualize mathematics by using computers or calculators, drawings or concrete 
materials. Six of the nine teachers mentioned the need to assess students’ under-
standing. Eight of the nine teachers saw good lessons as refraining from telling. 

Teachers’ perspectives on developing good teaching were that it is based on 
experience, education, personal reading and reflection, and interaction with col-
leagues. The teachers spoke of learning to teach as a complex enterprise. The 
authors conclude by claiming that in order to improve the conversation between 
teachers and teacher educators and to facilitate the development of good teach-
ing, teacher educators need to listen to how teachers are thinking about good 
teaching. 
 
Quality in learning mathematics, examples from research 
One way of expressing what is included in good mathematics learning is to in-
vestigate what is said about the aims for the learning. Good learning can then be 
seen as reaching the aims of the curriculum. There are many ways, though, to 
express the competencies aimed for.  

Jeremy Kilpatrick (2004) refers to the US situation and says we have had 
mastery learning and we have had competency-based education. We have not yet 
had ‘Proficiency’ at any level and the word has not yet become quite so contami-
nated as other terms. What the committee (that wrote the report ‘Adding it up’) 
meant by mathematical proficiency is close to what others might mean by mas-
tery of mathematics, or numeracy, or competence. Mathematical proficiency 
comprises the following strands (ibid., p. 150): 

• Conceptual understanding – comprehension of mathematical concepts, 
operations, and relations 

• Procedural fluency – skill in carrying out procedures flexibly, accurately, 
efficiently, and appropriately 

• Strategic competence – ability to formulate, represent, and solve 
mathematical problems 

• Adaptive reasoning – capacity for logical thought, reflection, explanation, 
and justification 

• Productive disposition – habitual inclination to see mathematics as 
sensible, useful, and worthwhile, coupled with a belief in diligence and 
one’s own efficacy. 

The committee pointed to parallels in mathematics teaching to each of these five 
strands. 

Now, this way of presenting the intended outcome of mathematical learning 
can be compared with the framework KOM by Mogens Niss and Thomas 
Højgaard Jensen. They set out to answer the question: “What does it mean to 
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master mathematics?” They decided to use a competency based approach and 
gave this definition: 

Possessing mathematical competence means having knowledge of, understanding, 
doing and using mathematics and having a well-founded opinion about it, in a vari-
ety of situations and contexts where mathematics plays or can play a role. A mathe-
matical competency is a distinct major constituent in mathematics competence. 
(Niss, 2004, p. 183) 

The Danish KOM project has identified eight such competencies, forming two 
clusters. The first cluster is: 

The ability to ask and answer questions in and with mathematics and the 
cluster contains 
• Mathematical thinking competency – mastering mathematical modes of 

thought 
• Problem handling competency – formulating and solving mathematical 

problems 
• Modelling competency – being able to analyse and build mathematical 

models concerning other areas 
• Reasoning competency – being able to reason mathematically 

The second cluster is The ability to deal with mathematical language and tools 
and contains 

• Representation competency – being able to handle different representa-
tions of mathematical entities 

• Symbols and formalism competency – being able to handle symbolic 
language and formal mathematical systems 

• Communication competency – being able to communicate, in, with, and 
about mathematics 

• Tools and aids competency – being able to make use of and relate to the 
tools and aids of mathematics. (Niss, 2004, pp. 184-186). 

This framework can, according to Niss (2004), be used in three different ways. It 
can be used in a normative way when we decide goals and aims of teaching and 
learning, design curricula, set priorities, and produce teaching material. It can be 
used in a descriptive way when we want to know and understand what actually 
happens (or does not happen) in mathematics education. And finally it can serve 
as a meta-cognitive support for teachers and students when they work with ques-
tions concerning the path the teaching or learning is currently taking. 

As for the concept of proficiency, the competency framework also contains 
possible consequences for mathematics teachers. The KOM-project asked the 
question: “What does it take to be a good mathematics teacher?” The answer 
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is:“A good mathematics teacher is one who can effectively foster the develop-
ment of mathematical competencies with her/his students.” (ibid, p. 188) 

This way of expressing what good teaching is reveals how good mathematics 
teaching is interpreted as that which results in good mathematics learning. The 
relation between teaching and learning that we assume to be there is taken as the 
definition of good teaching. 

There are many parallels in the two frameworks of proficiency and mathe-
matical competence. One difference is maybe that the KOM-project does not re-
late to the personal disposition of the students and attitudes and beliefs as much 
as the proficiency framework does. 

David Ausubel and Joseph Novak express good learning as meaningful 
learning, the kind of learning where the student changes earlier knowledge 
structures in a lasting way. The learning can be meaningful or rote learning and 
those are seen as the ends of a spectrum in which learning can be placed. It is the 
learner himself who can decide if the learning will be meaningful (Ausubel, 
1978; Novak, 1998). 

So far we have dealt with views from research on quality in mathematics 
teaching and learning. These theoretical perspectives do not reveal much of how 
to implement the ideas in practice. What if we turn to mathematics education 
practice and ask for students’ and didacticians’ views? 
 
Some views on quality in mathematics teaching and learning 
I interviewed a student and asked: “What do you mean by quality in mathematics 
teaching?” The doctoral student in mathematics didactics replied: 

I imagine different quality criteria, which can be the basis for judging if 
mathematics teaching is qualitatively good: 

- In the subject instruction by the teacher, the subject knowledge must be 
well defined. If you teach about equations you have to define equations 
and to problematize this definition. If you work with functions, the func-
tions and variables must be defined in a way that is understandable. The 
teaching must be directed towards the concepts, not only towards proce-
dures and calculation techniques.  

- When the teacher teaches different mathematical contexts and solutions of 
different problems the teacher must during the process be able to control if 
the students can manage to absorb, accommodate or understand the 
mathematics that is presented. Thus the teacher must be able to present the 
subject matter in a way that others can manage to get grip of and he/she 
must be able to notice the students’ degree of understanding.  

- Good teaching consists of good communication. The communication goes 
not only from the teacher to the students in a lecture or in one to one con-
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versations. There must also be good communication from the students to 
the teacher. The teacher has to understand what the student is mediating 
and be able to use this in the following teaching. It must also be good 
communication between the students.  

- Good teaching is student active teaching. Good teaching emphasizes 
activities that promote mathematical thinking and reasoning, not only drill 
and techniques.  

I asked: “What do you mean by quality in mathematics learning?” The doctoral 
student answered: 

I interpret this question to mean how I think the student best learn 
mathematics, or what conditions are important for students to learn the sub-
ject with quality. 

- “Never explain anything” said a teacher who won a price as good teacher. 
That was the secret behind his success. Students can easily come into 
situations where they do not get the opportunity to think by themselves 
because they are too quickly introduced to ideas, methods and procedures 
to follow. Students own the knowledge best if they had an active role 
when creating it. Thus to get a reason to think yourself is very important.  

- To get an overview of the subject matter is important. By investigating a 
problem area and work through the whole forest of many dark corners un-
til you can see the whole area in front of you from a little hill is satisfac-
tory. Said in another way, you get a reason to develop your inner concept 
map in such a way that you can see the connections between the different 
parts. This is best done if you yourself are allowed to manage the agenda 
and drive the investigation in the direction you feel is interesting for you.  

- My own experience is that I learn much through collaboration with others. 
When I express my ideas in oral or written form to a peer or a colleague 
my thought process is brought further. I can check my thinking. At the 
same time I get feedback from those I communicate with, which again can 
lead me to new reasoning. There is no doubt about the fact that the social 
dimension is an important quality criterion in this connection. (Author’s 
translation) 

Comparing what the student brings forward with the outcome of the study by 
Wilson, Cooney and Stinton (2005) we notice that the student mentions many of 
the characteristics they found. The student mentions that good teaching requires 
prerequisite knowledge (about mathematics and about students), promotes 
mathematical understanding, engages and motivates students, and requires effec-
tive management of the classroom environment. He also mentions the need to 
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assess students’ understanding. And he explicitly talks about good lessons as 
such where the teacher refrains from telling. 

Here is the voice of a didactician answering the same two questions: 

You have phrased the question in such a way that I need to be very careful in 
my response. In English we use the word 'quality' in several senses, my dic-
tionary offers the following:  

1. that which makes a thing what it is; nature, kind, property, attribute 
2. grade of goodness  
3. excellence, of high grade 

When I use the word quality in relation to mathematics teaching and mathe-
matics learning I am principally focusing on the third of these, that is, quality 
in mathematics teaching (or learning) can be interpreted as 'excellence' in 
mathematics teaching and learning. However, in making this statement the 
first meaning is also implicit. One of the problems we face in defining excel-
lence in mathematics teaching (and learning) is that we do not have sufficient 
knowledge to be able to talk with precision (and consensus) about the 'essen-
tial quality (properties)' of mathematics teaching and learning.  

So, when I say that I aim, in my own practice, for 'quality teaching and 
learning mathematics' I do so in the context of my own personal and to some 
extent 'ideal' notion of what excellent teaching and learning might mean. I 
also mean that I continue to explore what the quality of mathematics teaching 
and learning is.  

When as a teacher educator I say that my aim is to see developments in 
classrooms that achieve 'quality in mathematics teaching and learning' then I 
mean that I want other teachers to share not just a sense of aiming for excel-
lence (because their ideal of teaching and learning might be quite different 
from mine). I want them to combine the quest for excellence with a similar 
quest for understanding the quality (essence) of (excellent) teaching and 
learning. 

Notice that this didactician mentions the lack of sufficient knowledge to talk with 
precision about the essential quality of mathematics teaching and learning. This 
standpoint coincides with the claim quoted above by Stigler and Hiebert. We also 
notice that the didactician sees quality in a similar way as it was described in the 
introduction. 

Finally I want you to listen to some student teachers’ descriptions of a really 
good teacher. During many courses I interviewed student teachers about how 
they want to express the characteristics of a good mathematic teacher. These are 
some of the answers they gave (many answers came back in one course after the 
other). I have grouped the answers in four categories: 
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The teacher’s mathematical subject knowledge and knowledge about teaching 
Has the knowledge that is needed 
Explains well 
Is interested in teaching 
Is calm and gives good instruction 
Can bring mathematics down to a level where all can understand 

The teacher’s pedagogical content knowledge 
Can invent new ways of explaining when the first one did not work 
Is competent, understanding and has a good pedagogical ability 
Can come down to the level of students 
Cares about his/her students, their joys and worries 
Has patience when students do not understand 

The teacher’s ability to support and give motivation 
Good at getting others to learn 
Wants students to learn and makes them want to learn 
Supports and encourages students 
Understands that an inspiring lesson and an engaged teacher gives motivation 

The teacher’s personal qualities 
Is calm, fair, understanding and good role model 
Good at being a friend to the students 
Has humour 
Is human 
Is sharp, funny and engaged 

All these expectations might frighten anyone who ever thought about becoming a 
good teacher. Many of the expectations that student teachers express can be re-
lated to the results from the study mentioned earlier (Wilson, Cooney, & Stinton, 
2005): Good mathematics teaching demands prerequisite knowledge, to promote 
mathematical understanding, to engage and motivate the students, to assess stu-
dents’ understanding and requires effective classroom management. 
 
Is quality in teaching important for quality in learning? 
In a study by Desforges and Cockburn (1987) the teachers that took part were 
fascinated and sometimes mystified by children’s ways of learning and capacity 
to think. Here are some teachers’ voices: 

• I don’t know how they learn. They certainly don’t learn by copying out of 
books. 

• I wish I knew how they learn. I haven’t got a clue. When we get stuck on 
something you can almost see them thinking and I’d love to know what is 
going on in their heads. 
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• Children do think about things, transfer ideas, do the abstraction and ar-
rive at a conclusion – and they are well able to share their knowledge. 
(ibid, p. 29) 

Now if teachers do not know how students learn, how can they know how to 
teach in order to improve the learning? Through assessing them, teachers do 
know what students have not learned, but this knowledge is remarkably stable 
over decades. How come that it is so difficult to influence the learning outcome 
when we know what is lacking? 

In an ongoing study at University of Agder, called Learning Communities in 
Mathematics (LCM), researchers and doctoral students are working with teachers 
in schools to build communities of learning and the concept of inquiry is funda-
mental to the way of working (Jaworski, Fuglestad, Bjuland, Breiteig, Goodchild, 
& Grevholm, 2007). Teachers and didacticians are inquiring into mathematics, 
into mathematics teaching and into mathematics learning. The aim is to develop 
teaching in order to achieve improved learning experiences. Thus in this case 
there is an assumption that developing teaching will lead to improved learning 
(Hundeland, Erfjord, Grevholm, & Breiteig, 2007). In this study I have raised the 
questions: What do we mean by improved learning? What do we mean by 
developing teaching? It is going to be interesting to see if and how these ques-
tions are answered, when the study is finished. 
 
Implications for future research 
Are Stigler and Hiebert (1999) right when they claim that the teaching profession 
does not have enough knowledge about what constitutes effective teaching, and 
teachers do not have means of successfully sharing such knowledge with one 
another? If so, there is a clear indication that more research is needed to find out 
what is good mathematics teaching and learning. Questions for such research can 
be specified. Both teachers and researchers can ask questions such as those pre-
sented below and try to find answers to them. 

For an international conference on Innovative teaching and learning in May 
2006 the following questions were suggested (Brydon, 2005): 

• How do you make learning in the classroom more exciting and effective? 
• Have you personally changed your teaching practice recently to make learning 

more effective? What motivated you to do so? 
• What more can schools do to encourage and support classroom teachers to ex-

plore new ways of teaching and learning (what needs to change, and, impor-
tantly, at what level)? 

• How easy is it to try new approaches to teaching and learning (what are the 
obstacles)? 

• If you could share your most creative teaching and learning strategy with others, 
what would that be? 
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• What outdated teaching and learning strategy have you abandoned recently, and 
why? What did you replace it with? 

• How can teaching colleagues help you to create a more innovative and exciting 
classroom? Perhaps tell us how this has happened at your school. 

• What role do students have in creating more effective and innovative class-
rooms? 

• Do you have a creative and innovative idea about teaching and learning that you 
haven’t tried yet – but would like to someday? What is it and what‘s holding you 
back? 

• If you are an education academic or school leader, what advice do you give to 
teachers who wish to become more innovative in the classroom? 

• Why is innovation in teaching and learning so important, anyway? 
• How can you be sure that a particular innovative teaching and learning practice 

will actually improve learning outcomes?  

As long as teachers and researchers do not have answers to these questions we 
cannot claim that we know what quality is in teaching and learning mathematics. 
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Lecture Notes – 
On Lecturing in Undergraduate Mathematics 

Christer Bergsten 
Linköpings universitet 

Abstract: Lectures is a common teaching format in undergraduate mathematics. This 
study sets up to investigate the notion of a quality lecture, based on a literature review 
and a case study of one lecture in a beginning calculus course. Critical aspects dis-
cussed include information delivery, connections, rigour-intuition, algebraic-imagistic 
modes, gestures, socio-mathematical norms, a mathematical mind, inspiration, person-
alisation, and general quality criteria for mathematics teaching, all of which came into 
play in the lecture studied. 

Introduction 
Lecturing has a long and strong history as a teaching format at universities. De-
pending on countries and traditions it goes along with tutoring, seminars, classes, 
small group work (including computer laboratories), and home assignments as 
examples of traditional additional teaching offered to students. Lectures still be-
ing one of the major formats used in undergraduate mathematics teaching (see 
e.g. Holton, 2001), while considering the problems identified in this field, it is 
relevant to investigate what quality in a lecture for beginning university students 
might be. In this paper this notion of quality in undergraduate mathematics lec-
tures will be examined by using theoretical notions from relevant literature and 
empirical data from a case study, with a focus on what is actually happening in 
the lecture hall. In a follow-up study focus will be on the students’ perspective. 

A lecture will here refer to a time scheduled talk on a pre-announced topic to 
a larger group of people, where the speaker (mostly alone) is overlooking the 
“crowd” from a podium position, and the people in the “crowd” are sitting 
(close) together in lines of chairs facing the speaker. It is a social and situational 
setting, in which both general and specific frames come in play. A lecture in a 
course, which will be the focus in this paper, is one of a series of lectures consti-
tuting the course, along with other teaching activities. 

The educational value of lectures of this kind has often been questioned, by 
reasons such as the following: they turn students into passive listeners instead of 
active learners; they are most often linearly well ordered outlines of a ready made 
mathematical theory, not offering a view of mathematics as a human social ac-
tivity, coloured by creativity, struggles, and other emotional aspects (Alsina, 
2001); they are often not understood by the students (see e.g. Rodd, 2003, p. 15). 
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Other critical aspects of the lecture format in university teaching are discus-
sed in Bligh (1972), such as the lack of feedback and social interaction. Experi-
ence based advice for good lecturing is found also in Krantz (1999). Rodd (2003) 
makes the case that “university mathematics departments recognise the potential 
of lectures, not as information-delivery venues, but as a place where the ‘awe and 
wonder’ of mathematics can be experienced” (p. 20), claiming that ‘acting parti-
cipation’ and ‘identity and community’ can also be experienced as a ‘witness’, 
such as in the context of experiencing in a theatre. Imagination being an essential 
part of the mathematical experience, effects of inspiration may be an essential 
outcome from a good lecture. The issue of inspiration is also emphasised by 
Alsina (2001), who “unmasks” a number of myths about undergraduate mathe-
matics education, which “have a negative influence /…/ on the quality of mathe-
matics teaching” (p. 3), such as self-made teacher, context-free universal content, 
deductive top-down perfect theory presentation, and non-emotional audience (pp. 
3-6). According to Millet (2001), it is possible to teach large classes within a stu-
dent centred paradigm, which he finds crucial for student success. 

In a case study, Barnard and Morgan (1996) investigated the match/mismatch 
between the aims and the practice of a lecturer, analysing one lecture on “Basic 
pure mathematics” for first year student teachers. The lecture set up aims at a 
general level and a ‘content-related’ level. In his practice, his general aims of 
moving the students from a computational via a descriptive towards a deductive 
attitude to mathematical work, were sometimes forced aside when engaged at 
specific content-related levels of knowledge of facts, justification, understanding, 
and ‘culture’, putting more emphasis of the first two of these levels. These were 
also the main foci of the assignments and assessment tasks.  

Another factor influencing the planning and performing of an undergraduate 
mathematics lecture is the lecturer’s ideas and reflections about the aims of the 
lecture, in terms of beliefs about mathematics and doing and learning mathema-
tics, of his/her students’ struggles and ways of conceptualising mathematical 
ideas and methods, etc. Researching the thinking of undergraduate mathematics 
teachers, Nardi, Jaworski and Hegedus (2005) identified a spectrum of pedago-
gical awareness, including four levels labelled as naive and dismissive, intuitive 
and questioning, reflective and analytic, and confident and articulate (p. 293). 
Even the empirical data were drawn from tutoring, the authors “see teachers’ 
awareness developing in this context as feeding into other, more widespread 
teaching formats” (p. 293). It seems reasonable to expect that a higher level of 
pedagogical awareness may contribute to the quality of a lecture from an educa-
tional point of view. In the context of limits of functions, this is indeed of rele-
vance, due to the well researched problems students have bringing together in-
tuitive and formal conceptions into a functional understanding (se e.g. Harel and 
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Trgalova, 1996, pp. 682-686) and the many different concept images they con-
struct (Przenioslo, 2004).  

In a study on different linguistic modes used in an undergraduate mathematics 
lecture, Wood and Smith (2004, p. 3) note that “the lecturer is working in a num-
ber of modes: oral language, written language, mathematical notations, visual 
diagrams and is organizing the students' attention through to each through both 
verbal and non verbal means. Lecturing is a mixed mode activity”, and observe 
differences between the lecturer’s language in the writing during the lecture, 
which is constructed dialogically while talking, and the writing in the textbook 
and computer help files on the same topic, where the latter is more 
impersonalised. In addition, “in the spoken text /…/ the lecturer makes use of a 
range of words like actually, fairly, obviously to personalize and introduce values 
and judgments into the presentation” (p. 7). These differences of modes and rep-
resentational forms require a lot from the students, and Wood and Smith con-
clude that “Student answers to the examination question reveal that there is con-
siderable difficulty in telling a coherent story incorporating the rules of grammar 
and the use of mathematical language and conventions” (p. 11). 

Criteria have been proposed for quality in mathematics teaching, as in Blum 
(2004) where three strands are seen as critical, based on support in empirical re-
search, i.e. Demanding orchestration of the teaching of mathematical subject 
matter (competence oriented, creating opportunities to acquire these, and making 
connections), Cognitive activation of learners (stimulating cognitive and meta-
cognitive activities), and Effective and learner-oriented classroom management 
(foster self-regulation, foster communication and cooperation among students, 
learner-friendly environment, clear structure of lessons and effective use of 
time). According to Blum, “taking into account (not necessarily all but) certain 
non-trivial combinations of these criteria will – other conditions being stable – 
result in better learning outcomes” (p. 2). The criteria have been developed at 
school level but may be considered, in relevant aspects at least at face value 
level, when discussing quality of lectures in undergraduate mathematics.   

 
A case study 
In order to investigate the relevance of the theoretical terms used above for dis-
cussing quality lecturing, a case study was performed at a Swedish university, 
where a lecture in first year calculus in a regular education programme in engi-
neering was observed and analysed. The lecturer was also interviewed in connec-
tion to the lecture. These data and the literature review form the basis of a discus-
sion of the content and usefulness of the concept of quality lecture. 

The protocol from one lecture of 2x45 minutes will be shown, not to evaluate 
it as a good or bad lecture, but to discuss ways of analysing the concept of quality 
in lecturing. To give the reader insight in what actually happened, and at least 
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partly why, this protocol and the interview protocol are displayed as fully as 
space allows.  

The lecture takes place in a first year calculus course for engineering students. 
There are around 140 students in the inclined lecture hall, behind the podium 
there are three sets of three vertically adjustable whiteboards. The lecturer, who 
is well experienced in this kind of activity, is a professionally trained mathema-
tician, and has co-authored a textbook in calculus. The lecture takes place at 
10.15 to 12.00, with a 15 minutes break at 11.00. The topic of the lecture is 
‘standard limits’, the third lecture of the course after introducing the concept and 
basic properties of limits and of continuous functions. 

The lecture protocol 
The protocol is structured in three columns, to the left is a “copy“ of all that was 
written on the whiteboard (as carefully taken down by notes of the author during 
the lecture observation), in the middle some of the authentic words of the lecturer 
that went along with it, and to the right some of the author’s comments for clari-
fication. Vertically, time is running chronologically. Some reflections on smaller 
sections of the protocol will be inserted. 
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The previous formal cogency is here complemented by a reasoning supported by 
a diagram which is not clearly logically valid (the critical stance is 

! 

x < tan x ), 
something that is seen also in the use of an everyday metaphor where the lecturer 
is choosing a path on behalf of the students. When reasoning by an even func-
tion, the students must themselves fill in the details of how this property is used 
here. Another intuitive trait of the presentation is gesture. To say ”tends to” and 
to use arrow notation is another way of displaying an intuitive conception of 
limits. The lim symbol is used once, for the first time during the lecture, but 
quickly abandoned. However, it appears soon again, maybe due to practical 
notational reasons. 
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 . Is trying 

to get rid of arcsin x. 
 
Upside down. 
 
Try some angles. 
 

 
Now we will have a 
break. 

 
 
 
 

 
Short explanation. 
 
 
 
 

 
Time is exactly 
11.00 

 
The lecturer is in example 1 setting up socio-mathematical norms (Yackel and 
Cobb, 1996) for how one ”should” do, at the same time as he is building on an 
intuitive grasp of the variable concept as general-exchangeable. One could call it 
a pseudo formalism to say only ”upside down” about the line 
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sin y
=

1

1
=1. 

We also note that the lecturer is aiming at preventing the students from doing a 
common mistake, in the last line above (i.e. cancelling “sin” from the numerator 
and denominator, as if it was a number that can be divided). The examples often 
somehow speak for themselves, no motivation is given to why these particular 
examples were chosen, or why the rewriting using log-rules is made to evaluate 
the example
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lim
x"#

 x(ln(1+ x) $ ln x) . The lecture turns into a kind of ritual with its 

raison d’être taken for granted, as it seems by lecturer and students alike. All the 
examples are lined up according to a “this is how to do it” model of presentation.  

The main part of the second half of the lecture is spent on techniques, or 
practical thinking, and only a minor part on the theoretical superstructure or vali-
dation of the techniques, i.e. theoretical thinking. The organisation of the mathe-
matical work is algebraic, imagistic and non-numerical (cf. Barbé et al., 2005; 
see also Sierpinska, 2005). 
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2

1
  =yQ  is an asymptote to f  as !"x  

(check the asymptote as !"#x ) 
 

                                            
2

1
=y  

 
 
 
 
 

 

 
 
 
 
 

 
It could look like 
this but it doesn’t. 
 
The calculation 
does not show how 
big is the differ-
ence.  

Points out that f can 
also have a vertical 
asymptote, moving 
his right arm verti-
cally to illustrate his 
point. 
 
Draws a sketch.  
Laughter.  
 
 
Gives an example, 
laughter. 

 
The comments of the lecturer contribute to the creation of socio-mathematical 
norms, e.g. that a diagram can illustrate an idea without being exact. How the 
students understand this is not clear, what reason could there be to draw an in-
correct diagram? Gestures used along with choices of words create patterns for 
thinking, which might constrain conceptions to certain standard situations.  

The interview 
Two days before the interview with the lecturer, which lasted for about 45 
minutes in an informal setting, he was given the transcribed protocol. A sheet 
with nine questions formed the basis of the interview, given also to the inter-
viewee when starting up. To have a relaxed and informal discussion, there was 
no audio recording made during the interview but careful notes were taken by the 
interviewer (the author) and transcribed immediately after the interview. The 
exact words of the interviewee were written down as much as possible. The 
summary of the protocol shown below contains the main issues raised, by using 
quotations and summaries put into a story-like format. A short time after the in-
terview this text was shown to the lecturer who confirmed that it gave an accu-
rate account for what he said and meant.  

Summary of protocol 
When we talk about the role of the lectures within the course, he says he is trying 
to “extract” the main core of the course, some parts more informally, the details 
can be found in the literature. To present some things carefully, show how to do 
rigorous proofs for those who are interested, knowing that students do not al-
ways read the textbook. Pointing at critical details, sometimes giving examples. 
For the definition of a limit of a function he used in his first lecture the formal 
ε−δ characterisation to some extent, but put more emphasis on an intuitive image 
of closeness, using diagrams of graphs. The reasons for doing limits are taken 
from within mathematics – derivatives, integrals and asymptotic behaviour. 
These latter concepts are motivated by applications outside of mathematics. I 
emphasise that limits is the most important concept for the whole course, all 
other concepts are building on it. 
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Reasons given for using lectures in this course state that lectures are cheaper 
than other forms of teaching, and that when doing formal lectures there is less 
lecturing during classes. The lecture format is good, and students most often at-
tend lectures to a greater extent than classes. 

He finds it difficult to describe what kinds of (specific) goals he sets for each 
lecture. I want to present, to make things seem true, the most important I think is 
that students believe they understand better what a concept means. To exemplify 
what you can handle practically, to illustrate the standard way of doing things. 
Lectures can look very different, some being richer with examples. Later on in 
the interview, discussing quality, he repeats this argument: Some lectures get a 
little colourless, building a ground, lectures differ. When asked what the students 
got out from this particular lecture or why students attend lectures, he says that 
they normally go to the lectures, I don’t know why. It is a smooth way to get 
something done, they think they can use things from the lecture, collect materials, 
thinking the lecturer will say something that is useful for the exam. Even he says 
he is not good at “feeling”, during a lecture, if the students understand, it happens 
that he experiences a “mood” that something is difficult, and then makes some 
modifications of how to proceed. 

We discuss what makes a lecture a good lecture, the issue of quality. He here 
comes back to arguments similar to what he said about goals: I can sometimes 
feel it has been good, sometimes experience fears – not interesting enough, too 
many examples? But the students maybe see it differently, that it is good with 
many examples. The students should get some (beginning of an) insight, a better 
understanding of some concepts, a better image, make them believe that some 
things may hold. There is no need to include everything in detail, just do some 
more “popular” descriptions and let the students themselves fill in the details 
from the textbook. At least some of them do this. He goes on describing how the 
students shall experience some kind of engagement, and get some kind of deeper 
understanding: One has to make the basic standard limits one’s own. I think it is 
easier to remember something that you once have understood why it is true. Get-
ting the basic picture, you remember it whether you want it or not. That is how I 
felt when I was a student.  

He points out that there are some things that are more difficult to grasp this 
way, such as limits involving the logarithm. If this lecture was of high quality I 
don’t know, maybe somewhat dispersed. Other lectures can be more coherent. 
That this course is identical for several study programmes is making you less free 
with for example the order in which things are being presented.  

Students often come asking questions during the break or after the lecture. It 
can be about explaining things on the whiteboard, to fill in some details, but it 
can also be what their teacher at high school has said, something from applica-
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tions or about what will happen later on in the course. It is the more able students 
that ask these questions.  

When commenting on this particular protocol, he says: I was not always care-
ful with the wordings, such as the difference between a function and its graph. 
The protocol gives an impression that all was kind of relaxed, which is something 
I strive for. Concerning the lack of numerical interpretation of limits, he gives the 
reason that It is easy to get a misleading impression from the numerical beha-
viour of for example

! 

x
1

10 ln x  as  x" 0 + . I don’t know if the students would get an 
easier access to the concepts this way.  

When asked about learning to lecture he says that it is learning by experience: 
I do things slower now than some years ago, when I wanted to cover all topics, 
now I skip some and leave it to the students. It is not common to visit others’ 
lectures but there are many informal discussions with colleagues. 

 
Discussion 
A first thing to note is that such questions about lectures that are in focus here, 
provided it is a lecture as part of a course, cannot be treated in isolation from the 
other formats of teaching that together with the lectures make up the course. 
However, there may be some quality characteristics of a general kind that apply 
to lectures as such. A lecture in a course being one of a series of lectures consti-
tuting the course, has a consequence that the “crowd” (the students) after a few 
lectures get used to the lecturer’s way of lecturing. The students that attend the 
lecture do so, it can be assumed, to increase their ability to pass the course. This 
implies that the lecturer has the advantage that the “crowd” is not only willing 
but often even anxious to listen and take notes. The protocols support these ob-
servations. What the lecturer puts forward is considered (by the students) the core 
of the course, the most important issues defining the course, which can be in-
ferred from the common tradition among students to copy and even sell lecture 
notes, also in cases where there is a textbook available. Another feature of this 
kind of lecture is that the lecturer has a fair control of the listeners’ (at least for-
mal) pre-knowledge related to the content of the lecture. 

In project tasks, organised group work, and steered individual tasks, the role 
of the teacher is less directly visible, and the personalisation of teaching is redu-
ced to a minimum, as well as the social and affective interplay between students 
and teacher. These aspects of the teaching situation are influencing the process 
more in a dialogical classroom management, making the teacher as a Person 
critical to a higher degree. This is even more the case in a lecturing format, espe-
cially in a lecture hall situation with an audience of a big group of students. 

Referring to the literature reviewed and the observations displayed in the 
protocols, ten critical issues will be discussed in the protocol analyses of the case 
study presented here. 
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Information delivery: The lecture is rich in presenting mathematical informa-
tion such as basic theorems, proof methods and problem solving techniques. At a 
face level of analysis the lecture is displayed as a demonstration of facts and pro-
cedures. In terms of quality one must ask why as a lecture, what information is 
chosen and how is it demonstrated? Interview data do not provide a clear reason 
why lectures are used but give some insight into the personal process of didactic 
transposition, by words such as trying to “extract” the main core of the course, 
Pointing at critical details, and to illustrate the standard way of doing things. 
Concerning the how issue, it will be discussed below. 

Connections: In this lecture no external connections (outside mathematics) 
are made. From the interview we know that some applications are at least men-
tioned in other lectures – in fact the lecturer states that lectures can be very dif-
ferent. After proving the standard limits some internal connections (within 
mathematics) are given, as is also the case at the very end of the lecture. On the 
whole, however, also these are sparse and never worked out in details, apart from 
referring to a known inequality in the proof of standard limit (1). We can also 
include under this heading the level of coherence of the lecture, i.e. how well the 
different parts of the lecture are connected. This is seen as a condition for quality 
according to the interview. The lecture had two distinct parts, a theoretical part 
and an “applied” part, i.e. demonstration of related techniques by examples, the 
“know-how” connected to the theoretical tools. 

Rigour-intuition: Throughout the lecture, in proofs and examples, mathema-
tical rigour is maintained. Only on one occasion, discussing the inequality 

! 

x < tan x , is this approach put aside in favour of an intuitive reasoning, or rather 
an attempt to convince, based on a diagram. This is in some contrast to what the 
lecturer says in the interview, that the most important is to get the students get a 
feeling of understanding: There is no need to include everything in detail. At the 
same time he wants to present some things carefully, show how to do rigorous 
proofs for those who are interested. In this lecture most things he presented were 
done so carefully, in addition to adding metaphorical language and gestures in 
line with a more intuitive approach. This effect was also seen in Wood and Smith 
(2004). However, there are also situations where things are taken for granted 
which could possibly present a problem for some of the students, such as alge-
braic rearrangements or taking an equality or theorem as known.  

Algebraic-imagistic modes: The different mathematical registers of algebra 
and diagrams are closely linked to the previous aspects rigour-intuition. The al-
gebraic mode is dominating, while diagrams are presented at four separate occa-
sions. Each of these diagrams is functional as an aid to reasoning, at one occasion 
as the only basis for a logical conclusion, using the path metaphor (Lakoff and 
Núñez, 2000) combined with a personification.  



 

 

Papers 

42 

Gestures: As seen from the lecture protocol, gestures are often used by the 
lecturer to make ideas visible, to illustrate. In the interview the lecturer also puts 
an emphasis on the word illustrate as an overall goal for his lecturing. This can 
be seen as part of the game to lecture, as features of acting. 

Socio-mathematical norms: Not only the written mathematical messages on 
the whiteboard play the role of institutionalisation, i.e. stating what officially 
counts in mathematics, but also oral messages telling “how to do it”, such as the 
expression This is how you should read standard limits. All this taken together 
gives the lecture as a whole the role of establishing socio-mathematical norms, 
possibly by the students seen as necessary for passing the exam. The sudden ac-
tivity of writing in the notebooks when examples were to come support this, as 
does the wordings in the interview: students may think that the lecturer will say 
something that is useful for the exam. 

Mathematical mind (ways of doing/thinking, beliefs, attitudes): A big pro-
portion of what the lecturer is saying when doing the proofs and the examples 
concern ways of thinking and useful ideas and techniques in mathematics. He is 
at the same time acting like a model mathematician, at the same time doing what 
he is preaching, sometimes just doing it without giving reasons or excuses (We 
do one more or then I want to make a diagram). As a model he is a person, using 
not only the formal language of mathematics but also metaphors and everyday 
wordings (We want to “squeeze”), including normative expressions such as It is 
not nice when both the exponent and the base are moving. The students can wit-
ness “live” how mathematics can be done (cf. Rodd, 2003). 

Inspiration: As observed in the literature review, the issue of inspiration is by 
many writers seen as one of the key features and potentials of lectures. However, 
this is not mentioned at all in the interview, where the objectives concern student 
conceptual understanding and demonstrating functional mathematical tools. 
Thus, from the data presented here, one can only infer implicitly from the lecture 
protocol the potential “awe and wonder” that students might experience, and in-
spiration to go on doing exercises by their own or in the class. That students were 
in fact active listeners showed by observable reactions at different occasions, 
such as laughter or notes taking. The examples chosen for demonstration were to 
some extent on an advanced level, some possibly even out of reach for many to 
understand “in real time”, a feature that could contribute to inspiration: is it really 
possible to decide on the convergence of such a number sequence, and will we 
even learn how to compute its limit value later on? 

Personalisation: The lecturer as a person is clearly visible in the lecture notes 
by his use of a personal non-formal language to balance the algebraic flow on the 
whiteboard, his use of gestures and humour. From the interview we know that in 
his lectures he is striving for a relaxed atmosphere, which can be one way of ex-
pressing that he and his students can have a nice time together doing mathematics 
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in a non-authoritarian mode. The impression from the observer was that Mathe-
matics was the dominating “person” at the lecture but that it was communicated 
through a Person as a human activity. 

General criteria for quality mathematics teaching: In relation to the teaching 
quality criteria by Blum (2004), the protocol and interview data show clear traits 
of parts of all three strands (cf. above), such as competence orientation, stimu-
lating cognitive and meta-cognitive activities, providing a clear structure and ef-
fective use of time, while some others are less visible, partly due the very format 
of a lecture.  

 
Conclusion 
Is it possible to set up a set of criteria for a quality lecture? One option could be 
to assign an observed “level” to each of the categories discussed above. The kind 
of validity such a procedure could produce would probably become more well 
defined as well as increase by basing the evaluation on a whole series of lectures 
in a course. Indeed, in the interview the lecturer emphasised that lectures in the 
same course can be very different. However, as argued above, due to the crucial 
role for the lecture format of personal characteristics, the full relevance of such 
an approach for developing teaching quality cannot easily be identified. Instead 
the meaning of the kind of study presented here could lie in its potential to initi-
ate a more focused discussion, based on well researched theoretical terms and 
empirical observations, on what in fact takes place in undergraduate mathematics 
teaching, to increase among practitioners an increased pedagogical awareness of 
the kind discussed by Nardi et al. (2005), which can lead to a development of 
quality in undergraduate mathematics teaching, not only in lecturing but as an 
integrated educational enterprise. 
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The Teachers’ Way of Handling Modelling 
Problems in the Classroom – 

What We Can Learn from a Cognitive-
Psychological Point of View 

Rita Borromeo Ferri 
University of Hamburg 

Abstract: In this paper I present one aspect of my current study of analysing teachers 
and pupils in context-bound mathematics lessons from a cognitive perspective. Using 
the mathematical didactical and cognitive-psychological approach of mathematical 
thinking styles, I will depict the teachers’ way of handling modelling problems in the 
classroom, where the present focus lies. Looking at modelling from a cognitive per-
spective has largely been neglected in the current discussion regarding modelling. Re-
sults of the study presented in this paper will show what we can learn from the 
behaviour of teachers in context-bound lessons, when we look at them from a cognitive 
viewpoint. 

A short overview of cognitive aspects in mathematical modelling 
Before I describe my study, I give only a short overview of cognitive processes 
as a much neglected aspect within the discussion on mathematical modelling. 

With regard to cognitive processes one has to mention the extensive work 
by Richard Lesh and his team (Lesh & Doerr, 2003). In his theoretical approach, 
Lesh primarily refers to works by Piaget, Vygotsky, Dienes and other psycho-
logist. Lesh’s work, however, has another emphasis than the one of the study dis-
cussed in this paper, which are the following ones: Besides the fact that the indi-
vidual modelling processes of pupils will be reconstructed with the cognitive-
psychological approach of mathematical thinking styles on a micro-process-level, 
also the teachers’ handling during the pupils’ modelling process and their class-
room discussion afterwards will be reconstructed. A design which was especially 
developed for this study was necessary. It will be described later in this paper. 

One aspect is analyzing the individual modelling processes of pupils, which 
I on the basis of my analysis call individual modelling routes (Borromeo Ferri, 
2006). However, we often forget the role of the teachers in this context. The 
teacher is the person who is helping the students during the modelling process 
and who is discussing problems later in the classrooms. Both – helping and dis-
cussion – can be very different from teacher to teacher because of their different 
mathematical thinking styles. Later on I will say more about this approach. 
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Coming back to the state of the art of cognitive aspects within the modelling dis-
cussion, the paper by Treilibs (1979) is worth mentioning (cf. Treilibs, Burk-
hardt, & Low, 1980) as his analyses focuses on the individual, to be precise, on 
the pupils, during modelling. Treilibs focuses on determining how learners build 
a model. Consequently he does not examine the complete modelling process, but 
instead concentrates on the so-called ‘formulation phase’ during which the model 
is formed.  

Matos’ and Carreira’s research (1995, 1997) puts a special emphasis on 10th 
grade learners’ cognitive processes. They reconstruct the representations of the 
pupils while solving realistic problems. They analyse the creation of conceptual 
models (interpretations) of a given situation and the transfer of this real situation 
into mathematics. In their results, they point out the numerous and diverse inter-
pretations which learners use while modelling. 

In the discussion of modelling, the works mentioned above were widely 
marginalized notwithstanding aspects of cognitive psychology. Looking at Blum 
et al. (2002), this also becomes very evident. The question of beliefs (see Maaß, 
2004) has increasingly gained importance over the last years. A more intensive 
discussion of cognitive influences on the individual while modelling in math les-
sons has yet to take place. In this context, the role of the teacher will also have to 
be taken into consideration.  

My current study provides a coherent analysis of four different aspects from 
a cognitive perspective: Firstly, analyzing learners and teachers in contextual 
mathematics lessons, secondly, analyzing micro-processes at an individual level, 
thirdly, analyzing groups of pupils during the process and, finally, fourthly, con-
sidering the role of the teacher at the same time. 

This comprehensive analysis would therefore also yield new insights for the 
current discussion of modelling. Especially the linking of the approach of mathe-
matical thinking styles to modelling, or rather the investigation of the possible 
influence of mathematical thinking styles on the entire modelling cycle, are new 
aspects which are introduced into the discussion by this study.  

 
The mathematical didactical and cognitive-psychological approach of 
mathematical thinking styles 
In this chapter I present the theoretical framework of mathematical thinking 
styles, which I developed in my PhD-thesis (Borromeo Ferri, 2004)1. In the cur-
rent study, mathematical thinking styles are used as theoretical ‘glasses’ to ana-
lyze teachers and pupils in context-bound mathematics lessons and form the basis 
                                                 
1 I have to add, that in my theses I described in a historical way a lot of approaches concerning 
different ways of thinking including Kruteskii. In this paper I have no space for that. But 
Kruteskii reconstructed not really thinking types, for him, these were types of abilities an 
individual can have. 
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for the research project and the data analysis. This approach is also a new aspect 
in the field of modelling research. 

In the PhD-thesis already mentioned, the following definition of a mathe-
matical thinking style is developed: Mathematical thinking style is the term I use 
to denote “the way in which an individual prefers to present, to understand and to 
think through mathematical facts and connections using certain internal imagi-
nations and/or externalized representations. Hence, mathematical style is based 
on two components: 1) internal imaginations and externalized representations, 2) 
the holistic respectively the dissecting way of proceeding.” (cf. Borromeo Ferri, 
2004, p. 50) 

In my thesis, I use a laboratory design to reconstruct and analyze different 
mathematical thinking styles of 12 students attending 9th or 10th grade, i.e. I am 
able to describe the ‘existence’ and distinctness of three mathematical thinking 
styles: 

• Visual thinking style (pictorial-holistic thinking style): Visual thinkers 
show preferences for distinctive internal pictorial imaginations and exter-
nalized pictorial representations as well as preferences for the under-
standing of mathematical facts and connections through existing illustra-
tive representations. The internal imaginations are mainly effected by 
strong associations with experienced situations.  

• Analytical thinking style (symbolic-dissecting thinking style): Analytic 
thinkers show preferences for internal formal imaginations and for exter-
nalized formal representations. They are able to comprehend mathemati-
cal facts preferably through existing symbolic or verbal representations 
and clearly define their expressed ideas in formalisms. 

• Integrated thinking style: They combine (in the same parts) visual and 
analytic ways of thinking to the same extent. 

Mathematical thinking styles should not be seen as mathematical abilities but as 
preferences how mathematical abilities are used. This is one of the principles of a 
mathematical thinking style I set up with reference to Robert Sternberg, a cogni-
tive-psychologist, and his theory of thinking styles (Sternberg, 1997). Mathema-
tical thinking styles are set on an unconscious level of personality so that an indi-
vidual does not know about his or her mathematical thinking style. Concerning 
what I mentioned in the chapter before (teacher as the person, who helps stu-
dents), a mathematical thinking style can influence the way of teaching mathe-
matics and also the way how the teacher discusses modelling problems, which is 
one of my hypotheses. 

Werner Blum and his team (see DISUM-project) are focusing also on the 
teachers’ behavior during the modelling process of the students. In contrast to my 
work, they try to reconstruct and differentiate the ‘types of interventions’ of the 
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teachers rather than the influence of mathematical thinking style on these 
processes, where my focus lies. 

On the basis of the interviews in my thesis, I can reconstruct the phenome-
non that some pupils describe that they do not understand their teachers while 
being taught math by them. This has nothing to do with the fact that the explana-
tions of the teacher are bad. I set up the hypothesis that the mathematical thinking 
style of the teacher does not match with the mathematical thinking style of the 
learner. Then both, the teacher and the learner are not talking in the same ‘mathe-
matical language’.   

In my current study I use mathematical thinking styles as a mathematical 
didactical and cognitive-psychological approach for analyzing my data. In addi-
tion, I take the theory of mathematical thinking styles out of the lab into the 
classroom. 

 
The “modeling-cycle under a cognitive perspective”  
In this chapter I briefly present the so-called ‘cognitive modelling-cycle’ I am 
referring to in my analysis. Within the didactic literature of modelling there exist 
different modelling cycles. For the purpose of my study with regard to cognitive 
aspects, the reconstructed handling of the teacher with modelling problems as 
well as the reconstructed individual modelling routes of the pupils are illustrated 
with the help of the modelling cycle according to Reusser (1997) and Blum and 
Leiss (2005). Reusser assumes that a so-called situation model exists in which an 
individual illustrates the situation depicted in the task through what can be called 
a mental picture. Blum and Leiss (2005) have adapted the situation model for 
their work on the DISUM-project. As I do not call this a situation model, I use 
the term mental representation of the situation. In my sense, this term better de-
scribes the kind of internal processes of an individual after reading the given 
modelling task. Concerning these phases of the modelling cycle (real situation, 
mental representation of the situation, real model, mathematical model, mathe-
matical results, and real results) I want to analyze whether there are differences 
in the way teachers deal with modelling problems and whether mathematical 
thinking styles have influence on this handling processes. 

Confer the following illustration for what I call the modelling cycle under a 
cognitive perspective:  
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1 Understanding the task
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4 Working mathematically, 

using individual 

mathematical 

competencies

6 Interpreting

7 Validating

Extra-mathematical

knowledge (EMK)

Extra-mathematical knowledge

(EMK)

 
 
The study 
Research questions 
The following questions are central to my study. Looking at each question, one 
can suppose that only one of these would be enough for a study in an educational 
setting. However, especially the connections of theses questions, which combine 
different levels of analyzing procedures in the classroom, were very fruitful for 
the purposes of my study till now. Concerning the focus of my paper, especially 
hypothesis gained to question one are of great interest. 

1. What influences do the mathematical thinking styles of learners and 
teachers have on modelling processes in context-bound mathematics 
lessons? 

2. Can the differences between situation model, real model and mathematical 
model (as described in didactic literature on modelling) be reconstructed 
from the learners’ ways of proceeding? What role do they play with regard 
to understanding the relationship between mathematics and ‘the rest of the 
world’? 

3. Are there differences in the pupil-pupil and teacher-pupil interactions in 
lessons, if their mathematical thinking styles match or not? 

Methodology and design of the study 
The design of the study is highly complex as the research questions require dif-
ferent levels of data collection and data analysis. As far as the evaluation is con-
cerned, the design has turned out to be a useful tool due to its multilayeredness. 
The project is carried out within the context of qualitative research. Quantitative 
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research seems to be inappropriate given the focus of the study on the internal 
cognitive processes of learners and teachers. 

The investigation is conducted in three 10th grade classes from different 
Gymnasien (German Grammar Schools). The sample is comprised of 65 pupils 
and 3 teachers (one male, two female). 

Altogether three lessons are videotaped in one class. Before I started video-
taping, each individual of a class had to do the questionnaire on mathematical 
thinking styles which I developed on the basis of my thesis. This questionnaire is 
evaluated independently by me and my research student by reconstructing the 
individual learner’s mathematical thinking style. In addition, an interview is con-
ducted with the teacher to reconstruct his or her mathematical thinking style 
which also includes biographical questions. Questions are also asked about 
his/her study of mathematics at university but also about his/her current view of 
mathematics or about reasons why his/her view of mathematics might have 
changed over the course of their teaching life.  

In the first lesson, the learners work on one, possibly two not too complex 
modelling tasks. Pupils are divided into groups of five on the basis of the evalua-
tion of the questionnaire and according to their mathematical thinking styles. One 
group is videotaped during the modelling process. The only guideline I give the 
teachers regarding their lesson and how the tasks should be dealt with is to work 
in small teams. In the second and third lesson, two further but more complex 
modelling tasks are worked on. Referring to the first lesson, the camera is di-
rected at a group desk and records a view of the class, teacher, and blackboard 
during plenary discussions. Additionally, the teachers are equipped with a mini-
disc-recorder strapped to their body in order to record all their interactions with 
the learners. Thus, I try to record the teacher’s help or suggestions during model-
ling as this could possibly influence the pupil’s modelling process. The model-
ling tasks selected for the learners are of central importance as they delineate the 
field for the analysis. The tasks are analyzed with regard to subject matter aspects 
and from a cognitive viewpoint. They are taken from the DISUM-project by 
Blum and Messner. The evaluation of the data that has been looked through and 
has been analyzed by now includes the reconstruction of the individuals’ model-
ling processes in the videotaped groups as well as plenary talks and interviews of 
teachers. In accordance with grounded theory (Strauss & Corbin, 1996), codes 
were formed and used in order to break up and reassemble data.  

Results and hypothesis of the study 
On the basis of the data analysis till now, the following hypotheses could be 
generated: 

1. The teachers’ mathematical thinking styles can be reconstructed and mani-
fests itself during individual pupil-teacher conversations as well as during 
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discussions of solutions and while imparting knowledge of mathematical 
facts. 

1a. Teachers, who differ in their mathematical thinking styles, have the 
preferences of focusing on different parts of the modeling-cycle while 
discussing the solutions of the problems. 

2. Different mathematical thinking styles of the learners result in different ob-
servable modelling routes. 

2a. The learners’ different mathematical thinking styles manifest themselves 
during the modelling process in such a way that the starting-point of the 
modelling route seems to occur during different phases.  

I do not go into detail concerning hypotheses 2 and 2a here because I will discuss 
hypotheses 1 in part and 1a in detail as these constitute the focal subject of my 
paper.  

Due to the fact that I use mathematical thinking styles as theoretical 
‘glasses’ for my analysis, two aspects are relevant for the reconstruction of 
mathematical thinking styles: On the one hand, statements from the interviews 
with the teachers and, on the other hand, the teachers’ actions and interactions 
during the actual lessons. Thus, statements made in the interviews and actual ut-
terances can be compared. In the following I present the results gained from two 
teachers, Mrs. R. and Mr. P. On the basis of the interviews, Mrs. R. is recon-
structed to be a visual thinker, while Mr. P. is reconstructed as being an analytic 
thinker. The following parts of the interviews can only be an illustration to make 
clear, which mathematical thinking style they are attributed to. 

Answers from Mrs. R. and Mr. P. to two questions taken from the interview: 

Interviewer: Please describe in five terms what mathematics means to you. 

Mrs. R.: Oh (5s) a good question, okay (3s), an interesting subject (5s), logical 
thinking, ehm (3s) making connections. Ehm, tasks, yes tasks also belong to it. 

Mr. P.: In five terms describing mathematics, yes, playing with numbers, play-
ing with variables, logical thinking (3s), building logical connections, yes and 
there is also a connection to reality. For me, mathematics is the language of 
physics. 

Interviewer: Which view of mathematics do you think you give the pupils while 
teaching? 

Mrs. R.: That they know that mathematics will be good if they keep the overall 
view. Often I tell them that I like mathematics. I am not a formalist. When I get 
a task, the first thing I do is drawing a sketch. For me it is not so important that 
they do everything formally in a correct way but that they understand that 
mathematics can help them in their way of thinking. 
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Mr. P.: That they mainly learn to recognize structures and, yes, I give them the 
connection to reality mostly through physics because I am also a physics 
teacher. But in mathematics I believe that they have to learn to think in struc-
tures and that they are able to ‘move’ within these structures so that they are 
able to see and to build formulae. 

In the following, I illustrate the reactions of the two teachers to a scene from the 
classroom discussion to make hypothesis 1a more clear and to show how the 
teacher handles with this problem.2 Pupils in both classes work on the ‘light-
house task’, which I took from the DISUM-project: 

In the bay of the city of Bremen, a lighthouse measuring 30.7 m called “Red 
Sand” was built directly on the coast in 1884. It was meant to warn ships which 
were approaching the coast with its beacon. How far was a ship still away from 
the coast when the lighthouse could be seen for the first time? (Round up to full 
kilometres.)3 

After the learners wrote the solutions on the board, Mrs. R. and Mr. P. reacted as 
follows:  

Reaction of Mr P.: That was really good. You all did a very good job to solve 
this problem. But what I am missing as a maths teacher is that you can use more 
terms, more abstract terms and that you write down a formula and not only 
numbers. This way corresponds more to the way of thinking physicians and 
mathematicians prefer, when you use and transform terms and get a formula 
afterwards […]” [Mr. P. developed a formula with the pupils after this state-
ment.] 

Reaction of Mrs. R.: So we have different solutions.4 But what I recognized and 
what I missed in our discussion till now is the fact that you are not thinking of 
what is happening in the reality! When you want to illustrate yourself the light-
house and the distance to a ship, then think for example of the Dom.5 I can see 
the Dom from my balcony. Or ehm, whatever, think of taking off with a plane 
in the evening and so on. Two kilometres. Is that much? Is that less? 

The analysis of their lessons shows that their mathematical thinking styles be-
came evident in the discussion of reality-based tasks in the plenary as well as 
during one-on-one talks with the learners. Due to the limited space of this paper, 
I cannot give examples for the latter. What is more, in relation to modelling, the 
                                                 
2 In this paper I have no space to show also a scene of an interaction between teacher and pupil; 
the reactions and especially the way they handle with the problem in the classroom discussion 
should be made clear here are the focus of this paper. 
3 The solution is 20 kilometres; you can solve this with Pythagoras’ theorem or Cosinus. 
4 One solution presented was 2 kilometres for the distance from the lighthouse to a ship. 
5 This is the name of a famous fair in Hamburg. 
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following interesting connection (of which only the crucial point is mentioned 
here) can be made:  

- Mr P. as the more analytical thinker focussed less on interpretation and vali-
dation. For him, the subsequent formalisation of tasks in the form of abstract 
equations is important. Accordingly, the real situation becomes less important.  

- Mrs. R. as a visual thinker interprets and, above all, validates the modelling 
processes with the learners. This becomes evident in her very vivid, reality-based 
descriptions she uses and provides for the learners. 

 
Summary and discussion 
As already mentioned in the first chapter, the study has a very complex design 
because the research questions address many different levels of contextual 
mathematics lessons. Although the analysis of the pupils’ performance has not 
been described, it is still sufficient to deduce implications for the teaching and 
learning of modelling. What can be reconstructed with respect to the pupils is 
that individual modelling routes of learners differ because of the influence of 
mathematical thinking styles.  

In the analysis it can likewise be shown that advice from the teacher and the 
discussion of reality-based tasks in the plenary serve to emphasise or even avoid 
certain phases of the modelling process. It is a fact that most teachers and pupils 
are most of the time unaware of their preference for a certain mathematical thin-
king style. Besides this aspect one has to bear in mind that pupils are supposed to 
see the point of mathematics, as is often demanded, with the help of reality-based 
tasks or lessons. The latter shall make the pupils aware of the connection be-
tween mathematics and reality. But can this work if the teacher formalises to a 
great extent and does not validate much? Or what, on the other hand, happens to 
mathematics, if the focus is put too strongly on reality? And what about teachers 
and students who prefer different mathematical thinking styles? Does this also 
interfere with the construction of meaning during the modelling process?  

The hypotheses generated here give rise to new questions which have to be 
addressed in the near future. It also becomes evident that looking on teachers and 
pupils in context-bound mathematics lessons from a cognitive-psychological 
angle, several (modelling-)processes, which could be addressed as ’normal’ be-
fore, are a little bit more opened up now and give us more space for understand-
ing what happens on a micro-level. 
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Students Developing Utilisation Schemes for an 
Artefact to Solve Problems in Three 

Dimensional Analytic Geometry 
Torbjörn Fransson 

Växjö universitet 

Abstract: When working with concrete materials in mathematics education, utilisation 
schemes about how to use the materials must be constructed. In this study, eighteen 
upper secondary students work on three-dimensional analytic geometry with an artefact 
available, and the development of their utilisation schemes is investigated by variation 
in task design. How these schemes develop and influence the solution process depend 
more on the students’ pre-knowledge than on how they are guided through the tasks.  

Concrete materials in mathematics education 
Artefacts such as concrete materials or computers are used in school during 
mathematics classes. Often the aim is to help pupils visualise mathematical ob-
jects and processes. Studies of using concrete materials in mathematics education 
show that mathematical achievement, as well as students’ attitudes towards 
mathematics, can be improved through a long-term use of concrete instructional 
materials, provided that teachers are knowledgeable about their use (Sowell, 
1989). Several studies indicate that, when there is an option, students often show 
a preference to solve tasks by using an algebraic approach rather than a visual 
approach (e.g. Eisenberg & Dreyfus, 1991; Presmeg & Bergsten, 1995). How-
ever, Hart (1993) writes that children “do not automatically realise how to use a 
diagram or what its intended message is. Its special features need to be taught 
just as other aspects of mathematics need to bee taught” (p. 57).  

Wartofskys’ (1979) general definition of an artefact includes a cultural crea-
tion such as language. In this paper we are only interested in artefacts such as 
concrete materials designed and/or used for educational use. Bergsten and 
Fransson (2006) divided those artefacts in three categories, static, responsive and 
dynamic artefacts. A static artefact can be manipulated but does not change its 
form, and no response is given back to the user, who has to make an interpreta-
tion from the actions performed. When dealing with a static artefact it is the way 
you interact with it that defines the learning outcome. To get something out from 
it, the students need utilisation schemes (Strässer, 2004), which change the arte-
fact to become an instrument for learning (Rabardel & Samurcay, 2001). Stu-
dents’ interaction with an artefact for solving a mathematical problem is a com-
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plex process. To be able to understand this communication between students, 
between students mediated by the artefact, and students communicating with 
him/herself with or without the artefact must be investigated. Communication 
here includes talk, gestures, writing, etc., i.e. all sorts of mediating (Sfard, 2001).  

In an earlier study, Bergsten and Fransson (2006) investigated to what extent 
and how students working with a static artefact interact with the model, and fi-
nally how the interaction influenced the solution process. The result showed that 
the static artefact used played an important role in building up a sense of under-
standing of the problem situation. There was also evidence showing that the ar-
tefact served as a vehicle for communication and that it supported students to 
validate steps in the solution process. The students’ pre-knowledge played an 
important role for what interaction took place when dealing with planes in three 
dimensions, a topic the students had never met in their mathematics courses be-
fore – there was a low interactivity. 

 
Purpose 
To be able to make use of an artefact, students need some kind of utilisation 
scheme. Such a scheme can be constructed by the teacher and taught to the stu-
dents. By working with the artefact and using their pre-knowledge, students can 
also construct the utilisation scheme by themselves (Bergsten & Fransson, 2006). 
In this case, the utilisation scheme will be based on the students’ own interaction 
with the model, which may lead to a functional way to solve the problem at hand. 
In the study presented here, we had half of the students work with tasks designed 
to guide them to a specific utilisation scheme, while the other students work with 
tasks not guided in this respect. All of the students have the same final task (the 
target task), the purpose being to investigate the utilisation schemes used in this 
task, in relation to the work during the previous tasks. Another aim was to study 
how the utilisation schemes influence the solution processes. 
 
Method 
Design of the model and the tasks 
To study utilisation schemes, we designed two different sets of tasks, dealing 
with analytic geometry in three dimensions. To their help the students had an 
artefact, from now called the model, specially designed for this and the previous 
study (Bergsten & Fransson, 2006). This model, made of four sides a steel mesh 
as an open rectangular cylinder, is 16 squares wide, 20 squares deep and 27 
squares high, each square being approximately 4 cm2. One of the sets of tasks 
(T2) has tasks that guide the use of the model. In these tasks the students have to 
mark some points on the model. For the other set of tasks (T1), the students them-
selves have to decide how to use the model. See Appendix for details of the tasks 
and a figure of the model. In the introductory task, common to T1 and T2, two 
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intersecting orthogonal straight lines, each parallel to two of the opposite sides of 
the model, were marked with strings in the model. The students were asked to 
describe the location of the point of intersection. The purpose of this task was 
that the students should feel a need for a coordinate system and to begin 
developing utilisation schemes. When this first task was completed, the tutor de-
fined a coordinate system on the model with wooden stitches. After this the 
groups got different kinds of tasks. Three of the groups got a set of open tasks 
(T1). The other three groups got a set of tasks (T2), where they were asked to 
mark points on the model and where “small steps” tasks were designed to guide 
the students to a specific kind of utilisation scheme. Finally, both groups got a 
common target task:  

The line L1 is passing through the points (7,0,12) and (15,16,20) and L2 
through the points (0,4,11) and (20,8,19). Investigate if the lines L1 and 
L2 intersect or not; if they do, determine the point of intersection. 

For the target task the purpose was to see if the groups stuck to their own 
developed utilisation scheme or not, and to investigate any differences between 
the groups that had the guided set of tasks and the groups that had the open tasks. 
The author was tutoring the group work, though groups worked autonomously 
and most of the time without the tutor being present. All groups were videotaped 
working on the tasks, and the analyses of the tapes were supported by a transcrip-
tion method, an elaborated variation of an interactivity flowchart (see Kieran, 
2001), aimed at highlighting the flow and linking of arguments as well as the 
level and kinds of interactions between the different students, and between the 
students and the artefact. As an example, some lines, quoted in the result section 
below, are shown from students working on task 4 in set T2. 
 

Line Alex Börje Clara Comments 
1. Shall we do it 
 like we did? 

  Initiate  

2. Mmm, let us 
 start with the x  
 and y directions. 

Follow up   Turning the model 
so the xy plane is 
towards them 

3. It is exactly the 
 same. 

 Confirm   

4. Yes, we don’t 
 have to look, we 
 have the numbers 
 here. 

Explicate    
i.e. at the model 
i.e. on the task 
 sheet 

5. But it can be 
 helpful. 

 Response   

6. Yes, it can. Confirm    
7. I have to see it.   Question  
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In line 1, Clara takes an initiative which Alex follows up in line 2. In the com-
ment interactivity with the model is described. Clara’s initiative is confirmed by 
Börje in line 3, and the discussion goes on. In this short paper there is not space 
to discuss the possible advantages or disadvantages of using this specific tran-
scription method, or how it was useful for the purpose of this study, the dynamics 
of the groups not being the focus. 

A-priori analysis 
After the introductory task a positive orthogonal coordinate system was defined 
on the model and the origin was located in one of the lower corners by the tutor. 
The groups working on the T2 tasks were then given two points (0,0,12) and 
(20,0,16), and were asked to determine some points on the line through the given 
points. After that they were again given the point (0,0,12) and a new point 
(20,16,16) and the same way asked to determine some points on this line. These 
groups were dealing with straight lines in two dimensions first, as the lines were 
located on the faces of the model, and after that straight lines in three dimensions 
(passing through the interior of the model). The purpose was to guide them into a 
utilisation scheme where they used the model to project any given line to the 
sides of the model. The model supports this visualisation, and with their pre-
knowledge of straight lines in two dimensions the students should be able to 
solve these tasks. They were also asked to mark the given points in all the tasks, 
to guide them to actively use the model. All groups were then given the points 
(7,0,12) and (15,16,20), the groups working with T2 asked to mark the points, 
and asked to determine some points on the line through these points. In all tasks 
they should determine at least one point located outside the model. In a second 
task, the groups were asked to decide if three given points were located on the 
line passing through the same points. Finally, the groups got the target task.  

To analyse the tasks, dealing with lines in three dimensions, consider a 
straight line 

! 

L  and a point on this line. To move from this point to another point 
on the line involves a movement in all three directions, as described by the for-
mula 

! 

L :  (x,y,z) = (x
0
,y

0
,z

0
) + t("x,"y,"z) , where 

! 

(x
0
,y

0
,z

0
)  is a point on the line, 

Δx, Δy and Δz are the differences between the coordinates of two points on the 
line, thus making up a direction vector, and t is a real number. 

We may interpret the movement as a move in one direction at a time, for ex-
ample Δx steps in the x-direction followed by Δy and Δz steps in the y- and z-di-
rections, respectively. The model supports this interpretation, as the students are 
able to look at the line through the xz-plane and the yz-plane, and by this also see 
the projection of the line on these planes. The model also supports visualisation 
of the projected line on these planes. However, since the students at this level 
normally have not been working in school with straight lines in dimensions 
higher than two, we can not expect them to use the symbolic representation of the 
line given above. Considering their background knowledge, they may try to cal-
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culate a slope. Here they have to realise the fact that a three-dimensional line has 
different slopes in different directions. The model may support the students to 
calculate two slopes, one that they can visualise in the xz-plane and one in yz-
plane, kx and ky, respectively. 

The model also supports a direct three-dimensional interpretation of repre-
senting the movement from one of the two points to the other in terms of a vector 
(Δx, Δy, Δz). Just by counting squares they can determine Δx = 8, Δy = 16 and   
Δz = 8 for the given points. Further, using proportionality, the may scale (8,16,8) 
down to (1,2,1), which they may relate to the model, and may further be able to 
combine several vectors (1,2,1) to reach new points.  

In the final task, they were asked to determine the point of intersection of 
two given lines. If you have equations for the lines, you easily find the intersec-
tion point using a system of equations.  To find an intersection point between two 
lines with no given equations given is harder. The model supports a visual repre-
sentation of the lines, and by looking through it you may perceive visually an 
intersection point and by counting squares you can determine, for example, the x-
coordinate for this point. Now, using the knowledge of the straight line in two 
dimensions it should be possible to determine that you have found the intersec-
tion point. In this case it is (10,6,15). 

The students 
Eighteen upper secondary school students from two different Swedish schools 
(nine students from school S1 and nine from S2) voluntarily accepted to join the 
experiment. The students were divided in six groups with three students in each 
group, three groups from each school. In school S1 there were three students 
available one day and six students another day, thus deciding the groups. In 
school S2 students were randomly assigned to the small groups. In all six groups 
there was a mix in gender. Three students (forming group S11) followed the tech-
nology programme and the others were enrolled in the science programme. All of 
the students had taken course D in mathematics in the Swedish secondary school 
system. Some of them had also taken an optional course, including some coordi-
nate geometry in higher dimensions than two. Some of the students also had done 
some programming in Cad. They all had good or very good grades from their 
mathematics courses. An overview of the sample is shown in the table below, 
where the * indicates that these students had taken the optional course. 

Group S11 S12 S13 S21 S22 S23 
Tasks T1 T2 T2 T2 T1 T1 
Programme Technology Science Science Science* Science* Science 
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Results 
For the first task, all six groups defined a coordinate system on the model to 
solve the task. The location of origin was different between the groups, but most 
of the groups defined it in one of the upper corners of the model. One of the 
groups (S23) defined the origin to be located in the middle of the interior of the 
model. Due to space limitations, only the work of four groups work will be de-
scribed in some detail. We first report on the three groups working on T2, and 
then the groups working on T1. 

Group S12  
Two boys (Anders and Bengt) and one girl (Cilla) make up this group (all names 
given are fictitious), working on the set of tasks T2. In the second task, two of the 
students count squares to locate the two given points. They mark this with sticky 
tack. While looking at the model, Anders suggests that they should determine the 
slope for the straight line. They calculate the slope for the line by taking the dif-

ferences of the coordinates, writing 

! 

k =
"z

"x
=
4

20
= 0.2 and decide, by looking at 

the coordinates, that 

! 

m =121. They write down 

! 

y = 0.2x +12. The points they are 
asked to determine they get by putting 

! 

x = "5,  5,  10,  and 15  in their equation. 
Anders and Cilla start counting squares, when working with the third task, to lo-
cate the given points and mark them. After that, Anders suggests: “Can’t we use 
a formula like 

! 

z = kx + ly +m”. They write down the equation 

! 

z = 0.2x +0.25y +12 . With this equation the try to solve the task in the same way 
that they solved the second task. They put x = 5 and y = 4 in the equation and get 
z = 14 (writing (5,4,14) on the paper). Anders wants to use the model to verify if 
they have found a point on the line, and says: “Should we use a string anyway?” 
Cilla agrees: “Just to see.” Now, Anders and Cilla mark the line and Anders, 
bending down looking at the model, says: “It doesn’t fit.” After that, Anders 
suggests that they could write down three two-dimensional equations and see if 
they can help them. By looking at the coordinates Anders writes down 

! 

y = 0.8x  
and 

! 

z = 0.25y +12. After a long silence they try for x = 5 and get (5,4,13). They 
verify that the point (5,4,13) is on the line by counting squares in the model. Af-
ter this they determine four points on the line, for 

! 

x = "5,  5,  10,  25 . Now they 
say they are finished with the third task. 

Working on the fourth task, Anders and Cilla begin counting squares to lo-
cate the given points [(7,0,12) and (15,16,20)] they also mark by putting a string 
between the two points. Anders suggests that they should solve this task in the 
same way that they solved the previous and Bengt agrees. By looking at the co-
ordinates for the given lines, Anders writes down 

! 

y = 2x "14  and 

! 

z = 0.5y +12 . 
From these equations the group determines that (0, –14,5), (8,2,13) and (10,6,15) 

                                                 
1 In class students have used to the equation 

! 

y = kx +m  for a straight line. 
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are points on the line. For each point they determine they verify that it is on the 
line by looking at the model. 

They solve the fifth task by checking if the x coordinate, for the given points, 
gives correct y- and z-values by their equations. Finally, in the sixth task Anders 
and Cilla mark the given points and the new line in the model. They look at the 
model and Anders says: “It looks as if they intersect.” They determine, as shown 
above, two equations, 

! 

y = 0.2x + 4  and 

! 

z = 2y + 3, for the line L2. On a paper 
they write, L1; 

! 

y = 2x "14  and 

! 

z = 0.5y "12  and L2; 

! 

y = 0.2x + 4  and 

! 

z = 2y + 3. 
By using these equations they get, by setting the y-coordinates equal, that the 
point of intersection is for x = 10. This x-value gives that L1: (10,6,15) and L2: 
(10,6,15). They don’t verify, by looking at the model, that it is the right point 
they have determined.  

Group S13 
Due to space limitations, the work of this T1 group will be presented only shortly. 
When solving the tasks, the students mark the given points and put a string 
between them, and they also turn the model a lot. They draw coordinate systems 
on their paper. Solving the second task, they determine an equation (

! 

z = kx +m ) 
for the two-dimensional line, and by choosing some values for x they determine 
the z-coordinates. When working with the third task they try to project the line 
into two two-dimensional lines, representing this by the three equations 

! 

y =
4

5
x ,

! 

z =
1

5
x +12, and

! 

y = 4z " 48 . Choosing values for x and using two of the 

three equations solve the problem for them. They verify that it is the right points 
by putting a string into the model to see if it seems to be a reasonable solution. 
They start the work with the fourth task by marking the given points and they 
also mark the line by using a string. They realise that using the same method as 
in task three they will solve this task too and that they do not have to use the 
model at all, but all three students say that they have to visualise it. Using the 
already mentioned method to solve the task, they do not verify the points by us-
ing the string as in task three. The fifth task is also solved by the same method, 
i.e. checking, with their equations for the line, if the x-coordinate for the given 
points produces those points. For the sixth task, they determine two equations for 
the line L2. By solving the equation system, with two of the equations for L1 and 
the equations for L2, they determine that the lines intersect in (10,6,15). They 
also verify this by looking into the model.  

Group S21 
This group, working with T2, is composed of one girl (Anja) and two boys (Ben 
and Carl). In task 2, Carl suggests that they should use a string to mark the line. 
After doing that Anja says: “You just have to see the k-value”, and shows with 
her hand to the model. Ben follows up her idea and suggests: “We can determine 
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the k-value by taking Δ there” (showing Δz in the model) “and by taking Δ 

there” (showing Δx in the model). After Ben has determined the slope to be 

! 

1

5
, 

Anja states: “So, if we move five squares there so…” They solve the task by 
adding 5 and 1 to the x- and z-value, respectively, and determine that (5,0,13) and 
(25,0,17) are on the line. They do not verify by looking at the model that the 
points are on the line. After having marked the given points in task 3, Anja 
makes a suggestion: “I suggest that we determine a k-value for this” (showing 

! 

"z

"x
) “and one k-value for another direction”. They determine that Δy = 16,      

Δx = 20 and Δz = 4, and from this they get, 

! 

ky =
"y

"x
=
4

5
 and 

! 

kz =
"z

"x
=
1

5
. Now 

Anja explains: “If we move five steps in this” (pointing in z-direction), “we shall 
at the same time move one step in x and four steps in y”. Carl follows up her 
idea: “Five steps here” (pointing at x) “gives one step” (pointing at z-direction) 
“and four for y”. From the points (0,0,12) and (20,16,12) they add Δx = 5, Δy = 4 
and Δz = 1 respectively. Doing this they write down +(5,4,1)·n on a paper. They 
determine that (5,4,13) and (25,20,17) are points on the line. They do not verify, 
by looking at the model, that the point is on the line. In the fourth task they work 
in the same way, and determine that Δx = 1, Δy = 2 and Δz = 1, and Carl says: 
“We can create that kind of thing you know”, and writes +(1,2,1)·n. Now they do 
as in the last task, i.e. add (1,2,1) to (7,0,12) and (15,16,20) respectively, and de-
termine that (8,2,13) and (16,18,21) are points on the line. They do not verify, by 
looking at the model, that the point is on the line. 

For solving task 5, they take one of the points they should examine and sub-
tract the given coordinates (7,0,12), which they named Ö and see if the difference 
is equal to n·(1,2,1). Here they write: given point – Ö=n(1,2,1). 

In the target task, while marking the new given line, Carl says: “I don’t think 
that we have to mark all these lines… looks like they intersect, but we can’t be 
sure. We have to calculate”. Ben suggests: “We can see if we see where they in-
tersect”. After marking the lines Carl suggests: “We have to create such a thing” 
(pointing at (1,2,1) on the paper) “for the lines”. Anja follows up Bens’ idea: 
“Can’t we see if we found one point” (by looking at the model) “and see if it is 
right”. Ben continues: “yes … Here somewhere, for this x-value it looks like they 
intersect”, and writes down x = 10, y = 6 and z = 15. By calculating as before 
they find that L2: 

! 

(0,4,11)+ (5,1,2)n, and Ben suggests: “I believe n=2, check up 
what happens if n=2”. Doing that they find that (10,6,15) is the point of inter-
section and verify that the point is correct by doing the calculation 

! 

(10,6,15) "Ö = (3,6,3) = n(1,2,1) . Carl is not content and suggests: “Maybe we 
should try to find a method to do this without having to see and check”. Ben fol-
lows up: “Yes, maybe … but this was a nice method I think. What kind of method 
should that be?” Carl writes down the following equation: 
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! 

(0,4,11)+ (5,1,2)n1 = (7,0,12)+ (1,2,1)n2. Solving this equation they find that n1 = 2 
and n2 = 3, which gives that the point of intersection is (10,6,15). 

Group S22 
There were two girls (Aina and Bea) and one boy (Christer) in this group (T1). In 
the beginning of solving task 2, Bea suggests: …move this strings so we are able 
to see where it is. After doing that the group is silent. Watching the model with 
the line marked, Christer suggests: We can do it easy, why not just double every-
thing? Start in that point [pointing at (15,16,20)] and move to that point [point-
ing at (7,0,12)]. Then moving with the same change in the coordinates we find a 
new point, very far from the model but still on the line. … We can also half the 
change to find a point inside the model. After the group have written Δx = 8, Δy = 
16 and Δz = 8 on a paper, Bea says: We can either move a…move…choose a 
negative vector, isn’t that in the opposite direction…see it as a vector. …if we 
want to move a third vector we just multiply the vector with a third. With this 
method, i.e. (7,0,12) – (8,16,8) and (7,0,12) + (4,8,4), the group found out that   
(–1, –16,4) and (11,8,16) are two points on the line. 

When deciding if the points in task 3 are on the line or not Bea suggests: … if 
we start with x … because, if Δx is one we can decide Δy … how big Δy and Δz 
are in proportion to that … and then multiply by for example twenty three. When 
Aina asks: What are you saying, multiply by that? Bea explains her idea: Multi-
ply everything by twenty-three and then we get the coordinates for y and z and 
then see if they correspond [meaning if they correspond to the coordinates of the 
given points]. After this the group is silent for a while when Bea is calculating. 
She writes Δx = 1, Δy = 2 and Δz = 1 on the paper and then saying: The question 
is if I have to … if I have to start in that [pointing on the paper] and add that I 
got when multiplying with twentythree to the difference here [pointing on the pa-
per] then … don’t you think so? After doing some calculations and finding some 
mistake in it, she finds it hard work and decides to start from the beginning again. 
Christer suggests: Couldn’t we see it as two different functions and see it in two 
different planes… we don’t get everything at once but … Bea agrees: Maybe we 
have to do it in two steps… Aina does not agree and suggests: But, can’t we just 
compare … no... But yes, if you compare this two or … compare that and that 
[pointing on the paper] and see if it is the same … the same direction … compare 
that and that, if we get the same numbers wouldn’t it be on the line then? After 
that, they find that (11,8,16) – (7,0,12) = (4,8,4), which gives that the change is 
the same as between (15,16,20) and (7,0,12), and therefore the point (11,8,16) is 
on the line. They do the same calculations for the other points.  

After this they start with the final task, and Christer asks: The question is if 
we can solve this with the same method. He continues: I still think it would be 
smooth if we could describe it with two equations. Then we could compare two of 
them … when comparing y similar to something x in both directions and get it to 



Papers 

 64 

the same point. If we don’t get the same point, then they don’t intersect. Bea sug-
gests that they should mark the new line: If we think that it would be two strings 
in the model … if they intersect in a point they should be in the same spot in both 
the xy-direction and the x … both in the xy-direction and the y-direction. Aina 
marks the line L2 in the model with a string. Bea and Christer want to split the 
line in two equations, and Bea says: Now I have two equations, x- and y-direction 
[writes down y=2x-14 and y=0,2x+4] … but … how can we decide if they inter-
sect? After letting the y coordinates in the equations be equal they find that x = 
10. This gives them that y = 6, by using one of the equations for L1. At the same 
time, Aina, looking real hard at the model, says: That looks like it is correct. Now 
Bea determines two more equations, 

! 

y = 2z "24  and 

! 

y = 0.5z "1.5 . After that 
they let these y-values be equal and find that z = 15. All three look into the model 
and agree that it looks right. 

Groups S11 and S23 
Due to space limitations, the work of two groups working with T1 will be only 
shortly described. The group S11 uses the model only after intervention by the 
tutor. When dealing with tasks about a line in three dimensions they represent the 
line with two equations and by using these equations in a fruitful way they solve 
the tasks. In the target task, they get the wrong intersection point in their first two 
attempts. After the second time the tutor marks the lines in the model and asks 
them if they have found the correct point, and they find that their intersection 
point was located far away from the model. After their third attempt they verify, 
by using the model, that they have found the correct point. 

When the group S23 students work with lines in three dimensions in task 2, to 
find some point on the given line, they mark the line in the model and try to visu-
alise the solution. They note that the line has different slopes in different direc-
tions and determine one slope in the yz-plane and one in the xz-plane. They find 
the slopes by counting the difference of coordinates, as presented in the task 
sheet, and use that the coordinates change proportionally, for example when      
Δz = 1 then Δy = 2 and Δx = 1. They use the vector approach for task 3, without 
looking at the model. To solve the fourth task, they mark the lines with strings 
and decide visually that they should intersect. To be certain, they represent them 
with two equations respectively, after looking at the projected lines in the model. 
By setting some coordinates equal for the intersection point they get the equation 

! 

x +5 =
8x

20
+5 , from which they find the solution. 

 
Discussion and conclusions 
Even though the model invites to a visual approach all groups solved the target 
task algebraically, which according to results from previous research often is the 
preferred method. However, most groups related their solution processes to the 
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model, with more or less elaborated utilisation schemes. The students seem to 
find it easier to get ideas to start solving the task by using a visual approach but 
they do not find this sufficient to be certain that they have found the correct solu-
tion. As one student from group S22 says, I like the idea to have a real coordinate 
system to look at. Well, I suggest that solving it using equations can be done, but 
having something to look at then makes me start thinking of different solutions.  

Two of the groups doing tasks T2 consistently used a projective solution 
process for the target task, describing the lines with two equations from the pro-
jected lines. This method was in line with the utilisation scheme promoted by the 
design of the tasks. The third group (S21), however, used a vector model, which 
of course also works on the tasks with lines in the planes on the faces of the 
model. The members of this group had all taken the optional course and were 
thus familiar with the idea of a vector, though not explicitly using the word vec-
tor. Consequently, they solved also the target task by adding a multiple of the 
vector between the given points on the lines. They developed a utilisation scheme 
where they looked at the model to find a suitable multiple of the vector to add, 
and then tried it out algebraically on the two lines. They expressed a dissatisfac-
tion of having to be reliant on the model, and developed a purely algebraic 
method to solve the problem, setting up the vector equation 

! 

(0,4,11)+ (5,1,2)n1 = (7,0,12)+ (1,2,1)n2. We conclude that all three groups work-
ing on the guided tasks thus stuck to their utilisation schemes developed during 
the first tasks. These schemes clearly related to their different pre-knowledge. 

Of the groups doing the open tasks T1 only the work of group S22 was re-
ported here in some detail. This group was familiar with the vector concept and 
used this consistently on tasks 2 and 3, using the model only to visualise the 
lines. In task 3 there was some discussion on looking at different planes, proba-
bly referring to the faces of the model, and solving the task in two steps. It is 
Christer, who during task 2 wanted to make things easy by multiplying vectors, 
now apparently found some difficulties when the lines were passing through the 
interior of the model. Bea followed his idea and they solved the target task by 
separating variables, having two equations each of two variables for each line, 
i.e. the same method that was used by the students in the T2 groups S12 and S13. 
Aina tried to remember some method for this kind pf problem, but it seems as the 
solving process is influenced by having the model available to visualise the 
planes with the projected two-dimensional lines. Aina was here concentrated on 
the model, and after finding a solution they all validated it by looking at the 
model. The T1 group S11 did not use the model at all, while all the other groups 
used it in all tasks. The S11 students followed the technology programme and 
were there used to handle coordinates in three dimensions. They said that they 
had not calculated with coordinates in three dimensions but they brought a 
method (or understanding) of how to handle the coordinates, and obviously felt 
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safe feeling no need to verify their solutions, thus failing to observe their mis-
take. However, after the intervention by the tutor of how to use the model, they 
later turned back to the model to validate their solution by visualisation. 

To summarise our tentative conclusions, students stay in the target task with 
their utilisation scheme as developed during the previous tasks as long as they 
find it functional. However, the way they take advantage of the model depends 
more strongly on their pre-knowledge, and if the problem situation is familiar the 
artefact does not come into play for the solution process. One main role of the 
artefact for the students, in this and our previous study, is to validate the solu-
tions as well as the methods used. When students are not guided into a specific 
utilisation scheme, they may not benefit from the potential advantages that the 
artefact offers. On the other hand, with appropriate pre-knowledge, non-guided 
tasks in this respect may open up for a more varied use of the artefact, using utili-
sation schemes that support alternate ways to solve the problem at hand. 
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Appendix 
T1:  1. In the model there are two straight lines marked. These lines intersect in one 

point and your task is to describe the location of this point. 
 2. Through the points (7,0,12) and (15,16,20) there is a straight line. Your task is 

to determine some more points on this line. At least one of the points you deter-
mine must be located outside of the model. 

 3. Are the points (23,32,28), (11,8,16) and (10,9,15) on the line (from task 2)? 
Motivate how you know if they are on or not. 

 4. Examine if the lines L1 and l2 (see below) intersect, and if they do, locate the 
intersection point. 

  L1: through the points (7,0,12) and (15,16,20) 
  L2: through the points (0,2,11) and (20,8,19)  
 
T2:  1. In the model there are two straight lines marked. These lines intersect in one 

point and your task is to describe the location of this point. 
2. Mark the points (0,0,12) and (20,0,16) at the model. Through these points there 
is a line. Your task is to determine some more points on this line. At least one of 
the points you determine must be located outside of the model. 
3. Mark the points (0,0,12) and (20,16,16) at the model. Through these points 
there is a line. Your task is to determine some more points on this line. At least 
one of the points you determine must be located outside of the model. 
4. Mark the points (7,0,12) and (15,16,20) at the model. Through these points 
there is a line. Your task is to determine some more points on this line. At least 
one of the points you determine must be located outside of the model. 
5. Are the points (23,32,28), (11,8,16) and (10,9,15) on the line (from task 4)? 
Motivate how you know if they are on or not. 
6. Examine if the lines L1 and l2 (see below) intersect, and if they do, locate the 
intersection point. 

  L1: through the points (7,0,12) and (15,16,20) 
 L2: through the points (0,2,11) and (20,8,19) 

The model 
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The Same Topic –  
Different Opportunities to Learn 

Johan Häggström 
Göteborg University 

Abstract: The teaching and learning of mathematics involve intricate processes and 
many different factors may have impact on learning outcomes. The study reported in 
this paper, however, has a quite narrow focus on how the mathematical content is 
treated. It is part of a larger study and is based on the assumption that what students 
learn or do not learn, in respect to a certain content, is dependent on what features of 
the content have been possible to experience by the students. Three lessons where the 
same mathematics is taught are compared and substantial differences are found. 

Comparative studies 
Most large international comparative studies in mathematics education involve 
comparing learning outcomes or student achievement. In the series of IEA-
studies (FIMS, SIMS and TIMSS) more and more variables – mathematics cur-
riculum, size of mathematics classes, grouping and streaming of students, amount 
of mathematics lessons and homework, teacher education, attitudes of students 
and teachers, etc. – have been included in the studies in order to understand and 
explain differences in achievement between countries (IEA, 2005). Subsequently, 
in the TIMSS-studies of 1995 and 1999 the ”teaching process” was included 
through the video-recording of 8th grade mathematics lessons (Hiebert et al., 
2003). One aim was to identify what is typical of teaching in high-achieving 
countries. An interesting result was that, despite a huge effort, it turned out to be 
hard to find any factors that could explain the differences in achievement. After 
having coded and examined more than 60 aspects of mathematics teaching in 
between 50 and 140 taped lessons from the seven countries the research group 
alleged, ”... we had difficulty finding lesson features that correlate with differ-
ences in achievement” (Givven, 2004, p. 208). A further analysis of how the 
mathematical content was dealt with, from a student perspective, was needed. 

What, then, do the higher-achieving countries have in common? The answer 
does not lie in the organisation of classrooms, the kinds of technologies used, 
or even the types of problems presented to students, but in the way which 
teachers and students work on problems as the lesson unfolds. (Stigler & 
Hiebert, 2004, p.14) 
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The research reported here is also comparative, but on a smaller scale. I view the 
comparison not only as an opportunity to learn from other cultures. A compari-
son is often necessary to make the familiar, and all that is taken for granted, visi-
ble. To contrast the familiar with something less familiar or even better, with 
something quite different, can make important features that are too well-known 
and established, possible to discern. 

Focus on the mathematical content 
Studies of factors that may have an impact on learning outcomes (see e.g. Pong 
& Morris, 2002; Gustafsson & Myrberg, 2002) suggest that factors, on a general 
”political level”, can merely provide opportunities for good teaching and lear-
ning, not guarantee that it will take place. 

One possible conclusion that can be drawn from across these meta-analysis […] 
is that to improve school learning, we should focus on those variables that impact 
directly on the learning experiences of students such as teaching and feedback. 
(Pong & Morris, 2002, p. 11) 

It seems that residential area, school, parents’ level of education and other ”distal 
factors” (Pong & Morris, 2002) cannot explain differences in results. If you want 
to understand why some students learn better than others, the teaching process 
cannot be ignored and treated as a ”black box”. 
 But even inside the mathematics classroom, some of the factors that appear 
to be ”close” to the teaching and learning may have little impact on student 
learning. As mentioned earlier, one lesson from the TIMSS video study is that 
aspects of a mathematics lesson that are fairly easy to observe, e.g. mood of in-
struction, the number of students in the class, how students are grouped etc., 
seem to affect student achievement much less than how the mathematics content 
is handled by the teacher and the students. 

A focus on teaching must avoid the temptation to consider only the superficial 
aspects of teaching: the organisation, tools, curriculum content, and textbooks. 
The cultural activity of teaching – the ways in which the teacher and students 
interact about the subject – can be more powerful than the curriculum materials 
that teachers use. (Stigler & Hiebert, 2004, p. 15) 

This leads to one of my assumptions for the analysis. What is possible for stu-
dents to learn is to a high degree related to how the mathematical content is 
handled in the classroom. Different ways of handling the content makes it pos-
sible to learn different things. The objective of this study is to capture the inter-
action about the mathematical content rather than looking at more easily obtain-
able features. By comparing lessons I will try to answer the question: How is the 
same mathematical content dealt with in three different school settings and what 
are the implications for students’ opportunities to learn? 
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Theory of variation 
In the theory of variation (Marton & Booth, 1997; Runesson & Marton, 2002; 
Marton, Runesson & Tsui, 2004) learning always has an object, called the object 
of learning. The object of learning can be seen or understood in qualitatively 
different ways. The different ways of understanding are distinguished by what 
aspects of the object of learning an individual can discern and keep in focal 
awareness at the same time. Learning in this theory means learning to be able to 
see the object of learning in a new way, which indicates that new aspects have 
been discerned. An experience of variation is required in order to facilitate dis-
cernment of new aspects. The aspects of the object of learning that are varied 
(e.g. in a mathematics lesson) are more likely to be experienced. Aspects that are 
kept invariant are not possible to experience, unless the student creates the varia-
tion by her/himself by using previous experience. 
 As an example let us consider students that are given the opportunity to 
experience a variation in the number of solutions by solving a series of system of 
equations like the following (with one, infinitely and no solutions). They may 
probably learn that the number of solutions is not to be taken for granted. 
 

   

! 

x + y = 3

2x " y = 5

# 
$ 
% 

   

! 

x + y = 3

2x +2y = 6

" 
# 
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x "2y = 3

x "2y =1
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$ 
% 

 

 

Students, on the other hand, that only solve systems of linear equations with 
singular solutions are not provided with the opportunity to learn that these 
systems have anything but one unique solution. Without an experienced variation 
in the aspect of ”number of solutions” the possibility that students would discern 
this feature is very small. In the series of systems of equations above other vital 
aspects may at the same time be kept invariant, e.g. the letters used for unknowns 
(x and y). There is no variation in this aspect. 
 By identifying what features of a mathematical concept are kept invariant 
and what aspects are varied during teaching and learning situations a ”pattern of 
variation” can be formed. Differences between lessons can then be described in a 
qualitative way by means of the different patterns of variation. It has been shown 
that this approach works well in describing subtle, yet important, differences in 
how the object of learning is handled (see e.g. Runesson, 1999; Runesson & 
Mok, 2005). Pang (2002) demonstrates in his PhD-thesis that what students 
learn, or don’t learn, can be explained by means of the patterns of variation they 
have been offered in teaching. Of course there is no ”absoluteness” in the theory. 
Some students in a class may not, for different reasons, discern important fea-
tures of the content, even though these features are made possible to experience. 
 
The data 
The data have been collected within the Learners’ Perspective Study (LPS study, 
2005; Clark, 2000). It is an international study where sequences of competently 
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taught mathematics lessons are documented. In all participating countries at least 
10 (often 15-18) consecutive mathematics lessons in three 8th grade classes are 
videotaped with three cameras. The teacher camera follows and records the 
teacher. The student camera is directed towards 2-4 students sitting next to each 
other. The whole class camera captures most of the classroom. After each lesson 
video-stimulated interviews are conducted with two of the focused students. Data 
from each sequence of lessons consist of classroom videotapes, transcripts 
translated to English, teacher questionnaires, student and teacher interviews, 
copies of students’ notebooks and textbooks etc. The Swedish data was gathered 
in ”KULT-projektet” (KULT-projektet, 2005; Häggström, 2004) during 2002 
and 2003.  In this paper only a minor part of my research is reported. The present 
comparison is made between three specific instances in lessons in China (Hong 
Kong and Shanghai) and Sweden based on videotapes and transcripts. 
 
Three lessons 
The lessons are chosen because the same topic is taught. The analysis is restric-
ted to the parts of the lessons where the concept of system of linear equations in 
two unknowns is introduced to the students for the first time. In this section, I will 
describe how the mathematical content is handled as these parts of the lessons 
unfold, followed by an analysis in the next. 

Hong Kong 
After a short revision of linear equations with one unknown, the teacher presents 
a problem. It is written on the blackboard and the students are asked to find the 
number of rabbits and chickens. 

A farmer has some rabbits and some chickens. He does not know the exact 
number of rabbits and chickens, but in total there are ten heads, and there are 
twenty-six legs. 

In the following there are many shifts between teacher-led discussion and stu-
dent-work, individually and in pairs. The problem is handled in three ways. The 
first method used is ”guess and check”. The teacher leads the way to the solution 
by posing questions; ”Can all of them be chickens?”, ”Can all be rabbits?”, ”Can 
there be five each?” etc. Secondly, the problem is represented by the formulation 
of one equation, 2x + 4(10 – x) = 26. This is done with similar firm guidance 
from the teacher. When asked by the teacher, only five students say they could 
have managed to do this by themselves. The equation is not solved, probably be-
cause the answer is already known. Then the teacher introduces system of equa-
tions. 

Teacher: I am now going to teach you an easier method. It is also about 
using equations, but it is simultaneous equations in two unknowns. 
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After a few minutes of teacher-led discussion the teacher has written two equa-
tions on the blackboard. 
 

   

! 

x + y =10

2x + 4y = 26

" 
# 
$ 

 

 

This example is used to ”define” the concept of simultaneous linear equations in 
two unknowns. No method for solving the system of equations is demonstrated. 

Teacher: Well, okay, well, we call it simultaneous equations. Simultaneous 
means the equations will be listed out together. A moment ago ... 
Nancy has asked me why it is called linear. This is because we can 
draw a straight line from this kind of equation. [...] ... this is called 
two 'yuan', that means how many unknowns are there? 

Student:  Two. 

Teacher: Two. It is simultaneous that means the equations are put together. 

After this introduction a worksheet is distributed to the students. In the first task 
the students are asked to find the corresponding y-values, for x = 0, 1, 2, 3, for 
the two equations separately and to list them in tables as a step in finding a com-
mon solution. How to find the first two y-values are explained and shown by the 
teacher. The students start to work to fill in the rest of the two tables. 

Shanghai 
This lesson begins with a swift revision (4 minutes) on the topic of one linear 
equation in two unknowns and its’ solutions. The teacher then announces the 
topic of today’s lesson and shows a slide with three questions about the concept 
of a system of linear equations in two unknowns. 

Q1. What is a ”system of equations”? 

Q2. How can you tell whether a system of equations is a system of linear equa-
tions in two unknowns?  

Q3. Identify whether the given is a system of linear equations in two unknowns. 

 1)  
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x + y = 3

x " y =1
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   2) 
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(x + y)
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x " y = 0
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x =1

y =1
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x /2+ y /2 = 0

x = y
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xy = 2

x =1
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x +1/ y =1

y = 2
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u = v = 0   8) 
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x + y = 4

x "m =1
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The teacher tells the students to read a section in the textbook and to discuss the 
three questions in pairs. After a couple of minutes the teacher calls for attention. 
The students’ answers to the first two questions are obviously the same as in the 
textbook. 

Student: A system of equations is formed by a number of equations. 

 […] 

Student: There are two unknowns in the equations and the indices of the un-
knowns are one. This is called system of linear equations in two un-
knowns. 

Teacher: […] He has just mentioned the definition of system of linear equa-
tions in two unknowns. 

These important points are then repeated a number of times in the following 
whole-class conversation before they move on to the third question.  

Teacher: Okay, these two points, oh then, let us take a look at the following 
questions with these two points. 

All eight items in question 3 are discussed in whole-class, one at a time. Reasons 
for or against them being a system of equations in two unknowns or not, are 
given by students in each case. Four of the examples meet the requirement and 
four do not. The lesson then continues with a focus on the meaning of a solution 
to a system of linear equations in two unknowns and what is required of a pair of 
numbers (x, y) to be a solution. 

Sweden 
The teacher begins the lesson by returning to a problem that previously has been 
handled by an equation in one unknown. Some students had tried to use two un-
knowns and the teacher now shows that this approach also is possible. 
 After this the teacher and the students formulate a new problem together. 
One student is asked to ”think of a number” (x) and the teacher ”thinks of another 
number” (y). The student tells the teacher what number he is thinking of and 
based on this the teacher writes the equation, x + y = 60, on the whiteboard. After 
examination the conclusion that there is not enough information to determine the 
two numbers is reached in the whole-class discussion. There are many possible 
solutions to this equation, so the teacher adds another condition and gets the fol-
lowing on the board. 
 

    

! 

x + y = 60 (1)

x =14 " y (2)

# 
$ 
% 

  [Note. · is used for multiplication] 

Teacher: Now I have two conditions and two unknowns. Now we can easily 
calculate the whole ... So, let’s do it. 
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The teacher uses the method of substitution and finds the value of y. The white-
board now shows the following. 
 

    

! 

x + y = 60 (1)

x =14 " y (2)

# 
$ 
% 

 

       (1) and (2) gives:  

! 

14y + y = 60

      15y = 60

          y = 4

   

 

The problem is not solved completely since the student’s number (x) was already 
revealed by mistake. The students’ attention is then directed back to the two 
equations when the teacher points to them. A ”definition” of a system of equa-
tions is made from this example. 

Teacher: What is this then? 

 [T points to the equations (1) and (2) on the whiteboard] 

Teacher: [...] Well, it’s two equations. A system of equations, it is called. 

 [T writes ”ekvationssystem” (system of equations) beside the equations]  

After this introduction the teacher writes a similar system of equations from the 
textbook on the board for the students to solve. A few minutes later the teacher 
writes the solution on the board, in silence. The students continue to work with 
similar tasks in their textbook, while the teacher walks between the desks and 
talks to individual students. 
 
The analysis 
The intention of the analysis is to first describe how the mathematical content is 
handled in terms of what aspects are varied and what aspects are kept invariant 
(pattern of variation), and secondly to discuss the students’ opportunities to learn 
in the light of the patterns of variation observed.  

Hong Kong 
During the introduction the rabbit-and-chicken problem is kept invariant and 
dealt with in three different ways. The method for representing and solving the 
problem is thus varied. The use of one equation is contrasted to the use of a sys-
tem of equations. This contrast offers a possibility to discern features such as two 
unknowns and two simultaneous equations. The characterisation of the equations 
as linear is mentioned only as a reply to a student’s question but not further dis-
cussed. 
 The meaning of a system of linear equations in two unknowns is only given 
by positive examples. There are no counterexamples that may point to important 
features of what is not included in the concept.  
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Shanghai 
Already from the revision in the beginning of the lesson it is clear that many of 
the features involved in the new concept seem to be familiar to these students. 
That includes the concept of one linear equation in two unknowns, the number of 
solutions to a linear equation in two unknowns and how to determine whether a 
proposed solution is correct or not.  
 The concept of a system of linear equations in two unknowns is introduced 
by verbal description of some characteristics – two equations, two unknowns and 
degree one. During the seven and a half minutes when question 3 is discussed in 
a teacher-led mood of activity, a certain pattern of variation appears. Eight pro-
posed systems of linear equations in two unknowns are considered. The impor-
tant points from the first two questions – two equations, two unknowns with indi-
ces of one – are kept invariant. By an apparently very deliberate choice of items 
in question 3 the teacher generates a specific pattern of variation. The contrasts 
that are formed between the eight examples makes it possible for the students to 
discern some of the features that might be critical when it comes to understanding 
the concept of system of linear equations in two unknowns. Some of these features 
are: 

The variables must be of degree one. Even if you ”know” this it may, in 
some cases, be difficult to interpret the mathematical symbols correctly. 
Some of these instances are, 

 -  

! 

(x + y)
2  is not of the first degree even though 

! 

x + y  is. 
 -  xy is not of the first degree even though x and y are. 
 -  y/2  is of degree one but 1/y is not. 

There must be two, but not three, variables. In the last example x, y and m are 
used. The teacher and the students seem to interpret this as three variables. 
However, the letter m is often used to denote a constant, not a variable or un-
known. The use of letters with a more similar ”status” (e.g. x – y – z or 
r – s – t) would have made the interpretation more straightforward. 

Other letters beside x and y can be used. The letters u and v are used in one 
example. 

Two equations can be merged together to what might look like one equation. 
It is probably not evident to students that an algebraic expression like 
u = v = 0  can be interpreted as two equations merged together. 

Sweden 
In the first short sequence the teacher keeps a previous problem invariant while 
the way to represent it is varied. The contrast to the earlier use of an equation in 
one unknown when trying to solve the problem might make the feature of two 
unknowns discernable. 
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 In the next sequence the two numbers ”thought of” are kept invariant and the 
number of conditions are varied. At the same time as the number of conditions 
are increased from one to two, the number of solutions changes from many to 
one. The need for two equations when you have two unknowns is highlighted. 
 During the same episode the meaning or interpretation of the letters x and y 
are elaborated on in a sophisticated manner. They are simultaneously kept in-
variant – the student and the teacher keep thinking of the same two numbers – 
and varied when only the first condition, 

! 

x + y = 60, is examined – different 
number pairs are suggested as solutions. The letters x and y are at the same time 
considered to denote two distinct but yet unknown numbers and two variable 
numbers. 
 As in the Hong Kong lesson the meaning of a system of linear equations in 
two unknowns is only given by positive examples. There are no counterexamples 
that may point to some of the features that are not included in the concept. Apart 
from there having to be two equations, no real discussion of the specification or 
requirement for the concept is done. The focus is almost immediately turned to 
the procedure of solving, where the meaning of a solution to a system of equa-
tions also is given by positive examples only, without any counterexamples. The 
general picture is that, after the introduction, the method of solving is kept 
invariant for the rest of the lesson and is used to solve different examples of 
systems of equations, which is what varies. 
 
Different opportunities to learn 
How is the mathematical content dealt with and what are the implications for 
students’ opportunities to learn? I have observed several differences in respect to 
what features of the concept of system of linear equations in two unknowns are 
elaborated on during the introduction in the three lessons. One such aspect is the 
system of equations as a method for problem solving. This aspect is taken for 
granted in the Shanghai lesson, quite differently from the other two lessons, 
where the concept is introduced as one way, among others, to represent and solve 
a particular problem. According to the theory of variation it is not likely that the 
Shanghai students would experience this aspect during the sequence analysed. 
 I find the most striking difference, however, to be the deliberate use of non-
examples and contrasts in the third question from the Shanghai lesson. In the 
Swedish and Hong Kong lessons the attention is quite rapidly turned from the 
concept of system of equations to the solving of the same. In the Shanghai lesson 
what is and what is not a system of linear equations in two unknowns is further 
elaborated on. The pattern of variation that is generated while the Shanghai class 
and their teacher discuss the eight items in question three gives the students the 
opportunity to experience aspects like, two equations can be written as one 
expression, three unknowns are not allowed, first degree expressions and excep-
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tions, and different letters may be used for unknowns. None of these aspects are 
varied during the introduction in the Swedish and Hong Kong lessons and these 
students are thus not provided with the opportunity to discern these features. In a 
similar way, nor are these students given the opportunity to experience and learn 
that there are other systems of equations than the systems of linear equations in 
two unknowns, as this is taken for granted. 
 My claim that the differences I have observed, and described by means of 
what pattern of variation is offered, will affect what is possible for students to 
learn does not go beyond the analysed sequences. From the data analysed here it 
is not possible to say anything about the students’ opportunities to learn outside 
of these quite short sequences. As a consequence I will include more lessons, 
both from the three classrooms analysed in this paper, as well as lessons from 
other documented mathematics classrooms in the Learners’ Perspective Study, 
into my further research. Perhaps it is possible to observe significant differences 
also when longer sequences of mathematics lessons are included in the analysis. 
 I am not yet prepared to draw any conclusions regarding cultural differences 
from these data. The recorded mathematics lessons are not necessary typical of 
the school cultures in China and Sweden. They merely provide examples of what 
is considered good teaching from the different countries. The obviously delibe-
rate use of variation and contrast found in the Shanghai lesson, however, seems 
to be in accordance with a Chinese tradition of teaching described elsewhere (Gu 
et al., 2004), and possibly not an isolated example. This I intend to keep in mind 
for my further research. 
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Completing Mathematics by 
Teacher and Student Reflection 

Håkan Lennerstad, 
Blekinge Institute of Technology 

Abstract: The value of mathematical dialogues between students and teachers is not 
restricted to the educational value for students. They are also fundamental for the 
teachers’ ongoing professional development. Furthermore, student activity, mediated by 
teachers, may be used to complete “official” mathematics. The goal of this paper is to 
bring together dialogue, student thinking, teacher development, and the dialogue semi-
nar reflection tools aiming towards an extended version of mathematics – extended in 
conceptual direction. Reflection on student-teacher practice may have a natural output 
as “reflective mathematics”, completing formal mathematics. The formulation of re-
flective mathematics is intended as a remedy of the common and reasonable complaint 
by students that mathematics is meaningless and fragmented. 

Introduction 
A teacher gradually accumulates teaching experience during years of teaching. 
However, a large volume of teaching is not equivalent to high professional skill. 
Development of skill is strongly dependent on the reflective attitude towards the 
ongoing practice. Can anything interesting be said about the basis of such reflec-
tion? 

This question has an extremely wide scope. It is here focused on attitudes to-
wards students as not only learners, but also as authentic producers of mathe-
matical thinking with potential value for teachers’ view of mathematics, and as 
representatives of the present student culture. Attitudes towards mathematics it-
self are also in focus, for example whether it may be reinterpreted by student 
thinking and student activity. We start by discussing reflective methods, particu-
larly action research and the dialogue seminar.  

Action research focuses teachers’ development by evaluating their own prac-
tice. It is described in Miller and Pine (1990) as  

An ongoing process of systematic study in which teachers examine their own 
teaching and students’ learning through descriptive reporting, purposeful con-
versation, collegial sharing, and critical reflection for the purpose of improving 
classroom practice. (p. 57) 

Action research is often carried out as collaboration between researchers at a 
university and teachers at an elementary school. The terms “researcher” and 
“teacher” have a different flavour in action research in that teachers here are con-
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sidered as the primary researchers. Researchers and teachers together document 
the school activity in different ways, and successively make evaluations and ad-
justments. As we shall see later, the dialogue seminar has more the form of 
teacher-to-teacher meetings. Action research has often reported good improve-
ments both in students’ learning and teacher skill. It seems however as if action 
research not so often formulates students’ views of the subject – how the general 
image of the subject, as mathematics, can be improved. Action research appears 
to be a pedagogic method primarily aimed at the improvement of the classroom 
practice and not so much at developing the way the subject is described. How-
ever, the method of action research can certainly also be used in this direction. 

Student-teacher dialogues are two-sided, but the attention on dialogues has 
been largely one-sided – focusing on student learning but not much on teacher 
learning. It would be valuable if teachers’ long term professional development 
also is an articulated purpose. The one-sidedness makes students into pure con-
sumers of education, and not producers. Students’ sense of responsibility in their 
own education is important. However, the intention here is not to increase the 
formal demands on students. The intention is that they are seen as thinking per-
sons, whose mathematical work can be important for others, not only for them-
selves. What students are asked for, or invited to, is to try to formulate sincerely 
their mathematical attempts and thoughts, and engage in dialogue with teachers 
and/or other students. Older students may be involved in more regulated coop-
eration with teachers.  

Then, what are teachers asked for? For teachers it is very important to find 
ways to discuss and formulate their teaching practices with other teachers and 
with other expertise. Action research is one way. We focus in this paper on the 
dialogue seminar, which is a tool for reflective practice. Here organized dia-
logues among teachers are seen as the main tool for formulating and extracting 
knowledge. The dialogue seminar is discussed later. 

The importance of dialogues in learning is well established. Johnsen Høines 
(2004, p. 101) describes very clearly that the differences in view between persons 
engaged in a dialogue is the energy driving the ongoing mutual discovery which 
is typical for a dialogue, here by citing Dysthe (1999): 

Without the differences the interaction would not have any function. The under-
standing would not develop. Different voices are not enough to create meaning; 
the tension and struggle between them create understanding.  

In the dialogue seminar there is also an explicit recognition of the authentic dif-
ferences, “fruitful disagreements”, that may exist and may appear in a dialogue 
(Berg, 2005, p. 101). The goal of a dialogue is not to reach a common conclu-
sion, so such an expectation is inappropriate. 

The lack of recognition of student-teacher dialogues for teachers’ development 
reflects teacher educators’ view of student teachers, and mathematicians’ view on 
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mathematics student teachers. Relations in classrooms propagate from teacher 
education to school. If teacher educators do not recognize their learning when 
teaching student teachers, one cannot expect student teachers to recognize their 
learning as teachers when they meet students after teacher education. Increased 
contact areas are called for between at least three cultures of mathematicians, 
teacher educators and students. The dialogue seminar has often been used for 
culture-bridging purposes. 

However, increased contact areas between cultures are not without risk. When 
two cultures meet, both cultures are to some extent jeopardized. This requires a 
mutual respect, not only between individuals. In particular, the mathematics cul-
ture can be seen as deviant and fragile, and may lose important characteristics if 
these are not clearly recognized. One way this can happen is that a mathematics 
teacher, when facing the depths of some students’ difficulties, may dismiss im-
portant mathematical ideas. There is a risk of inventing less general versions of 
concepts that solve immediate problems, but result in more problems in the fu-
ture. This is not to say that the teacher should not negotiate with students about 
teaching methods.  

The articulation of mathematics from the standpoint of the stories of mathe-
matical activity is in this paper called “reflective mathematics”. The term stands 
for everything that gives meaning and insight to formulas and their manipulation, 
and explanations that contribute to making calculations predictable. Both need to 
be valuable for more than a few persons. Without reflective mathematics, the 
subject is meaningless and unpredictable formula manipulation. Students can 
contribute significantly to the construction of reflective mathematics, mediated 
by teachers. But reflective mathematics is not only effective metaphors found by 
students. It may involve fundamental different views of mathematics that makes 
the subject more available, formulated by teachers, but perhaps originating in 
teacher practice. An example of this is formulated later. 

By frequently expressed student difficulties one may say that reflective mathe-
matics today has a weak position in mathematics. This is related to aspects of its 
linguistic character, which we next turn to. To illustrate this, let us compare the 
activity of a mathematics teacher to that of a chemistry teacher. A chemistry 
teacher uses words and argumentation to explain properties and reactions of 
chemical compounds (subject matter). A mathematics teacher uses words and 
argumentation to explain mathematical argumentation. Note that in mathematics, 
explanations and the subject matter, what is to be understood, are both words. 
Now, if the mathematics teacher becomes very familiar and articulated in the 
mathematical argumentation, and the student feedback is weak, there is not much 
difference for the teacher between the two types of argumentation. Mathematical 
argumentation may become enough. The situation may be summarized in the 
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following short dialogue that may follow a long uninterrupted teacher presenta-
tion. 

Student:  Ok… and can you now explain it? 
Teacher:  That is what I just did! 

Sentences that for the student appear as subject matter, and not explanations of it, 
appeared for the teacher as explanations. The mathematical language may have 
become the natural language for the teacher, but not (yet) for the student. The 
situation corresponds in a chemistry context to the teacher demonstrating chemi-
cal reactions without a word of comment.  

Mathematics without reflective mathematics can be seen as a mute mathema-
tics, although it is not silent. Mathematics is almost entirely a linguistic practice. 

The event that mathematics argumentation replaces “argumentation from the 
outside” as described above, relies on basic properties of languages. Language 
users are normally not conscious of the language used since we usually focus the 
content we talk about, and not the language itself. M. S. Smith (1994, p. 10) 
writes:  

In most normal everyday language use, we are not especially aware that we are 
following rules. We even select many of the words unthinkingly. When saying 
“he was kissed” we do not consciously refer to a passive rule for constructing 
the passive sequence. We are more concerned with expressing our thoughts and 
understanding what people are saying. 

However, the language can be made visible. M. S. Smith continues: 

It is possible, however, to shift our attention to the sounds, letters, words and 
constructions we are using. If, for example, someone suddenly asks a question 
such as: 
‘What is the word for an animal you keep at house?’ 
‘What words did she actually use when she refused?’ 
‘What is another way of saying “I don’t mind if I do”?’ 
then the listeners’ conscious attention is directed suddenly to the language itself, 
and not just to meaning and messages. We could call this going into the meta 
mode. 

The ‘meta mode’ is equally important for becoming conscious of the linguistics 
of the symbolic language of mathematics. Bakhtin (1981) underlines the need for 
different languages to be able to see a language: “Languages throw light on each 
other: one language can after all see itself only in the light of another language.” 

The term Mathematish (Lennerstad & Mouwitz, 2004) denotes the symbolic 
language of mathematics seen as a language, in comparison with other languages.  

To summarize: partly due to the properties of languages, mathematical activi-
ties easily become pure linguistic practices – argumentation “from the inside”. 
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Then authentic views on mathematics from students and teachers disappear, 
which is the disappearance of reflective mathematics.  

 
A university project for student influence 
The project “Student influence of textbooks” is a starting point of this paper (see 
Lennerstad, 2005a, and Lennerstad, Erman and Samuelsson, 2006). It was funded 
by the Swedish Council for Higher Education. Students on a calculus course at 
undergraduate level were able to post their mathematical questions and com-
ments on a web page. Teachers and graduate students answered the questions. 
The aim was twofold – the obvious one of helping the students, and the less ob-
vious one: to use the communications to improve the textbook used, which was 
Lennerstad (2002).  

The questions were stated in relation to the textbook. The author studied the 
questions afterwards, and made several changes as a result of this. The changes 
in the book were not vast, but noticeable. The book is now printed in a new ver-
sion, Lennerstad (2005b), including the student-inspired revisions.  

Initially, formulating mathematical questions was by students looked upon as 
a strange task. By habit, the very restricted task to answer a specific mathemati-
cal question was preferred, not the unrestricted task to find questions. But this 
seemed to be only an initial problem. Students also have reported learning from 
other students’ communications.  

When references were investigated for the project, it proved to be virtually 
impossible to find previous projects where the course material was intended to be 
modified as a result on the student feedback. Three projects were found, Frith, 
Jaftha, and Prince (2004), Larson (1999) and Porter (1995). In none of them a 
textbook was under change – all referred to web material.  

It was equally difficult to find such projects for elementary school or high 
school. Of course, teachers learn from dialogues with students, and textbook 
authors attempt to reach real students. However, in the absence of systematic 
ways of doing this, the image of students’ mathematical problems may mainly be 
formed by those students that teachers talk to, while other students have different 
unformulated problems. An author often writes the text to fit an ideal student. 
How well does this ideal student correspond to real students? The answer to this 
question is of course of basic significance for the value of the textbook. 

A main aim of the project was to make the image of the ideal mathematics 
student more realistic, both in requiring feedback from all students, and by letting 
the students make the formulations by themselves – not directed by teachers’ 
questions. One inference of the lack of similar projects is that the teacher culture 
does not value the importance of systematic student feedback for long term im-
provement of education – other than the natural feedback that takes place in 
mathematics classrooms.  
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In the next section we argue that the formulation of a systematic image of stu-
dents’ view of mathematics, available for teachers, may be of fundamental im-
portance for the quality of teaching.  

 
Reflective mathematics – defragmentizing mathematics 
The purpose to discuss the nature of mathematics is here to reach more reason-
able teacher expectations towards mathematics and mathematical activity, par-
ticularly in any kind of mathematics education. The purpose is to avoid teaching 
practices that fail, and where the reasons for the failure become clear years later. 
It is to be more prepared for events in the mathematics classroom, and to be able 
to design successful didactical projects. This is of course a fundamental purpose 
of mathematics education in general.  

Avoiding failure requires many kinds of insights and competencies, but we 
here focus knowledge in “reflective mathematics”, which concerns meanings of 
mathematical concepts and calculations in formulations accessible for students. It 
is possible to do very good mathematics without ever being aware of this mathe-
matical knowledge – without the need to formulate it. This is a common circum-
stance in linguistics in the sense that we constantly may improve in our native 
language without the need of being grammar-conscious. This is relevant for 
mathematics in view of the dominant symbolic language. An underlying as-
sumption here is that symbolic mathematics poses the main problems for the stu-
dent collective, and reflective mathematics is intended as a bridge to symbolic 
mathematics. With this purpose, the two need to be tightly connected. 

Aiming at the concepts of mathematics “underlying” formulas, we start by 
discussing the meaning of “conceptual” in mathematics. In the context of the 
meaning of “understanding”, Anna Sierpinska describes that 

The distinction between “seeing” and “seeing as” is important for mathematics 
whose very nature does not allow for “seeing” its objects, but always to “see 
them as”. (Sierpinska, 1994, p. 10) 

Thus, conceptual descriptions in mathematics are in principle always metaphoric. 
About “conceptual representation” and “conception”, Sierpinska writes (ibid.): 

While a conceptual representation is defined as expressible totally in words, a 
“conception” may be very intuitive, partly visual and not necessarily logically 
consistent or complete. A person who has a “conception” of, for example, the 
mathematical concept of a limit, “has some notion” of it, has “some under-
standing” of it not necessarily of the most elaborate level. 

For Sierpinska, a “conception” does not have to be expressible in words. In both 
cases it concerns mathematical understanding that is not restricted to symbolic 
representation. The relation of symbolic versus non-symbolic representation of a 
concept will sooner or later be important. However, it is important to be able to 
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Numbers 
(3, and others) 

Sets of 
identical 
objects 
(AAA, 
???,  
¤¤¤, …). 

Letters 
(x, y, …). 

quantization 

REALM OF MATHEMATICS 

generalizatio
n 

communicate and elaborate concepts before the “symbolic state”, which thus 
need to be made in native language, images and other ways of expression. Re-
flective mathematics cannot restrict itself to symbolic representation, but should 
be related to it. 

As described above, school work is a major source for reflective mathematics. 
All cultures that are involved with mathematics may contribute. The term 
“mathematics” has very different meanings for mathematicians, elementary 
school mathematics teachers, journalists, technicians, students, parents. A con-
ceptual discussion is needed in order to start to understand these different views. 
We will later discuss the dialogue seminar, which is a natural tool for such cross-
cultural interchange.  

Conceptualities of mathematics are often discovered by teachers during their 
practice. Here teachers are forced into discovery by the pressure of students in 
need and engagement by teachers. Repeated such discoveries and explanations 
are extremely valuable for textbook teachers and the mathematics culture. Such 
discoveries may require reformulation of fundamental mathematical issues. They 
are important since their source is students’ work.    

We give next an example to further describe the notion of reflective mathe-
matics. It is a result from the author’s dialogues with students. 

 
An example of reflective mathematics 
As an example of reflective mathematics we describe the two major mathemati-
cal generalizations that children encounter in elementary school. The first goes 
from sets of identical objects to numbers – which represent the cardinality of a 
set – the number of objects of the set. The second goes from numbers to letters – 
which represent numbers. The first connects reality to mathematics, while the 
second generalization is inside mathematics, since both numbers and letters be-
long to the mathematics realm. Both represent conceptual difficulties for chil-
dren, which cannot be expected to be overcome by calculation practice only.  
 

Figure 1. Two mathematics generalizations in elementary school:  
       from sets to numbers, and from numbers to letters. 
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The first generalization provides children with appropriate meaning to the num-
ber symbols 1, 2, 3, …, hopefully. However, teachers working with children with 
special difficulties rapidly recognize the depths of abstraction that are embedded 
in these extremely common symbols, irrelevant and unseen for others. Most of us 
learn to calculate and use calculations in our everyday life, which does not neces-
sarily mean that we “understand” (nor need to “understand”) these symbols 
(Sierpinska, 1994; Smith 1994). This is well in accordance with the linguistics of 
mathematics. We may well learn and do well at a surface level, without even 
being aware of the existence of deeper levels. This is of course not always true, 
as for example the second generalization indicates. 

This is underlined by a work by Skemp (1982), who identified two levels 
where students may work: surface/syntactic level and deep/semantic level. Some 
students may try to master the “symbol practice” itself, while some may try to 
understand and work with the underlying meanings of the symbols. Goodchild 
(1997) found from empirical material that almost all students follow either one of 
these ways of work. They were reluctant to switch level, either to make sense of 
syntactic operation, or to facilitate complex tasks by using an efficient formalism.  

Before the second generalization, children among other things learn operations 
from addition to division, calculation methods, the place value system, the deci-
mal point, and more. Despite the quantity of number manipulation in school, 
numbers are among children not often considered as objects that may be com-
bined and manipulated. Again from  Sierpinska (1994 p. 7), who discusses 
Greeno (1991):  

It is a very poor understanding, Greeno says, if a person, asked to calculate 
mentally “25·48” represents to himself or herself the paper and pencil algorithm 
and tries to do it in his or her head. A better understanding occurs if the person 
treats 25 and 48 as objects that can be “combined” and “decomposed”: 48 is 40 
and 8… 

In Andersson and Bengtsson (2001) two teacher students describe how they com-
pared the mathematics knowledge in two fifth grade classes, where one class had 
little mathematical dialogue, and one had much dialogue. Of course, many other 
factors varied, which may influence the findings. The first class was slightly 
better in calculations than the second. However, when given the question “In 
which ways can you write 5?”, children in the first class typically did not answer 
at all, while children in the other class filled the paper with calculations as ”

! 

1+ 4 , 

! 

2+ 3, 

! 

6"1, 

! 

25

5
, …”. For them, the number 5 was obviously decomposable. The 

students in the second class had certainly seen this type of question before, but 
the point here is that students may have very different views of the flexibility and 
decomposability of numbers. 
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To summarize this discussion, one could say that it would be a large concep-
tual gain in mathematics understanding if all children regard numbers as objects 
that evidently can be combined and decomposed in many different ways. Chil-
dren may see a similarity between numbers and construction toys such as Lego, 
for example. 

This reflective mathematical observation can be extended slightly. Sometimes 

the converse question appears, for example whether 

! 

1

2
 and 

! 

0.5  is the same num-

ber. A strongly related statement is that all numbers can be written in many ways. 

Does the question whether 

! 

1

2
= 0.5 or not arise from a misinterpreted uniqueness 

of mathematics saying that “symbols which are different have different mean-
ings”? Such a notion could be counteracted by establishing the obvious existence 
of synonyms in the formal language of mathematics, as well as in Swedish, Eng-
lish and other natural languages. The metaphor of “number line” for numbers can 
also help, in that ½ and 0.5 are represented by the same point on this line.  

The fact that any number can be written in many different ways is fundamental 
for mathematics, since the main part of most mathematical proofs consists of re-
writing the same expression in such a way that is more suitable for the goal of the 
proof. Without this synonymic property of mathematics, one can therefore ques-
tion the possibility of mathematical proof. 

Note that these two views of numbers, as combinable and decomposable on 
one hand, and as naturally having many synonyms on the other, is mathematical 
knowledge that is not often well established in textbooks. Furthermore, these 
statements cannot be written in symbolic language. Such observations do not ap-
pear by themselves from hours and hours of calculation. Some kind of appropri-
ate mathematical reflection is needed. These statements are examples of reflec-
tive mathematics. 

We also shortly comment the second generalization during elementary school, 
from numbers to letters. It is easy for teachers, but may appear very strange for 
students. Teachers often say that one can do the same thing with letters as with 
numbers, and we think of the fact that letters may be replaced by numbers, so the 
same rules are valid. But in many other obvious respects, which students may 
have in mind, this is not true. For example, it is not possible or meaningful to 

transform the number “x” into decimal form, as can be made with 

! 

1

4
. Further-

more, the goals of calculation are entirely different. It is possible to calculate 

! 

2+ 3 and end up with 5, or calculate 

! 

345 " 73 and use a certain way of structuring 
the multiplication. Nothing of this is relevant when numbers are replaced with 
letters. We may consider that 

! 

x + y = y + x , but do not calculate anything. We 
contemplate, summarize and discuss rules of calculation. Students get tasks such 
as to simplify 

! 

(1/ x +1/ y) /(1/ x "1/ y), although it may not at all be clear when 
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this goal is reached. Actually, such goals cannot be strictly specified. One strict 
way would be to count the number of symbols in the answer, but this does not 
always give the “mostly simplified” answer according to the mathematics cul-
ture. This difficulty is related to the famous assertion by Wittgenstein that there 
are no rules for how to use rules.  

A teacher who claims that one can do the same thing with letters as with num-
bers refers to formal truth, but not to activities and goals. The exceptional focus 
on truth itself can also be observed in research reports in mathematics, where the 
main question is the truth of results and why they are true (proofs) while the 
meaning of the result, and its significance and relevance usually receive minor 
attention. Reflective mathematics tries to formulate this second aspect, which 
obviously is essential for students’ learning of mathematics. 

The subject of mathematics drastically changes its character at this generaliza-
tion, which a teacher focusing formal truth may not notice. Different mental ca-
pabilities of the students become important. This change is known often to cause 
problems, which should be taken into careful consideration in textbooks and by 
teachers. 

Thus, “reflective mathematics” aims at being a general and metaphorical de-
scription of formal mathematics, providing more meaning and overview to for-
mulas and concepts, essentially making formal mathematics more accessible. 
However, the development of reflective mathematics relies on the courage of any 
mathematics active person to try to formulate significant mathematical problems, 
questions and considerations from one’s own authentic personal viewpoint. Re-
flective mathematics can grow from mathematical dialogue concerning real 
questions, including those that occur between different mathematics cultures. We 
have no stronger tool for thinking than our native language. We cannot do with-
out this tool if we want to formulate central conceptual facts in mathematics, re-
gardless of the shadows cast by its formidably powerful symbolic language. This 
language is powerful but can only express a part of the essential mathematical 
knowledge. 

Formulation of reflective mathematics requires a fundamental change in atti-
tude to mathematics, towards an attitude that is more akin to that in the humani-
ties. Mathematical errors are not only disturbances to be corrected, but potential 
sources of discovery of reflective mathematics, and opportunities for respectful 
dialogue. Each person’s pronounced view of mathematics is important by itself, 
and may be important for the formation of reflective mathematics. The concepts 
of mathematics can be defined as the meaning of its formulas, and they are both 
abstract and not easily described in writing. Typically, they need dialogue to 
come alive. 
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The dialogue seminar 
The scientific development in mathematics since the birth of the symbolic nota-
tion has been very fast. It has often been developed formally only, with meaning 
sometimes arriving later. Both the speed and the formality can be related to the 
power of this language. Certainly, an underlying idea of the formalist approach 
by Hilbert and the mathematics logic project of Frege was that formalism is self-
sufficient. As described above, conceptual observations in mathematics are pre-
ferably made in dialogue, also between different mathematics cultures (teachers, 
students, mathematicians), which represent different mathematical experiences. 

The dialogue seminar is partly designed as a framework for cross-cultural dia-
logues. We do not here give a full description of the method, but in Göranzon 
and Hammarén (2003, p. 9), major goals are described as follows:  

The dialogue seminar method is a method of working that aims to (i) create a 
practice of reflection (ii) formulate problems from the dilemma (iii) work up 
common language (iv) train the ability to listen. 

Furthermore,  

As a method, the dialogue seminar expands the perspective of the concept of 
knowledge by extending its field to encompass the nature of practical know-
ledge. 

The dialogue seminar does not only aim at knowledge that can be written. Also 
practical knowledge and skill are central. This is well in accordance with the 
teaching profession that clearly does not rely on knowledge only – there is also a 
large component of unformulated skill. 

All these four goals are important for the development of reflective mathe-
matics: (i) create reflection on mathematical activity, (ii) viewing difficulties 
(“dilemmas”) as opportunities of better understanding of mathematics and how it 
naturally is understood, (iii) to create a nuanced language about mathematics that 
complement the formal language, and (iv) to train different mathematical cul-
tures, mainly students, teachers, mathematicians and teacher educators, to listen 
seriously to each other. 

Dick Tahta (1984, p. 46) formulated a classical dilemma in that has been dis-
cussed above. He stated that one of the two most obstinate longstanding prob-
lems is Why is traditional algebra so difficult for a large majority of students?  

The dialogue seminar requires collective work to continue over time. It works 
with examples, both from the involved individuals’ experiences, and from the 
literature. The participants are “coordinated” by studying one common text. Each 
participant actively prepares herself/himself before the seminar by writing a re-
action on that text, possibly from experience. During the meeting each participant 
reads the text for the others, after which comments are allowed, while criticism is 
not.  
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Furthermore from Göranzon and Hammarén (2003, p. 6) 

In Plato’s writing on Socrates’ dialogue, dialogue is an instrument of under-
standing. But the understanding is of a special type, and is never a synthesis. It 
is based on a concept of truth that can never be captured or made permanent.  

In this view, textbooks do not contain knowledge of this type. Textbooks contain 
mere images or shadows of knowledge, from which true knowledge may emerge 
under benevolent circumstances. This poses two tasks to textbooks:  

1. containing a selection of the most appropriate “shadows of know-
ledge”,  

2. to communicate that this knowledge is only “shadow knowledge”, and 
to suggest developments.  

This observation also indicates that in Plato’s view, practical knowledge is a 
knowledge that is essentially too complex to be written, but can be made visible 
in a group of listening, engaged and experienced persons. Plato’s note also indi-
cates the dangers in languages. It is tempting to see linguistic expressions them-
selves as knowledge. 

In Sfard (2005, p. 406), the author states that  

The teacher could hardly be blamed for being a captive of her own discursive 
ways. While in the midst of intensive interaction with a group of children she 
could not allow herself the luxury of multiple interpretations. 

Sfard claims that reflection on practice is difficult from the inside, it needs an 
outside view. She furthermore describes the possible power of educational re-
search:  

The power of educational research lies in its being the art of multiple interpreta-
tions. By making clear that there are many narratives to be told about any given 
instance of educational practice, this research loosens the oppressive grip of old 
discursive habits and sets us free to consider new options. 

This view of educational research is very much in parallel to the goals of the 
dialogue seminar. 

In Järfälla outside Stockholm, Sweden, the project “Höja nivån” (“raising the 
level”), led by Pi Högdahl, has significantly decreased the number of students 
that leave elementary school without a grade in mathematics – see Högdahl 
(2005). This result has been achieved by providing mathematics teachers time 
and opportunity to meet and discuss mathematics and educational problems from 
the practice in their mathematics classes. Continuing this, a dialogue seminar has 
recently started in these schools, supported by the Swedish National Agency for 
School Improvement. It is led by Pi Högdahl, Håkan Lennerstad and Martin 
Gode, and has as central theme translations between mathematical formulae 



Papers 

 92 

(Mathematish) and Swedish. This has the purpose of charging strange mathema-
tical formulae with concrete or dramatic meanings for students, demonstrating 
the rules of formulae in detail, and encourage natural language in the mathemat-
ics class. It attempts to shed light upon the linguistic difficulties in mathematics 
that appear in practice. Teachers meet and reflect about such translations and 
their value in practice. 

In Ericsson and Söderström (2006) the outcomes of the dialogue seminars 
during the fall of 2005 are documented. Teachers were in general very content 
with this form of professional development, allowing rich opportunities to ex-
press and listen to teacher experiences. Teachers developed also understanding of 
linguistic properties of the symbolic language of mathematics – Mathematish. 
For example, Mathematish synonyms were often talked about. 
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To Search for Mathematics in the  
Vocational Teaching and Learning –  

an Overview of Theories and Methods  
Lisbeth Lindberg 
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Abstract: In 1994 a new curriculum was introduced in Sweden. All students at upper 
secondary school have to take the introductory mathematics course A, including those 
students enrolled in vocational programmes. Data show that many pupils fail on this 
course. I am interested in looking for signs of the teaching and learning of mathematics 
in the vocational subjects in the Swedish upper secondary school. During the last 
decades there has been research in the use of mathematics in different vocations. As 
this field is close to mine I am looking at methods used by these researchers to answer 
their research questions to help me find an adequate method for my research. This arti-
cle also gives an overview of the content of mathematics in the compulsory school and 
course A and from documents talking about linking mathematics to vocational subjects.  

Introduction 
In 1994 a new curriculum was introduced in Sweden (‘Lpf94’; Skolverket, 2005), 
with a course based structure for the programmes in the upper secondary school. 
In the written document of Lpf94 it is indicated that there could be many good 
opportunities to study the relevance of mathematics and the connections between 
mathematics and work. 

Upper secondary school mathematics should thus be linked to the study orienta-
tion chosen in such a way that it enriches both the subject of mathematics and 
subjects specific to a course. Knowledge of mathematics is a prerequisite for 
achieving many of the goals of the programme specific subjects (Skolverket, 
2005, English version). 

The need for a broad competence of the vocational teacher is emphasised by the 
National Board of Education: 

The committee will also stress the importance that the vocational teachers will 
get a broader competence. It is important that the vocational teachers have better 
knowledge than their learners both in the vocational subjects and in e.g. mathe-
matics…/…/ For many learners in the vocational programmes it is of utmost 
importance that the vocational teachers support the education in the core sub-
jects, thereby giving legitimacy to the whole study programme of the learner. 
(SOU, 1996; My translation) 
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There is thus expressed a wish for better knowledge and broader competence for 
teachers to support learning. That means, among other things, to know more 
about other subjects that could be linked to one’s own in order to create coope-
ration among teachers in planning for good teaching and learning. As a mathe-
matics teacher educator I have visited many mathematics classrooms and ob-
served mathematical activities, though still not many classrooms and workshops 
of vocational subjects to observe the way those teachers use mathematics. My 
interest is to investigate if and how the vocational teacher is supporting learning 
in mathematics. In the study I will visit the vocational programmes to search for 
mathematics when the vocational teacher is teaching in the vocational subject.  

My overall research question concerns what kind of mathematics and how 
this mathematics is used and/or taught/shown/exposed by the vocational teachers 
(who are not mathematics teachers) in the vocational subject. To be able to find 
out about that I need to develop methods that are efficient when visiting the vo-
cational workshop or classroom to find evidence of mathematics teaching and 
learning. 
 
Aim and method of this paper 
The aim of this paper is to present some of my findings when trying to answer 
the following questions: 

• What theories and methods have been in use in earlier studies to search for 
mathematics in vocational education? 

• What will be the most appropriate methods for my study?  
In searching for methods I had to extend the field of studies for this paper to also 
include searching for mathematics in workplaces and vocations. I will discuss my 
reasons for this later. 

In the literature review the focus will be to inquire into different approaches 
of research using different theories and methods when focusing on what kind of 
mathematics and how it is used in vocational classes and workshops, workplaces, 
and vocations – mathematics that can be transparent or hidden. 

In order to be able to answer the questions above I have used an explorative 
approach. I have investigated different sources to collect data for this purpose. 
These are the database MATHDI, the NCM database, the proceedings from the 
PME and ALM (1994-2005) conferences1, and theses from the Nordic countries 
(2000-2005). I have used the database MATHDI as this base has publications 
within the didactical field of mathematics education. At PME and ALM confe-

                                                 
1 MATHDI is Mathematics Education Database, NCM is Nationellt Centrum för Matematik-
utbildning, i.e. National Centre for Mathematics Education in Sweden, PME is The Inter-
national Group for the Psychology of Mathematics Education, ALM is Adults Learning 
Mathematics – a Research Forum. 
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rences there have been working groups addressing work based related issues so 
there might be reports in the proceedings from those conferences. The key words 
I have used are mathematics, vocational education, workplace, vocation, research 
and methodology.  
  
Results of the literature review 
Invisible mathematics 
A crucial factor for the work I intend to do is how easy or difficult it is to see 
mathematics in the vocational courses for a researcher. As there is not much 
work done about the teaching and learning in vocational courses, I also look at 
research into the use of mathematics in the workplace. 

The most important result of related research is that, in most cases, mathema-
tics in the workplace is hidden, contained in a black box, or present in the work-
place only as “frozen mathematics” (Gerdes, 1986). It is also named invisible 
mathematics (Coben, 2000) as it is not seen as mathematics. Chevallard (1989) is 
using the notion implicit mathematics. Wedege (2005) relates it to “Mathematics 
– that´s what I can´t do” - Thus it is not seen as mathematics even if it is present 
in the (workplace) situation. 

Consequently, Strässer and Bromme (1992) argue that researchers asking 
workers directly in a questionnaire about the use of mathematics in the workplace 
often will get a denial, i.e. the answer that there is no mathematics. Later Strässer 
(2000) argues that the growing use of technology adds on to “this process of 
hiding mathematics from societal perception” (p. 241). Most of the mathematical 
knowledge used in workplaces remains implicit, sometimes unconscious.  

These findings have three consequences for my work:  

1. It is a delicate matter to reveal the mathematics which is used in the work-
place. 

2. The researcher must spend time in the workplace to be able to “see”. This 
implies a methodology, which cannot rely on simple surveys or question-
naires to find out about the use of mathematics in the workplace. 

3. It is a difficult aim to “see” and this needs thorough planning to handle 
mathematics to be used and/or taught especially in the classroom. 

Testing right/wrong 
The report Mathematics counts (Cockroft, 1982) gave evidence that a question-
naire can only give answer to what does not work, but not evidence to why it 
does not work. Much research in those days focused on students’ shortcomings. 
In the late 1980’s there was a shift from just investigating errors that students 
made in performing mathematics by using paper and pencil tests to other testing 
methods. Even so some research done by Necher and Tecibal already in 1975 



Lindberg 

 97 

pointed out the possibility to get different answers from students using written or 
oral tests with the same mathematical content (Noss & Hoyles, 1996, p. 32). 

My interest is to find any kind of mathematics in the vocational education 
that is taught/used by the vocational teacher. I am not going to evaluate the 
knowledge. This means that testing is not a valuable method in this study. 

Comparative studies, transfer 
Scribner´s and Fahrmeier´s study from 1984 (de Corte, 1987, p. 643) is a com-
parative study where they looked at the reasoning of dairy workers versus high-
school students in a series of tasks involving calculations for milk crate packing. 
Pettito in 1985 (de Corte, 1987, p. 644) argues that inappropriate transfer from 
school arithmetic is revealed. The dairy workers were highly flexible in the 
arithmetic strategies they used, whereas the high-school students were very in-
flexible; when new practical arithmetic problems demanded revision of calcula-
tion strategies for optimizing, students inflexibly continued to apply their school-
learned procedural rules. The method used was paper and pencil test. The result 
of this research is that no transfer happened from school mathematics to a work 
situation (de Corte, 1987, p. 643). 

Evans (1999, 2000) is bringing up the concept of transfer and he proposes a 
reformulation, where he is talking about describing the practice in a transfer rela-
tionship and to analyse similarities and differences between discourses, for ex-
ample college versus everyday or vocational mathematics. Evans uses statistics 
methods but also interviews of work and in relation to situated material. His 
theoretical framework is mainly within the postmodernist area. 

It could be of interest to analyze if the teacher has any idea of transfer from 
the subject mathematics to the vocational subject. 

Activity / Critical incidents 
A vocational classroom is a multifaceted place. The teaching and learning takes 
place in an activity. According to Vergnaud, “The most theoretical challenge, for 
researchers that try to analyse professional practices, is to trace and identify con-
ceptual components of activity, right or wrong” (in Bessot & Ridgway, 2000, p. 
xxiii). The object is to reveal and to see mathematics.  

Eisenhart (1988, p. 102) argues that ”all human activity is fundamentally a 
social and meaning-making experience”, and that mathematics is seen as a hu-
man activity in the ethnographic research tradition. The research of Lave and 
Wenger (1991) shows that mathematics in practice is more or less linked to rou-
tine activities. This means that mathematics is used in well-known problems with 
well known strategies specific to each of these problems. Mathematics is visible 
in activities associated with routine activities for at least the experienced staff. In 
this case the expert was compared to the novice. Lave and Wenger say that to be 
aware of mathematics you will have to observe situations when the situation be-
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comes a mess. All research using ethnography involves learning the language of 
the workplace. It is also time consuming as it takes time to learn the specific ter-
minology of the vocational subject. As a researcher you have to spend time to 
understand the culture that is at hand. 

Hoyles, Noss and Pozzi (1999) are talking about breakdowns. This could be 
when the person is in a new situation where the old procedures do not work and 
the worker feels insecure and starts to argue or question the old way to do it. 
Mathematics becomes visible. Hoyles, Noss and Pozzi were using a variety of 
different methods. They collected documents from three different professions, 
nursing, banking and flying (pilots). These documents were analysed regarding 
mathematical content. They interviewed senior staff members and have pre-in-
terviews with those they observed by using ethnographic methods. They used 
simulated interviews, questionnaires, and teaching experiments. 

From the analyses of the documents there arose what those researchers call 
visible mathematics. This means that it includes mathematical symbols and repre-
sentations but also strategies and methods used in mathematics classrooms. The 
researchers are claiming that this first construction of visible mathematics was an 
incomplete map showing sometimes less and sometimes more. The map is dif-
fered as in banking there was little context when specific mathematics should be 
used. In nursing and aviation there were stronger indications of the implementa-
tion of particular activities. In the nursing field they also found pre-requisite 
mathematics material such as basic mathematics. 

The visible mathematics was revealed mostly in two kinds of activities (Noss 
& Hoyles, 1996, 2004). In those they had to find solutions by using well known 
procedures or algorithms or to carry out routine data, measuring and plotting vital 
sign data. The message from their research is that practitioners do use mathema-
tics in their work, but what they use and how they use it may not be predictable 
from considerations of general mathematical methods. Moreover, strategies de-
pend on the nature of the activity, whether it is routine or breakdown, and the 
resources available (ibid).  

My analysis of the paragraph above is that in the breakdown situation the vo-
cational teacher will expose the mathematics used or not used and even in un-
expected situations. This is happening in an activity and then the researcher has 
to be present. That means that one must use an ethnographic approach. 

Researchers and teachers in collaboration 
Hogan and Morony carried out research run by the Australian Association of 
Mathematics Teaching Inc (AAMT) in Australia (Bessot & Ridgway, 2000). In 
this research schoolteachers were co-researchers. The aim was to deepen the un-
derstanding of what kind of mathematics that is used in different workplaces, in 
order for the teachers to be able to discuss this with their students. Workers from 
a sample of workplaces were shadowed half a day by a teacher-researcher, who 
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was just observer and interviewer. Workers were interviewed to explore issues 
that had arisen and to give more information. The teacher-researcher could also 
return to ask more questions. These researchers pointed out the value for teachers 
to belong to a research community and to know more about research out of ex-
periences. The outcomes of the research were workplace stories. 

In 2000 Wedege presented her thesis (Wedege, 2000), where she used the 
same method that was developed and carried out by Hogan (1997). Later she 
used nearly the same approach in a study where 25 adult teacher educators visited 
one of eleven workplaces to observe competent workers (Wedege, 2004). They 
were using a visit form designed by Wedege and presented in her thesis to docu-
ment the findings from half a day’s visit. They did not interview the workers 
during or after the visit. They used an approach with tree types of data collection 
– observation, interview and collection of artefacts. 

Wedege (2000, 2004) also describes another research where she is using the 
method to shadow a key worker to describe the action that takes place. She also 
photographed for documentation and presented the observations as a descriptive 
story with what she calls episodes, which are particularly interesting incidents.  If 
my study could be done in cooperation with other researchers I would try out the 
method described by Hogan and used by Wedege. I will however analyse the 
protocol that Wedege developed and see if that is useful for my study. 

Swedish developmental work taking place in vocational education 
The main purpose of a the project DUGA (Kilborn, 1996), which was run in vo-
cational programmes, was to analyse the mathematical content in vocational text-
books and materials for different vocational courses, and to compare this to the 
mathematics course the students had to take. The teachers were interviewed 
about their vocational teaching focusing on the students’ mathematical know-
ledge.  

The developmental project KAM (Grevholm, Lindberg & Maerker, 2002), 
funded by the Swedish Board of Education, had as it focus to see if there could 
be ways for more collaboration between the mathematics teacher and the vocatio-
nal teacher. The purpose for this was to enhance the students’ understanding of 
mathematics by integrating parts of it in the vocational subject. In that project 
many ways to collect data were used – to collect textbooks, manuals, use tape 
recorders, take field notes, and to interview the teacher. 

These two projects are as close as I can come to compare to my own study. 
The questions for these studies were different, but the setting is similar. They 
took place in the vocational classrooms and workshops. There was a group of 
researchers involved in these studies. I will be the only researcher. The data col-
lection was varied. This might give good possibilities to investigate more aspects 
of mathematics used/taught/exposed by the vocational teachers. 
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In the Australian project Education for Mathematics in the Workplace 
(Bessot & Ridgway, 2000) all the researchers come to present mathematics as an 
activity. This view of mathematics in a workplace is important when choosing a 
research approach. My conclusion so far is that this is the case in the vocational 
classroom /workshop as well. 
 
Discussion and conclusions  
In trying to answer the first question for this paper, What theories and methods 
have been in use in earlier studies to look for mathematics in vocational educa-
tion?, the literature review has been worked out to find what has been done re-
cently in order to develop a research approach for my study which will take place 
in the vocational programmes in Swedish Upper Secondary Schools. First of all 
the content for this study is mathematics. This means that the researcher must 
know the mathematical content and the level of mathematics and its implementa-
tions in the field of the study. As mathematics can be seen as an activity, the 
ethnographic research tradition can be applicable. 

I have here presented my literature findings from not only the vocational 
educational field, from which there have not been so many documentations from 
research or developmental work. That is why I looked at studies from workplaces 
and vocations. I believe this is relevant for my own research.  

Over the years there has been a trend towards a multimodal approach to col-
lect data with more technical devices. The devices are smaller and easier to 
handle. There is a mix of quantitative and qualitative data to be analysed.   

A vocational classroom is a multifaceted place. The teaching and learning 
takes place in an activity. The researcher has to be in the activity and use a lot of 
tools to find any signs or evidence of mathematics that is transparent or hidden. 
In the literature I have found good examples of different research methods. The 
researchers’ theories have however not been as explicit.    

My answer to the second question, What will be the most appropriate meth-
ods for my research?, based on the discussions above, is the following. As I am 
the only researcher in my study I will have to use different tools when visiting the 
vocational classroom or workshop to find what I am looking for, that is signs and 
evidence of mathematics used by the vocational teacher in the vocational class-
room or workshop. Examples of such tools are tape and video recorders, field 
notes and working materials such as textbooks and manuals. 
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The Use of Langford’s Problem to Promote 
Advanced Mathematical Thinking 

Thomas Lingefjärd 
Göteborg University 

Abstract: Starting with a general discussion of the issue of understanding in mathe-
matics, this study sets focus to generalization as a key process to be promoted in ad-
vanced mathematical thinking. Interview data from students working on Langford’s 
problem showed a great variety in how to treat the problem, where expansive, recon-
structive as well as disjunctive generalizations came into play. It is found that this 
problem embodied key principles needed to generate generic abstraction leading into 
more formal mathematical thinking. 

Introduction 
College students’ deficiencies in mathematical understanding and ways of thin-
king reach well back into the F-12 mathematics curriculum and “students’ 
mathematics education is in full swing by the time they enter college” (Steen, 
1998). Unfortunately, many college courses also fail to address advanced mathe-
matical thinking (Carlson, 1998). Consequently, it is important for college and 
university mathematics instructors to be aware of the nature of students’ deficien-
cies, the cognitive reasons for such deficiencies, and so be in a position to adapt 
introductory college mathematics instruction accordingly. The design of courses 
that facilitate transition to advanced mathematical thinking will require “a simul-
taneous focus on issues of pedagogy and learning alongside the challenging 
matters of content order and course organization” (Ferrini-Mundy, 1998). This 
paper deals with the question if it is possible to give students an assignment 
promoting advanced mathematical thinking and at the same time give rich oppor-
tunities for active investigation, analysis, and reflection. Is it possible to observe 
and validate such a transition towards a more advanced mathematical thinking? 

There is a visible trend in modern education that shows an increasing empha-
sis put on learning through problem-oriented or problem-based educational 
methods. The underlying idea is to improve the quality of students’ learning 
about complex problems or phenomena in the world through assignments that 
give rich opportunities for active investigation, analysis, and reflection. Such 
methods entail an increased use of a wide variety of different information 
sources. When studying mathematics at the tertiary level, many students use tools 
like graphing and symbol-manipulating calculators and a variety of sophisticated 
computer programs. Students also use assorted textbooks and other reference 
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books, and many of them are likely to turn to their family members, friends, col-
leagues, or maybe neighbors as a reference group. 

One could argue that if students do seek information in a variety of ways, 
then the way these students study is close to the way people ordinarily work in 
many different professions. People are often valued for the everyday jobs or 
projects they do, their ability to work effectively with others, their responses to 
problem situations, and their capacity to find tools or information that will help 
them complete an assignment. In occupations as well as in modern studies, it is 
important and most likely beneficial for the individual to be open and flexible in 
approach. It is desirable and would be natural if examinations in mathematics 
could mirror that fact. 

 
Theoretical framework 
Mathematical understanding 
Since ancient times, people have been concerned about understanding (and lack 
of understanding) in connection with mathematics. Henri Poincaré underlined the 
ambiguity of the meaning of the verb: 

What is understanding? Has the word the same meaning for everybody? Does 
understanding the demonstration of a theorem consist in examining each of the 
syllogisms of which it is composed in succession, and being convinced that it is 
correct and conforms to the rules of the game? In the same way, does under-
standing a definition consist simply in recognizing that the meaning of all the 
terms employed are already known, and being convinced that it involves no 
contradiction? (Quoted in Sierpinska, 1994, p. 72) 

Sierpinska (1994) claims that researchers in mathematics education have 
different objectives when discussing the question of understanding mathematics. 
Some objectives are more pragmatic (to improve understanding), others are more 
diagnostic (to describe how students understand), and still others are more expli-
citly theoretical or methodological. What unites researchers is that they all have a 
theory of what understanding is, explicitly expressed or not. According to Sier-
pinska, there are at least four different theories or models of understanding in 
mathematics. To begin with, we have theories that are centered on hierarchies of 
levels of understanding. One such example is the van Hiele (1986) levels, but 
there are others.  

Second, we have models that describe understanding as a growing  ”mental 
model,” ”conceptual model,” ”cognitive structure,” or something similar. The 
term cognitive structure comes from Piaget (see for example Piaget, 1978) and 
several authors refer to Piaget when constructing their model for the understand-
ing of mathematics.   
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Third, Sierpinska (1994) mentions models that look at the process of under-
standing as a dialectical game or interplay between two ways to apprehend un-
derstanding. The dialectical dualism may be illustrated by a concept considered 
as a tool in a problem-solving process and at the same time viewed as an object 
to study, analyze, and develop in a theoretical way. One well-known example is 
Skemp’s (1978) discrimination between instrumental and relational understand-
ing. According to Skemp, instrumental understanding is what it takes to reach the 
right answer, while relational understanding means that you understand both 
what to do and why. Another way to describe this is as operational versus struc-
tural understanding (Sfard & Linchevski, 1994).  

The fourth type of understanding is a historical-empirical perspective in 
which the epistemological obstacles are united by today’s students (Sierpinska, 
1994).  Robert and Schwarzenberger (1991) claim that from a psychological per-
spective, it is meaningful to focus on tertiary students’ growing ability to reflect 
on their own learning of mathematics. They argue that advanced mathematical 
thinking includes the ability to separate knowledge of mathematics from meta-
knowledge of mathematics, which includes, for instance, how correct, relevant, 
or elegant a solution is. They further advocate that students at this advanced level 
should have a great amount of mathematical knowledge, experience of mathe-
matical strategies, and well-functioning methods together with aptitude for com-
municating those skills at least on a basic level. According to Robert and 
Schwarzenberger, research shows that students vary greatly in this respect.  

Vinner (1997) extends the distinction between rote and meaningful learning 
with what he calls conceptual and pseudo-conceptual behavior. Conceptual be-
havior is characterized by the consideration of concepts, “as well as relations 
between concepts, ideas in which the concepts are involved, logical connections, 
and so on” (p. 100). In contrast, pseudo-conceptual behavior is based on rote 
learning, lack of reflection upon appropriateness of answers or reasons for errors, 
lack of underlying meanings assigned to symbols and words employed, use of 
superficial similarities, and “the belief that a certain act will lead to an answer 
that will be accepted” by an external authority (p. 115). Thompson and Sfard 
(1994) describe a similar distinction when they define “grasping the meaning” as 
“having the ability to think about the objects hiding behind the words” (p. 22). 

Learning through assignments 
Working on an assignment is an active learning process. Students are more likely 
to understand and retain material that they have used in an assignment to solve a 
problem, and it can serve very well as a bridge between concretization and ab-
straction. Mathematics is characterized by its abstract nature, and for the initia-
ted, moving about within this abstraction is characterized by Devlin:  
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When mathematicians define some abstract mathematical object or system as a 
“set of objects” satisfying certain properties, it usually doesn’t matter what the 
members of the set are; rather, what counts are the operations that can be per-
formed on those members. In fact, even that is not quite right. The real interest 
is in the properties of those operations. (Devlin, 1997, p. 57)  

For the mathematics student or his or her instructor, whether in elementary 
school or college coursework, coming to grips with this abstraction is an educa-
tional challenge that continues to confront all those involved. But what happens 
to a student’s learning when a group of students get the same assignment in 
mathematics? Is it self evident that the same learning process, the same evolution 
of their generalization and abstraction knowledge, the same active learning pro-
cess undeniably occurs?  

Generalization and abstraction 
Although related, the processes of generalization and abstraction have important 
distinctions. Both require an individual to look for commonalities, to isolate 
properties, and to stress certain features while ignoring others (Mason, 1996). 
Generalization involves an extension of an existing set of familiar objects or 
processes, while abstraction requires a shift of attention from the objects or pro-
cesses themselves to the structure and/or relations among the entities. Focusing 
on the structure requires a mental re-construction to create a new object, itself 
subject to operations and having a set of properties (Dreyfus, 1991; Tall, 1991). 

Generalizing 
Generalizing is an integral part of classroom practice, where seeing the general in 
the particular lies behind most instructors’ examples and exercise sets. However, 
to be a successful instructional tool, both teacher and student must focus on the 
same aspects of the learning experience. Mason (1996) makes the distinction 
between “looking through” and “looking at” an object, such as “working through 
a sequence of exercises and working on these exercises as a whole” (p. 65). He 
cautions that while the instructor may see the general in a particular example, his 
or her students may only see the particular in what is offered as a general exam-
ple. Mason illustrates how, for some, an example is an example of something, 
while, for the others, it is simply a totality in itself. 

The sum of the angles in a triangle is 180 degrees. What is the most important 
word, mathematically in that assertion? I suggest that it is … a. That tiny in-
definite article signals the adjectival pronoun any, which in turn signals the 
adjective every, which refers to the scope of variability being countenanced. … 
Yet in many classrooms, it is the 180 that is stressed, presumably so that stu-
dents will remember it. But failure to use this fact is rarely due to forgetting 
whether it is the 180 or some other number, but rather, due to lack of apprecia-
tion of the generality, the invariance, being expressed.  (p. 67) 
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Harel and Tall (1989) distinguish three different kinds of generalization which 
depend on the individual’s mental construction: 

1. Expansive generalization occurs when the subject expands the applicability 
range of an existing schema without reconstructing it. 

2. Reconstructive generalization occurs when the subject reconstructs an exist-
ing schema in order to widen its applicability range. 

3. Disjunctive generalization occurs when, on moving from a familiar context 
to a new one, the subject constructs a new, disjoint, schema to deal with the 
new context and adds it to the array of schemas available. (p. 39) 

Abstraction 
An abstraction process occurs when students focus their attention on specific 
properties of a given object and then considers these properties in isolation from 
the original. This might be done, for example, to understand the essence of a 
certain phenomenon, perhaps later to be able to apply the same theory in other 
cases to which it applies. Such application of an abstract theory would be a case 
of reconstructive generalization – because the abstracted properties are recon-
structions of the original properties, now applied to a broader domain. However, 
note that once the reconstructive generalization has occurred, it may then be pos-
sible to extend the range of examples to which the arguments apply through the 
simpler process of expansive generalization. 
 
The study 
In a course on discrete mathematics, I used the following assignment as one part 
of the course exam for a group of prospective teachers of mathematics. The stu-
dents were asked to present their solution in a written report, which clearly would 
be individual and not a copy of any classmate’s report. They were also permitted 
to use any kind of sources and help, as long as they referred to these sources in 
the report. The allotted time for the assignment was three weeks. All the 23 stu-
dents produced written reports on the solution of the problem. 

 

 

 

 

 

 

Assignment 
Imagine the digits 1, 2, 3 in a sequence where each digit is used twice and arranged in the 
following way: 

312132 
Notice that there is one other digit between the ones (1), two other digits between the twos 
(2), and three other digits between the threes (3). 
a) Is it possible to arrange the digits 1, 2, 3 (each used twice) in other ways, so that these 

rules still hold? 
b)  What will happen if you add two 4s to get a sequence of 8 digits? How many solutions 

will there be then? 
c) Investigate the problem for sequences of digits from 1 to 6, 1 to 7, 1 to 8, 1 to 9, and 1 to 

10.  
Argue for your conjectures and conclusions! 



Papers 

 108 

The problem is known under the name Langford’s problem. The problem is 
named after the Scottish mathematician C. Dudley Langford who once observed 
his son playing with colored blocks. Langford noticed that the child had arranged 
three pairs of colored blocks such that there was one block between the red pair, 
two between the blue pair, and three between the yellow pair, like so:  

 

This solution is unique. Reversing the order is not significant, because all you 
have to do is walk around to the other side of a given arrangement and view it 
from that side. Langford added a green pair and came up with:  

 

Generalizing from colors to numbers, the above became 312132 and 41312432.  
The problem has attracted mathematicians, computer scientists, and others, and is 
only solvable with the aid of computer programming for large n. The connection 
to Langford’s problem was not mentioned to the students in the study.  

Student responses 
The 23 students in this study were all in their second semester of mathematics in 
the teacher program for secondary mathematics at a Swedish university. They 
had previously taken courses in algebra, geometry, probability and statistics in 
the program, and had also learnt how to use the computer software MS-Excel to 
solve various problems within discrete mathematics. The assignment was their 
third take-home exam in the course, and the previous two assignments had been 
modeled by the aid of MS-Excel. The students were informed about my purpose 
to extend their mathematical thinking from arithmetical thinking into advanced 
mathematical thinking and also about my intention to observe that transition.  

A small group of student’s engaged MS-Excel also to solve Langford’s 
problem. Since Excel had proved to be helpful in solving other problems in the 
course, they tried hard to make the problem fit within the possibilities of Excel. 
The fact that the problem is not really suitable for Excel the way it was proposed 
was neglected by these students, since they selected a tool before analyzing the 
problem throughout. These students can be characterized as using expansive 
generalization. 

Student 1: I entered the figures in Excel and tried to make up a formula for the 
reorganization of numbers. When I didn’t find any formula that 
worked, I just put in the numbers for every possible combination in 
Excel.  This worked fine for 4 digits, but was very tiresome and dif-
ficult for 5, 6, 7, and so on… digits. 
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Student 2: I know it must be a combinatorial problem, but I can’t find the 
right formula in Excel. It drives me almost nuts, I have spent many 
hours on this problem by now, without getting anywhere. 

Another, much larger, group understood the connection to existing procedures 
and concepts within the course, such as calculations of sums of arithmetic series.  
This group of students managed to reach some valuable conclusions, but did not 
really solve the problem in full or manage to do enough generalization. Although 
there naturally were differences between the students, they all reconstructed ways 
of calculating arithmetic sums but only broadened and widened its applicability 
range to very small magnitude. These students can be characterized as using re-
constructive generalization. 

Student 3: I have understood the problem like this. Number 1 is in position 
P(1) and P(1) + 2. Number 2 is in position P(2) and P(2) + 3. 
Number N is in position P(N) and P(N) + N+1.  This yields an 
arithmetic sum and shows me that it is only possible to find 
solutions for 7 and 8, but not for any other numbers. 

Student 4: In order to get a complete number series, the formula 3N2 – N must 
be a multiple of 4. This happens when N = 4k and when N = 4k + 
3, so for 7 and 8 digits there is at least one solution. 

Fortunately, 8 students actually managed to develop an impressing theoretical 
solution to Langford’s problem. Not only did they make the necessary connec-
tion to different concepts and procedures within the course, they also constructed 
a new general way to look at the problem, far beyond what was asked of them in 
the assignment. These students may very well be characterized as using dis-
junctive generalization. 

Student 5: I found that there is no solutions what so ever for 6, 9, and 10, but 
there are solutions for 7 and 8, and larger numbers. An interesting 
fact is that it works when the digit sum for the combination of digits 
is divisible with 4, and only then. Example: 2(1 + 2 + 3) = 12 and 
2(1 + 2 + 3 + 4) = 20.   

Student 6: I have shown that there are at least two digits with the use of 7 and 
8 digits which implies that there should be solutions also for 11 and 
12 digits. When I continue, I find that there are solutions for 3, 4, 7, 
8, 11, 12, 15, 16, 19, 20 digits, and etcetera. 

Finally, 4 students actually entered the digits 312132 into a search engine for 
Internet and got information about Langford’s problem that way. Nevertheless, 
the information they found turned out to be difficult to interpret and understand 
for someone who had not been working with it before, and these students had to 
ask for help in order to better understand what they had found on the web. 



Papers 

 110 

Conclusions 
To me it was somewhat of a surprise that the students would handle the Lang-
ford’s problem so differently. It was also unexpected that the solutions would fit 
so nicely within the Harel and Tall’s generalization scheme. The problem ob-
viously involves generalization (because it is not possible to solve otherwise), 
and gives the students possibilities to observe and identify one or more specific 
examples of behavior of Langford’s digits as typical of a wider range of 
examples embodying an abstract concept, something Harel and Tall label generic 
abstraction. There are three different principles connected to generic abstraction.  

The entification principle states that, for a student to be able to abstract a 
mathematical structure from a given model of that structure, the elements of that 
model must be conceptual entities in the student’s eyes; that is to say, the student 
has procedures that can take these objects as inputs.  

The necessity principle states that the subject matter has to be presented in a 
way to which learners can see its necessity. For if students do not see the ratio-
nale for an idea, the idea would seem to them as being evoked arbitrarily; it does 
not become a concept of the students. 

The parallel principle: When instruction is concerned with a “concrete” 
model, that is, a model which satisfies the entification principle, the instructional 
activities within this model should be designed to parallel the processes that will 
later apply within the abstract structure. This will mean that the instruction 
potentially involves only an expansive generalization, in which the concrete 
model is manipulated in a generic way. But it is designed to lay the seeds for a 
much easier reconstructive generalization at a later stage when the abstraction of 
the formal concept occurs in a corresponding abstract manner. 

I argue that Langford’s problem is such a problem that the parallel principle 
applies. Obviously all the students were able to use their own procedures to take 
the objects of the problem as inputs. Since the students are all in the mathematics 
teacher program, the necessity principle holds. I found that the problem provided 
the students with excellent possibilities to expand their generalization in a totally 
unrestrictive way. Since the parallel principle encourages a generalization of the 
procedure to be passed from the examples to the abstract concept by a process 
more parallel to an expansive generalization, the properties must be reconstructed 
in the abstract context. Consequently the passage from generic abstraction to 
formal abstraction remains one requiring reconstruction, but a reconstruction 
with potentially less cognitive strain (Harel & Tall, p. 41). I still do not know if I 
should be happy that 8 out of 35 students managed to reach that abstract level, or 
sad that not all of the students got there. 

The fact that the vast majority of the students preferred to put a lot of effort 
into finding specific solutions on their own is nevertheless very encouraging. It 
proves that one very well can use alternatives to more traditional ways of exami-
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ning mathematical performance and understanding, and thereby promoting active 
investigation, analysis, and reflection. 
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Abstract: From 2001 to 2004 the author directed a project in Tasmania and the 
Australian Capital Territory aimed at assessing and improving the mental computation 
ability of Australian students. This paper reports on the research aspects of the project, 
which involved (a) developing a scale of competence in mental computation, (b) develo-
ping assessment processes, and (c) analysing common errors in mental computation. 

Introduction 
Thirty years ago in primary schools in many countries around the world, mental 
computation meant ‘mental arithmetic’. This typically consisted of ten or twenty 
questions given at the beginning of a lesson. The questions were mainly confined 
to basic facts, that is, to the mental calculations considered necessary so that one 
could perform written calculations: speed and accuracy were emphasised. 

Research by Biggs (1967) revealed that this was of limited value. He noted 
that in 69 classrooms in English primary schools the average number of minutes 
per day devoted to mental arithmetic varied from nil to 11 minutes. The approach 
categorised as traditional had as one of its characteristics‘ a great deal of mental 
arithmetic in which speed of response is encouraged’. Among the conclusions of 
the study are: 

‘[Number anxiety] tends to increase slightly with more time devoted to 
mental arithmetic.’ 

‘Allocation of time to mental arithmetic bore no relation to attainment.’ 
In other words, these daily speed and accuracy tests did not make the chil-

dren noticeably more competent, but it did make them slightly more neurotic 
about numbers. 

More recently mental computation has been seen to have much wider rele-
vance in education: in particular, it has been shown (Wandt & Brown, 1957; 
Northcote & McIntosh, 1999) that adults in their everyday lives use mental com-
putation for over three quarters of all their calculations, whereas written calcula-
tion and calculator use are each involved in less than fifteen percent of all their 
calculations. This raises the question as to why so much school time should be 
spent on written calculation, which has such limited use in adult life, and why so 
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little time is spent on mental computation, which is the calculation method most 
commonly needed.  

The relative educational values of written and mental calculation have also 
been questioned. A number of researchers (Plunkett 1977; Kamii & Dominick, 
1997; Markovitz & Sowder, 1994; Reys, 1984) have shown that mental compu-
tation is much more efficacious in both developing and indicating number sense.  

One consequence of the research into adult uses of mental computation was 
the realisation that competence in mental computation involves much more than 
knowledge of basic facts. Mental computations commonly used by adults include 
two- and even three-digit computations, as well as simple calculations involving 
fractions, decimals, ratio and percentage. A further major use of mental compu-
tation, not covered by the present study, is its use in estimation and approxima-
tion. 

As a result an increasing number of authorities at both national and local 
level have given much greater prominence to mental computation in their curri-
culum guidelines and documents. 

In the United States The Curriculum and Evaluation Standards for School 
Mathematics (National Council of Teachers of Mathematics, 1989), and in the 
United Kingdom Mathematics in the National Curriculum (Department of Edu-
cation and Science, 1991) both stressed the equal importance of ability with the 
calculator and with mental and written computation. 

In Australia mental computation is emphasised in current state and federal 
curriculum documents both as a critical component of functional numeracy, and 
as an effective means of developing number sense in students (see for example 
Australian Education Council, 1991).  

In Norway, the draft 2006 mathematics curriculum states that after Year 2 
the students should be able to ‘develop and use a variety of calculation strategies 
for addition and subtraction of two-digit numbers’. After Year 7 they should be 
able to ‘develop and use methods for mental calculation, estimation and written 
calculation’. 

The Swedish national guidelines include, as one of the goals that pupils 
should have attained by the end of the fifth year in school, that they should ‘be 
able to calculate in natural numbers – in their head, and by using written calcu-
lator methods and pocket calculators’. By the end of the ninth year in school they 
should: ‘have good skills in and be able to make estimates and calculations of 
natural numbers, numbers in decimal form, as well as percentages and propor-
tions in their head, with the help of written calculation methods and technical 
aids’.  

While it appears there is much more official encouragement for a serious 
school programme in mental computation, there is little sign yet that official as-
sessment programmes take account of testing mental computation. One signifi-
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cant exception is the state of Queensland in Australia, which since 1999 has suc-
cessfully included mental calculations in its compulsory annual testing pro-
gramme at years 3, 5 and 7. 

Although considerable research interest has centred more recently on the 
strategies students use when they calculate mentally (Beishuizen, 1997; Carpen-
ter & Moser, 1984; McIntosh, De Nardi, & Swan, 1984; Reys, Reys, Nohda and 
Emori, 1995), very little research has been done into levels of ability in mental 
computation, or into the errors made by students in computing mentally. For ex-
ample, there is nothing in the mental computation literature that parallels 
Ashlock’s Error Patterns in Computation (1994), which confines itself exclu-
sively to errors in written computation. “This entire book is designed to help you 
learn as much as possible from the written work of children” (Ashlock, 1994, p. 
13). Since children’s focus of thought, and consequently their patterns of think-
ing, are often markedly different when they are engaged in mental computation 
from those they employ when calculating with pencil-and-paper, it is to be ex-
pected that the kinds of errors they make, and the reasons for these errors, may 
also sometimes differ.  

 
The project  
Research and development aims 
Improving and Assessing the Mental Computation of School Aged Students is a 
three-year project (2001 – 2003) funded by DEST (the Australian federal Depart-
ment of Education, Science and Training), the Education Departments of Tas-
mania and the Australian Capital Territory (ACT) and the Catholic Education 
Office of Tasmania. The project had both research and curriculum development 
aims. The research aims of the project were to develop a developmental frame-
work for mental computation competence, to explore ways of assessing students’ 
competence in mental computation, and to analyse students’ errors in mental 
computation. The curriculum development aim of the project was to develop and 
trial in six schools (three primary schools and three high schools) sequential 
teaching material for mental computation covering Grades 3 to 10, including 
whole numbers, fractions, decimals and percentages. This paper deals only with 
the research aims and outcomes of the project. 

Methodology 
In 2001 - 2003, approximately three thousand students across grades 3 to 10 in 
twelve Tasmanian and ACT schools participated in one of a set of mental com-
putation tests. Items were of two types: ‘Short items’ (S) had three seconds in 
which to answer and ‘Long items’ (L) had fifteen seconds. These differences 
were intended to separate items which students might be expected to know in-
stantly from those that they could work out given time. The items were drawn 
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from a bank of two hundred and forty-four items that included only computations 
with a single step (that is, no items contained more than two terms, e.g. 17 – 8). 
All items were recorded onto a compact disc and supplied to the schools on 
audiotape. Students in grades 3 and 4 had fifty items presented to them, while 
those in the other grades attempted sixty-five. Sixteen different test forms were 
used, four at each of two adjacent grade levels: Grades 3/4, Grades 5/6, Grades 
7/8 and Grade 9/10, and these were linked by the use of common items both 
within grades and across grade levels. Nine ‘link items’ (lk) were also included, 
in which five seconds was provided for students to respond, in order to provide a 
basis for linking to an earlier study that had identified a developmental scale of 
mental computation (Callingham & McIntosh, 2001).  

The items were analysed using Rasch modeling techniques. This approach to 
analysis allowed students’ performances and all item difficulties to be estimated 
using the same measurement scale, so that they are directly comparable. This 
placed all students and all items in an ordered display from least proficient or, in 
the case of items, least difficult, to most proficient, or most difficult. The under-
lying variable was then interpreted in terms of the mental computation skills re-
quired by each item, which provided a ‘profile’ of students’ mental computation 
competence. By determining the points at which there was a qualitative change 
in the demands of the items, eight levels of mental computation competence were 
identified (Callingham & McIntosh, 2002).  

The testing program was repeated in 2002 with the same set of tests, and 
again in 2003 with some new items, particularly for fractions, decimals, and per-
centages. Sufficient items were maintained for the different tests to be linked to-
gether, so that all items could be placed on the same scale. The longitudinal test-
ing confirmed the scale identified initially.  

Similar items within the levels were clustered and described. Items were also 
separated out into the following sub-domains for closer analysis: 

• Whole number single digit addition and subtraction 

• Whole number single digit multiplication and division 

• Two-digit addition and subtraction 

• Two-digit multiplication and division 

• Decimals addition and subtraction 

• Decimals multiplication and division 

• Fractions addition and subtraction 

• Fractions multiplication and division 

• Percentages. 
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For each item, at each grade level, all responses were categorised as Correct, In-
correct or No answer. All incorrect answers were recorded, and the occurrence of 
the most common errors was expressed as a percentage of the number of incor-
rect answers (thus excluding all ‘No answer’ responses). These were then ana-
lysed for clusterings of error types. 

 
Results 
Levels of performance 
Eight levels of competence were identified from Level 1 (least) to Level 8 
(most). As the intention was to test only levels of competence expected of most 
adults, the tests did not include items of particular technical difficulty. Thus 
higher levels of competence than level 8 could be hypothesised as within the 
competence of many of the students.  

Table 1 shows the percentage of students in each grade who were at each of 
the levels. Cells containing 20% or more are shaded. It can be seen that, whereas 
over 10 % of Grade 3 students are at Level 5 or above, almost 10 % of Grade 10 
students are below these levels. The relative lack of improvement in performance 
between Grades 6 and 7, and between Grades 8, 9 and 10, is also worth noting, 
adding weight to the belief in a performance plateau in these age groups, and 
perhaps to the lack of attention given to mental computation at secondary level.  

Table 1: Percentage of students in each grade at each level of competence 
 

Grade Level 
1 

Level 
2 

Level 
3 

Level 
4 

Level 
5 

Level 6 Level 
7 

Level 
8 

3 16 14 35 21 9 3 1 0 
4 5 4 18 29 24 18 2 1 
5 1 2 4 20 34 27 8 3 
6 1 1 5 13 24 30 14 14 
7 0 0 4 9 24 42 14 7 
8 0 1 0 8 19 32 20 22 
9 0 2 1 5 13 30 25 24 
10 1 1 1 5 15 31 24 23 

Overall 4 3 10 14 20 26 12 11 
 

To illustrate the developmental scale, Table 2 shows for one sub-domain (Whole 
Number Single-Digit Multiplication and Division), the skills that describe stu-
dents at levels 1 to 6, and specific items at these levels from the tests. No item in 
this sub-domain was at a higher level than 6. In contrast, although only techni-
cally simple items were included in the Fractions Addition and Subtraction sub-
domain, requiring conceptual understanding rather than computational skill, 
these calculations proved more difficult. Table 3 shows that all items fell in 
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Levels 4 to 8. Indeed, no items relating to fractions, decimals or percentage 
appear below level 4. 

Table 2: Levels for sub-domain: Whole number one-digit multiplication and division 

Level Skills Items from tests at this level 
1 Can quickly double a single digit 

Can quickly multiply single digit 
By 10 

6 x 2 (S), 2 x 10 (L) 
4 x 10 (S), 8 x 10 (S), 3 x 10 (S), 
5 x 10 (S) 

2 Knows multiples of 2 and knows 
or can quickly calculate some 
multiples of 3, 4 and 5 

7 x 2 (S), 9 x 2 (S), 7 x 10 (L), 4 x 3 (lk), 4 
x 3 (L), 5 x 4 (S), 5 x 4 (lk), 5 x 4 (L), 6 x 5 
(lk), 6 x 5 (L), 

3 Knows/can quickly calculate 
multiples of 3, 4, 5 
Can halve even numbers to 20 

6 x 5 (S), 4 x 3 (S), 3 x 6 (lk), 7 x 3 (lk), 
3 x 6 (S), 7 x 3 (S), 7 x 3 (L), 7 x 4 (L) 
Half 18 (L) 

4 Can calculate product of single 
digit numbers 
Knows or can calculate inverse of 
first ten multiples of 3, 4 and 5 

6 x 9 (L), 8 x 4 (L) 
 
12 ÷ 3 (L), 21 ÷ 3 (S), 12 ÷ 4 (S),  
20 ÷ 4 (L), 30 ÷ 5 (S), 30 ÷ 5 (L),   

5 Knows most table facts and can 
calculate the others 
Knows or can calculate inverse of 
most table facts 

7 x 6 (S), 7 x 6 (lk), 8 x 7 (L), 9 x 8 (S), 
9 x 8 (L), 6 x 9 (S), 
72 ÷ 8 (L), 70 ÷ 5 (L), 54 ÷ 9 (L), 
56 ÷ 7 (L) 

6 Knows all table facts and their 
inverses 

8 x 7 (S), 54 ÷ 9 (S), 72 ÷ 8 (S), 
56 ÷ 7 (S) 

 

Table 3: Levels for sub-domain: Fractions, addition and subtraction 
 
Level Skills Items from tests at this level 

4 Knows/ can calculate 
2

1  + 
2

1  
2

1  + 
2

1 (S) 

5 Can add/subtract halves and quar-
ters less than one 
Can add fractions with common 
denominators (totals <1) 

2

1  + 
4

1 (S), 
2

1  + 
4

1 (L), 
4

3  - 
2

1 (L), 

7

2  + 
7

3 (L) 

6 Can add and subtract halves (and 
equivalents) and quarters beyond 
one 
Can quickly subtract a simple unit 
faction from one. 

2

1  + 
4

3 (L), 
2

1  + 
8

4 (L), 
2

1  + 
10

5  L),  

1
4

1  - 
2

1 (L),  

1 - 
3

1 (S), 1 - 
3

1 (L) 

7 Can add one half and one third  
2

1  + 
3

1 (L) 
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Common errors: whole numbers 
By far the most common incorrect response to items involving addition and sub-
traction of whole numbers was an answer that differed by one from the correct 
answer. Table 4 gives the number of times an error of one was made for basic 
addition/subtraction fact items and for addition/subtraction of larger numbers. 
The table excludes all cases where no answer was given to a calculation. Table 4 
shows that this error type accounted for over a third of all basic fact errors in 
Grades 3/4 and over a quarter of all errors in Grades 5 to 8.  

Table 4: Errors of 1 for all whole number addition/subtraction items by grade and type 
of calculation 

 Basic Fact Items Larger Numbers 
 Grade 

3/4 
Grade 

5/6 
Grade 

7/8 
Grade 
9/10 

Grade 
3/4 

Grade 
5/6 

Grade 
7/8 

Grade 
9/10 

(a) Errors of 1 394 23 14 - 367 224 74 51 
(b) All errors 1082 87 53 - 1506 1784 724 361 
(a) as % of (b) 36.4 26.4 26.4 - 24.4 12.6 10.2 14.1 

 
For larger whole number addition/ subtraction items, the second most common 
error was an answer that was incorrect by 10. This error persisted through to 
Grade 9/10 students: for example, for the 15-second item 58 + 34, 10 out of 28 
incorrect answers given by Grade 9/10 students were either 82 or 102.  
The most common error for multiplication and division basic facts was an answer 
that was wrong by one multiple: for example, for the item 21 ÷ 3, 21 out of 49 
incorrect answers given by Grade 5/6 students were either 6 or 8.  

Common errors: fractions and decimals 
Table 5 shows results from four of the fraction and decimal items from the tests. 
Columns three to five show the percentage of students at each grade answering 
correctly. There were no fraction or decimal items in the tests for Grades 3/4. 
The second column indicates the number of seconds given for each item. The 
most common incorrect answer across the grades is also given. 

Table 5: Percentage of students answering correctly selected fraction and  
    decimal items by grade, and most common incorrect answers 

Item Time 
(seconds) 

Grade 5/6 Grade 7/8 Grade 9/10 Most Common In-
correct Answer(s) 

1 – 
3

1  15 30 51 52 
4

1   or 
4

3  

2

1   ÷ 
4

1  15 - 42 47 
4

1  

3 x 0.6 15 - 32 39 0.18 
0.3 + 0.7 15 42 52 64 0.1 
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For the item 0.3 + 0.7, the answer 0.1 constituted 221 of 296 incorrect answers.  
 
Discussion 
Consideration of the errors associated with the present study suggests that the 
fundamental distinction that needs to be made for errors in mental computation is 
that between conceptual and procedural errors. A conceptual error is one made 
because the student does not understand sufficiently the nature of the numbers or 
the operation involved. A procedural error is one in which the student, although 
having an overall strategic understanding of what to do, makes either a careless 
error or other error in carrying out the strategy. For example, 0.1 x 0.1 = 0.1 and 
3 ÷ ½ = 1 1/2 are likely to be conceptual errors whereas 58 + 34 = 82 and 3 x 5 = 
18 are likely to be examples of procedural errors. While procedural errors are as-
sociated with both written and mental computation, the procedures themselves, 
and therefore the types of errors, are often quite different. As an example, for the 
item 74 - 30, a quite common error at Grades 3/4, 5/6, and 7/8 was the answer 36. 
It is likely that students making this error had a correct overall procedure or strat-
egy of taking the 4 off the 74, subtracting 30 from 70, and then replacing the 4; 
but a lack of control over the procedure led them to subtract rather than add the 
4.  

As observed in this study, the errors made by students with whole number 
calculations tended to be procedural, whereas those involving fractions, deci-
mals, and percentages were predominantly conceptual. For example, items such 
as 1 – 1/3, 0.3 + 0.7, and 30% of 80, which are typical of three types of items set, 
were very frequently answered incorrectly, and yet each depends on very simple 
arithmetical ability coupled with conceptual understanding of the type of number 
involved. It is hard not to draw the conclusion that, in spite of teaching over sev-
eral years, very many students know very little about fractions, decimals and per-
centages. 

Where an addition or subtraction was incorrect by one (and it is worth noting 
that there were also frequent cases with larger numbers where the answer was 
wrong by two), it appears very probable that in many cases the children’s strat-
egy was to count up or down by ones; this is reinforced by the fact that this error 
occurred more often in basic fact calculations when the addend was larger. A 
similar reason can be hypothesised for the number of multiplication/division er-
rors that are wrong by one multiple. In both cases there appears to be an error of 
counting, whether by ones or by multiples of 2 to 10.  

The most frequent errors associated with calculations involving fractions, 
decimals and percentages appear to have a mainly conceptual basis. 

Decimal computation errors appear to be predominantly associated with the 
common misunderstanding noted by Hart (1981) and Stacey and Steinle (1998), 
namely “thinking that the figures after the [decimal] point represented a ‘differ-
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ent’ number which also had tens, units etc” (Hart, 1981, pp. 51-52). Examples of 
this error included 0.5 + 0.75 = 0.8, and 3 x 0.6 = 0.18.  

 
Implications 
This study has confirmed that mental computation can be simply and effectively 
assessed by a written class test. Since mental computation is now a major curri-
culum requirement, the major implication for assessment is that the assessment 
of mental computation deserves serious consideration at all levels, from class-
room and school level to system-wide and national testing programmes. 

 The major implication for teaching of mental computation of whole numbers 
is that teachers need to centre on the development of efficient strategies other 
than counting on and back, whereas for fractions, decimals, and percentages the 
issue appears to be that of developing conceptual understanding. 

For whole numbers, three issues should be addressed. First, when children 
are using counting strategies for computations, their teachers need to observe 
how they count and keep track of their counting, and need constantly to ask chil-
dren how they arrived at their answers. Errors may be caused by inefficient use 
of their fingers or other procedural error, for example when adding 6 and 3, 
counting 6, 7, 8. If these incorrect procedures are not discovered and discussed 
early they can become ingrained and persist throughout primary school. Second, 
children need to be weaned off the increasingly inefficient strategy of counting 
on and back by ones, to more sophisticated, neater and simpler strategies: using 
doubles and near doubles, bridging ten, adding tens, using compatible numbers, 
using related known facts. Third, the scope of mental computation needs to be 
widened to include strategies for double-digit computations. 

For fractions, decimals, and percentages, the main remedy appears to lie in 
much greater emphasis on conceptual understanding, and much less on algorith-
mic processes. Mental computation, unlike written computation, is very difficult 
to teach or learn algorithmically. It depends much more on conceptual under-
standing of numbers and operations and on a holistic approach to numbers. At 
least the algorithmic teaching of procedures should be delayed until children 
have a conceptual understanding of the types of number and the operations in-
volved.  

Finally, if mental computation is to take the place in schools that both society 
and the pronouncements of curriculum developers at system level encourage, 
then it needs to be given attention in terms of teaching time, exploration of effi-
cient teaching strategies, and resources equivalent to those that hitherto have 
been given to the teaching of the formal written algorithms. 
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Numeracy as a Tool in Adult Education: 
Success or Failure? 

Tine Wedege 
Malmö University 

Abstract. In 2001, a new programme in adult mathematics education was introduced in 
Denmark. The aim was that the students further developed their numeracy. The deve-
lopment of education and teacher education was research based and an operational 
model of Numeracy was the pivotal point in this work – and as such a kind of quality 
control in the process. Three years later, in 2004, the Danish Evaluation Institute 
evaluated this educational programme, Preparatory Adult Education (PAE) as it was 
named. In the light of her experience from development and evaluation of this mathe-
matics programme, the author questions if the concept of Numeracy is implemented in 
the teaching and learning practices of PAE-mathematics. Thus, the paper reports re-
flections provoked by the author’s observations during an evaluation process – not a 
study designed to answer this question. 

At the beginning of the 21st century, adult and lifelong mathematics education form 
two sides of the same coin in Denmark. The adult educational system is built up in 
parallel with the mainstream education system. Mathematics is offered to adults at 
lower and higher secondary level. From 2001, basic mathematics education is of-
fered to adults in the new programme of Preparatory Adult Education (PAE). The 
aim is that students develop numeracy, which is defined as functional mathemati-
cal skills and understanding that in principle all people in society need to have. In 
English speaking countries, “numeracy” is a key word in basic adult education 
but this was the first time that numeracy was mentioned in a Danish Act. Five 
years before, Lindenskov and I had imported the term from the English speaking 
countries, translated it into Danish (numeralitet) and reconstructed it as a concept 
(Lindenskov & Wedege, 1997). 

At the Third Nordic Conference on Mathematics Education (NORMA01) in 
2001, I presented this concept of numeracy and some of the basic ideas of PAE-
mathematics (Wedege, 2005). After my lecture, Bill Barton from New Zealand 
asked if it was really necessary to introduce numeracy in Denmark. My answer 
was that the concept of numeracy and our operational model of Numeracy 
formed the research base for developing the new mathematics curriculum. I also 
regarded a new term as important to avoid a usual teacher reaction when pre-
sented for a new curriculum: “This is what we have always done”. 
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As stated in the Act of PAE, the educational programme was evaluated in 
2004. Numeracy is the aim of the education and the pivotal point of the teacher 
education. Nevertheless, neither teachers nor school leaders mentioned the word 
“numeracy” during the whole evaluation process. As a person involved in the 
development of the curriculum in 2000-2001 and in the evaluation 2004-2005, 
this observation provoked me and this paper reports my reflections on whether 
the model of Numeracy is implemented in the teaching and learning practices of 
PAE-mathematics or not. 

 
Numeracy as a term, a concept and a tool 
In English speaking countries, the term “numeracy” is used for certain basic 
skills and understandings in mathematics, which people need in various situa-
tions in their daily life. As mentioned above, numeracy is a key word in basic 
adult mathematics education. As a concept however numeracy is deeply contes-
ted in politics, education and research. Nevertheless, as an analytical concept, 
adult numeracy may be considered as mathematical activity in its cultural and 
historical context. (For a review of research and related literature on adult nu-
meracy, see Coben et al., 2003.) In policy reports and in international surveys, 
the term “numeracy” is often used as a parallel to literacy. “Quantitative literacy” 
and “mathematical literacy” are two other terms dealing with people’s mathe-
matical competencies in relation to societal requirements (see OECD, 1995; 
1999). In the Second International Handbook of Mathematics Education, 
Jablonka (2003) gives a critical overview of different constructions of mathema-
tical literacy. She argues that any conception of mathematical literacy – impli-
citly or explicitly – promotes a particular social practice.  

In the mid 1990s, the Danish language did not have a single expression corre-
sponding to the term numeracy1. Nevertheless, Lindenskov and I chose to use the 
term numeralitet, which was later adopted by the Ministry of Education. In our 
definition, adult numeracy describes a mathematics containing everyday compe-
tence that everyone, in principle, needs in any given society at any given time:  

• Numeracy consists of functional mathematical skills and understanding 
that in principle all people need to have. 

• Numeracy changes in time and space along with social change and 
technological development. (Lindenskov & Wedege, 2001, p. 5) 

It is this expression “in principle” that makes possible a general assessment of 
adult numeracy (as in the big international surveys) and the developing of gen-
eral courses in numeracy.  All adults who participate in a numeracy course will, 
in fact, have their own perspectives (why am I here?), their own backgrounds and 
                                                 
1 Like with numeracy we do not have translation of the term “mathematical literacy”, in the 
Nordic countries. 
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needs (what am I going to learn?) and their own strategies (how am I learning?). 
It is this definition of numeracy which is adopted as the aim in PAE-mathemat-
ics. 

During research and developmental work in the Adult Vocational Training 
system, Lindenskov and I developed an operative model for the study of adult 
numeracy. It has four interrelated dimensions, which are  

• Media (a) written information and communication (b) oral information 
and communication, c) concrete materials, d) time, and e) processes. 

• Context - in the meaning of situation context - (a) working life, (b) family 
life, (c) educational context, (d) social life, and (e) leisure. 

• Personal intention (a) to inform/be informed, (b) to construe, (c) to evalu-
ate, (d) to understand, (e) to practice, etc. 

• Skills & Understanding - Dealing with and sense of (a) quantity and num-
bers, (b) dimension and form, (c) patterns and relations, (d) data and 
chance, (e) change, (f) models. 

Our construction of the operative model of Numeracy was based on paradigmatic 
socio-cultural studies such as those of Scribner (1984), Lave (1988), and Nunes, 
Schliemann and Carraher (1993), on conceptions of functional literacy such as 
those of OECD (1995), and on the six “big mathematical ideas” presented and 
discussed by Steen (1990). This model has been used and further developed as an 
analytical tool in adult mathematics and research. During the development of 
PAE-mathematics, we found inspiration in Bishop’s (1988) cross-cultural studies 
of mathematical components in everyday activity and added mathematical ac-
tivities such as counting, measuring, locating to the fourth dimension (skills and 
understanding) of the Numeracy model (see figure 1). 

 
Where?       Why? 
Situation context         Personal intention 

 
 

  Numeracy 
 
 

   What?             How? 
Media & data    Mathematical knowledge and activity 

 
Figure 1. Four analytical dimensions of Numeracy (Wedege, 2004, p.113). 

 
In what follows, I will use the term Numeracy (with a capital N) to refer to the 
concept of numeracy as defined in this operational model and numeracy (with a 
small n) to refer to the underlying conception of numeracy as defined above.   



Papers 

 126 

 
Preparatory adult education in mathematics 
As mentioned above, Preparatory Adult Education is a vital element of the Danish 
lifelong education model. According to Rubenson (2001), one may find three gen-
erations of the idea of lifelong learning in the period from the late 1960s until now. 
The first generation – lifelong learning as a utopian-humanistic guiding principle 
for restructuring education – was introduced by UNESCO. The concept disap-
peared from the policy debate but reappeared in the late 1980s as the second gen-
eration driven by a different interest based on an economistic worldview empha-
sising the importance of highly developed human capital, and science and techno-
logy. From the late 1990s, it seems that a third generation (economistic-social cohe-
sion) with active citizenship and employability as two equally important aims for 
lifelong learning – at least on the rhetoric level – is taking over. Preparatory Adult 
Education illustrates these new tendencies. During the political debate and the 
educational planning process of PAE Mathematics “active citizenship”, “em-
ployability” and “personal needs” were used as equivalent arguments (Johansen, 
2002). 

An obvious danger of lifelong learning as a political project is that learning 
for active citizenship and democracy is reduced to an individual project. From 
this perspective, it was important to notice that the following statement was for-
mulated by the Danish government in the Bill of Preparatory Adult Education 
(Forberedende VoksenUndervisning), in 2000: 

Further development and maintaining of the individual’s skills are not only an 
individual and private affair and responsibility. It is also a common societal re-
sponsibility. PAE encompasses both a democratic aspect to maintain and pro-
mote the development of active citizenship and an economic perspective linked 
to the demands and needs of the labour market. 

In January 2000, the Ministry of Education invited Lena Lindenskov and me to 
develop the national mathematics curriculum and teacher training in the consid-
ered adult education programme, which also contains a literacy curriculum.  

In the national curriculum of Preparatory Adult Education in Mathematics, 
the purpose is formulated as to ensure students the possibility of clarifying, im-
proving and supplementing their functional arithmetic and mathematical skills. 
The intention of the education is to increase the students’ possibilities of coping 
with, processing and producing mathematics containing information and materi-
als. 

A specific terminology is used and defined in the curriculum. The aim is re-
formulated as the adult students’ further development of their numeracy, as de-
scribed above. The content is described as a dynamic interplay between a series 
of mathematical activities, various types of data and media, as well as selected 
mathematical concepts and operations (see figure 2). As mentioned above, we 
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found the inspiration to these activities (counting, localising, measuring, design-
ing, playing, explaining) in Bishop’s work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The content of the curriculum presented as a dynamic interplay 
 

PAE mathematics has two levels: (level 1) figures and quantity and (level 2) 
patterns and relations, which in addition include the area of form and dimension, 
as well as data and chance. 

According to the curriculum mathematical awareness is cultivated and trained 
in the students. The education aims to make it possible to clarify and formulate, 
and maybe change, students’ beliefs and attitudes in relation to mathematics. 
Students should work with several different kinds of contexts. In addition to the 
mathematical context, they should work with everyday and societal contexts. The 
class decides upon the choice of context for class activities. With regard to indi-
vidual activities, the individual students choose their contexts on the basis of 
what they need to learn. 

The organisation, concrete aims and content should be arranged so that the 
background and foreground of the students take a central place. Dialogue is used 
to clarify and make use of the students’ background and perspective. The rele-
vance of the content is made clear by concrete connections to activities outside 
education. The way the problems are posed and formulated as well as the prob-
lem solving methods should be authentic in relation to the chosen context 
(Lindenskov & Wedege, 2001, pp. 20-22). 

The principles for organisation and content of PAE-Mathematics are presen-
ted and carefully discussed in the Teaching Guidance published by the ministry 
of education on the web, in 2002 (Undervisningsministeriet, 2002). In this pub-
lication, one may also find the four basic assumptions concerning adults’ rela-
tionship with mathematics on which the education is built: 

Mathematical  
Concepts and 

Operations 

 
Activities 

 
Data 

and Media 
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• Adult’s numeracy has great influence on their participation in education, 
working life and societal life and their personal organisation in everyday 
life. However, many adults are not aware of this. 

• Adults learn better when the mathematics education is meaningful i.e. the 
content and the methods used are authentic and relevant. 

• Many adults’ school experience with mathematics is bad. This might 
cause blocks when they return to learn mathematics. Adults’ resistance 
towards learning is also a well known phenomenon. 

• Adults learn in different ways. Thus they profit from different learning ac-
tivities and materials. 

In the Teaching Guidance, the operational model of Numeracy is presented and 
discussed in relation to the teaching practice, and the term numeracy is used 
through the whole publication. In the teacher training programme, which is com-
pulsory, Numeracy is the key concept and adult numeracy is the main thread of 
the education. 
 
The teachers’ views of mathematics 
Before the start of Preparatory Adult Education in 2001, the Ministry of Educa-
tion held three conferences to inform the mathematics teachers in basic adult 
education about PAE-mathematics. With the cooperation of 212 of the partici-
pating mathematics teachers (more than 90%), Henningsen and I made a survey 
on the teachers’ beliefs and attitudes towards mathematics (Wedege & 
Henningsen, 2002). As representatives from the adult educational institutions that 
were supposed to offer PAE, these teachers were all potential future teachers in 
PAE mathematics. 

The questionnaire comprised both open and closed questions and we analysed 
the material using a combination of quantitative and qualitative methods. We 
elicited three kinds of answers from the teachers. Mathematics in their own 
words (the essay), biographical information (the teacher profile) and finally the 
teachers were asked whether or not they associated mathematics with 18 value 
items constructed on the basis of Bishop’s (1988) six categories (the value chart). 

Ticking off the items in the value chart, the teachers generally agreed on the 
value items as words associated with mathematics. For example 95% of the 
teachers associated rules, logic and order with mathematics. However, in their 
essays, the teachers used different expressions to describe mathematics. No value 
item was found in more than 9% of the essays, and two out of three teachers (143 
of 212) did not use any of the value items in their essay.  

The descriptions of mathematics in the teachers’ essays centred on three dif-
ferent types of answers, which we tentatively denoted: everyday mathematics, 
curriculum mathematics and mathematics in the world. In accordance with the 
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rhetoric of Danish basic adult education in mathematics, the majority of the 
teachers’ essays were in the first category of everyday mathematics. 

 
Evaluation of PAE 
In the actual Act, it was stated that the Preparatory Adult Education programme 
should be evaluated in 2004 and this task was given to the Danish Evaluation 
Institute (EVA2) in 2003. I was appointed by EVA as one of the five members in 
the evaluation group (se below).3 

Mertens (2005) refers to arguments of what distinguishes evaluation from 
other forms of social inquiry. It is its political inherency; that is, in evaluation, 
politics and science are inherently intertwined: 

Evaluations are conducted on the merit and worth of programs in the public 
domain, which are themselves responses to prioritized individual and commu-
nity needs that resulted from political decisions. Program evaluation “is thus 
intertwined with political power and decision making about societal priorities 
and directions”. (Mertens, 2005, pp. 49-50) 

Here merit refers to the excellence of an object as assessed by its intrinsic quali-
ties or performance; and worth refers to the value of an object in relation to a 
purpose. So merit might be assessed by asking: How well does your programme 
perform? And worth might be assessed by asking: Is what your programme does 
important? 

The evaluation of PAE was to be a summative in the sense that it is an evalua-
tion used to make decisions about the continuation, revision, elimination, or 
merger of a programme. At the same time the evaluation was to be formative in 
the sense that the educational institutions involved were to improve the imple-
mentation of the programme locally (see Mertens, 2005). The first perspective 
was required by the ministry and the second was a consequence of the evaluation 
method employed by EVA. 

The method 
EVA employs different methods according to the requirements of the specific 
evaluation task. However, there are a number of fixed elements in each evalua-
tion: project team, preliminary study, terms of reference, evaluation group, self 
evaluation, supplementary survey, site visit, report and follow-up (see web site 
www.EVA.dk). For the purpose of this paper, I will go into more details about 
five of these elements as they were realised in the evaluation of PAE: 

                                                 
2 The primary task of this institute is to initiate and conduct evaluations of education - from 
primary school and youth education to higher education and adult and post-graduate education. 
3 EVA needed a Danish researcher with expertise within the area of adult mathematics 
education. My involvement in the development of PAE-mathematics and non-involvement in 
the implementation of the curriculum were assessed and they concluded that I was able. 
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The project team was responsible for the practical work and the methods for 
the evaluation, including also the responsibility for writing the final report. The 
members of the team were employed in EVA. The terms of reference was laid 
down by EVA describing the objective and framework for the evaluation. The 
evaluation group, where I was a member, was established and composed of peo-
ple with special academic expertise in the area that is evaluated (a researcher in 
literacy, a researcher in numeracy, an experienced teacher in literacy and numer-
acy, a school leader and a Norwegian adult educational planner). The evaluation 
group was responsible for the academic contents of the evaluation and for the 
assessments and recommendations of the report. The evaluation group was ap-
pointed by EVA’s board, and the members were independent of the educational 
programmes evaluated and also of EVA.  

The self evaluation, which is an integral part of any evaluation, had a dual 
purpose: on the one hand, it should be used as documentation for the final report 
and its recommendations and, on the other, it should be seen as an inspiration for 
the evaluated educational programme or institutions for quality improvement. In 
the self evaluation, 10 adult educational institutions described and assessed their 
own strengths and weaknesses. Normally, the participants will be the teachers 
and also the students or the pupils and management. However, in the case of 
PAE, the project team had decided not to involve the students. The self evalua-
tion was based on guidelines prepared by the project team. Some of the headings 
in the self evaluation report were students (profiles, learning needs), teachers 
(qualification), enrolment, framework of the education (aim).  The self evaluation 
reports together with the supplementary surveys and the site visits formed the 
basis for the recommendations of the evaluation report.  

During the site visit the evaluation group and the project team visited the 10 
self evaluating institutions. During the visit, the evaluation group had the oppor-
tunity to interview the teachers, the students, the management team and repre-
sentatives from local workplaces. The purpose of the visit was to obtain further 
documentation for our report. Prior to the visit, the project team prepared a 
checklist (questionnaire) for the evaluation group based on the self evaluation 
reports. This procedure was to ensure that any obscurities in the self evaluation 
reports are identified. However, only few of the questions prepared by the team 
concerned the education content, and the evaluation group added a series of 
questions e.g. tell about your classroom practices; do you find that there is 
enough time compared with the aim of the education; how do you adjust the 
teaching to the students’ needs. The project team prepared minutes of the meet-
ing after each visit. The minutes of the meeting are only for EVA’s own use. 
During the site visit, I made my own notes and afterwards I used EVA’s minutes 
to check my own. The quotations from teachers or students below stem from ei-
ther my personal notes or the official evaluation report (EVA, 2005). 
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Worth: Is what PAE does important? 
The aim of EVA’s (2005) evaluation was to evaluate strong and weak points of 
preparatory adult education (PAE) and to assess whether the implementation of 
the Danish act on preparatory adult education is living up to its purpose, i.e. 
mainly to evaluate the worth of the programme. In the evaluation report, one 
finds the official results and recommendations from the evaluation group. In re-
lation to the reflections in this paper, I find the following results relevant: 

It appears that in spite of a great increase in the activity, the targets formu-
lated on the adoption of the PAE Act in 2000 have not been reached. This is es-
pecially true of mathematics. I think that one of the reasons is that the workers’ 
unions and the big enterprises have focussed on the literacy problem for the last 
10 years. Only little attention has been paid to numeracy. Another reason might 
be that mathematics in people’s working life is invisible or not experienced as 
mathematics (cf. Wedege, 2001, 2004). However, many students benefit greatly 
from the education, both personally and socially, and a number of them use PAE 
as a springboard for further education. A general example was adults now being 
able to help their children with their homework, and happy people telling that, 
after all, they were able to learn mathematics. Although the word numeracy was 
not mentioned by the teachers, I am sure that many students further developed 
their numeracy as a result of PAE-mathematics. 

The first statement of the famous Math Anxiety Bill of Rights is this: “I have 
the right to learn at my own pace and not feel put down or stupid if I’m slower 
than someone else” (Tobias, 1993, p. 226). A common remark from the students 
was that they felt at the eye level with the teachers. They were actually treated as 
competent adults – another of the 14 rights.  

According to the report, PAE is characterised by flexibility (EVA, 2005). 
This is apparent from the large number and the many different types of providers 
of adult education as well as from the way teaching activities are organised. 
Moreover, this flexibility is demonstrated by the recourse to relocation of teach-
ing activities, in the sense that teaching may take place in business enterprises, 
organisations etc. However, when it comes to interpretation of the curriculum, 
flexibility is not only a positive term. Some of the mathematics teaching that we 
met during the visit didn’t have anything to do with PAE. We saw for example 
ordinary mathematics education compensating for young students’ poor mathe-
matical skills in vocational education. In this school – like in others – we saw and 
heard of the use of standard mathematics textbooks. Like in an adult education 
school where a male student said: “He gave us a book and then we worked indi-
vidually. We didn’t use the material from the workplace although we asked if we 
could do so. The teacher gave us a textbook from grade 2 to 3. When we told him 
that we wanted to learn to calculate area, he said that we would meet this prob-
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lem later in the book.” The last comments lead us to the other dimension of the 
evaluation. 

Merit: How well does PAE perform? 
The main purpose of the evaluation was to assess the worth of PAE, however, the 
report also contains results concerning the merit. For example it is observed that, 
in general, PAE is characterised by dedicated teachers and managers capable of 
creating a successful environment for adult education in which the students feel 
safe and with teaching based on the students’ needs and qualifications (EVA, 
2005). In the evaluation group’s opinion, the teachers in general are well quali-
fied and capable of carrying out their teaching on the basis of the qualifications 
and needs of the individual student. However, among the mathematics teachers, 
there are many examples of this not being the case. Thus, the evaluation group 
recommended the individual provider to assess the teachers’ qualifications in the 
light of the new requirements in order to ensure that all teachers include the ex-
perience of the students in their teaching and implement the teaching model from 
the curriculum (figure 2). 

Here are a few examples from the visit: In the curriculum it is required that 
concrete material (e.g. juice, rice, wood, fabric) should be one of the medias used 
in combination with activities and mathematical operations or concepts. In a 
locker marked with the words “concrete material” in a well equipped classroom, 
I found only gadgets in plastic normally used in the children’s mathematics 
classroom. 

When students spoke in general about mathematics they often used the terms 
“equation”, “x” and “y”, which were not in the curriculum. In the following 
statement, I found an example of that the students’ views of mathematics and 
their self-conceptions in relation to mathematics were not changed. A woman 
who was fired after many years in the same job said: “For the last 32 years I have 
only worked in LEGO’s design department. I cannot do any mathematics.” It 
seems that to her mathematics is still “what I cannot do” (see Wedege, 2005). 

 
Conclusion and discussion 
The purpose of the evaluation was not to investigate if the educational planners’ 
ideas, concepts and design as manifested in the curriculum were implemented in 
the teaching and learning practices of PAE-mathematics. However, being an 
educational planner and researcher not a politician, one of my personal interests 
was to assess the intrinsic qualities or performance of the education (merit), par-
ticularly the implementation of the operational model, Numeracy. 

In her paper “Balancing the unbalanceable”, Sfard (2003) goes through the 
NCTM Standards in the light of theories of learning mathematics. As a part of 
the reform movement, she sees the Standards as a result of a serious and compre-
hensive attempt to teach “mathematics with a human face”: “Success of educa-
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tional ideas, however, is never a simple function of the ideas themselves. There is 
no direct route from general curricular principles to successful instruction.” (p. 
354) The conclusion of my reflections in this paper is in keeping with Sfard’s 
statement.  

The same goes for Skott (2006) who suggests to moderate the idea that new 
theoretical constructions even empirically grounded could have decisive and di-
rect influence on institutionalised teaching and learning of mathematics. In the 
case of PAE-mathematics we do not deal with education already institutionalised. 
This is a new educational programme which replaces another programme in basic 
mathematics. However, the schools and the mathematics teachers are the same. 

If we look at the teachers’ views of mathematics before the start of PAE-
mathematics, we may find a reason why nobody talked about numeracy during 
the whole evaluation procedure (self evaluation and interviews). As mentioned 
above mathematics is associated with everyday mathematics in most teachers’ 
conceptions. Thus they do not find it necessary to use the term “numeracy” in 
stead of “mathematics”. At one of the ministry’s three information meetings on 
PAE-mathematics, a teacher whispered to the person next to him: “We go to this 
meeting; we listen and we go home doing what we are used to do.” The new 
rhetoric was interpreted in ways that fitted with the current practices in adult 
mathematics education and resulted in little change to teaching.  

With focus on the worth of the new adult mathematics education, “success” 
may be the answer to the initial question concerning Numeracy as a tool in adult 
mathematics education. What PAE-mathematics does is important: many stu-
dents benefit greatly from this education. But looking at the merit of the new 
programme the answer may be “failure”. PAE-mathematics does not perform 
according to the curriculum with a dynamic interplay between activities, data and 
media, and mathematical concepts and operations. 
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A Reading Comprehension Perspective 
on Problem Solving 

Magnus Österholm 
Linköping University 

Abstract: The purpose of this paper is to discuss the bi-directional relationship between 
reading comprehension and problem solving, i.e. how reading comprehension can af-
fect and become an integral part of problem solving, and how it can be affected by the 
mathematical text content or by the mathematical situation when the text is read. Based 
on theories of reading comprehension and a literature review it is found that the rela-
tionship under study is complex and that the reading process can affect as well as act as 
an integral part of the problem solving process but also that not much research has 
focused on this relationship.  

Introduction 
All over the world, textbooks seem to play an important role in mathematics edu-
cation at all levels (Foxman, 1999), and thereby students’ reading activity and 
reading comprehension also play important roles. However, the reading activity 
can be of different kinds, for example, reading an expository text that tries to ex-
plain something to the reader or reading a problem text in order to attempt to 
solve the given problem. This paper focuses on the second type of reading situa-
tion; reading comprehension when trying to solve a given problem. It seems like 
most research in mathematics education about reading comprehension has been 
done in a manner that reduces reading to a potential obstacle for learning (Borasi 
& Siegel, 1990), for example, by focusing on how limitations in reading ability 
affect learning in mathematics or on readers’ misunderstandings of a written task 
and how this can influence the solving of the task. This paper is an attempt to 
start from a more nuanced view of reading comprehension, and analyze problem 
solving from this perspective. 
 
Purpose 
The purpose of this paper is not merely to add a detailed view of reading com-
prehension as an important component of a problem-solving situation, but to dis-
cuss the bi-directional relationship between reading comprehension and problem 
solving. Therefore, the purpose of this paper consists of two parts: 

A. To theorize about how reading comprehension can affect problem 
solving and how reading comprehension can be added as an integral 
part of problem solving. 
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B. To analyze how reading comprehension can be affected by the mathe-
matical text content or by the mathematical situation when the text is 
read. In this paper, the problem-solving situation is the particular type 
of mathematical situation that will be studied. 

 
Method and structure of the paper 
Theories of reading comprehension will be the starting point in this paper (in 
section 2), that is, these theories will be used as theoretical tools when discussing 
the relationships between reading comprehension and problem solving. However, 
the two parts of the purpose will be handled differently, where the theorizing in 
part A will be done in a more unrestricted and exploratory way (in section 3), 
while the analysis in part B will be done with the help of a literature survey (in 
section 4). The main purpose of this survey is not to find and describe all possi-
bly relevant references, but to find some references (of course as many as possi-
ble) that are highly relevant for part B of the purpose of this paper, in order to 
discuss these references from a reading comprehension perspective. A descrip-
tion of the literature survey follows. 

The search for literature was made in two different ways. First, databases 
were used to search for references containing (part of) words such as ‘problem 
solving’, ‘reading’, ‘semantics’, and ‘linguistic’ in relevant combinations. This 
search was made in order to find literature that specifically deals with a relation-
ship between problem solving and reading comprehension. Second, a less spe-
cific search was performed, for studies dealing with word problems. This second 
type of search for literature was made in order to find such references that poten-
tially could be relevant for the purpose of this paper, without explicitly dealing 
with a relationship between reading comprehension and problem solving. There 
are two reasons for focusing on word problems. Firstly, a more general search for 
problem solving, and not specifically word problems, was presumed to yield too 
many irrelevant references. Secondly, a literature survey by Österholm (2004, 
section 3.1) found that word problems were often discussed in literature that fo-
cuses on texts and reading in mathematics. 

A general search in the MathDi database1 (using ‘basic index’) for references 
dealing with word problems gave 1424 results2. This number had to be reduced 
in order to be able to complete this task in a reasonable time. Therefore, it was 
chosen to limit the search to the titles of references (to get references that more 
directly focus on word problems) and to only include those published in journals 
(to ensure generally high quality). This resulted in 199 references, and all these 

                                                 
1 http://www.emis.de/MATH/DI/ 
2 All mentioned searches in MathDi were performed on 6 September 2005 and were limited to 
references in English. The search words used were ‘word probl*’, which resulted in references 
including ‘word problem’ or ‘word problems’ that were published in the years 1976-2005. 
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were included when the abstracts were analyzed. More details of this analysis 
and the results from it can be found in section 4 of this paper. 

 
Theories of reading comprehension 
Mental representations 
When reading a text, a mental representation of the text is created by the reader, 
which describes how the reader understands the text. Many studies about reading 
comprehension show, or support the conclusion, that “multiple levels of repre-
sentation are involved in making meaning” (van Oostendorp & Goldman, 1998, 
p. viii). In particular, the work of Walter Kintsch (e.g., see Kintsch, 1992, 1998) 
seems to have had a great influence on research on reading comprehension 
(Weaver, Mannes, & Fletcher, 1995). Kintsch (1998) distinguishes between three 
different levels, or components, of the mental representation created when read-
ing a text: the surface component, the textbase, and the situation model. 

When the words and phrases themselves are encoded in the mental represen-
tation (possibly together with linguistic relations between them), and not the 
meaning of the words and phrases, one can talk about a surface component of the 
mental representation. 

The textbase represents the meaning of the text, that is, the semantic structure 
of the text, and it “consists of those elements and relations that are directly de-
rived from the text itself [...] without adding anything that is not explicitly speci-
fied in the text” (Kintsch, 1998, p. 103). Since the textbase consists of the mean-
ing of the text and the same meaning can be expressed in different ways, a text-
base can be created without any memory of the exact words or phrases from the 
text. 

A pure textbase can be “impoverished and often even incoherent” (Kintsch, 
1998, p. 103), and to make more sense of the text, the reader uses prior know-
ledge to create a more complete and coherent mental representation. A construc-
tion that integrates the textbase and relevant aspects of the reader’s knowledge is 
called the situation model. Of course, some prior knowledge is also needed to 
create a textbase, but this knowledge is of a more general kind that is needed to 
“decode” texts in general, while the prior knowledge referred to in the creation of 
a situation model is more specific with respect to the content of the text. 

Content literacy 
As defined by McKenna and Robinson (1990), content literacy refers to the abil-
ity to read, understand and learn from texts from a specific subject area. They 
also distinguish between three components of content literacy: general literacy 
skills, content-specific literacy skills, and prior knowledge of content. Both the 
general and the content-specific literacy skills can be assumed to refer to some 
more general type of knowledge that is not dependent on the detailed content of a 
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specific text. This type of knowledge is primarily used to create a textbase in the 
mental representation. The third component, prior knowledge of content, refers to 
knowledge that is connected to the content of a specific text, and is thus primarily 
used to create a situation model in the mental representation. 

It is not clear to what extent mathematics in itself creates a need for content-
specific literacy skills and how much of reading comprehension in mathematics 
depends on more general literacy skills and prior knowledge. However, the sym-
bolic language used in mathematics seems to be a potential cause for the need of 
content-specific literacy skills. Also, in a study by Österholm (in press), compre-
hension of one mathematical text not using mathematical symbols (i.e., written in 
a natural language) mainly depended on the use of more general literacy skills. 

Cognitive processes 
Thinking about one’s own reading process it seems clear that a skilled reader 
usually does not need to actively think very much to create a mental representa-
tion when reading. The use of syntactic and semantic rules together with the acti-
vation of more specific prior knowledge thus happens quite automatically, on a 
more unconscious level. In general, different cognitive processes can be more or 
less conscious. Perception can refer to highly automatic and unconscious pro-
cesses, for example when you see a dog and directly recognize it as a dog; you 
are aware of the result of the process (that you see a dog) but no active and con-
scious thought processes were needed for this recognition. Problem solving on 
the other hand can be said to deal with active thinking, a more resource demand-
ing process, for example when trying to remember the name of a person you 
meet and recognize. Thus, when reading a text without experiencing any diffi-
culties in understanding what you read, the process has more in common with 
perception than with problem solving, in that the process of understanding is 
mainly unconscious. This is a situation representative for Kintsch’s (1998) con-
cept of comprehension, which “is located somewhere along that continuum be-
tween perception and problem solving” (Kintsch, 1992, p. 144). 
 
Problem solving and reading comprehension 
Problems that need to be solved can arise in different ways, but here focus is on 
given problems with a specific question, in particular mathematics problems 
given in writing. Specific theories about the problem-solving process sometimes 
include the reading of the problem text as an important part (e.g., see Pólya, 
1990), which seems natural since one surely needs to start by reading the given 
problem text in order to try to understand the problem. Thereby, a mental repre-
sentation of the text is created, that is, a mental representation of the problem is 
created. But in order not to limit the description of the result of this reading 
process to that the reader either has understood the text or not, and what kind of 
(negative) effects this might have on the solution process, a more integrated view 
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is suggested of (1) reading the problem, (2) understanding the problem, and (3) 
solving the problem. 

It seems quite obvious that deficiencies in literacy skills, general or content 
specific, can affect the attempt to solve a given problem, since direct reading er-
rors (i.e., problems in creating a textbase) increase the risk that the mental repre-
sentation contradicts the text. However, the mental representation created in the 
reading process does not only serve as background to solving the problem, but 
the solving process has already started, since also prior knowledge is activated in 
the reading process, including more specific types of prior knowledge that can be 
suitable for solving the problem, that is, the comprehension of the problem need 
not only consist of a pure textbase in the mental representation but also a situa-
tion model can be created. It could even be the case that the problem in principle 
has been solved through the reading process (or at least the problem is believed 
to be solved). In such a case, the problem is solved using mainly unconscious 
cognitive processes, that is, the problem is solved through pure comprehension 
(Kintsch, 1998) of the problem/situation. Davis (1984, p. 207) gives an empirical 
example of this type of solution by comprehension, where an existing mental 
representation of a similar problem was activated, and the person “had done this 
unconsciously, but had been able to reconstruct some of the process by deter-
mined introspection afterwards.” Thus, this is not only a theoretical possibility, 
and it has also been shown that these types of unconscious comprehension 
processes can be used to explain behavior in such situations as action planning 
(Mannes & Kintsch, 1991) and decision making (Kitajima & Polson, 1995). Per-
haps some observed student behavior when solving problems also can be ex-
plained by assuming that the student is relying mostly on these types of compre-
hension processes when trying to solve the problem, for example, when Lithner 
(2000, p. 165) reports that “focusing on what is familiar and remembered at a 
superficial level is dominant over reasoning based on mathematical properties of 
the components involved.” 

To generate the answer to the posed question in a given problem can be seen 
as a natural goal of the situation, and in order to reach that goal one needs to 
regulate one’s behavior, that is, self-regulating processes are active. The given 
question can thus play a very important role also in the creation of the mental 
representation in the reading process since it can influence what kind of prior 
knowledge is activated, that is, the self-regulation seems to start already in the 
reading process. It has also been shown that self-regulating processes (which 
usually are considered as metacognitive processes) can operate at an unconscious 
level (Fitzsimons & Bargh, 2004). Therefore, it could be of particular interest to 
examine how variations of questions in problem texts can influence the compre-
hension and solution of a problem. 
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The literature survey 
First, the titles and abstracts from the 199 references about word problems are 
analyzed, where the references are categorized with respect to type of research 
(empirical or theoretical, and what is being studied/discussed). Thereafter, in the 
second section, reading comprehension and problem solving will be discussed, 
using results from relevant references (from both types of literature searches, see 
above). 

Word problems 
Table 1 presents the number of some different types of research studies found 
about word problems. To only study titles and abstracts does have its limitations, 
and for some references it has also been difficult to decide exactly what type of 
research is being discussed in the full article. Some duplicates do also exist in the 
database, and it cannot be guaranteed that all have been found. The conclusion 
from these remarks is to not to take the numbers too exactly, but to see the over-
all distribution. Also, and more importantly, the purpose of the different catego-
ries is to find relevant literature (the named categories) for the purpose of this 
paper, and not to make a complete categorization and description of all refer-
ences. 

Overall, not many studies exist that in a direct manner examines the relation 
between reading and problem solving among the 199 references about word 
problems. However, studies that vary the wording of a text and examine the ef-
fect on the solution or solution process can also be of interest in order to see how 
the comprehension of the text is related to the solving. 

Table 1. Hierarchy of categories of references among 199 articles about word prob-
lems, with the number of references in each category given. Named categories include 
references that have been studied in more detail in section 4.2. All subcategories are 
not necessarily disjoint. 

Empirical studies 115 
 Variation of variables 75 
  Effect on performance (i.e., right or wrong solution) 52 
   Effect of text formulation [Category EP1] 19 
   Effect of reading ability [Category EP2] 4 
  Effect on the solving process 15 
   Effect of text formulation [Category ES] 4 
 Case (no structured variation of variables) 40 
Discussions or theoretical studies 77 
 Types/properties of problems (including how solving can be affected) 

[Category D1] 
12 

 Types of factors affecting solving problems [Category D2] 7 
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Reading comprehension and problem solving 
This discussion will focus on the results from different studies, where different 
types of students and problems have been used, which of course can affect the 
results in different ways. However, this discussion will settle with the conclusion 
that there exist problems/students for which these types of results emerge, which 
then will be interpreted from a reading comprehension perspective. Therefore, no 
full meta-analysis of purposes, methods and results of studies will be performed. 
Several studies show that the performance in solving problems can be negatively 
affected by a higher complexity of the language used in the problem text (Cate-
gory EP1 in table 1, e.g., Abedi & Lord, 2001) as well as by a relatively lower 
reading ability among students (Category EP2, e.g., Jordan & Hanich, 2000). 
Although these results can be seen as quite obvious, theoretically they can be 
interpreted as showing the need for more general literacy skills also when read-
ing and solving problems in mathematics. 

Both task context and situation context (Wedege, 1999) have been studied in 
the analyzed references. For word problems, the task context has been varied in 
different ways in empirical studies, for example, by trying to make the text more 
personal or interesting for the reader (Bates & Wiest, 2004). These types of 
studies focus on the effect the context may have on the performance among stu-
dents (Category EP1), and different types of effects have been found, but it is not 
clear how these results should be interpreted. Does an increase in interest cause 
an increase in the effort that the student puts into trying to solve the problem, or 
does it activate more relevant prior knowledge that can be helpful when solving 
the problem? These types of questions have not been answered in the reviewed 
literature. Also, as the study by Renninger, Ewen and Lasher (2002) shows, there 
are many different types of interests that come into play at the same time in a 
rather complex way, such as interest for reading, for mathematics, and for the 
context described in the problem text. More generally, these results seem to de-
pend on a rather complex, and seemingly not thoroughly investigated, interplay 
between properties of the text, the reader, and the situation. 

Several studies show that students often seem to ignore realistic considera-
tions when solving mathematical problems (e.g., Yoshida et al., 1997). However, 
other studies have altered the physical and social situation when solving a prob-
lem (i.e., the situation context), which resulted in more realistic answers among 
the students (Roth, 1996; Wyndhamn & Säljö, 1997). Thereby, how the student 
experiences the situation will affect the problem-solving process, that is, the 
comprehension of the situation is a relevant factor when solving (word) prob-
lems. Others (e.g., De Corte, Verschaffel, & De Win., 1985) describe a word 
problem as a quite peculiar type of text that can include ambiguous statements, 
which in the given situation need to be interpreted in a particular way (e.g., a 
statement that a person has $5 could in general be interpreted as either that the 
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person has exactly $5 or that the person has at least $5). Thus, one needs specific 
types of prior knowledge about how statements in this situation should be inter-
preted, that is, one needs a type of content-specific literacy skill in this type of 
situation. However, as a side effect, as these type of skills evolve they seem to 
cause students to produce unrealistic answers in certain situations. 

Another content-specific skill that seems to evolve among some students is 
to focus on numbers and keywords in the problem text (Hegarty, Mayer, & 
Monk, 1995). This surely seems to be a reading strategy specific to mathematics, 
since Bilsky, Blachman, Chi, Mui and Winter (1986) show that students’ reading 
strategies can be influenced by making them read a text either as a mathematics 
problem or as a telling of a story. When read as a problem, the text was read with 
a focus on quantitative aspects and as a story it was read with a focus on more 
qualitative and temporal aspects. 

Studies that in a more direct manner examine both the mental representation 
(often by letting students retell the text) and the solving of the problem consis-
tently show a strong connection between these two aspects (Category ES, e.g., 
Cummins, Kintsch, Reusser, & Weimer, 1988), that is, the students solve the 
problem as they have understood it. Another possibility would be that one creates 
an elaborate mental representation of the text but bases the solution on something 
else (e.g., parts of the text itself and not the mental representation of the text). 
More detailed studies of the relationship between the mental representation and 
the solution show that better problem solvers mostly remember the semantic 
structure of the text while worse problem solvers mostly remember details in the 
text (Hegarty et al., 1995), and that the retelling of a problem text sometimes is 
made in another order than what was presented in the given text, an order that 
more closely resembles the calculation that is used when solving the problem 
(Hershkovitz & Nesher, 2001). This last result appeared both when the retelling 
was performed before the solving of the task (i.e., directly after reading the text) 
and when it was performed after the problem had been solved. Thus, the solving 
of the problem seems to have already begun in the reading process, a possibility 
discussed earlier in this paper. The existence of a specific question in the text as 
an important aspect was also discussed earlier. Therefore, in order to more 
clearly see a possible more direct effect of the mathematical situation (and not 
the existence of a question) it would be interesting to examine the mental repre-
sentation before a question is given. However, no such studies have been found 
in this literature survey. 

 
Conclusions 
From the discussions in this paper it becomes evident that the relationship be-
tween reading comprehension and problem solving is complex. First, the reading 
process can affect the problem solving process, but can also act as an integral 
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part of the solving process. However, not much research seems to have been 
done involving the latter relationship. Second, the literature survey has given ex-
amples of how the problem-solving situation seems to affect the reading process. 
However, not much research seems to have been done that directly focuses on 
this relationship, but the results discussed in the literature survey seem to be able 
to explain by assuming that the situation affects the reading process in certain 
ways, for example, that the reader uses specific strategies (or literacy skills) in 
this type of situation. 
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