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Preface

This volume contains the proceedingsMADIF 4, the Fourth Swedish Mathe-
matics Education Research Seminar, with an introduction by the editors. The
seminar, which took place in Malmé January 21-22, 2004, was arranged by
SMDF, The Swedish Society for Research in Mathematics Education, in co-
operation withMalmo hogskola. The members of the programme committee
were ChristeBergsten, Barbro Grevholm, Ingvill Holden, Thoniasgefjard,

and Marie Skedinger-Jacobsson. The local organiser was Marie Skedinger-
Jacobsson aflalmo hogskola.

The programme included three plenary lectures, one plenary panel, and
twenty paper presentations. We want to thank the authors for their interesting
contributions. The papers have been reviewed by the editors, and some minor
editorial changes have been made without noticing the authors. The authors are
responsible for the content of their papers.

We wish to thank the members of the programme committee for their work
to create an interesting programme for the conference, and Blkeinger-
Jacobsson for her valuable help with the preparation and administration of the
seminar. We also want to express our gratitude to the organidéatematik-
biennalen2004for its valuable financial support. Finally we want to thank all the
participants aMADIF 4 for creating such an open, positive and friendly atmos-
phere, conthbuting to the success of the conference.

ChristerBergstenBarbro Grevholm
Editors
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Introduction
Mathematics and Language

Christer Bergsten, Linkdpings universitet
Barbro Grevholm, Hagskolen i Agder

For the fourth mathematics seminar arranged by the Swedish Society for
Research in Mathematics Education, the theme was chosenMathematics

and languageln this volume we have collected the contributions to the seminar.

It contains the three plenary lectures, the plenary panel presentation, and eighteen
paper presentations.

The crucial role of diagrams in mathematical reasoning is the focus of Willi
Dorfler's plenary presentatioNathematical reasoning and observing trans-
formations of diagramsRecognising that diagrams of many different kinds are
ubiquitous in mathematics, and that reasoning often deal directly with the
transformations of diagrams, building on their structural properties and often
rule-governed transformations, rather than with abstract ideas involved in
mathematical concepts, the character and relevance for mathematics education of
Peirce’s notion of diagrammatic reasoning is outlined. This points to the
Importance of perceptive aspects of mathematical thinking. Diagrammatic
reasonning is used to solve tasks, to be distinguished from a representational use
of diagrams. By offering examples from elementary arithmetic, and from linear
and abstract algebr&orfler highlights the power and usefulness of different
kinds of diagrammatic reasoning.

Terezinha Nunes argues in her keynote conributimw mathematics
teaching develops pupils’ reasoning systeimat the theories of Piaget and
Vygotsky are coherent and complementary, and combined will give a broader
picture of children’s learning of mathematics. Using the conception of thinking
systems, she shows by looking at pupils’ working with multiplicative tasks, that
the schema of one to many correspondence is used by very young children when
mediating thinking tools are available, as well as in multiplicative reasoning out
of school. Multiplication as repeated addition does not support this crucial
schema for developing this kind of reasoning. To build powerful reasoning
systems in classrooms, important principles and tools for the systems to work
must be analysed.

In her plenary addressssessing students’ knowledge — Language in mathe-
matics testsAstrid Pettersson offers an insight into the Swedish old and new
systems of national testing in mathematics education. By looking at the variables
authenticity, feedback and documentation, she concludes that the new system
opens up for a broader and more supportive assessment process, for both teachers
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and students, with an aim to develop and analyse rather than to judge and
condemn.

In the plenary panel, moderated by Christer Bergsten, the conference theme
Mathematics and languageas discussed yakan Lennerstad, Norma Presmeg
and AseStreitlien. Focusing on language in mathematics education, one can
study both its structure and its use. The latter will be in focus when analysing
communication in the classroom — this was the direction taken by Ase Streitlien
in her contribution on dcourse patterns in a primary mathematics class. The
aspect of meaning was then added by Hakan Lennerstad, which led into the study
of language also as a structure with the question: Why don’'t we teach the
grammar ofMathematish? To analyse both the use and the structure of language
in the mathematics education context, Norma Presmeg offered examples of how
the ideas of semiotic chaining had helped mathematics teachers to reflect on and
develop their practice. Follow-up questions from the audience demonstrated well
that language is an important and deep issue in mathemaicatied.

The paper presentations open up with a contribution in Swelleshekte-
rande samtafor pedagogisk utvecklin¢Reflective conversations for pedago-
gical development) by Ann Ahlberg, J&dke Klasson and Elisabeth Nordevall.

In this study the overall aim is to explore how the spgmalagog and teachers
work together in order to develop the teaching in mathematics. The results show
that the conversations contribute to the initiation of processes, which help the
teachers to make visible their standpoints and awareness of values. The conver-
sations help the teachers to develop a reflecattgude which give them
preparedness for action, and knowledge to better understand and change their
own practice.

Kristin Bjarnadottir writes abouteachers’ preparedness of ‘Modern Mathe-
matics’ in Iceland A historical account is given of the Icelandic school system
and in particular teacher education and how it was prepared for the radical
alteration of modern mathematics and its language in the 1960s and onwards. She
presents four measures not taken by the authorities that she claims hindered the
development of mathematics teaching in Iceland. She also raises the question if
other circumstances such as the Icelandic inheritance of home- and self-
education did mend the situation.

In the paperO n reasoning characteristics in upper secondary school
students’ task solvinthe authors TomaBergqvist, Johan Lithner arndvisa
Sumpter investigate what it is that makes students succeed or fail in a proble-
matic situation. They ask in what ways students manage of fail to engage in
plausible reasoning as a means to make progress in solving tasks. Another
guestion is the role of use of established experiences, algorithmic reasoning and
piloted reasoning. The results show that most students use algorithmic reasoning
or repeated algorithmic reasoning. Sometimes students’ conceptual understan-
ding is not sufficient for plausible reasoning.
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Lisa Bjorklund’s contribution has the titleeachers and assessment — A descrip-
tion of Teachers’ actions connected with the mathematics national test for school
year 5.In the paper the following questions are discussed: 1) Do teachers
verbalise their observations and assessment of pupils’ knowledge achievement in
the competency profile enclosed about the pupils’ competencies? 2) How do
teachers assess pupils’ work in one part of the text? 3) What attitudes do teachers
have towards the National Test in mathematics and towards pedagogical assess-
ment? The results show that teachers are generally pleased with the structure and
content of the test. They also feel that the recommendations regarding what
pupils should be able to achieve are reasonable in relation to the goals to be
attained. Most teachers do not verbalise their assessments of pupils’ knowledge.
The author claims that the Swedish model for assessment can be improved via
professional development of teachers in the area of assessment.

On the role of problem solving and assessment in Swedish upper secondary
school mathematics in Finlanrd the title of the contribution by Lars Burman. In
the survey the teachers agree that there are important strategies in problem
solving to focus on in their instruction. Two out of three teachers construct at
least one new problem for a text in mathematics. The results show that most
teachers (more than 90 %) agree that problem solving ability should have impact
on pupils’ marks in mathematics. More than every second teacher uses tests as
part of the instruction and during courses as a complement to the course test. All
teachers want to make students take responsibility for their own learning and
almost all try to make students aware of their knowledge. The impact of
matriculation examination was confirmed but not very strong.

Hamper or Helper: The role of language in learning mathemagi¢ssed on
the author’s, Bettina Dahl’s, doctoral thesis work. She has investigated four
Danish and six English students and interviewed them in order to find out how
they see language in connection to learning mathematics. There are various
views of language in relation to how the pupils explain how they learn a new
mathematical concept. Students use language as a thinking tool or they think it
has a dual nature as it both facilitates and hampers learning. Another group of
students think that language hampers learning.

Elsa Foisack writes about her work for the doctoral thesis in pedagogy in the
paper entitledeaf children’s concept formation in mathematithe concepts
of multiplication with whole numbers and length are investigated. No difference
was found concerning the steps towards comprehension of the concepts for the
deaf pupils compared to those of hearing pupils. As in earlier research, it was
found that deaf pupils need more time to learn mathematics than hearing children
normally do. Of importance for the learning of deaf childsealso the structure
of sign language and the lack of an established terminology in mathematics.

Mikael Holmquist's paperProspective mathematics teachers’ learning in
geometryis based on a study of student teachers in Gothenburg. He has shown
that the concept images of the students more rarely correspond to the mathe-
matical concept definition. Some issues about the consequences for the prospec-
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tive teachers’ work in the classroom are raised. What kind of concept definitions
and concept images are on the teacher’s repertoire? What kind of referents and
criteria are the bases for the teacher’s standpoint in assessment and validation?
The emerging result will form the basis for deeper studies of what these
prospective teachers learned in geometry and how they will express this in their
teacher practice.

KULT-projektet — Matematikundervisning i Sverige i internationell belysning
is the contribution (in Swedish) by Johan Haggstrom. The KULT-project stands
for Swedish school culture — classroom practice from a comparative aspect and is
part of a greater study, The Learner’s Perspective Study. A large data material
has been collected through video tape recording of classroom activities by three
different cameras at the same time. Teachers and pupils comment on the tape
recorded sequences immediately after the lesson. The method opens opportu-
nities for a deeper understanding of the studied teaching and the relation between
teaching and learning.

In Limits of functions — how students solvéasks Kristina Juter presents a
study of universitystudents justifications of how they solve tasks on limits of
functions. The study is part of a larger study published as her licentiate thesis on
students’ concept formation of limits of functions. The study was carried out at a
Swedish university at the first level of mathematics studies. Two groups of
students on consecutive semesters solved the same tasks. Students’ solutions are
analysed and categorised and the results are presented in some detail from five of
the given problems and reveals that there are many aspects to work with in order
to improve students’ learning.

SinikkaKartinen presents in her pads¥arning to communicate — Communi-
cating to learn in mathematics classrooarsinvestigation of the mathematical
problem solving process in a collaborative learning situation with in service
teachers. The goal is to develop an appropriate analytic tool to highlight collabo-
rative problem solving processes in the learning of mathematics, to investigate
the role of cultural tools in the collaborative learning of mathematics teachers,
and to investigate the processes of teacher participation in the collaborative
learning of mathematics pedagogy. The study yields useful information about
teacher learning and development from both the social and mathematical point of
view. It also provides educators with tools to develop curriculum as well as
instructional solutions for the mathematics classroom.

The linguistic side of mathematics discussed by Thomadsngefjard and
illustrated with examples form an algebra course taught with a focus on
language. How do students and teachers handle the language of mathematics and
how do they change back and forth between common language and the language
of mathematics? He presents many arguments for teaching the language of
mathematics and points out that all students should be taught the importance of
the language of mathematics to better understand the subject.

Matematish — a tacit knowledge of mathemahgsdHakan Lennerstad and
LarsMouwitz has the purpose to highlight the symbolic notations of mathematics
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and present some hypotheses. The authors stress the language aspect of the
symbolic notation system and call it ‘Mathematish’. Using speculative reasoning

in combination with empirical underpinnings form history of mathematics and
their own teacher experience, they argue that Mathematish is a complete
language and hope that this will create fruitful analogies with other languages.

Kategoriseringav smagruppershandlingaris the title of the paper by Stefan
Njord, Gunilla Svingby an@arbro Grevholm. The aim of this study is twofold:
to study how a smaller group of pupils without the presence of a teacher
collaborate to solve the experiments the group decides to work with and to study
how the group uses the artefact (a graphical computer program). The detailed
analysis of the actions in the group creates the categories interpretation,
verification, trial and error and computation with formulBgferent sequences
of these categories of action are used by the groups. The strategies of cooperation
and the use of the artefact are described in the paper.

A theoretical framework for analysis of teaching-learning processes in
algebra is presented by Constanfalteany Barbro Grevholm and Torgny
Ottosson. The framework is based on the variation in ways of making sense of
the object of learning and the effectiveness of the communication during the
lessons. The aim of the framework is to help in understanding the classroom
interaction and the influence it has on the forming of the object of learning in
algebra. The framework is a tentative try to comishard’s focal analysis and
the reification theory wittMarton’s theory of variations.

Rudolf Strasser starts from the definition Byartofsky on artefacts in his
presentatiorArtefacts — Instruments — Computer#ie develops the concept
further as Warfofsky does in primary, secondary and tertiary artefacts. The
explanation of the concepisstrumentalisation and instrumentation is given in
connection to the development of utilization schemes. This leads the author to
information and communication technology, ICT. lllustrations from the use of
Dynamical Geometry Software are used to shed light on the points on artefacts.
In the conclusionstrasser claims that utilizations schemes found by empirical
studies can enrich the picture, which the researcher has of the process of teaching
and learning mathematics.

Eva Taflin, Kerstin Hagland and Rolf Hedrén &¥kat mathematical ideas
do pupils and teachers use when solving a rich probl&m™ videotaped
lessons and interviews they draw the conclusions that teachers’ own mathema-
tical ideas and solution methods direct their pupils, that teachers sometimes have
difficulties producing feedback building on their pupils’ solutions, and seldom
make generalisations out of their pupils’ solutions. In ten examples drawn form
their data they analyse and argue for these results.

Allan Tarp talks aboutathematism and the irrelevance of research industry
He formulates an irrelevance paradox linked to the relevance paradox by Mogens
Niss. He also claims that mathematics education research increases together with
the problems it studies. The irrelevance paradox can be solved by using a
postmodern sceptical LAB-research to weed out LIB-basa&ithematism coming
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from the library in order to reconstruct a LAB-based mathematics coming from
the laboratory, as he phrases it. The reader has to find out what he means by the
fact that the ‘Cinderella-difference’ is making a difference in the classroom.

In the plenary lectures, debate and papers presented in this volume, the
relation between mathematics and language is viewed and discussed from many
different perspectives and the authors see the importance of being aware of the
language aspect of mathematics in teaching and learning. We hope that you as a
reader will find several of these perspectives interesting and fruitful and that they
can add something to your understanding of the character of mathematics
teaching and learning. We thank all the contributors for the many and varied
papers and are confident that the discussion on mathematics and language will
continue.



Mathematical Reasoning and Observing
Transformations of Diagrams

Willi Dorfler
Universitat Klagenfurt

Introduction

This contribution is located in the context of the philosophy of mathematics by
the American philosopher and pragmatist Charles Saunders Peirce. Yet, it is
readable and understandable without a detailed knowledge of the stance taken by
Peirce. The interested reader might consult the papafter (2004a, 2004b) or
Hoffmann (2001, 2002)This especially holds for the notion of diagram and
diagrammatic reasoning which were introduced by Peirce to explain, on the one
hand, the stringency of mathematical proofs and, on the other hand, the
possibility of invenions and constructions in mathematics, or what he calls
"surprising obserations”. Thus he says (in Peirce, Collected Papers 3.363):

It has long been a puzzle how it could be that, on the one hand, mathematics is
purely deductive in its nature, and draws its conclusions apodictically, while on
the other hand, it presents as rich and apparently unending a series of surprising
discoveries as any observationalesice. Various have been the attempts to
solve the paradox by breaking down one or other of these assertions,Hut wit
out success. The truth, however, appears to be that all deductive reasoning, even
simple syllogism, involves an element of observation; namely, deductien co
sists in constructing an icon or diagram tékations of whose parts shall present

a complete analogy with those of the parts of the object of reasoning, of experi
menting upon this image in the imagination, and of observing the result so as to
discover unnoticed and hiddenaebns among the parts. ... As for algebra, the
very idea of the art is that it presents formulae, which can be manipulated and
that by observing the effects of such manipulation we find properties not to be
otherwise discerned. In such manipulation, we are guided by previous discov-
eries, which are embodied in general formulae. These are patterns, which we
have the right to imate in our procedure, and are the icons par excellende of a
gebra.

From this it already comes clear that a diagram might be of a great variety: ge
metric figures and algebraic expressions as well. For short, diagrams in Peirce
are special (iconic) signs which have a clearly defined and recognizable structure
and which can be manipulated according to (conventional) rules for transforma
tions and compositions, cf. again takove mentioned papers. The crux of all
that is that empirical and perceptive observation becomes a decisive part of
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mathematical reasoning, of devising and understanding proofs and mathematical
arguments. Mathematical reasoning in this view is not so much the handling of
abstract ideas in one's mind but the observation of the effects of one's manipul
tions of diagrams. The mathematical ideas rather reside in the inventics of di
grams and of their fruitful manipulations, transformationsmgaositions.
Mathematics in this sense studies the general properties and regularities of ce
tain diagrams and of the operations with them. In accordance with the triadic sign
concept ofPeirce those diagrams will be interpreted by their users in many dif
ferent ways and will be related to "objects" (in the sense of Peirce) alsa-in var
ous ways. In a way, | am analysing here only the sign asggce$eramen) of
thatPeircean triad "sign, objedhterpretant” but apparently this for matheits

Is of crucial impotance.

From diagrammatic reasoning derives also the absolute reliability and secu-
rity of mathematics, its so-called logical necessity. This differentiates observation
of diagrams also from empirical observation in the natural sciences. Dragra
matic observation "sees" that a certain relationship will hold in all conceivable
instances of the respective type of diagrahins is enabled by the generic cha
acter of the (mathematical) diagrams: each single instance or token fully presents
the respective type according to an adequate perspective on the token. Like, say,
any inscription of the letter "a" presents that letter (as a type of inscriptions under
a certain perspective). Finally, it should be emphasized that diagrammatic rea
soning is very much different from algorithmic calculations. Though it is rule
based it needs creativity and inventiveness like composing music.

Diagrams

Despite here the stance is taken that mathematical development to a great part
consists in the design and intelligent manipulation of diagrams no general defini-
tion of the notion of diagram is given but rather several examples and descriptive
features are presented. Generally speaking, diagrams are kind of inscriptions of
some permanence in any kind of medium (paper, sand, screen, etc). Those in-
scriptions mostly are planar but some are 3-dimensional like the models-of ge
metric solids or thenanipulatives in school mathematics. Mathematics at all le-
vels abounds with such inscriptions: Number line, Venn diagrams, geometric
figures, cartesian graphs, point-line graphs, arrow diagrams (mappings), arrows
in the Gaussian plane or as vectors, commutative diagrams (category theory); but
there are inscriptions also with a less geomélacor: arithmetic or algeraic

terms, function terms, fractions, decimal fractions, algebraic formulas, palynom
als, matrices, systems of linear equations, continued fractions and many more.
There are common features to some of these inscriptions, which contribute to
their diagrammatic quality as understood here. But | emphasize that by far not all
kinds of inscriptions, which occur in mathematical reasoning, learning and



Dorfler

teaching have a diagrammatic quality. Quite a few of what are taken as visuali-
zations or representations of mathematical notions and ideas do not qualify as
diagrams since they lack some of the essential features. Mostly this is the precise
operative structure which for genuine (Peirgediagrams permits and invites

their investigation and exploration as mathematical objects. On the other hand,
diagrams are of such a wide variety that a generic definition appears impossible
and impracticable, as well. Accordingly, the various kinds of diagrams inta Wit
gensteinean sense are connected by family resemblances and by the ways we use
them. Some widely shared qualities of diagrams are proposed in theirfigtiow

— diagrammatic inscriptions have a structure consisting in a specific spatial
arrangement of and spatial relationships among their parts and elements. This
structure often is of a conventional character.

— based on this diagrammatic structure there are rule-governed operations on
and with the inscriptions by transforming, composing, decomposing, nomgbi
them (calculations in arithmetic and algebra, constructions in geometrya-deriv
tions in formal logic). These operations and transformations could be called the
internal meaning of the respective gliam.

— another type of conventionalised rules governs the application and inter
pretation of the diagram within and outside of mathematics, i.e. what the diagram
can be taken to denote or model. These rules one could term the exterfe or re
rential meaning (algebraic terms standing for calculations with numbers, a graph
depicting a network or a social structure). The two meanings closely inform and
depend on each other.

— diagrammatic inscriptions (can be viewed to) express relationships by
their very structure from which those relationships must be inferred based on the
given operation rules. Diagrams are not to be understood in a figurative but in a
relational sense (like a circle expressing the relation of its peripheral points to the
midpoint).

— diagrammatic inscriptions have a generic aspect which permitsnto co
struct arbitrary instances of the same type of diagram. This leads among others to
consider the totality of all diagrams of a given type (like all triangles, all decimal
numbers).

— there is a type-token relationship between the individual and spe@iHic m
terial inscription and the diagram which it is an instance of (like between a writ-
ten letter and the letter as such).

— operations with diagrammatic inscriptions are based on the perceptive a
tivity of the individual (like pattern recognition) which turns mathematics as dia
grammatic reasoning into a perceptive and material activity.

— diagrammatic reasoning is a rule-based but inventive and construetive m
nipulation of diagrams to investigate their properties and relationships.
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— diagrammatic reasoning is not mechanistic or purely algorithmic, it is
imaginative and creative. Analogy: the music by Bach is based on strict rules of
cownterpoint but yet is highly creative and variegated.

— many steps and arguments of diagrammatic reasoning have no referential
meaning nor do they need any.

— in diagrammatic reasoning the focus is on the diagrammatic inscriptions
irrespective of what their referential meaning might be. The objects of diagram-
matic reasoning are the diagrams themselves and their already established pro-
perties.

— diagrammatic inscriptions arise from many sources and for many pur
poses: as models of structures and processes, by deliberate design and-constru
tion, by idealization and abstraction from experiential reality, etc. And they are
used accordingly for many purposes.

— efficient and successful diagrammatic reasoning presupposes intensive and
extensive experience with manipulating diagrams. A widespread "inventory" of
diagrams, their propges and relationships supports and occasions the creative
and inventive usage of diagrams. Analogy: an expect chess-player has command
over a great supply of chess-diagrams which guide his or her strategic problem
solving. Consequence: learning mathematics has to comprise diagrammatic
knowledge of a great variety.

Using Diagrams

Another dimension of explicating the notion of diagram or of diagrammatic re
soning is which uses are made of them in mathematics. First, the most wide
spread usage is to use the admissible operations and transformations to solve a
given task. This comprises calculating a numeric value, solving equations, con-
structing a proof in geometryinding a derition (in formal logic) and many
others. Thereby one operates with the inscriptions by exploiting and observing
their structure and its changes. Thus, this is a material and perceptive activity
guided by the diagrammatingcriptions. It is like in other material actions: to be
successful one has to have acquired an intimate experience withjelces@ne

IS operating with, which herare the inscriptions. This is required and not so
much abstract or conceptual knowledge. There are algorithmic operations (con-
sider the Gauss algorithm) but much of diagrammatic reasoning is highly creative
because the appropriate operations with the diagrams have to be firstef all d
vised and deployed.

This first type of use is the onlyne which | want to subsume as diagram-
matic reasoning. It is essential that the diagrammatic inscriptions themselves are
the objects of thactivity which produces knowledge about and experience with
the diagrams. Second, the other usages of diagrammatic inscriptions | will call
representational. The first kind of representational use is when a diagrammatic

10
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inscription is taken as a model for some other material or virtual structure from
any science including mathematics itself or from any practice. This is captured
by terms like application of mathematics or mathematization. It is not the place
here to discuss that any further. | only remark that therein lies an important
source for the design of diagrams which then within mathematics become the
topic of diagrammatic reasoning. A second type of representational use is wide
spread in mathematics education: to use diagrams as representations for to be (by
the learner) constructed abstract objects. The diagrams are taken as a means for
mental or cognitive constructions and thus have little interest in themselves. They
are then more kind of a methodological scaffold possibly unavoidable but to be
dismissed when successful. This is diametrically opposed to diagramnaatic re
soning where the focus is on the diagramsgedves as the objects of study and

of operations and not on their doubtful mediation with virtual objects. In ghis re
resentational view mathematics is a predominantly mental activity supported by
diagrams whereas mathematics as diagrammatic reasoning essentially és a mat
rial and perceptual one. And this does not reduce mathematics to meaningless
symbol manipulations since the diagrams have meaning through their structure,
their operations and transfortrans and of course via their applications. This
holds for all diagrams as considered here in a way completely analogous to how
geometric figuresan have meang.

Observing Diagrams

In this section | will present some examples which hopefully offer to the reader
the experience that mathematical proofs in many cases depend on thetmisserv
of structural relationships and regularities within transformations agfrains.
Other examples can be foundDdrfler (2004a). In all examples the results of
previous "experiments” with diagrams are used as established formulaeoar "the
rems".

There is the surprising result of: 11x11=121, 111x111=12321, 1111x
1111=1234321 etc. This can be "explained" by observinggaain like the one
below. One of the rules used here is the decimal multiplicaigorithm which
in itself does not predict the observed relationships in the above diagrams. The
"understanding” of the surprising results derives from recognizing the pattern of
1's which is produced by the algorithm. The usual common interpretation of the
symbols might be helpful but the essential point consists in the percepsee o
vation of the outcome of one's operations on the diagrams. These would hold
even if there were no interpretation of the symbols as numbers. A precondition
for this diagrammatic reasoning clearly will be a close familiarity with the dia
grams and proficiency in their operations. This possibly sheds new light on the
role of "calculations” conceived in a wider sense as intelligent and creative op-
erations with diagrams.

11
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Based on these first observations there is a rich space of further diagrammatic
experiments and thought experiments with those diagrams. There is alsg-the po
sibility of changing the diagrammatic rules, e.g. by chog different bases for

the place value system.

In their famous book "Grundlagen ditathematik" Hilbert and Bernays
analyze operations with arrays of strokes (or points) the observation of which
leads to much of what are taken to be properties of natural numbers. The natural
numbers are intpreted as types of arrays of strokes two of which are of the
same type if they can be matched one by one. Addition and multiplication appear
as operations with thoserays which clearly show a diagrammatic character.
Properties like evenness anddodss are observable qualities of those diagrams
in the form of specific arrangements of the strokes. A good example of diagram-
matic reasoning is the statement that the sum of two odd numbers (diagrams) is
even. This results from observing the combining of two odd diagrams ip-an a
propriate way. In this kind of diagrammatic reasoning that statement is a way of
reporting one’s bservations (and not a satent about abstract objects):

*kkkkkkk kkkkkkkkk kkkkkkkkkkkkkkkkk

1 kkkkkkkkkkkkkkkkk
*kkkkkk p I us *kkkkkkkkk g ves

Here the generic character of the diagrams is an impdetinire which provides
the generality of the assertions about the diagrams. Similarly, diagrammatic rea
soning by inspection of the following diagram

12
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*kkkkkkk *kkkk kkkkkkkkkkkkk

1 *kkkkkkhkkkkhkk
*kkkkkkk p I u S *kkk g Ives

implies the rule “even + odd = odd”. In the same manner the corresponding rules
for multiplication are obtained by diagrammatic reasoning with rectangular
(product) arangements.

Also the next example — as the others as well — is well known and only serves
the purpose of orienting the attention of the reader to the role of perceftion, o
servation, pattern recognition and manipulation of concrete inscriptions as a co
stitutive part of mathematical thinking.

The young Gauss is reported to have found the sum of the first 100 positive
integers by thiking of those numbers as being written down in the following
way

1 2 3 4 .. 49 50

100 99 98 97 ... 52 51

and adding the two numbers in each of the 50 columns t60g&01=5050 as

the rguired sum. This is very similar to our first example: a certain recognized
pattern in a diagram gives the result. Here the generic character (for even num-
bers) can be seen: a thought experiment with the respective diagram gives the
formula ((2/2)x(2 +1)). Further experiments with those diagrams will leadrto a

other more general diagram for arbitrarylike the fdlowing:
1 2 3 4 5 6 7

7 6 5 4 3 2 1

| do not deny that an understanding of the involved symbols as natural numbers
is helpful or even necessary for recognizing the relevant pattern. But for the latter
a certain regularity, namely constant sum in the columns, is most important, and
that is not inherently related to natural numbers. Thus, the diagram is added to
the known properties of natural numbers and enlarges the knowledge about them.
In a similar way one can analyse many other number patterns like triangular,
square, rectangular numbers. In all cases besides symbolic presentations graphic
ones using arrays of dots is another kind of diagrammatic reasoning based on
experiments with and observation of diagrammatic structures. To that already
point names like "triangular”, "square" or "rectangular”.
Within linear algebra there is a wealth of examples for diagrammatic reaso-

ning. The basic diagrams there are matrices and their operations. Consider
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A=(a;) an (mxn)-matrix and a = (z,) an (nx1)- matrix(vector). Then the
I -th component of the produ&a is
818, T goa + -+ Apay,

or more detailed the vectota = (p,) is given as:

b, = apay + apa, + - + a,a,
b, = aya; + axpa, + -+ + aa,
bm = amag + Ampay o+ Amndn

An empirical investigation of this diagram exhibits a column-wise regularity,
which can be expressed as

Aa=a,0,ta,a,+---+a,a,

wherea; :(aij) is thej - thcolumn-vector of4. This is a result which is a strin-

gent consequence of the operation rules for matrices and the diagram above can-
not be doubted, it is an apodictic argument though (or possibly because of) being
based on "pattern recognition”.

Once such a "pattern” is established as a formula or theorem, it can fruitfully
be used to derive further consequences. Assumirig be thei - th unit vector
&(a; =0 forj#i,a =1)i=1...,n, leads toAg =a;, which of course can be
recognized from other diagrams also. Here it becomes even more prominent that
the importanthing are the operational rules and not so much the (referential)
meaning of the symbolsanipulated. We only use our knowledge how to operate
with the symbols. But still it is not a m@agless, purely formalistic game: we
discover surprising and fascinating relationships for the diagrams. Thus diagrams
play here manifold roles. They are, on the one hand, the objects of reasoning
properties of which are detected and described (by new diagrams). On the other
hand, diagrams are the means for mathematical reasoning by which relationships
and regularities become observable patterns.

As another example we study one of the proofs of Cramer's rule for the solu-
tion of a regular square system of linear equatidxs b;A:(aij) an nxn ma

trix, x =(x;) the solution ver, b=(h ) the right-side vector. Then by assump-
tion the inverseA™ (with AA™ = A™ A= identity matrix) exists and from previ-
ous diagrammatic operations one knows ’dt\a]t:(Aji /|A|) where[Al is the

deterninant, andA;; is the cofactor of;; in 4. Thenx = A™'b and thegfore

X = (U] A)(Agby + Ayb, +...+ Ayby)

14



Dorfler

Now Ag;b;, +Ayb, +...+ A, b, is observed to be the result of expanding tee d
terminant of the following matrixd by thei-th column

E'éll oA bAoAy, E
By o By by apig . apl
A =0

@inl an,i—l bn a'n,i+1 annE
since A; is just the appropriate cofactor resulting from deleting théh line
andi-th column in A or equivalently inA. Thus x; =| A |/|A|. This clearly is
recognised by observing invariant patterns when carrying out diagramrpatic o
rations or experiments. For the latter, intimate experience with those diagrams
and their previously observed properties is indispensable. Of course, several ex-
perimental trials with the diagrams will be necessary before a useful pattern will
be discovered. In any case, it is scrutinizing the diagrams, which is at the core of
"inventing" the proof. In the hindsight, this might then be presented as the "idea
of the proof". We should therefore not expect our students at any level to be able
to indepedently produce proofs without preceding intensive work on the re
spective diagrams. The reader might interpret this for instance in the case of
(Euclidean) geometric proofs. The reader is also encouraged to have a look in a
standard textbook on linear algebra and to read some of the proofs under the
pretext of diagrammatic reasoning. He/she will observe again and again the im-
portance of observing and recognizing patterns of relationships in the produced
diagrams, which are constitutive for the respective proof. Instructive examples
are: row rank equals column rank; matrix of a linear transformation; basis change
for linear transformations. But of course already the basic properties ofathe m
trix operations are good examples for diagnaatic reasoning.

Reading a finished (diagrammatic) proof demands first of all proficiency in
recognizing patterns in diagrams. Devising a proof mostly is based on inventing
new diagrams or parts of them. This becomes most clear in geometric proofs in
the form of auxiliary lines and figures. Here | will refrain from studying geomet-
ric proofs because tldtagrammaticity of mathematical reasoning might be more
unexpected in other fields. For calculus Béefler (2004a).

As another example for a crucial invention | take the standard proof of the

Cauchy-Schwarz-Inequality for an inner-produt,p), i.e. (ar,/3)2 <(a,a)

(B.B). One invents a new djeam (o + xB,a +xB), x any real number, and then
observes the transformatiofi< (o +xB,a +xB) = (a,a)+2x(a,B)+x*(B.8)
which is using the conventional properties of the inner-product. From diagram-

matic reasoning with quadratic polynomials one now knowshhat4ac<O0 if
ax? +bx+c=0 for all x. And this gives for the aboveadiram

15



Plenary addresses

4(a,B)* - 4(a,a)(8,8)<0

which is the desired inequality.

Clearly, this kind of diagrammatic reasoning presupposes intimate aequai
tence with the handling of symbols and with ascribing generality to thecrespe
tive expressions. But still the diagrammatic operations and their observation adds
to all this and constitutes the core of the proof, its stringency and security. Thus,
mathematics cannot be reduced to diagrammatic reasoning but the latter is an
essential component of its specific quality and character. Specifically, having at
hand a great inventory of diagrams, diagrammatic relationships and operations is
a precondion for mathematical inventiveness and productive ideas. The latter
very often are rich and productive diagrams of some sort. Take as an example the
Pascal triangle in combinatorics or possibly simple number relations in the con-
text of developing number sense.

Design

In this section | will present examples for a specific type of proof. It is those
proofs which consist in the purposeful design or construction of a certain kind of
diagrams or in the proof of the possibility of such a construction. In a sense,
those are constructive existence proofs by exhibiting diagrams with the desired
property or properties. A simple example is the proof that between any two frac
tions m/n and p/q there is another one: Assuming/n< p/qg we find mg< np
because ofmg/ng<np/ng. Then for anyk between2mgq and 2np the fraction
k/2nq will be a required fraction. Or, the Euclidean proof that for any given set
of prime nunbers we can find one not in this set is also of that kind.

The next example on the first glance does not give the impression tlsat in e
sence it is the design of diagrams, which is at the centre of the proof of the theo-
rem. It is the well-known theorem i§ronecker about the existence of roots for
polynomials. More technically the theorem reads as follows. For any polynomial
P(x) over a fieldF (i.e. the coefficients oP are elements oF ) there is anxe
tension-field F; of F where P has a root (i.e. irfF; there is an element with
P(r)=0 over F,). Thereby one can assume additionally tRats irredudble
over F (i.e. P is not the product of two polynomials overeach of degree 1 at
least). The proof starts by considering the rlﬁ(g<) of all polynomials overF,
which can be condered to be a class of diagrams in the sense used here. Then
the general construction of the fiekl(x)/P(x), of F(x) moduloP(x), is em-
ployed which can be introduced as cotisgs of all equivalence classes of
F(x) moduloP(x). Therebyp, = p,(P) if p, - p, is a multiple ofP in F(x).
Denoting by[p| the class ofp0F(x) the field operations on the classes are

given by [p,] +[p.] =[P, + p,] and[py]X[p,] =[Pixp,]. The latter definitions
have diagrammatic character but the notion of an equivalence class itself is not of
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a diagrammatic quality. Yet, the whole "construction” can be described easily in
a diagrammatic view. In each classrfix)/P(x) there is a unique polynomig

of degree less than the degreeRofif n is the degree oP then F(x)/P(x) can
be viewed as the set of all pabmials a, +a,;x+...a,,x"* over F with the
usual addition and a certain multipliman. The latter results fronp,xp, (poly-

nomial product) by reduction moduR i.e. it is the remainder of the division of
p;Xp, by P. By various diagrammatic manipulations one demonstrates that

those operations for those diagrams satisfy all the properties of a field. The field
F clearly is catained in the new field~; =F(x)/P(x) and thusP can be
viewed as bing a polynomial oveiF;. Among all the diagrams d¥, there is the
special diagranx(i.e. we havea, =a, =...=a,_; =0 and a; =1), and for this
diagram we find according to the diagrammatic rulespthat P(x):O in F;

since P(x) =1P(x) +0, i.e. O (the zero polynomial i,) is the remainder when
dividing P by P. But this is just the same as saying tkat a root ofP in F;.

To summarize: the proof can be interpreted in a diagrammatic way as the design
of a classF; of diagrams containing the elementsfoffor which a sum and a

product can be defined such tHgtis an extension field oF ; and inF; there is
a diagramr(: x) which is a root ofP over F;. The important property of this
proof by cesign is that we can construct a diagramwhich is a root ofP (this is
easy: just say that has the propert(r) =0) and which is element of an exten-
sion field (this is the hard and possibly surprising part). Ontologically, tlee the
rem and its proof are not about abstract objects but about perceivable, observable
and materiallynanipulable objects, viz., theatiramsa, +a,;x+...+a,_,x" ™.

The best known special case of the above of course are the complex numbers
where F =R (the real numbers) angl(x) =x? +1. Thus the resulting diagrams

are of the forma+bx , andx =i is a root ofx? +1 in F, =C. The product inF;
results from

(a+bx)(c+dx) = ac+(ad+bc)x+bdx® = (ac-bd) +(ad +bc)x +bd (* +1)
which in F, i.e. modulox® +1, is (ac-bd)+(ad +bc)x. The reader will reap

nize the usual product i€ where we writea+bi instead ofa+bx. The dia
grams inC can be designed more directly, of course, without the use of te pol
nomials. This proceeds by considering allgdeans of the forma +bi, by defin-

ing a sum and a product for them based oa-1 (a stipulated diagram again)
and by demonstrating via diagrammatic manipulations that thereby results a field.
Focusing on the diagrams, their design and their operatistesad of looking for
"numbers” which are denoted by those diagrams turns this construction into a
rational and even perceivable and observable one. Thplew numbers thereby
loose their common imaginary and mythical quality. Thus the diagrammatic
point of view contributes to demystifying mathematics. Of course, there remains
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the infinity of R which is beyond diagrammatic means. Yet, on the levél of
this does not pose specific problems.

To make the design of a root 8x) and of a field containing it even more
transparent | choose the specific cas€& afZ;, i.e. the field of residue classes of
Z modulo 5 which we denote for the sake of simplicity of writing by 0,1,2,3,4.
Consider the polynomialP(x)=x+2 , which easily is seen to have no root in

Z. since the squares iA, are 0,1 and 4X*+1 would have 2 as a root since
4+1=0 in Zs). The elements oF (x)/P(x) are therefore the diagranas+bx,a
and b in Zg, which are 25 elements among them allZgfand, for @ample,
2%, 3X, 4x, 2+ 3x, etc. For the sum, we have for example

(2+3x) +(3+x) =0+4x=4x; and for the product
(2+3x)(3+X) =1+ 2x + 4x+3x” =1+ x+3x* = x+3x* +2) =x _modulo P,

The latter more easily is obtained by usxig=-2=3in Z; or better inF,. It is

then a matter of dgrammatic reasoning to convince oneself that those newly
designed diagrams with their operations of sum and product have all the-prope
ties of a field. Most of them are direct consequences of the respective properties
holding in Z;. For the multiplicative inverse one has to solve the equation
(a+bx)(c+dx) =1 with a,b given forc,d 0 Zs. If b=0 thenc=1/a and d =0;

otherwisec=a/(a” +2b°) and d =(-b)/(a” +2b%) (observe thaw® +2b° 0
for all a,b 0] Zs not both zero). In this (finite) case one has a complete survey of

all diagrams and there is absolutely no need for abstract objects, which-the dia
grams possibly stand for. At least in these cases the mathematics is about the
writing and manipulating of diagrams according to conventional rules, which
derive from specific purposes and intentions, which can be viewed to bei-a poss
ble interpretant of the diagrams (the signs) in the sen&eiofe. Possibly one

has then to take the diagrams as their own objects to complete the triadic sign
relationship of Peirce.

A similar analysis could be carried out for many other mathematical "con-
structions”. | just mention some more examples: direct products of algebraic
structures (design is the writing of ordered pairs); design of finite geometries
existence of (combinatorial) graphs with certain properties.

Conclusion

| hope the reader has got an idea of what is meant by diagrammatic reasoning and
of its power and usefulness in mathematics. But | hasten to emphasize that
mathematics cannot and should not be reducetiagrammaticity. There are
powerful ways of mathematical thinking and reasoning which appear to evade
diagrammatic methods, s&rfler (2004b). Of very great interest also for the
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learning of mathematics possibly is the intricate interplay of diagrammatic and
other ways of presenting mathematical ideas, their relationships and differences.
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How Mathematics Teaching Develops
Pupils’ Reasoning Systems

Terezinha Nunes
Oxford Brookes University

Recent theoretical discussions have pinned constructivism and songtfudi-

vism against each other. In this paper, | argue Biagetian constraivism and
Vygotsky’s social constructivism are coherent and complementary. If we can reach a
synthesis of these two theories, we will have a more encompassing approach to
analysing how pupils learn mathematics and how mathematics teaching develops
their minds. | suggest that the theories are consistent because they are based on tr
same metaphor of the mind and that they are camguiéary because they explain
different aspects of the development of reasoning. Together they can help us
understand the developments in pupils’ reasoning systems that result from changes
in the thinker (Piaget’s contribution) and in the thinker’s activity when using
different thinking tools (Vygotsky’s contribution). In order to develop these ideas, |
will first discuss the concept of thinking systems. | will then work with a simple
example in mathematics education, multiplicative reasoning. | will first consider the
origin of multiplicdive reasaing - i.e., the development of the thinker, and then
discuss how matmeatics teaching can affect pupils’ reasoning systems in this
domain. To conclude the discussion, | will consider a research agenda for mathema-
tics education based on the conception of thinking systems.

Reasoning systems

Systems theory was applied to reasoning by Piaget and the Russian developmenta
psychologists in the first half of the twentieth century. They were atiegnpo

solve the same problem and envisaged systems theory as the solution. The problen
they were trying to solve was the mind-body problem, posed by the contrast between
biological and higher mental functions.

Biological functions are typically carried out by specialised organs. For
example, digestion is carried out by the digestive system; breathing by the respira-
tory system. Such functions involve a constant task performed by the same
mechanisms leading to an invariant result. If we consider breathing as an example,
the task is to bring oxygen to the cells in the body. This is accomplished by an
invariant mechanism: oxygen is received by the blood cells and transported to all the
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cells in the body. The invariant result is that the cells receive oxygen.

In contrast, higher mental functions are not carried out by a specialised organ
but through the co-ordination of different actions. They are carried out by functional
systems. According tburia’s definition, in functional systems “a constant task [is]
performed by variable mechanisms bringing the process to a constant festigt, (
1973, p.28). | will take two of Luria’s examples to make this point. The first one is
‘remembering’. It is easy to be misled into thinking that we have a specialised organ
for remembering: the brain. Buturia points out that remembering involves
functional systems rather than a single biological unit. Imagine it is your partner’s
birthday and you want to remember to buy some flowers before going home. Your
task is to remember to buy flowers. You can accomplish this through a variety of
means. You can simply repeat this to yourself many times until you think it is now
impossible for you to forget. You may tie a knot around your finger: as you don’t
normally have a string around your finger, this will remind you to buy the flowers.
You might write it down to help you remember - on your palm, where it will be very
visible. Or on a yellow sticker, for example, and paste it on your wallet. Or you may
type it into your electronic diary and set an alarm to go off just before you leave
your office. These variable mechanisms can be used with the same end: to recovetl
the information. No single biological unit can account for all the different mecha-
nisms you may call upon.

A second example used by Luria is locomotion. Walking involves the same
organs: it is a biological function. But locomotion can be accomplished by variable
mechanisms: it involves a functional system. If your aim is to go from A to B, you
may walk, swim, ride your bike, drive, or fly. The end result will be to get to B. One
of the mechanisms will be chosen for practical reasons. Although it could be argued
that all of these mechanisms are under the control of some brain centre that helps us
make connections between different places, this is evidently not so. If | fly from
London to Tokyo, I might not have the faintest idea of how London and Tokyo
relate to each other. When | take a taxi from the airport to the hotel, | do not need to
know anything about the spatial relations between the airport and the hotel.
Locomotion is not a biological function and many of our target destinations could
not be achieved if all we could do was walk.

Higher mental systems are open systems: they allow for the incorporation of
tools that become an integral part of the system. When we take notes in order to
remember something, writing becomes an essential part of remembering. When we
fly from London to Tokyo, the aeroplane becomes an essential part of our loco-
motion. Vygotsky suggested that what is most human about humans is this principle
of construction of functional systems that allow activities to be mediated by tools.
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He termed this ‘the extra-cortical organisation of complex mental functions’ to
stress that these functional systems cannot be reduced to the brain.

Even the most elementary mathematical activities are carried out by functional
systems. Solving the simplest addition problem, for example, involves a functional
system. Paraphrasirgiria: we have no specialised organ for addition. If asked to
solve the problem ‘Mary had five sweets and her Grandmother gave her three more;
how many does she have now?’, a pupil can find the answer through a variety of
mechanisms. The pupil can put out five fingers, then another three, and count them
all; the pupil can put out just three fingers and count on from five; the pupil can
recall an addition fact, 5+3, and use no fingers. If this were a large number, the pupil
might decide to use a calculator. These are variable mechanisms that bring the
invariant result of finding the answer to addition problems.

For educators, one of the most significant features of higher mental functions is
that they are open systems: the variable mechanisms - which are often created
through the incorporation of tools - can be replaced by taking into the system some-
thing new from the environment. When a mechanism is replaced with something
new, the system changes. Children first solve addition problems using their fingers
to represent the objects in the problem. The principle used by the pupils’ reasoning
system in this representation is one-to-one correspondence: one finger represents
one sweet; one counting word is tagged to one finger; the last counting word
indicates the number of sweets. When pupils replace the use of five fingers with the
word ‘five’ by itself, the system changes: instead of one finger for each sweet, one
word represents all five sweets at the same time. This small change has a huge
impact on the reasoning system: whereas the pupil has a limited number of fingers,
number words continue indefinitely on. A system with fixed limits becomes much
more powerful because its limits are removed by a change in tools.

This change - from using fingers to using words - is not simple because it requi-
res refinements of the principles that organise the reasoning system. Fingers repre-
sent sweets through one-to-one correspondence but this principle is not sufficient for
pupils to understand numeration systems with a base. It has been widely documen-
ted that pupils need to understand additive composition of numbers in order to be
able to use number systems efficiently. Vygotsky (1978) himself pointed out that
forming complex mental systems mediated by tools involves a complex and pro-
longed process subject to all the basic laws of psychological evolution. Sign using
activity by pupils - such as the activity of using numeration systems to quantify
answers to problems - is neither simply invented by children nor passed down by
adults. Children’s own activities and the signs they know are initially not connected.
When they become connected, a major development is accomplished.
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To sum up: The points of convergence between Piaget’'s theory/\yayuisky’'s

theory reside in the use of the same metaphor of mind, the search for a solution to
the same problem, the acknowledgement of variations and invariants in thinking
systems, and the acknowledgement of qualitative developmental processes that
precede the possibility of mediated action. On its own, each theory is incomplete.
Piaget had a theory for the development of children's reasoning schemas but did not
have a theory about the consequences of acquiring conventional systems of signs
Vygotsky did not have a theory for the developmental processe9rbatde
mediated action but stressed the increased power that conventional systems of sign:
bring to our reasoning.

The consequences of these gaps are that Piaget’s child can understand numbe
but cannot solve numerical problems. To solve numerical problems, we need nume-
ration systems. Vygotsky’s child can count but may not know when and how to use
counting to solve problems. As mathematics educators, we must bring these two
together: we must understand how children organise their actions and help them
incorporate new tools intimeir thinking systems.

The description of simple problems, like the addition problem mentioned earlier
on, only gives a glimpse at how this process of co-ordinating pupils’ own activities
with conventional signs works. Because the problem is so simple, the example
conveys the false idea that a reasoning system will inevitably change - and change
for the better - when a new mechanism is incorporated into it. Unfortunately, as
mathematics educators know only too well, there isn't reecég a happy end to all
stories. An analysis of multiplicative reasoning will illustrate this point.

Multiplicative reasoning

Piaget’'s (1965) hypothesis was that reasoning about multiplicative situations starts
with pupils' use of one-to-many correspondence as an organising principle. One-to-
many correspondence encapsulates the concept of ratio or a fixed relation betweer
two variables, which are at the core of multiplicative reasoning. Starting from the
Piagetian work, | will argue thanulplicative reasoning cannot be reduced to
repeated addition and that successful teaching about multiplicative reasoning should
attempt to promote the incorporation of systems of signs into the correspondence
reasoning. This is the contribution from Piagetian theory to mathematics education:
the identification of a schema of action that forms the basis of multiplicative
reasoning. From this starting point, we might ask which systems of signs used in
mathematics should be coordinated with this reasoning and what is the best route to
accomplish this in the mathematics classroom. The discussion that follows will be
based on research as far as possible. But there are many points where only hypo
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thetical answers are possible presently: we do not have the research to answer man
of the questions raised here.

One to many correspondence and multiplicative reasoning

Piaget’s initial investigations on correspondence can be illustrated quite simply. The
interviews with children started with the well-known method of asking the children
to take one red flower for each vase. The red flowers are then put aside in a bundle
and the child is asked to take one yellow flower for each vase. The vases are then
taken away and the child is asked whether there are as many red and yellow flowers
on the table. Piaget suggested that this problem is not too difficult for children at
about age 5. They can understand that if the number of red flowers is the same as the
number of vases, and the number of vases is the same as the number of yellow
flowers, then there are as many red as yellow flowers. This is an example of the
famous transitive inferences studied by Piaget: if A=B and B=C, then A=C.

Piaget continued this interview by putting all the vases back on the table and
asking the children how many flowers would be in each vase if all the flowers were
distributed evenly in the vases. Children who succeeded in the preceding question
also knew that there would be two flowers per vase. Piaget’s final test of children's
understanding of correspondence was then to put the flowers away, leaving only the
vases on the table, and ask the children to pick up the correct number of drinking
straws so that each flower would be placed in one straw. The children could see the
vases but not the flowers. In order to solve this problem, the children would have to
think: there are two flowers per vase. To take the same number of tubes, | need to
take two tubes per vase. Piaget suggested that children at ages 5 and 6 show a goc
degree of success in these problems.

In the last few years our research team investigated pupils’ use of one-to-many
correspondence reasoning to solve a variety of multiplicative reasoning problems.
Kornilaki and | examined pupils' solutions of multiplicative reasoning problems in
action; with Bryant, Watanabe and van d¢guvel-Panhuizen, | investigated solu-
tions to written problems, and with Park | investigated the teaching of multiplication
to young children.

Kornilaki (1999) asked young pupils in English schools to solve the following
problem: In each of three hutches there are four rabbits; all the rabbits will eat
together in a big house; the child's task was to place on the big house the exact
number of food pellets so that each rabbit had one pellet. In front of the child was a
row of three hutches but no rabbirnilaki observed that 67% of the 5-year-olds
and all of the 6- and 7-year olds were able to pick up the exact number of pellets
needed to feed the rabbits. The 5- and 6-year-olds had two ways of solving the
problems. One route to solution was by establishing a correspondence between the
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pellets and the hutches, placing four pellets in correspondence with each hutch. The
second solution involved counting: the children first determined the number of
rabbits by pointing four times to each hutch as they counted, and then took that
number of pellets. The 7-year-olds could either use these correspondence solutions
or solve the problem through arithmetic, because they had learned multiplication
tables. It is significant that the lack of knowledge of multiplication tables did not
disadvantage the 6-year-olds in comparison with the 7-year-olds: all the children in
both groups were successful. Thus the principle of correspondence was used by the
younger children to solve multiplication problems before they learned about
multiplication in school; the older children could use a new mechanism, multipli-
cation tables.

In another studyKornilaki (1999) gave children a slightly more difficult
problem: ‘I bought three boxes of chocolate; in each box, there are four chocolates.
How many chocolates do | have?’ What makes this problem more difficult is not
that it requires a different reasoning schema nor that the problem is about boxes of
chocolate: it is that there was no starting point for the children. In the previous
problem,Kornilaki gave the children a starting point: she set out in front of the
children a row of cut-out paper hutches. The representation of one of the variables
facilitates the use of the correspondence schema because the child only needs tc
create a representation for the second variable. In this problem, the children had no
such initial representation of one variable. The problem involves the same numbers,
so there is no extra difficulty in terms of counting. But the children have to come up
with a representation for both variables on their own. This representational difficulty
significantly changes levels of success: 37% of 5-year-olds, 70% of 6 -year-olds,
87% of 7-year-olds and all of the 8-year-olds succeed in this more difficult problem.
Because the schema of correspondence is still the solution chosen by the majority of
5- to 7- year olds, the comparison between the results of this experiment and the
previous one shows that representing both variables is a considerable step in
children's progress. It also suggests a course of action for teachers. It is quite likely
that young children can profit from solving problems presented along with the
representation for one variable and that they will, in time, come to co-ordinate this
activity with the representation of both variables on their own. This would help them
progress in their ability to solve multiplication problems as a result from new co-
ordinations between reasoning and representations.

Young pupils can also solve such problems when they are presented through
drawings because drawings facilitate the use of correspondence. We have presente:
the following problem to approximately 1000 children in Englatrdeach house in
this street (the drawing shows 4 houses) live 3 dogs. Write down the number of dogs
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that live in this street.” The proportion of correct responses for 6-year-olds in this
problem is approximately 60%. Although it is not as high as the level of success
when the children haveut-out paper hutches in front of them, it is remarkable that
6-year-olds, who did not receive instruction on multiplication, can show such high
level of success. Figure 1 shows one of the children's productions in a problem
where they are asked to draw the number of carrot biscuits necessary to feed all the
rabbits inside all the houses: in these productions, the children left no doubt about
the mechanisms they used to solve the problem.

>

SRGEGC

Answer

Figure 1 One drawing of the number of carrot biscuits necessary to feed each rabbit in
the huts.

Reasoning by correspondences is not restricted to solving multiplication problems. It
is also used to solve multiplication problems where information on a factor is

missing. There are two ways in which the information about the factors could be
missing; we will consider each one in turn.

The first missing-factor multiplication problem would be: ‘I had a party; each
child that came brought me three flowers; | got 12 flowers; how many children
came?’ In this case, the children know the correspondence - 1 to 3; if they repeat this
until the total of flowers is 12, they will know how many children came to the party.
This problem, known in the mathematics education literatureqastitive’ or
‘measure’ division problem, is in my view actually an inverse multiplication
problem. This is not simply a matter of terminology: if we think about it as an
inverse multiplication problem, we have a theory about how the child will solve the
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problem. In the same way thatissing-addend problems are initially solved by
children through addition strategies - the child figures out how many to add to one
set to arrive at the total - quotitive division problems should be solved by children
initially through correspondence. This analysis also allows for some predictions
regarding children’s success. Children should show a higher level of success in
direct multiplication problems than in the inverse ones. Note that this is not a
prediction about division problems in general because sharing division problems are
as easy for children as the direct multiplication ones.

A second possibility would be to say: ‘| had a party. Three children came. Each
child brought me the same number of flowers. | got 15 flowers. How many flowers
did each child bring to the party?’ This problem has the same structure as the
problems described earlier on in the sense that it involves a fixed ratio. However,
because the ratio is not described, the children will find it very difficult to use the
correspondence schema. Thus this is an inverse multiplication problem where we
expect much less success.

Kornilaki did find that direct problems were easier than both types of inverse
problems and that inverse problems of the type traditionally described as quotitive
division were significantly easier than this second type of inverse multiplication
guestion. The rates of success in quotitive division problems were 30%, 50%, 80%
and 83%, respectively, for 5-, 6-, 7-, and 8 year-olds whereas in the second type of
inverse multiplication problem they were 10%, 30%, 56%, and 80% for the same
age levels.

An analysis of children's strategies showed that in the first type of inverse
multiplication problem, where the children knew the ratio, the vast majority of the
children who solved the problem correctly (83%) did so through corrdspoa
reasoning, either creating an explicit representation of both variables or creating an
explicit representation of the groups of flowers while counting the children in
correspondence with each group. In the second type of division problem, where the
ratio was not known, a correspondence solution could only be implemented by trial-
and-error. Only 21% of the children successfully used the correspondence solution
whereas about 50% seemed to be able to understand the inverse relation betwee
multiplication and division and actually shared out the total number of flowers into
three groups.

Reasoning by correspondences can also be documented amongst young childrer
solving simple proportion problems before they have been taught about proportions
in school. The example in Figure 2 shows a problem adapted from van den-Heuvel
Panhuizen. It was given to approximately 1,000 pupils in England. Because these
were given to whole classes of pupils, it is not possible to describe their strategy.
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Only some of the children make marks on the booklets, giving us a clue to their
solution process. However, the similarity between the percentage of children solving
the missing-factor multiplication problems and these simple proportion problems is
suggestive of the use of similar approaches to the solution of the two problems.

8

(=G

20

sweets

Figure 2.A simple problem involving proportions: the top roll has 8 sweets
altogether; how many sweets in the bottom roll?

These analyses of children's solutions to multiplicative reasoning problems suggest
that mathematics teaching can develop pupils’ reasoning system by helping them co-
ordinate their correspondence reasoning with counting. As indicategidmtsky, a
very significant moment in children’s development is that when children co-ordinate
their actions with systems of signs. The hypothesis about the development of the
concept of multiplication is made more specific by Piaget’s theory, which suggests
that the schema of correspondence is the crucial action in the case of multiplication.
The hypothesis is by no means trivial: the teaching of multiplication in many
countries is based on repeated addition, not on correspondence reasoning. It is
noteworthy that the mathematics education literature contains arguments in favour
and against the use of repeated addition as the basis for multiplicative reasoning.
Whereas Yanomashita and Matsushita (1996) argued that repeated addition is only &
means to solve multiplication problems but does not représemeaning, Fishbein
et al. (1985) and Steffe (1994) appear to suggest the opposite. Our hypothesis is
based on the analysis of reasoning systems developed here: if the child’s multiplica-
tive reasoning is based on correspondences, not on addition, the best way to develoy
the child’s reasoning system is to promote its co-ordination with new systems of
signs. It leads to a very specific prediction: that children taught about multiplication
through correspondence reasoning will make more progress in solving multiplicative
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reasoning problems than children taught about multiplication through repeated
addition.

We (Park & Nunes, 2001) tested this prediction in an experimental study with
42 children attending two schools in London. The children's mean age was 6 years
and 7 months and they had received no instruction on multiplication in school,
according to their teachers. The children were randomly assigned to one of two
instruction groups: repeated addition or correspondence. The children were pre- and
post-tested on a set of mixed additive and multiplicative reasoning problems. We
use the phrases ‘additive’ and ‘multiplicative’ reasoning problems, rather than
addition and multiplication, because the problems included both direct and inverse
(i.e., missing addend and missing factor) problems. During the teaching phase, the
children in both groups solved a total of 16 problems, which could be represented by
the same arithmetic sentences. For the repeated addition group, the problem was
phrased as a sum of two identical sets; for the correspondence group, the problem
was phrased as a question where two variables were in a fixed ratio to each other.
For example, for the arithmetic sentence 2 x 3, the repeated addition group solved
the question: “‘Tom has three toy cars. Ann has three dolls. How many toys do they
have altogether?’ The same arithmetic sentence was exemplified in the correspon-
dence group by the question: ‘Amy’s Mum is making 2 pots of tomato soup. She
wants to put 3 tomatoes in each pot of soup. How many tomatoes does she neec
altogether?’

Consistently with our theoretical framework, we expected the children to make
different levels of progress in the multiplicative reasoning problems from pre- to
post-test: we expected the children in the correspondence group to make signifi-
cantly more progress in multiplicative reasoning problems than the repeated addition
group. This prediction was supported by our results. Although the groups did not
differ at pre-test, their performance was significantly different at post-test, with the
correspondence group performing better than the repeated addition group in
multiplicative reasoning problems. This difference could not be explained by a
similarity in the grammatical structure of the problems because the verbal descrip-
tion of problems in the pre- and post-test was varied and did not simply follow the
description of a ratio situation. For example, in three problems much of the infor-
mation was visually presented (see one example in Figure 3).
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You can'’t see all the windows in the front of
the building. How many windows are there
altogether?

Answer

Figure 3.Example of a multiplication problem from the pre- and post-test
which does not refer to ratio.

In conclusion, evidence seems to support the idea that children's reasoning schems
for multiplicative situations is based on setting correspondences between variables.
In order to develop their reasoning systems, mathematics teaching should lead the
children to use a variety of mathematical tools in connections with this reasoning
schema.

Reasoning by correspondences can create powerful systems for solving multipli-
cative reasoning problems. Relevant evidence comes from a variety of situations
where people solve problems outside school: children selling products in the streets,
foremen working out the size of walls from scale drawings, fishermen calculating
the amount of processed sea-food from the amount fished (NBcldgmann, &
Carraher, 1993), and peasants calculating voluda¢o(Cornejo, 1992), all reason
mainly by correspondences. They all have replaced the overt actions of a
correspondence schema with a new system of signs: instead of setting objects in
correspondence, they use number words followed by the quantities indicated.
Although they may occasionally make computational errors, they hardly ever make
errors in their reasoning.

Three examples are presented here as illustration. The first one comes from the
work on street mathematichlnes et al., 1993). A girl was selling lemons, which
cost 5cruzeiros (the Brazilian currency at the time) each. Posing as customers, we
asked for 12 lemons. She calculated the price by separating out 2 lemons at a time
as she said: 10, 20, 30, 40, 60. She replicated the ratio 2-10 until she reached 12
lemons. Note the similarity in the activity of correspondence, which was carried out
in a more powerful way because the 1-5 corredpooe was changed into 2-10.
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Another illustrative example comes from our work with fishermen. The fishermen
we interviewed in Brazil sold the fresh fish they caught to middlemen. The middle-
men salted and dried the fish to be sold far from the ocean. In order to know more
about their own commercial activities, the fishermen must understand that the
guantity they sell to the middleman is not the same quantity sold by the middleman
to the customer. When the fish is salted and dried in the sun, there is a loss of
weight. The quantity of processed fish is proportional to the quantity of unprocessed
fish. The same is true, for example, for the connection between quantity of unpro-
cessed and shelled fish.

A fisherman was told that there is elsewhere a kind of shrimp that yields 3 kilos
of shelled shrimp for every 18 kilos that you catch; if a customer wants to buy 2
kilos of shelled shrimp, how much do you have to fish for him? The fisherman
calculates: One and a half kilos [processed] would be nine [unprocessed], it has to
be nine because half of eighteen is nine and half of three is one and a half. And a
half-kilo [processed] is three kilos [unprocessed]. Then it'd be nine plus three is
twelve [unprocessed]; the twelve kilos would give you two kilos [processed] (Nunes
et al., 1993, p.112). His use of correspondence is quite clear: for each quantity of
unprocessed food, he names the corresponding amount of processed food. This is
accomplished by perforing the same operation on each variable: if one is halved,
the other is also halved. This type of solution is known in mathematics education as
‘scalar’ reasoning, in contrast to ‘functional’ solutions. In functional solutions, an
operator is identified, which can be applied to one quantity to calculate the value of
the other one. Functional solutions have not been reported in unschooled adults anc
are less common than one would expect even in British adolescentsufse® &
Bryant, 1996, for an analysis).

The third example | take frorBoto Cornejo (1992), who interviewed rural
workers in the North of Chile. The workers sold wood for processing into vegetable
coal by volume. It has been documented often that students have difficulty with the
concept of volume and make many mistakes in calculating volume, particularly if
there is a decimal point involved in the calculati®oto Cornejo drew a lorry
showing the dimensions 5 meters by 2 meters by one and a half meters, and askec
the worker to calculate the volume of its trailer. An illiterate worker reasoned like
this: ‘First | make a layer one meter high and always five meters long. That will give
you five cubic meters. (Note that the layer is an imagined object that he sets into
correspondence with the measures of volume) And that two times (the width of the
trailer is two meters), that makes ten cubic meters. Now I've gat)scéntimetres
two times. We will take 5 centimetresiq), this makes five times five, twenty five,
that is two and a half cubic meters. The total is ten plus five, fifteen cubic meters.’
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Once again we see the use of correspondence reasoning: to each layer corresponds
volume, and the layers are simple (IxIx5) so that the correspondence is easily
established. This is a most imaginative way to solve a problem that students find
difficult after 7 or 8 years of school.

Multiplicative reasoning out of school is abundant with examples of scalar
reasoning; functional reasoning is almost completely absent. My conclusion is that
outside school people form powerful reasoning systems for the solution of
multiplicative problems by using new symbolic tools from arithmetic instead of
manipulatives. But they do not appear to refine the reasoning principles involved in
the system to generate functional solutions easily.

What happens in school? Can mathematics teaching develop pupils’ reasoning
system?

Piaget consideredygotsky’s position optimistic with respect to didactic inter-
vention: ‘One must guard against an excessive bio-social optimism into which
Vygotsky sometimes seems to fall’ (Piaget, 1962). According to Piaget, teaching
will have a positive influence if it is coherent with the pupils’ reasoning; otherwise,
teaching might actually be ineffective or even lead the pupils astray.

The teaching of multiplication in many countries may not take pupils’ multipli-
cative reasoning into account. In many countries pupils are taught that multiplication
Is the same thing as repeated addition. And in many countries pupils seem to
develop misconceptions about multiplication and have difficulty with proportional
reasoning (e.g. Hart, 1988). This analysis of multiplicative reasoning using systems
theory offers hypotheses about what could be changed in the teaching of multipli-
cation in order to promote the development of pupils’ multiplicative reasoning.
Many of these ideas will already be used by teachers. They are not necessarily new
ideas in this sense. What is a new outcome from this analysis is a framework that
can provide coherence and help choose - and test - effective ideas.

The first one is related to the representation of multiplicative reasoning prob-
lems in the classroom. Earlier on | suggested that it is appropriate for teachers of
young children to promote the co-ordination of the correspondence schema of action
with counting.But what next? How can this schema be translated into paper and
pencil representation?

| would hypothesise that the first translation might be into tables that show the
correspondences, rather than into arithmetic operations. Figure 4 shows an example
of a problem used in the classroom to support primary school pupils aged 7-8 years
in developing their multiplicative reasoning. A mixture of figurative and numerical
representations was used to strengthen the connection between the schema of actio
and paper and pencil representation.
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Each child has 3 balloons.

Can you draw the rest of the balloons?
Can you write how many balloons there are
altogether in the table?

Figure 4.0ne example of the use of tables in the teaching of multiplication.

A second co-ordination with symbolic systems may be to represent the problems
through graphs. With the same group of primary school pupils, graphs were used
after they had worked with tables for a few lessons. The teacher was initially scepti-
cal about the possibility of working with graphs with such young children. After the
sessions, he was enthusiasticsrAall scale pilot study in the school showed that the
children participating from this programme made significantly more progress than
the control children from pre- to post-test, although the intervention only lasted a
few weeks. A more detailed study is still needed.

The consequences of introducing the idea of graphs in close connection to the
solution of multiplication problems can only be speculated about. The difficulties
that pupils have in establishing connections between graphs and functions may be
much less important if they learn about graphs in the manner suggested here.
Algebraic representation of graphs and tables could be the third type of represen-
tation used in this context, which could be introduced perhaps through the explicit
representation of the constant ratio in graphs and tables. But our explorations have
not gone that far yet.

Conclusion

| conclude with a research agenda, rather than a solution. The use of systems theon
helps us understand how reasoning systems become more powerful through mathe:
matics teaching. But we know that progress is not an automatic result. In order to be
certain that we are building more powerful reasoning systems in the classroom, we
must investigate which principles are essential for the system to work well, the
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variable mechanisms or tools that teachers can insert into the reasoning system, ant
what type of changes we expect to accomplish. | suggest that in many cases we
should not be satisfied with the simplest changes, where the same principles are usec
without the refinements that can result from the incorporation of new tools. If we are
able to understand the principles used by pupils in the organisation of their reaso-
ning, we should also be able to examine which refinements they need, and investi-
gate ways of promoting these refinements in the classroom.
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Assessing Students’ Knowledge —
Language in Mathematidsests

Astrid Pettersson
Stockholm Institute of Education

The theme of this cdarence is mathematics and language. In my talk about the
national tests in mathematics for the compulsory school with a language
perspective, | will focus on three important concepts relevant to language and
assessment — authimity, feedback and documentation. | will relate the concepts
to the old and to the new test systems for different school years.

Authenticity Old system New system Year 9
Feedback Old system New system Year 9
Documentation New system Students Teachers Test instructions

Authenticity — Are the tasks more authentic now, in comparison with the tasks in
the old system? What can be said about problem contexts and the formulation of
guestions?

Feedback — What kind of feedback to the students and to the teachers is there in
the old system and in the new one? And in what way do we express the feedback
from the results of the national tests?

Documentation — How do the teachers document their students” knowledge? In
this aspect — documentation — | give examples only from the new system. What
kind of words do teachers and constructors of tests use when they describe
different qualities in the students” solutions?

So this is the agenda for this lecture. But let me first introduce the two different
test systems.

The old system

From the middle of the 1940s until the middle of the 1990s, the grading system
in Sweden was norm-referenced. At the beginning this was the case only for
school years 2, 4 and 6 in the compulsory school. Later there were compulsory
achievement tests in mathematics only in school year 9 and in year 3 for two of
the course programmes in the upper secondary school. The aim of the tests was
to get maximum uniformity in teachers’ grading, throughout the country. The
teacher should use the results of the test to obtain information about the average
level of the class as well as the distribution of individual grades in the class, all in
relation to classes across the country. The test gave information as to how many
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students in a class should have the different grades, but the test did not inform the
teacher which student should have a special grade. These achievement tests were
used for a group-referenced grading system, i.e. the knowledge and achievement
of all the students in the country who belonged to a particular category and
studied the same course were compared with each other. In this system it was
very important that the tests were objective in the sense that all teachers could
assess the students’ solutions in exactly the same way. The test items had to have
a high discrimination index and had to provide variation in difficulty. The result

of the test was the guiding factor for the teacher in the grading of the students.

The new system

A new national curriculum for compulsory school and for the upper secondary
school came into effect in the autumn of 1994. It defines the underlying values,
basic objectives and guidelines of the school system. In addition, there is a
nationally defined syllabus for each individual subject. The compulsory school
syllabi indicate the purpose, content and objectives for teaching in each
individual subject. These are of two kinds: those that must be achieved, and those
for which it is the duty of schools to give all students a reasomhidlece of
achieving. Some examples of goals are the following:

The school should strive to ensure that all pupils

» develop a sense of curiosity and a desire to learn, develop their own individual way
of learning

» develop confidence in their own ability

* learnto listen, discuss, reason and use their knowledge as a tool to
— formulate and test assumptions as well as solve problems
— reflect on experience and
— critically examine and evaluate statements and relationships

» take personal responsibility for their studies ...

* develop the ability to assess their results themselves and to place their own
assessment and that of others in relation to their own achievements and
circumstances

Examples of goals to attain in the compulsory school:

The school is responsible for ensuring that all pupils completing compulsory
school

* have mastered basic mathematical principles and can use these in everyday life
» can use information technology as a tool in their search for knowledge.

To coincide with the introduction of the new curriculum and syllabi, a new
grading system has come into effect. Under this system, grades are awarded on a
three-grade scale from the eighth year of schooling onwards. The grades are
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Pass, Pass with Distinction and Pass with Special Distinction. In the upper
secondary school the grade Failure is added and the students in upper secondary
school are graded after every course. The grading is goal-related; i.e. the grades
relate students’ knowledge and achievement to the goals set out in the syllabus.
Only the teacher awards grades.

At the end of school year 9 national tests are held in the three subjects
Swedish, English and mathematics in order to assess students’ level of
achievement. The tests provide support for teachers in awarding grades. The
testing of mathematics for grade 9 consists of both traditional tasks and more
open ones. In one part of the test, calculators are not allowed. Depending on the
nature of the task some tasks are more atomistic and some are more holistic. The
holistic ones are assessed with the help of assessment matrices. Often we also
have an oral test for grade 9.

There are tests in these same subjects at the end of school year 5, but it is not
compulsory for the municipality to use them. The main purpose of the subject
test for school year 5 is not only to check that the students have achieved the
requirements of the curriculum and syllabus. They also have a diagnostic
purpose. In the test material there is also a scheme for self-assessment. The
teacher is advised to integrate the subject test within the ordinary teaching, the
intention being that both the ways in which the student has worked with the
problem as well as the answer will be taken into consideration. There are tasks
for both individual work and for group work. To help teachers to describe the
mathematical knowledge of the student they may use a proposed Competence
Profile. The teacher should then consider both their assessment of the student’s
work on the subject test as well as their overall assessment of the student’s
mathematical knowledge. Our hope is that the teachers can, with the help of the
profile, gain a more balanced picture of the student’s knowledge in mathematics.
For the test in school year 9 there is a similar profile, but only referring to the test
- a test profile.

The diagnostic materials in mathematics consist of two parts, one part for use
in pre-school and up to grade 6 and one part from grade 6 to grade 9. Each part
consists of a scheme for analysis and diagnostic tasks. The purpose of the
materials for analysis is to help teachers analyse and document the students’
knowledge in mathematics. The same scheme is to be used for students of
different ages. When using the scheme it will show the student’s development
over several years. Students are allowed to express their knowledge in different
ways: action, pictures, words and symbols. Three different areas are focussed
upon in the first scheme, Measuring and spatial sense, Sorting, Tables and
diagrams and Number sense. In the second scheme for grade 6-9 we focus on
Measuring, Spatial sense and geometrical relations, Statistics and probability,
Number sense and Patterns and relations.

37



Plenary addresses

The following overview shows the different test materials for the compulsory
school in Sweden.

Diagnostic materials Pre-school and up to grade 6 A booklet for analysis
Not compulsory A booklet with tasks
From grade 6 up to grade 9 A booklet for analysis
A booklet with tasks

Subject test Grade 5 4-5 different parts +

Not compulsory group-tasks and self-
assessment

Subject test Grade 9 2-3 different parts +

Compulsory group-tasks and/or
oral test

The National Test is not meant to steer teachers in their grading but rather to help
them to assess whether and how well the individual student has reached the goals
for the subject. The starting point for the construction of a test is the view of
knowledge expressed in the curriculum and the view of the subject in the
syllabus as well as the criteria for the different grades. With the new test the
teacher cannot determine the level for his class as a whole compared with other
classes in the country. It is important to have tasks involving different content
areas of the subject. The problems in the material should be designed in such a
way that the student has the opportunity to show different competencies in
mathematics. The new national test works in a goal and knowledge context. It
has in part other demands than that of a norm-referenced test. The new national
test must consist of more varying tasks and the students must have opportunities
to show their competence in different ways. Mathematical competence is so
much more than merely knowing certain mathematical content and skills. It is
also essential to communicate knowledge and to present mathematics in written,
oral, visual and symbolic forms. In addition it is important to use mathematical
strategies, models and methods within one’s present knowledge and skills to
create new skills and methods utilising a range of facts, concepts and processes.

Authentic tasks — the old and the new system, year 9
In the old system we had a lot of short tasks but also different themes in one part
of the test. The themes could be

e Sri Lanka
e Traffic andEnvironment
* Sports Booth

In the new system we also have a lot of short tasks and different themes but also
more extensive tasks and tasks for pairs/groups, such as
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* Bus Frequency
* Inheritance
* Perimeter

My conclusion is that the contexts of the tasks are not more authentic now
compared with the tasks in the old system, but the way of posing questions is
more authentic in some tasks in the new system.

In the old system we asked things like

e How many ...

« Compute...

* What is (the price)...
* How high....

* How much ...

*  When....

» Estimate...

In the new system we also have questions like

«  Why

* Explain

* Investigate
» Describe

Some examples of tasks from the new system (school year 9):

Example 1: There are 11 people working in a company. Their monthly salaries

are.

15 000 13 000 47 000 15 000
13 000 55 000 15 000 13 000
16 000 16 000 13 000

Work out the average and the median monthly salary. Which measure —
average or median — best reflects the salaries of the group? State the reasons
for your choice and explain why you believe the other measurement is not
as good.

Example 2: Perimeter

In this task you will be working with four different geometric figures. All figures
must have a perimeter of 12 cm.

You should work with the following geometric figures:

a rectangle, where the length is twice as great as the width
a square

an equilateral triangle

a circle.
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You should study and compare the areas of the figures. What conclusions can be
made?

When assessing your work, the teacher will take into account the following
» how clearly and correctly you have drawn the figures

» whether you have made the correct calculations

» how well you explain your workings and methods

» how well you have stated the reasons for your conclusions.

Example 3. Hassan says, "An increase from 40 to 80 is a 100 % increase”.
Amir says, "Then a decrease from 80 to 40 is a 100 % decrease”.
Who is right and who is wrong? Explain in both cases why it is
right or wrong.

Feedback of test results — the old and the new systems, year 9
We can illustrate the comparison of working in the old and the new systems in
the following way:

The old system The new system
1. Construction of the test 1. Construction of the test
2. The students work with the test 2. The limits for the three

grades are established
3. The teachers assess and send results back3. The students work with the
test for standardizing
4. The interval for grade 3 is established and 4. The teachers assess the
sent to schools/teachers students’ work.

In the new system the teachers can, if they so wish, give the students more
feedback about their knowledge than in the old system.

The main difference between the two systems is that the teachers receive the
grades together with the test, rather than after the students have worked with the
test. In the old system the teachers got feedback with a total sum and an interval
for school year 3, a mean and a standard deviation. In the new system they get a
sum of different “Pass-points” and “Pass with distinctions-points” but also an
assessment matrix. With the assessment matrix the teacher can discuss with the
students how he/she has solved the tasks, the strengths and weaknesses in his/hel
solution. (See Appendix)
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Feedback in the new system — year 5
Even for year 5 the teachers have the opportunity of giving students feedback by
means of a competence profile, where the teacher together with the student can
make notes.

Another way to get feedback for the teacher and the students is to let the
students assess their knowledge by themselves. Here are some questions from the
self-assessment scheme

How do you feel when doing Very Pretty | Unsure| Very
the following? sure sure unsure

Estimating approximately how long a bus ig

Looking in a newspaper to see how long a }
programme is.

Workingout 88— =3

Deciding which number is greater
—3.80r3.14.

Working on tasks other than those you are
used to.

Explaining to a classmate how you
solved a task.

Working with someone else.

Working on your own.

Another form of feedback is for the students to answer questions about mathema-
tics:

1. Whatdo you think you are good at in mathematics?

2.  What do you think you need to practise more in matherpatics

3. Give examples of one or several tasks in the test, which you think were
good. Explain why.

4.  When do you think you learn mathematics best?

5. Write more about yourself and mathematics.

Documentation in the old and the new system

As we have seen, teachers could document students’ results on the national tests
in the old system as a sum of points. In the new system, they can document the
results as different kinds of points but also by notes in an assessment matrix. In
the new system we also have diagnostic material. | would like to leave the tests
for a while and talk about the diagnostic materials. This material consists of two
different parts — an analysis scheme and a part with problem tasks. The two parts
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focus on different areas. Let’'s look at the analysis scheme for measurement and
spatial sense.

Some examples of rubrics in the scheme:

Shows self-confidence in own ability

Shows pleasure, interest etc.

Takes responsibility for his/her learning

Deals with and solves problems

Uses "Measurement and spatial sense”

Words in common usage, understands words like longer, heavy, greatest etc

Basic spatial sense

Maps and drawings

Geometrical objects

Patterns

Symmetry

Length

Volume

Mass (weight)

Area

Angles

Time
What kinds of words do teachers use in describing students’ knowledge? About
50 teachers from pre-school up to grade 8 in a municipality in Sweden have used
the scheme. Here is a summary of their documentation.

Shows self-confidence in own ability
Here the teachers often write adjectives, like “positive, interested-uninterested,
happy-unhappy, curious, engaged, immature, certain-uncertain, aktive-inactive”.
Other teachers use verbs such as “takes responsibility for his own work and for
group tasks, leads the group work, tries willingly, takes responsibility for
planning, wants to be noticed and recognized, wants to have a lot of help, does
homework, needs a lot of support”

In the other boxes we can have three different categories, the teachers who
describe “Know”, “Know and what”, “Know and where”:

"Know”: No problems, Yes, OKrecognisehave understanding, participate,
explain, compare, tell, describe, understand concepts, and understand hour and
half anhour

"Know and what”: gives correct names to triangle, rectangle, size buttons, uses
ruler

"Know and where”: making bread, doing woodwork and handicrafts

Some of the teachers also write what the students do not know: have difficulties
with, mixed different concepts etc.
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An example of a teacher’'s documentation:

The student (9 years old) saw a pattern in the carpet. He calculates how many
squares the carpet consists of. He first uses his fingers to estimate the squares
and uses this measure to calculate how many squares the carpet consists of.

Conclusion

Language is important for assessment. It is important that we use the same words
for the same things, so we can understand each other. It is important that we
study what words and concepts the students use when they show their knowledge
and what words and concepts the teachers use when they assess the knowledge. It
Is also important for how the student experiences the assessment.

Assessment can be stimulating and supportive for learning. Assessment is
not only a "receipt” for knowledge displayed, but also influences an individual's
learning, his/her self-esteem and confidence in his/her knowledge. Assessment, if
relevantly used, can provide a great potential for learning. But what does
assessment mean for the individual? The consequences of assessment can be
illustrated by the following figure:

| can, want to, dare to

Develop
Analyse

Assess ¢

Judge
Condemn

-—__'_———
I cannot, do not want to, dare not

An assessment that supports and stimulates learning means that a student’s
knowledge is analysed, evaluated and expressed in such a way that the student
progresses in his/her learning and feels self-confidence in his/her own ability (I
can, want to, dare to), instead of an assessment that leads to a judgement and
perhaps a condemnation (I cannot, do not want to, dare not).
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Appendix

Assessment matrix

Problem solving capability
Comprehension and method

The assessment concerns: To what degree the student shows an understanding of the

problem. What strategy/method the student chooses to solve the problem? To what
extent the student reflects upon, and analyses the chosen strategy and the result. The

quality of the student’s conclusions. What concepts and generalisations does the studg

use?
Accomplishment

The assessment concerns: How complete and how well the student carries out the
chosen method, makes necessary calculations and explains and defends the reasonin

the solutions.

Communication capability

Mathematical language and/or representation
The assessment concerns: How well the student uses mathematical language and
representation (symbolic language, graphs, illustrations, tables and diagrams).

Clarity of presentation

The assessment concerns: How clear, distinct and complete the work of the student is.

To what extent the solution is possible to follow.

Qualitative levels

Comprehension and
method

Shows some
understanding of the
problem, chooses a
strategy, which
functions only
partially.

Understands the
problem almost
completely, chooses
a strategy which
functions and shows
some reflective
thinking.

Understands the
problem, chooses if
a general strategy
possible and
analyses his/her owr
solution.

Accomplishment

Works through only
parts of the problem
or shows weakness¢
in procedures and
methods.

Shows knowledge
about methods but
may make minor
mistakes.

Uses relevant
methods correctly.

Mathematical Poor and Acceptable but with | Correct and
language and/or occasionally wrong. | some deficiencies. | appropriate.
representation

Clarity of Possible to follow in| Mostly clear and Well structured,
presentation parts or includes distinct but might be| complete and clear.

only parts of the

problem.

meagre.

nt

Jin
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Panel Discussion on
Mathematics and Language

Christer Bergsten, Hakan Lennerstad,
Norma Presmeg, Ase Streitlien

Introduction
Christer BergstenLinkdpings universitet

When the them&lathematics and Languageas decided for this seminar it was

to recognise that there are many important, and some far from obvious ways that
language and mathematics go together but also to open up for new aspects of
using linguistic tools to study mathematics and mathematical thinking and
learning. The first critical issue is the one on definition - what do we mean when
we use the wordanguagein connection to mathematics? When using tke e
pressiorthelanguage of mathematigsis often the algebraic (or symbolichla

guage that is being referred to. To pinpoint this language aspect of mathematics
the termMathematishwas used at one of the paper presentations at this seminar:
Lennerstad & Mouwitz (this volume) claim that mathematical texts are bilingual

in its mixed use of natural language (such as English) and Mathematish. Being
imprisoned by language when analysing the use of language in mathematics, we
risk to get caught in the self-reference trap, like at the huge efforts at the begin-
ning of the last century to use logic to study the logical structure of mathematics.
In relating language to mathematics education, one path to follow is to study la
guage as a structure, another is to study the use of language. The latter will be in
focus when analysing communication in the classroom — this was the direction
taken byAse Streitlien in her opening presentation at the plenary paneken di
course patterns in a primary mathematics class. To this the aspect of meaning
was added bydakan Lennerstad, which led into the study of language also as a
structure — why don’'t we teach the grammakMathematish? In order to analyse

both the use and the structure of language in mathematics education, Norma
Presmeg gave some examples of how the ideas of semiotic chaining had helped
mathematics teachers to reflect on and develop their practice. The presentations
were followed up by questions from the audience, where only time gave the
limit, showing that language is an important and deep issue in mathematics edu-
cation. In the following the written versions of the introductory contributions of
the three panel members are presented.
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Remarks on Mathematics and Languages
Hakan LennerstadBlekinge tekniska hogskola

Introduction
For students (and pupils), use of language in mathematics may have at least four

meanings:

1. Use of personal vocabulary, every day experiences, images @and ass
ciations to metaphorically handle mathematics problem solving and
expressing mathematics activity and meaning, including mathematical
dialogues.

2. Use of proper and logical natural language when writing solutions to
mathematical problems.

3. Use of the mathematical formal language (numbers, equations-form
las...), a language that we may cMbthematish (see the chapter
“Mathematish — a tacit knowledge of matiaics”, this volume).

4. Communication in mathematics with pupils with a different mother
tongue.

In these remarks, 2 and 4 are not commented. The connection in freedom and
confidence between 1 and 3 is focused.

In the aim of inviting students’ authentic thinking about mathematics, which
has its reflection in teachers displaying mathematical culture, we will be lead to a
fifth sense of language in mathematics. This one concerns teachers more than
pupils:

5. Teacher’s use of own personal vocabulary, every day experiemees, i

ages and associations to metaphorically handle mathematical problem

solving and expressing mathematicativaty and meaning, including
mathematical diagues, in communication with students.

Is students’ authentic questioning present in mathematics classes?

One may ask: in which way are students present in a mathematics class? Perhaps
the most common types of presence are listening to the teacher, calcutation a
cording to the textbook, some mathematical dialogue, and various non-
mathematical dreaming or chatting.

Students’ authentic questioning about pieces of mathematical calculation is
probably reléively absentHow calculations can be done, why they are efficient,
what they mean, and comsons to experiences and instances in other subjects
where they may be useful. This may be regarded as independent thinking from
personal perspectives. It can also be described as a philosogthiicale, that
may produce meaning and context, partly because of pieces of mathematical
culture that the teacher then may find relevant. Independent use of mathematical
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formal language is also uncommon by students, verbally or in writing, suggesting
a status as a foreign language that is not riemalised.

Some teachers manage to inspire such independekinthit appears to be
particularly absent in the subject of mathematics, being considered by many st
dents as an “alien subject”.

Mathematics as anyone’s toolbox

If we, conversely, regard mathematics as a way of thinking that is natural for
humans, matheatical formulas belong to everyone, and contain meanings that
also belong to everyone. This is inconsistent with the common view that
“mathematics is a subject you meet in school” ntCaxily, everyone meets
mathematics during the first years in life, and develop individual intuitions. In
school, most children for the first time meet the systematic and official language
of mathematics.

If students consider mathematical formulas and meanings as belonging to
everyone, it is natural to experiment and to question statements in the language
of mathematics. This contradicts a view of an “alien subject”. Such experi-
menting is of course naturally done using the mother tongue.

What is mathematics for mathematicians?

Mathematical formal languag®jathematish, has been developed and construc-
ted during the last few hundred years. This language has been a very powerful
tool in the development, and has come to be essential in many natural sciences
and technical areas. Mathematicians do not need much different descriptions of
mathematical ideas than in this sjgdized language.

However, this strong dominance Mathematish is perhaps not effective for
everybody. Since the subject to a large extent still is described by its architects,
l.e. the mathmaticians, we may presently live with a description of mathematics
that is not appropriate for manydents.

However, like students, mathematicians struggle with mathematics. This
struggle produces images and drama, which sometimes take the form of a mathe-
matical culture. On the other hand, in the absence of mathematical cultare, st
dents often regard the teacher’s perfection at the black board to be the iappropr
ate mathematical attitude. For students with that view, any struggle with-mathe
matics may be strongly disappointing.

Mathematics should be actively constructed by students and teachers

Thus, in terms of mathematical meaning, there is a common ground between st
dent’s authentic questioning, philosophy and mathematical culture. Note that
mathematicians have different opinions about meanings of formulas, they agree
only about the question of true or false. Students and the teacher in a class should
not feel dominated by the official mathematical description, but should consider
this as a resource and feel that they are allowed to construct appropriate mea-
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nings of mathematics and its activity, while doing it. Today’s official description
of mathemscs is not enough.

The excludingMathematish

It seems like a large part of this cultural problem lies in the extremely efficient
but sometimes excluding invention of mathematics: its language Mathematish. If
you feel unsafe in the language, much egeris needed to make any statement
whatsoever. This is a powerful and invisible barrier for dialogues with students.
Unfortunately, it is a natural invlslity in the sense that languages are, ina ce

tain sense, naturally invisible. We are good at using our mother tongue, but not at
describing its rules. For languages learned later in life, typically the converse is
valid. Perhaps many students in mathematics feel that they meet a foreign la
guage they are supposed to understand but don’'t know how to handle. In the ab-
sence of athentic dialogues, many students may see no alternative but to imitate
formal activities dung the years in school.

Mathematical knowledge: calculation, ways of calculation, and meaning

One may describe mathematical knowledge as being of three kinds: to perform
correct calculaons with numbers and formulas when ways of calculations are
given, to see possible ways of calculation in more open problems (essential for
mathematicians), and applications and imtetations of formulas and concepts.
Only the first of these can be efficiently programmed imgoters. The last two
kinds cannot be formalized, but, being essential, should anywaysoebael
extensively. They are essential for the success and meaning of the Mahema
practice (calculgion).

The present dominating way of working mathematics education, to which to-
day’s teachers naturally belong, is very Mathematish-dominated, and neglects the
last two types, for which (at least for ways of calculation) there are maonly p
etic, personal and metaphorical ways of expression. Today’s teachersehave d
veloped ways of calculation and ideas of meaning, which we may not need to
express in order to see meaning, since the symbols themselves for teaches carry
this meaning. The present educational situation can be expressed by a common
saying: “mathematics is easy to teach but difficult to learn”. This may be seen as
expressing the profound difficulty for teachers in reaching students’ mathema-
tical thinking in true ddlogues — at least in a strongly Mathematish-dominated
practice.

Force of change: teacher’s courage in personal mathematical reflection

Central for students’ authentic questioning is teachers’ reflective practiece, par
tially breaking the present practice. Of course, children during life natumelly d
velop abilities to reflect and make choices. In the absence of teacher'soeflec
children naturally conceive school not as a place to reflect, but to learre- Ther
fore, teachers’ use of personal vocabulary, every day experiences, images and
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associations to handle mathatical problem solving and express mathematical
activity and meaning, may inspire and allow dialogue as well as similar activity
among students in mathematics classes.

Semiotics as a theoretical framework for mathematics and language
NormaPresmeglllinois State University

“The reasoning of mathematicians will be found to turn chiefly upon the use of
likenesses, which are the very hinges of the gates of their science. The utility of
likenesses to mathematicians consists in their suggesting, in a very precise way,
new aspects of supposed states of thinBsir€e, 1998, p. 6).

Some of the originators of theories of semiotics were linguists. Ferdinand de
Saussure’s (1959) bookourse in General Linguisticss a seminal work in this

area. And Charles Sanddpeirce, himself fluent in Latin, Greek, and several
other languages, makes it abundantly apparent in his writings (e.g., 1998, Vol. 2)
that semiotics under girds and illuminates the study of languages and their stru
ture. Why, then, is semiotics, defined as the study of semiosis (activity with
signs), useful to mathematics educators? A hint of an answer to this question is
given in the initial quotation from Peirce, and in this paper | illustrate semiotic
aspects of metonymy and, in particular, metaphor, showing the relevance of “the
use of likenesses” in the learning of mathematics. In a triadic model of nested
signs based on the formulation of Peirce, the categorization of signs as iconic,
indexical, or symbolic relates to the uses of metaphor and metonymy in semiosis.
| have found these constructs to be powerful lenses in my research, both on ways
of connecting home activities of students with formal mathematical concepts in
school and college (Presmeg 2002), and in understanding the ways that signs
support learning of mathematics at all levels. After an initial description of this
triadic nested model of signs and their uses, | illustrate how metaphoreand m
tonymy are implicated in the model, and its use in linking mathematics in and out
of school.

Pierce’s triadic model of semiosis, in the United Staesr¢e, 1992), had its
counterpart in the Swiss structural approach of Saussure, who defined the sign as
a combination of a “signified” together with its “signifier” (Saussure, 1959;
Whitson, 1994, 1997).acan inverted Saussure’s model, which gave priority to
the signified over the signifier, to stress tlsgnifier over the signified, and thus
to recognize “far ranging autonomy for a dynamic and continuously productive
play of signifiers that was not so easily recognized when it was assumed tacitly
that a signifier was somehow constrained under domination by the signified”
(Whitson, 1994, p. 40). This formulation allows for a chaining process in which a
signifier in a previous sign combination becomes the signified in a new sign
combination, and so on. An example from Hall's (2000) dissertation research —
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which built on my initial work in this area — illustrates these processes. (For fur
ther examples, see Cobb et al., 1997, 2608smeg, 2002.)

An example of use of semiotic chaining in mathematics education

Using a semiotic chain, a sequence of abstractions is created while preserving the
important relationships from the everyday practices of the students. This chain
has at its final link some mathematical concept that is desirable for the students
to learn. Using this process, a teacher can use the chain as an instructional model
that develops a mathematical concept starting with an everyday situation and
linking the two. The example in figure 1 is a chain that was developed and used
with three practicing fourth grade teachers (Hall, 2000), for the purpose of ex-
posing them to this notion. In three phases, Hall gave the teachers increasing
autonomy to construct their own chains based on the experiential realities of their
students, and to use these chains in their classroom practice. The everyday prac
tice in the figure 1 was chewing gum and the mathematical concept beirlg deve
oped was base fivaeddition.

This chaining process involves metonymy - as indeed all signifiers are in a
sense metonymic in a semiotic model (Presmeg, 1998a), since they are “put for”
something else - and also reification, since each signified in turn is constructed as
a new object (Sfard, 1991) that is symbolized by the new signifier. Chaining thus
casts light on both processes as they are implicated in the construction of mathe
matical objects. Changes in discourse in moving through the chain alse exe
plify the negotiation of mathematical meaning through social interaction that
Sfard (2000) and Dorfler (2000) both regard as central in “symbolizingemath
matical reality into being”%fard’s title).

Formal written expressions

Base 5 numbers <«— Changesin

Combining sets of blocks <+— discourse

Packaging gum (5 each
in packages& packs,
and single pieces)

signifier,| signifies| signifiex
signified,| signified | signified

Figure 1L An example of a semiotic chain used by Hall (2000).
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Chaining using this model proved to be a useful tool in enabling these elementary
school teachers to link activities from the lives of their students, in a series of
steps, with the mathematics of the classroom (Hall, 2000). Hall investigated the
process of constructing and using such chains in two modes. Firstly, one might
start with an everyday practice that is meaningful to the participants, and then see
what mathematical notions grow out of the chaining as it is developed. Secondly,
one might focus on a mathematical concept that is to be taught, and then search
for a starting point in the everyday practices of students that can lead torthis co
cept in several links of the chaining process. Not surprisingly, Hall's teachers
found the second mode to be more suited to their classroom practice, giving them
more control over the syllabus. They were able to use the chaining process suc
cessfully in their own classroom mathematical practices. Chains constructed by
the teachers were designated as eitiercultural - bridging two or more du

tures, onintracultural — having a chain that remained within a single cultuke. E
amples of the first typasvolved number of children in students’ families, pizzas,
coins, measurement of students’ hands, linking in a series of steps wih clas
room mathematical concepts. These are intercultural because the cultures and
discourse of students’ homes or activities are linked with the different discourse
and culture of classroom mathematics, for instance, the making of bar graphs.
Manipulatives were frequently used as intermediate links in these chains, as in
the following general model (Hall, 2000, p. 174).

Mathematical concept to represent the manipulative
Manipulative to represent the specific activit

Specific activity within the everyday activit
Everyday activity |

Figure 2 A general model of an intercultural semiotic chain.

The secondntracultural type, involving chains that were developed within the
culture of a single activity, was evidenced in a chain involving baseball team sta
tistics. The movement along the chain could be summarized as follows:

Baseball game®  Hits vs. At Bat® Success Frackon Battirag@ver

It was not the activity that was preserved throughout the chain, but merely the
culture of baseball within which the chain was developed. Preliminary results
from a study by Cheryl HumMhdayemi (in progress) suggest that the model is
also viable for use with pre-service elementary teachers, facilitating their use of
students’ own activities through chains that link with the school mathematics
curriculum.
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However, as in my previous research with graduate students i&thmpo-
mathematicslass Presmeg, 1998b), this conceptual model was not completely
adequate as an explanatory lens. Hall's dissertation research grew from-his par
ticipation in thisEthnomathematiceourse and attempts in that course to use this
model of semiotic chaining to link cultural practices in a series of steps to formal,
abstract mathematics (the intercultural model described in the foregoing). But
when Hall (2000) in his dissertation research taught the elementary schbel teac
ers to construct and use their own semiotic chains in their mathematiss clas
rooms, starting from activities in which their students were engaged, it became
apparent in his analysis of the data that a more complex model would have pro-
vided a better lens for understanding the processes involved. In one instance
there was the phenomenon of a sign within another sign (two related and nested
signifiers for the same signified), which did not fit the pattern of the dyadic
chain. The lesson involved the children counting the number of boys and girls in
the class and constructing pictographs, using stick figures to stand for two chil-
dren each. Both the stick people and the pictograph could be thought of as signi-
fiers for the same signified, the students in the class. Hall (2000, p. 18&) repr

sented the situation as follows.
signifier b pictograph
é:@ stick peopl
students

signified

Figure 3 A signifier within another signifier.

The evident need to take not only this kind of nestedness but also the constru
tion of meaning into account, resulted in further development of the theory, as
described in the next section.

A Peircean nested model of signs

Each of the rectangles in figure 4 represents a sign consisting of the triad of o
ject, representamen, and interpretant, corresponding roughly to signified, signi-
fier, and a third interpreted component, respectively. This interpretant involves
meaning-making: it is the result of trying to make sense of the redatof the

other two components, the object and the representamen. Note that the entire first
sign with its three components constitutes the second object, and the entire sec
ond sign constitutes the third object, which thus includes both the first and the
second signs. Like Russian nested dolls, sign 1 becomes an object in its own
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right (O,) and resides within the second sign; similarly sign 2 becomes an object
in its own right (Q) residing within the third sign. Each object may thus be
thought of as the reification of the processes in the previous sign. Once this reifi-
cation occurs, this new object may be represented and interpreted to inform the
creation of yet another object.

Key: O = Object (signified)
R = Representamen (signifier)

| = Interpretant
Rs
""" I]I]I::> |3
nd
R,
----- ) |
a)
~Z
R
______ L) i
O,

Figure 4 A Peircean representation of a nested chaining of three signifiers

In his writings, and as | have chosen to do in this model, Peirce somegémes r
ferred tosign as the whole triad of objeagpresentamen, and interpretant. But
more often in his published worgignis the word he used when referring to the
representamen, the signifier. The meaning can usually be inferred frornthe co
text, avoiding ambiguity. However, it is necessary to be aware of this daable u
age of the term. IfPeirce’s trichotomy of signs,” as he stated, there are three
kinds of signs (referring to thepresentamen):

Firstly, there ardikenessesor icons, which serve to convey ideas of the things
they represent simply by imitating them. Secondly, therenatieations or in-

dices, which show something about things, on account of their being physically
connected with them. Such is a guidepost, which points down the road to be
taken, or a relative pronoun, which is placed just after the name of therthing i
tended to be denoted, ... Thirdly, there ayenbols or general signs, which

have become associated with their meanings by usage. Such are most words,
and phrases, and speeches, and books, and liblaeesg 1998, p. 5; higre
phasis).

It is the likenesses, acons which are metaphors. A metaphor implicitly com-
pares two domains of experience, giving meaning to elements of one of these
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domains by reference to structural similarities in the otReirce’sindicesare
metonymies rather than metaphors. In a metonymy (e.g., “Washington is talking
with Moscow”) a representamen stands for an object in such a way thanthe co
text is needed for its interpretation (e.g., not the cities, but the governments ce
tered in those cities, are communicating). All metaphors and metonymies may
also partake, to a greater or a lesser extent, in lsgimdolsin Peirce’s sense,
depending on the degree to which they depend on general usage or convention.
(For a fuller treatment of metaphors and metonymies, including examples, see
Presmeg, 1992 &1998a)

Patterns of interaction in mathematics clas®oms
Ase StreitlienHggskolen i Telemark

| will concentrate my contribution on the social norms and patterns of interaction

in mathematics classrooms. Different ways the teacher asks and challenges her
students open up for different mathematical contributions from the students. The
students need to recognise both the mathematical demands as well as the social
demands in the discourse. Some of the rules and routines for participation are
openly expressed; others are more hidden or ambiguous and difficult for young
students to understand. A question | would like to raise is how social rules affect
what counts as knowledge in mathematics and what occurs as learning

The background for my reflection on this issue is my study of communication
in mathematics classrooms in primary school. Attending two classrooms as a
participant-observer over a year provided the opportunity to view the meanings
teachers and students constructed through formal and informal processes. Exten-
sive field notes and audiotapes of classroom talk captured the dialogue between
the teacher and her students and the activities going on. When | listened to my
tapes and read my transcripts, the social norms and rules of the classsoom di
course became a dimension of vital interest. | became increasingly aware of the
children’s difficulties in interpreting the rules for participating in whole class
teaching.

Classroom discourse is a form of institutional talk, and as such has certain
characteristics. Firstly, it is oriented to pedagogical goals, and the participants are
interacting for the specific purpose of learning. Secondly, the participants take
the roles of “instructor” and “instructed”, and therefore have unequal rights of
participation. Finally, there is a certain amount of centrally focused attention with
basic rules of participation; either one person speaks at a time, or multiple speak-
ers say more or less the same thing. As a result of these characteristics it is gen-
erally the teacher who initiates the interaction, introduces the topic and decides
who can talk and when. Instruction is usually characterised by a three-part-
dialogue— often described as the IRF-structure: The teacher initiates (I), a student
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responds (R), whereby the teacher gives feedback, e.g. by evaluating the answer,
by “uptaking” the pupil’'s answer in the instruction, or by inviting the students to
explain their solution. The IRF-structure was first identified by the socio-
linguists Sinclair and Coulthard (1975). LaterMahan followed up with a study

in 1979.Mehan found that the students have the rights to take initiatives on their
own, but they have to recognise when such initiatives are welcome. For many
young students these unwritten rules of interaction are complicated to- unde
stand.

Another study | would like to mention Nystrand’'s “Opening dialogue”
(1997). He and his co-researchers meant to identify two main types of instruction
described asnonologically and dialogically organised instruction. Nystrand de
scribes the differences between these two types of instruction when it comes to
epistemology, communication model, source of valued knowledge and texture of
the lesson. In the case ofonologicallyorganised instruction knowledge is
given, and its source is the teacher or the textbook, not the students. The teacher
prescribes and monitors the answers. The teacher initiates all topics of discussion
and determines what is worth knowing. Knowledge is treated as fixed, objective
and autonomous. Recitation involves interaction, but this is superficial and pr
cedural prescribed by the teacher. In the cashadbgically organised instra:
tion students’ interpretation and personal experience are included. Knowledge is
something generated and constructed. Both teacher and students participate in
this construction. Students figure out, not just remembering. Consequently, these
two types of instruction open up for quite different students’ positions in the
learning process.

One of the rules that run through most of the lessons is the rule of “raising
hands”. Raising hands in the classroom is a way of displaying to the teacher and
to other students that you know the answer. Mostly, the teacher can assume that
when a child is showing a hand, he also knows the answer. Thereby, there is less
risk for asking someone who does not know the answer. From the teacler’s pe
spective this is a way of distributing the talk in a fair way.

| will now give you a short cut of a transcribed dialogue from the mathema
ics classroom in grade two. The class is working with numbers between ten and
twenty. The teacher has drawn two columns on the blackboard where the tens
and units should be marked. These young children are extremely eager to partic
pate. Each of them wishes so strongly that the teacher will choose her/him for
answering. Before the following episode takes place, the teacher has reminded
the students over and over again of raising hands and not saying anything before
they are invited.

Let us have a look at the excérpt

! Pause < Becs. =/
Pause > &ecs = //

55



Plenary addresses

01. Teacher: How many squares do we need to colour on the other column in
order to get fifteen together?

02. A pupil: Hh-mm!

03. T: How many squares do we have to colour here (POINTS AT COLUMN
NUMBER 2) / Per?

04. Per:Eh//

05. T: How many squares do we have to colour on the other column in order
to / it is fifteen we should get

06. Per:lIsit/Ithinkitis/five / five or something?

07. Tor: | know!

08. T: Thereisten/here

09. Tor: | know!

10. T: Yes/that's good /| can see that you have raised your hand // there are
many more besides // how many squares do | have to colour on the other
column in order to get fifteen? // Then we should listen to someone else /
Kari?

11. Kari: Ten and five

12. T: Ten and five / do you agree with Kari?

13. Students: Yes/yes/ yes!

The teacher repeats the same question four times (01, 03, 05, 10) before she gets
the answer she wants. The question is linked to what the students are supposed to
learn in mathematics. However, in utterance number 10 this aim is mixed with
the expectation of social behaviour. On one hand, the students have to find the
right answer very quickly in competition with fellow students. They have, on the
other hand, to control their behaviour, raising hands and keeping quiet about
what they know.

Later on one of the students, Eva, is fetching a deep sigh, and the teacher asks her:

14. T: Yes/was this a little bit difficult?

15. Students: No / no!

16. Eva: Teacher / | did not get my turn in spite of putting up my hand con-
stantly!

This episode shows us that what seems obvious for adults is not alwayg-compr
hensible for children. There is a complex relation between form and function in
the teacher’s use of languad@r does not understand why his knowledge is not
valued. He is confused by the hidden rules. Why should not the teacher give turn
to him since Per seems so doubtful about his answer? In other situations Tor’s
initiative would be valued as a helping hand, but not so in classroom discourse.
When he says he knows, the teacher answers that many others also know. Tor
and Eva have raised their hands, but the underlying meaning is that raising hand
IS no guarantee for being the chosen one. Eva has done exactly what the teacher
had asked her to do — but in spite of that, she never gopfwetanity to answer.
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In the episode the social rules and routines seemed to disturb the mathematical
content in the discourse. So my last question is: How concerned should we be
with discourse patterns and structures in mathematics classrooms? The children |
have referred to in the example are young children, 6 and 7 years old. Their
school career is, so far, a short one. Nevertheless, their meeting wittsthe di
course of mathematics in early school years will affect their attitudes and beliefs
of mathematics for years to come. If students have to struggle in concentrating on
the rules of participation, less attention will be given to the mathematical content.
If a student like Tor will gain several experiences of being rejected by the
teacher, it is reasonable to assume that he will stop taking initiatives.

The general emphases on the importance of good lesson planning and teacher
control tends to put pressure on follow lessons plan as closely as possible, and to
avoid any unplanned learning activities. Consequently, the discourse structure
becomes less flexible, and the teacher and the textbook are resources lof know
edge. The aim is to find the “right” answer. In this context there will be less time
for discussion and negotiation of meaning. This is in conflict with the view that
student initiative, participation and involvement in instruction represennan i
portant aspect of learning processes. The young students need space and time for
expressing what they know and manage on their own. Greater variability in the
patterns of communication should create more opportunities for student partici-
pation in the learning process. One way to do this is to use learning opportunities
created by the students themselves, picking up topics introduced by the students,
let them reflect and figure out or allowing them to decide how to develop a pa
ticular activity. AsNystrand (1997) says:

When teachers ask questions about what students are thinking, and when they
ask questions about students previous answers, they promote fundamental e
pectations for learning by seriously treating students as thinkers, that isj-by ind
cating that what students think is important and worth examining (s. 28).
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Reflekterande samtal for pedagogisk utveckling
Larare och specialpedagog i samverkan
om larande i matematik

Ann Ahlberg, Jan-Ake Klasson, Elisabeth Nordevall
Goteborgs universitet

Studiensovergripandesyfte var att studerahur specialpedagogemch larare
arbetartillsammansfér att utveckla undervisningeni matematik.Forsknings-
intressetvar riktat mot att studera handledningssamtalemellan larare och
specialpedagognedsyftet att granskaom samtalenskaparen gemensanrefe-
rensramsom ger lararnaverktyg att forsta, forklara och utveckla den egna
undervisningspraktikerVidare var syftet att beskrivaeventuellaférandringari
lararnasforstaelseoch forhallningssatttil den egna undervisningenoch fill
elever som har eller kan tankas fa behov av sarskilt stod i matematik.
Undersdkningenhar en explorativ karaktar dar olika datainsamlingsmetoder
kommit till anvandning.Det empiriskamaterialetbestarav handledningssamtal,
intervjuer, informella samtal, deltagandeservationerlararesoch eleversdoku-
mentationsamtofficiella skoldokumentResultatenvisar att samtalenbidrar till
att startaprocesseryilka hjalper lararnaatt synliggorasina stallningstaganden
och bli medvetnaom sina varderingar. Samtalenunderlattar for lararna att
utveckla ett reflekterande forhallningssatt som dgmhandlingsberedskapch
kunskaper att battre forsta och forandra den egna praktiken.

Bakgrund och forskningsanknytning

Studien handlar om hur tva larare tillsammans med en specialpeaiduggrfor
att utformaundervisningen klassrummetor att framja alla eleversmatematiska
larandé. En central fraga i detta sammanhamngad syftet medundervisningen
ar och vilka kunskaperelevernaskall utveckla. Enligt kursplaneni matematik
(Skolverket, 2000) skall undervisningenkarakteriserasav ett larande som
inneb&rupptackteroch utveckling somatt se monster relationeroch samband.
Elevernaskall resoneraoch kommunicerayarderaoch géra bedoémningarsamt
upptackaoch forhalla sig till matematikeri vardagslivet Matematikeni skolan
har emellertidnte alltid dennainriktning. | undervisningerhandlardet ofta om
att elevernaskall ge ratt svar, presterabra pa prov och arbetai laroboken.De

! Studienar genomférdinom projektet "Matematik i en skola for alla” med forsknings-
anslag fran Skolverket. Tidigare dokumentation@rojektet ar "Pa spaningefter en skola
for alla” (Ahlberg, 1999) och "Larande och delaktighet” (Ahlberg, 2001). Den aktuella
studien &r dokumenteradi rapporten”Reflekterande samtalfér pedagogiskutveckling”
(Ahlberg, Klasson & Nordevall, 2002).
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eleversominte "svarar ratt” far oftasttrana”mer av sammasort”. For att det
skall vara mgjligt att uppfylla laroplanensmal borde perspektivetvidgas och
matematikenssprakliga och sociala karaktar lyftas fram. Detta galler ocksa
eleveri behov av sarskilt stod. Aven dessaelever borde fa tillfalle att moéta
matematiken pa olika satt, fa tillfalle att "tal@atematik” och upptackamonster,
relationer och samband (Ahlberg, 1999).

En stor del av den forskning som bidragit till kunskapsutvecklingerom
larande och undervisning i matematik ar grundiahistruktivismenmed rotter i
Piaget (1969). Det som utmarker en konstruktivistisk syn pa kunskap och
larande ar att kunskagonstruerasaktivt av den larandemanniskan(Cobb och
Bauersfeld,1995; Engstrom, 1997; von Glasersfeld,1993; Jaworski, 1994).
Larandei matematiktilldrar sig stort intresse dven inom det sociokulturella
perspektivet (Lave, 1988; Wyndham 1993). Enligt S&lj6 (2000) ar skolans
verksamhet inte primart inriktad mot atitveckla ett matematiskkunnandesom
gor det mojligt for elevernatt klara av vardagensproblem.Istéllet starabstrakt
reflektion och hanteringav symboleri fokus. Skolan som institution utvecklar
egna perspektiv och norméir prioritering och bedémning.De forhallningssatt
som framtraderi skolan skilier sig darfor fran dem som utvecklasi vardagliga
situationer dar ett matematiskt kunnande ingar pa ett naturligt satt.

Forskningom larandeoch undervisningi matematikhar aven genomforts
inom den fenomenografiskaforskningsinriktningensram (Ekeblad, 1996;
Neuman1987; Runesson,1999). Som en plattform for den aktuella studien
tjanar nagraundersokningarav Ahlberg (1992, 1999, 2001). | dessabetonas
vikten av att varieraundervisningskontextenl. en studiei skolartre i grund-
skolanfick elevernamota olika typer av matematiskgproblem som anknat till
deras forestallningsvarld. Det matematiska innehallet presenterades p&akilda
och eleverna fick aven tillfalle att variera sitt perspektiyppgblemengenomatt
anvandaskilda uttrycksmedelsom att rita, tala, skriva och rdkna. Problemen
kunde I6saspa olika satt och det fannsinte baraett endaratt svar. Eleverna
diskuterade med varandra hur gitt tillvaga och fick pa sasattta del av olika
satt att tdnka kring problemenslosningar. Resultatenav studien visar att
innehallet och utformningen av undervisningen beframjar elevenatsmatiska
larande. Det framkom att elever utvecklade sin matematiska forstaeléeanén
malmedvetet lyfte fram matematikens sociala och sprakliga karakt@kagiade
inlarningssituationerar olika aspekterav matematik synliggjordes. Samtliga
elever drog fordelar av arbetssattetmen framfor allt utvecklade de lag-
presterande flickorna sin matematiska forstaelse (Ahlberg, 1992).

Reflektion och specialpedagogik

For att utveckla skolan och larares professionalitet ar det betydelsefskiagih
arenorfor lararesreflektion (Alexandersson,1998). Specialpedagogenkand-
ledning med sina kollegor kan vara en sadan arena som skulle kunna batta till
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utveckla lararnasmatematikdidaktiskekompetens.Ett viktigt inslag i denna
kompetensar att lararen ar medvetenom de val hon gor och att det finns
alternativavagar. Detta ar sarskilt betydelsefulltda det galler undervisningen
med eleveri behov av sarskilt stod. Persson(2001) visar att skolanssatt att
bemota dessa elever ofta folgtt valkant och inarbetatmoénstersomdomineras
av organisatorisk differentiering eller stod av en speciallarare/specialpedagog.

Det betonas mycket starkt i propositionen om den férnyade lararut-
bildningen (Prop 1999/2000:135)att samtligablivande larare skall tillagna sig
special-pedagogisk&unskaperfor att fa beredskapatt méta alla barns och
eleversbehov. Ahlberg (2001) beskriveren rad aspektersom ar betydelsefulla
for elevernadarandeoch delaktighet.Det handlarom samhalls-och organisa-
tionsaspekter,demokrati- och likvardighetsaspektersociokulturella aspekter,
kommunikativaoch sprakliga aspekter,socio-emotionellaaspekter,kognitiva
och perceptuellaaspekter,fysiska aspekter samt didaktiska aspekter. Ett
komplext samspelmellan dessaaspekterpaverkar eleverslarande och det ar
darforinte majligt att med en enkelriktad orsaksmodelforklara varfor en elev
lyckas eller misslyckas med matematiken.

Ett kommunikativt relationsinriktat perspektiv

Den genomfdrdastudien ar grundad i ett kommunikativt relationsinriktat
perspektiv dar begrepp som delaktighet, kommunikation och la&rmntrala.

Perspektivehar starkainfluenserfran vissariktningar inom det sociokulturella
perspektivetoch den fenomenografiskaorskningsinriktningen.Liksom i det

sociokulturella perspektivet ses slem bundna till kulturkontext och situation.

Manniskorskompetensoch kunnande &r beroendeav den historiska, socio-

kulturellamiljo somde ar en del av. Trots gemensankultur och sammanhang
forekommerdock individuella variationeri méanniskorssatt att erfara varlden.

Varje individ har sin sarpragel.Pa grund av skiftande erfarenheter,olika

perspektivoch sammanhangerfar, uppfattar och forstar manniskorsaker och

ting pa olika satt,avenom de ingér i en social praktik. Kunskapsbildningoch

meningsskapandirlaggs darfor inte till manniskaneller till den praktik som

manniskan deltar i. Istdllet betonas relationen mellan méanniskan och de

sammanhang i vilka hon ingar. Det handlar onsatntidigtsetill individen,den

sociala praktiken och till strukturella aspekter som formar den enskildes
larandemiljo (Ahlberg, 2001).

Studiens syfte

Studiens 6vergripande syfte d@it studerahur specialpedagogeach lararekan
arbetatillsammansfor att utveckla undervisningeni matematik. Forsknings-
intressetar riktat mot att studera handledningssamtalemellan larare och
specialpedagodor att granskaom samtalenskaparen gemensanreferensram
som ger lararna verktyg att forsta, forklara och utveckla den egmkadamheten.
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Vidare ar syftet att beskriva eventuellaférandringari lararnasforstaelseoch
forhallningssatttill den egnaundervisningenoch till eleversom har eller kan
tankas fa behov av sarskilt stod i matematik.

Metod och genomférande
Aktionsforskning har influerat studiens upplaggning.tivudtankei dennaar
att kunskapeninom verksamheterska genererasnifran — fran lararnasjalva.
Detta utesluterinte extern hjalp av forskare och andra, men den placerarde
verksamma i centrum (Elliot, 1991; Mc Nieff, 1988).

| undersokningeretableradeva larare,en specialpedagogch tva forskare
ett samarbete foatt stodjalararnasreflektion och forsok att utveckladen egna
verksamhetenLararnasoch specialpedagogenarbetefoljdes under ett lasar.
De badalararnaundervisade var sin aldersblandadyrupp med eleveri skolar
fyra och fem. Sara,som ar mellanstadielarardade varit pa skolan sedanden
startadefor drygt tio ar sedan.Emma ar grundskollararemed inriktning mot
skolar 1-7 inom svenskaoch samhallsorienterandémnen. Hon hade varit
anstalld vid skolan ett ar nar studien genomférdes. Keaite arbetatett ar som
specialpedagog vid skolan och ar ursprungligen mellanstadielarare.

Det empiriska materialet

En méngd olika datainsamlingsmetoder utnyttjadesafidokumenterastudien.
Handledningssamtah med specialpedagogenoch lararna ar centrala i

datamaterialet. Sammanlagt genomfordesdrgtal.De speladesn pa bandoch
transkriberadedill skriven text. Samtalenvaradei genomsnitten timma. Vid

dessasamtal styrde lararnasoch specialpedagogenspplevelseroch tankar
samtalensnnehall. Utgangspunktervid samtalenvar ofta olika dilemmansom
lararna stalldes infér i det dagliga arbetet. Under det lasar studien pagick
genomfordes22 klassrumsobservationarvarje klass. Dessahadetill stor del
karaktarenav deltagandeobservationerForskarensntresseriktades saval mot
lararnassommot elevernasarbetemedett sarskiltfokus pa de eleversomvar i

behov av sarskilt stod. Aven intervjuer och informella samtal med larare,
specialpedagoggektor och eleverutgor ett vasentligtbidrag till det empiriska
materialet.

Analys och tolkning

Analysenoch tolkningen har syftat till att forsoka forsta och forklara lararnas
och specialpedagogensrd och handlingarfor att ge en sammanhangandaild
av handledningssamtalemch den dagligapraktiken. Intressethar varit inriktat
mot att studerahur lararnaoch specialpedagogemeflekterar éver sin under-
visning och om samtalen pa nagot satt visar spérksamhetenVid analyserna
av handledningssamtalenisnehall och struktur anvands en modell av det
reflekterande samtalet som utvecklats i en tidigare studie (se Ahlberg 1999).

62



Ahlberg, Klasson, Nordevall

Resultat

Resultatredovisningemleds med en tematiskbeskrivningav samtalensinne-

hall. Beskrivningenav lararnasord och handlingarhar delatsin i en inledande
fas, en fortldpandefas och en avslutandefas. Avsikten ar att rikta ljuset mot

saval lararna som specialpedagogemch belysahur de erfar det vardagliga
arbetetmed matematiken skolan. Darefterges en jamférandebeskrivningav

lararnas erfarande av praktiken i den inledande och den avslutande fasen.

Perspektiv och larande i den inledande fasen

Lararna menar att pa grund av att skolans profil ar riktad mot samhalls-
orienterande amnen och svenska tiaecklingenav matematikundervisningen
vid skolan fatt sta tillbaka. Det gemensammarbeteti den inledande fasen
innebaratt Karin i egenskapav specialpedagog@nsvararfor "sina” barn nar
hon ari klassrummetBade Saraoch Emmafoljer i sin undervisninglaroboken,
som de sjalva benamnersom hastighetsindividualiserackarin talar ocksa om
larobokensom hastighetsindividualiseradch tror att det ar ett genomgaende
drag for hela skolans matematikundervisning:Undervisningen ar lattare nar
barnen arbetar pa sin niva.” Det uppfattas salsdasmer arbetsamfor lararna
att forsokavarieraoch planerafor olika innehallvid lektionerna.Det kravertid
och lararna anser sig inte ha den tiden.

Karin har dock noteratatt i synnerhetSaraibland anvandersig av egen-
handigt produceradematematikuppgifterHon har latit elevernaarbeta med
matematik kring en klassfest, det politiska valet och matematikintegietenggat
"katter”. Bada klasslararnapatalar de nationella provens betydelse. Emma
ka&nnersig stressadch orolig for en del eleveroch infor allt somskall larastill
dess.Bade lararnaoch specialpedagogetelysertiden som en betydelsefull
faktor for vad mangor i klassrummetUtifran observationerng&an mananaen
viss stresshos Emmanar hon vljer att |ata elevernaarbetamed egenhandigt
producerade matematikuppgifter. Dels kan detta vara en f6ljd av att heorhar
mal att alla eleversuppgifter skall presentera®ch bearbetasgemensamtdels
somen foljd av att elevernaar ovanaatt arbetamed dennatyp av matema-
tikuppgifter och en stund in pa lektionen borjar visa oro. Aven Emmasegen
bristande rutin vid denna typ av arbetssatt kan till viss del paverka skeendet.

Perspektiv och larande i den fortldpande fasen

Under den fortlopandefasenpatalaralla tre lararnaatt det ar viktigt att vara
insatt i organisationsfragor, sdsom skolans resurser oclicitdetning. Behovet
blir mycket tydligt i och med 6kade krav pa maluppfyllelse, samtidigt sotalet
barn i behov av sarskilt stéd okar. Emma ar bekymrad 6ver de minskade
resurserna skolan och fragar sig hur man skall lyckas med att fler elevernar
malen.Hon ger somexempelatt hon fatt en ny elevi sin klass.Dennaelev ar i

stort behov av stod, men det finns inte tillgang till nagot extra stod.berattar
ocksaom Nina som hellre vill rita och lasaan att arbetamed matematik.Nina
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tycker att allting ar svart. Nar hon ska lésa ett problemanvanderhon genast
nagratal i problemetfor att géraen utrakning, utan minstatanke pa rimlighet.
Vid eget arbete valjer Nina aldrig matematik.

Om maninte &r hos Nina direkt, da aker mattebokerivag eller neri bankenoch
hon tjurar. Innan hon har 6ppnat matteboken vet hon eller tar for givet, atitéion
klarar den sidan. Hon &r sa bestamd. DégdittesvartMen om manar i narheten
och ser att hon spanner sig i ryggerkd& manlirka. Men det ar inte majligt att
vara hos henne sa ofta som man skulle behéva. (Emma)

| det enskildasamtaletkring matematiknamnerNina att matematikar "trakigt
och jobbigt”. Emma har haft samtal med foraldramdima skall fa ga till Piasom
undervisari svenskasom andrasprakHon har for tillifallet fa elever och kan
darfor ta emot henne. Denna l6snivigar sig fungerabra, da det ar lugnaredar
och Nina har lattare att koncentrera sig i den lilla gruppen.

Emmaoch Karin har &vensvartatt hinnamed Saidaoch funderardver hur
mankan forandradetta. Saidahar svarighetermed monsteroch begrepp,bl. a.
halften och dubbelt.Vid det enskildasamtaletmed Saidaframkommeratt hon
uteslutande ser matematik som proceduriell kappladtill de fyra raknesatten.
Hon anser sjalv att hon &r "bra pa plus och minus”. Hon behévemévpa att
"stélla upp — 6ver tusen med plus och minus”.

Underlasaretsgang har samarbetemellan Emmaoch Karin kommit igang.
De konstaterar att dglemensammeeflekterandekring eleveroch innehallger
en tydligare struktur, dverblick och utveckling av klassrumsarbetet. Skrimgl
elever i svarigheter bidrar till att utveckla och forandra deras forhallninggsttt.
gemensamansvarstagandatvecklas,vilket blir sarskilttydligt hos Emmaoch
Karin i derasarbetekring elevenSaida.Emmamenaratt det ar viktigt att Saida
far lara sig ty sig till andra an Karin ogfnna”att ej alltid vara sist pa skalan”.
Hon har axlat ett ansvar for en kamrat, somdetrsvart medspraket.Vid nagot
tillfalle hadehon yttrat till Sara,som har gruppeni engelska;”"Du forstar, hon
(Fatima) forstar inte nar du pratar engelska hidien”. Enligt Emmahade Saida
vid ett annat tillfalle i ett samtalmellan Emmaoch Fatima, med en sjalvklar
auktoritet tolkat till elevernasgemensammaemsprakoch sedan tillbaka till
svenska.

Det ar ingen katastrofom hon kor fasti nadgonuppgift och far forsoka flera
ganger.Hon fixar det &nda.Da tar hon det lugnt eller tar hjalp av kompisar.
(Emma)

Saramenaratt det underlattarom Karin och hon kan utbyta tankar och idéer.
Hon nadmner att hon kan se att en forandring har skatt hennesjalv. Det har
blivit enklare att omsattasina matematiskaidéer till praktiska handlingar i
klassrummet.
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Jag har ofta vetat att sa och sa skall jag laggamattearbetetDet har dock tagit
alltfor lang forberedelsetid. Nu har det fantastigkeaffat att det har blivit lattare
att snabbtpassavarje tilifalle till mattepratt ex narjag lastei hoglasningsboken
och upptéckte matteproblem...diskuteradeoch réknade detta istéllet for att
diskutera handelseinnehalletDet har blivit lattare och naturligare att hitta
matematiken i allt vi gor. (Sara)

Lararna diskuterar &ven grupparbetetsbetydelse och menar att det har

betydelsefor larandetmen att det ocksa har en social dimension.De belyser
vikten av utbyte av matematiskastrategierfor att undvika att bokenslésnings-
modell blir den enda och riktiga. Samtidigt patalar de att bade elever och

foraldrar oftast fokuserar kvantitet och produkt. "Var ar de i matteboken?”
Lararnaar 6verensom att de vill ha mer utbyte av idéer mellan sig, avseende
litteratur, materialoch undervisning.De foreslarvidare att derassamtalsmodell
borde ges utrymmeinom den egnaorganisationerfor fler larare, eftersomde

sjalva ser vad den ger.

Perspektiv och larande i den avslutande fasen

Under den avslutandefasenhar lararnasuppmarksamhet storre utstrackning
riktats mot att variera matematikundervisningenisnehall och utformning. De

konstateraratt matematikamne&iven inrymmer en social dimension,i vilken

elevernakan motasfor ett utbyte av strategieroch larandeav varandra.En

bidragandeorsaktill dettaar enligt Karin att de i 6kad utstrackningdiskuterar
undervisningensnnehalli forhallandetill elevernasbehov. Dartill har Emmas
och Karins samarbetaitvecklatstill ett gemensamansvarkring eleveri behov
av sarskilt stod. Karin har fungerat som dirskid i klassrummebch somstodi

gemensamma pedagogiska diskussioner. Emma har for&ittitankandekring

detta.Franatt i bérjan ha varit tveksamtill om det gemensammaeflekterandet
kunde ledatill utveckling i klassrummetpatalarhon nu férdelarnamed att fa

arbetai narasamarbetenedspecialpedagoger.sitt arbetemedeleveri behov
av sarskilt stod sedEmmavilken paverkanhennesoch Karins arbetehaft for en

av elevernaFlickan har "blommat upp” socialti klassenoch visar pa en egen
initiativformaga i sitt kunskapande. Emma ser ocks&eindring hos sig sjalv i

forhallande till matematiken.Hon "tanker oftare matematik” och hon drar

parallellertill sprakutvecklingoch betonarbetydelsenav eleversolikheter och

dess konsekvenser for undervisningen.

Emma gewuttryck for en viss besvikelsebver att inte samarbetemedklass-
lararkollegan kommit igang i den utstrackning som hon forvantatNgigot som
bekraftas av Sara, som menartahnessjukdomhadelagt hinderi vagen.Hon
poangterardock att det &r viktigt att stétta och hjalpa varandra.Det ar nagot
som hon vill utveckla, "annars orkar man inte”.

Forskarnasnarvarooch de pedagogiskadiskussionernaunder lasarethar
bidragittill att |ararnafokuserarmatematikdmneit hogre grad i olika undervis-
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ningssammanhandsaramenaratt det har hjalpt henne att naturligt integrera
matematiken i hennes totala undervisning. Karin menar att hangérandring
| sitt samarbetened Saraoch Emma.De samtalaroch diskuterari en helt annan
utstrackning &n tidigare. Alla tre dnskar att det reflekterandepedagogiska
samtaletryms inom den ordinarie organisationen Emma menar att det egna
arbetetunderlattasom flera vuxna samtalaroch upplever "igenkannandets
gemenskap”.

Reflekterande samtal for pedagogisk utveckling

En slutsats som kan dras av studieathsamtalerkannetecknasav en riktning
mot problematiseringoch perspektivseendeSamtalenér inte riktade mot att
direkt finna ett svar pa det diskuteradedilemmat. Istéllet &r intentionen att
forsokaforstaolika skeendersamtsoka och préva olika vagar for att komma
tillratta medolika problematiskasituationer.Handledningssamtalehar darmed
karaktaren av reflekterande samtal.

Da lararesamtalarom sitt dagligaarbeterefererarde enligt Ahlberg (1999)
pa en 6vergripandeniva till larande, skolan somsocial praktik samtskolans
mal och vardegrund.Lararnatalar &ven om elevensforutsattningarkunskaper
och behov, undervisningensinnehall och organisering samt skolans orga-
nisationoch kultur. Dessareferensertas som utgangspunktfor en jamférande
analys mellan de tva polerna "den inledande fasen” och "den avslutande
fasen” i det foljande. En dversikt gesi tabell 1 och 2. | varje modul beskrivs
karnan i det satt pa vilket lararna erfar sin praktik.

Referensomradenlarande skolansomsocial praktik samtskolansmal och
vardegrund har berorts. | de samtal da nagfetrensomradante har behandlats
har forskarna ofta fort in detta och darmed vidgat samtalets rorétgetahand
galler det skolansmal och vardegrundvilket forskarna,men aven specialpeda-
gogen uppmarksammar storre utstrackning an lararna. Samtalenhar darmed
vidgats till att se larande,skolans sociala praktik samt mal och vardegrund
genom flera nivaer inom skolans verksambhet.

66



Ahlberg, Klasson, Nordevall

Tabell 1 Lararnas erfarande av praktiken i den inledande fasen

Elevens I'Undervisningens ' Skolans organisation
Referenser forutsattningar, | innehall J 1 och kultuf ?
kunskaper och behov och organisering 1
Larande Laroboken ar | Undervisningen ' Skolans verksamhet
utg&ngspunkten i . huvudsakligen | och intresse
undervisningen | inriktad mot kvantitet | huvudsakligen riktat
! ! mot svenska och
Samtliga elever arbetar Specialpedagogen 1 samhéllsorienterade
enskilt i samma | forser klasslararen | &mnen
larobok. De arbetar i | med uppgifter for ;
sin egen takt pa sin ' elever i behov av !
___________ egenniva_______ isarskitstd v __
Skolan som | Specialpedagogen ! | Bristande tid for -: Accepterande av

social praktik

vardegrund

arbetar individuellt
med elever. | klass-
rummet eller i
enskildhet

Alla elever ska kdnna
samhorighet och
delaktighet i skolan

Specialpedagogen
stoder elever i svarig-

| samplanering och
' samverkan

| Varierande uttrycks-

| former och samverkay,

' mellan elever i

elevers olikheter

Bristande tid for
pedagogiska samtal
och reflektion

- begransad omfattnlng

! | De nationella proven

. Stravan mot att moéta

. och uppndendemalen alla elevers olikheter

, o
' styr undervisningen

heter genom att arbet?

individuellt med dem

! Specialpedagogen ha
. det huvudsakliga
| ansvaret for elever i

: behov av sarskilt stod
1

Aven i den avslutandefasenberors samtligareferensomraderEn beskriv-
ning av samtalens innehall i den avslutande fasen ges i tabell 2.

? Skolansorganisationoch kultur bedomsi dennaundersokningmed utgangspunktfran
vad som framkommervid samtalenmed klasslarareoch specialpedagogamtvid intervjun

med rektorn.
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Tabell 2 Lararnas erfarande av praktiken i den avslutande fasen

Referenser ][Elevens Undﬁr\l/llsnlngens . Skolans organisation
Orutsattningar, 1 inneha !
kunskaper gch behov, och organisering : och kultur
Larande Laroboken &r en av | Undervisningen i 6kaq Verksamhetens
manga redskap for ! utstrackning inriktad : intresse riktad mot
eleverna att lara 1 mot forstaelse 1 svenska och
: . samhallsorienterade
Elevernas olika satt attl Specialpedagogen | amnen och matematik
tanka och resonera ! diskuterar med :
uppmarksammas och klasslararen omkring + Kopplingen mellan
tas som utgéngspunkt: uppgifter for elever i . skolamnena uppmark
undervisningen . behov av sérskilt stod; sammas
1 |
Balans mellan krav ocl: Matematikens :
formaga \ kommunikativa och
| sociala aspekter ;
_________________________ fokuseras_ 1 ______
Skolan som | Organisering av :Varlerande Uppmarksamheten
social praktik larandemiljoer som 1 uttrycksformer och riktad mot elevernas
beframjar den enskild{ samverkan mellan olikheter

Mal och
vardegrund

elevens larande : elever i 6kad

! utstrackning Inriktning mot samtal

I och samarbete

1
1
1
1
1
1
1
1
:
\ Gruppen ses som en ,
:tillgéng i larandet !
' :
1
1
1
1
1
1

: Specialpedagogen

\ deltar i planering och
. genomforande av

l underwsnmgen

4
Elever i svarigheter ! EIevers olikheter ses 1 Medvetet arbete mot

deltar i den | som en majlighet | att mota alla elevers
sammanhalina : | olikheter
gruppen ! Elevers erfarenheter '

-tas som utgangspunk‘n Specialpedagog och
| for undervisningen | klasslarare tar gemen
. och ses som | samt ansvar for elever
' mojligheter ' behov av sarskilt stod

Vid en jamforelse mellan faserna framkomraéirde samtalsomforts om larande,
social praktik och mal och vardegruhdr lett till en férandringsomar kopplad
till elevens forutsattningakunskaperoch behov,undervisningensnnehalloch
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organiseringsamtskolansorganisationoch kultur. Det handlar oftast om en
gradskillnaddar vissareferensomradennder studiensfortlopandefar en 6kad
fokusering och uppmarksamhet

Forandringar i verksamheten sker genom att lararna refleldenanforlivar
idéeroch tankari den egnaerfarenhetsvarlderSamtalerger konsekvenseror
lararnastankandeoch handlandeoch férandrartill viss del lararnassyn och
forhallningssatttill @amnet matematik och matematikundervisningenStudiens
resultat visar att handledningssamtakan bidra till lararens mojligheter att
distanserasig och utveckla ett kritiskt férhallningssatttil den egnaundervis-
ningen. Samtalerverkar stddjandevid dilemmansomuppkommer det dagliga
arbetet, och bidrar dessutom till att skapa ett gemensarék och gemensamma
referensramahos de deltaganddararna.Lararensférhallningssattoch formaga
till flexibilitet i tankande och inlevelse i elevens situation har avgoérande
betydelse for hur en elevs skolsituation kommepgastaltasig. Resultatenvisar
att handledningeni vissa avseendenleder till en utveckling i den enskilde
lararens tankande som ocksa lamnar avtryck i det dagliga arbetet.
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On Reasoning Characteristics in Upper
Secondary School Students’ Task Solving

Tomas Berggvist, Johan Lithner, Lovisa Sumpter
Umea universitet

I ntroduction

The backgroundto this reportis the concernthat the Swedishschool system
cannothelp sufficiently many studentsto reacha desiredlevel of mathematical
competenceOne of the main purposesfor mathematicsat upper secondary
school in Sweden is students’ ability to analyse and solve problemdeveed
to focus on problemsolving and students’ reasoninga central componentin
mathematics.

Our starting-pointwasthe earlierresearcltby Lithner (2000) that indicates
that undergraduate students in problematic situations tend tomeheir, often
mathematicallysuperficial, experiencesiIn very few casestheir strategiesare
grounded in relevant mathematical concepts. In these d¢asagasonings still
dominated by the individuals’ memory images and familiar routinespiingose
here was to make a study similar to Lithner (2000), focusing on ggpendary
schoolstudents.We suspectedhat this kind of behaviouris also commonat
that level.

We claimedthat studentsin upper secondaryschool in Swedenspend a
large part of their time in classsolving different types of mathematicaltasks,
mainly textbook exercisegBergqvistet al, 2003). In this activity, they often
meet problematicsituationswhere it is not obvious how to proceed.When a
studentis facing a problematicsituationhe or shemustmakea strategychoice
concerningwhat to do in orderto solve the problem,and then implementthis
strategy.In our study,we wereinterestedn on what basesthesechoicesand
Implementations are made.

The general question waghat makes students succeed or fail in a proble-
matic situation? We investigated this when students worketh mathematical
task in a test like situation: alone awtthout other aid than a calculator.When
students have otheds,for examplepeersor textbooks,the reasoningmay be
radically different (Lithner, 2003).

Theoretical framework

In this study we usedto a large extent the framework presentedin Lithner
(2003). The first part of the frameworkis to structurethe databy describing
problematic situations, using a four step reasoning structure:
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1. A problematic situation is met where it is not obvious how to
proceed.

2. Srategy choice: Try to choose(in a wide sense) strategythat can
solve the problematic situation.

3. Strategy implementation.
4. Conclusion: A result is obtained.

In steptwo, a predictiveargumentatiorcan supportthe strategychoiceand in
step three, a verifying argument caupportthe implementatiorof the strategy.
The argumentationis the most important part, since it makesit possibleto
discuss why the student acts in a certain way.

The secondpart of the frameworkis to classify the argumentationscon-
cerning the strategy choi@nd the conclusion.In the frameworkfour different
reasoningtypes were presented.These types are results from analysis of
empirical data (Lithner, 2003). The types were:

» Plausible Reasoning (PR). Reasoning mainly based on intrinsic

mathematicalproperties without having to be complete or fully
correct.

* Reasoning based on Established Experiences (EE). Reasoning
based on previous experiences from the learning environment.

» Algorithmic Reasoning (AR). Recallinga certain algorithm that will
probably solve the problematic situation.

* Piloted Reasoning (PdR). Someoneelse controls all the strategy
choices that could have been problematic to the solver.

Here, reasoning had the same meaning as in Lithner (2003): “the liheugfht,
the wayof thinking, adoptedto produceassertionsaand reachconclusions”.In
this definition, reasoning doesn’t necessarily haveabasedon formal deduc-
tive logic, and it may evenbe incorrect. Mathematicalreasonings any type of
reasoning in mathematical task solving.

Due to the limited spacewe will not presentthe definitionsof all concepts
involved, and we will not presentall the details of the full framework. The
definitions can be found in Lithner (2003).

Resear ch questions
This study was based on the following research questions:

Q1: In what ways do studentsmanageor fail to engagein PR as a meansof
making progress in solving tasks?

Q2: What are the roles of EE, AR, PdR or other types of reasoningin these
situations?

Method
Threedifferent upper secondaryschool study programmesvere representedn
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the study: the naturalscienceprogrammeNV, the most mathematicallyintense
program), the sociacienceprogramme(SP,alsoa programmemeantto prepare
the studentsfor higher studiesjust as the natural scienceprogrammeput not
focusing on mathematics)and the hotel, restaurantand catering programme
(HR), the latter a vocational programmeand one of the least mathematically
intense. Five students from eagtogrammeparticipated and the studentswere
in their eleventh school year (age 1¥8years).The sessionsvere video taped,
using a cameraplaceddirectly above a sheetof paperand each sessionwas
limited to 40 minutes.The recordingsshowedthe students’written work and
use of a calculator. The students were askéthiok aloud’ and solvethe task
in a ‘test-like’ situation. To each programmethree to six mathematicatasks
were selected (Bergqvist et 2003). The tasksdealtwith mathematicsecently
coveredby the teacheran eachclassand similar taskscould in most casesbe
found in the students’ textbooks.

After each session we tried to interptie¢ students’work. The goal wasto
make a first description of what was taking place, and alspe&oulatewhy this
was happening and how the students were thinking. A second mestinthe
studentstook placethree or four days after the first session.The aim was to
increasethe reliability of the interpretationsThe studentswere invited to com-
menton their own performanceand we also suggestedpossiblereasonswhy
they were acting in a certaimay. The impressiorwe got was that the students
commentedbur suggestionsn a clearand honestway. Sevenout of approxi-
mately fifty task solvingattemptswere chosenfor a moredetailedanalysis.The
choice was made to be a representative selection of all problematic situations.

A quick descriptionof the studentsthat participatedin each programme
(Bergquist et al, 2003):

» NaturalscienceprogrammeNV): the studentsthat participatedtried

to alargeextentto figure out or rememberthe appropriatemethod.

They were rather good in the carrying out of the attempted
procedures, but they had problems in reviewing their work.

» Social scienceprogramme(SP): the studentsfrom this programme
were very much focusedon finding correctalgorithms,but they all
had severedifficulties in analysingthe mathematicsnvolved in the
algorithms.

* Hotel, restaurantand catering programme(HP): The studentswe
studied from this programme had a tendetocguesswhat algorithm
should be used, but they seemed not to remethieaalgorithmsvery
well.

Results and discussion

In this studywe analysedsevensituations,but many other situationswere also
considered. In many situations the students simply solved the task by agplying
correct algorithm. We picked problematic situations where it was not clélae to
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studentshow to proceed.In the data almostall studentsfailed or had severe
difficulties, but many of the chosenstudentssolved other taskscorrectly. We
rejectedtaskswhere the studentsdidn't meetany problematicsituationsafter
choosing an algorithm (Bergqvist et al, 2003).

In the analysiswe found that six out of the sevenstudentschose their
strategieson only or mainly surfaceproperty considerationsand they focused
on using moreor lesswell-masteredalgorithms(Bergqvistet al, 2003). It wasa
high dependency on finding relevactmpletealgorithms,or at leastalgorithms
possible to use. In most situations, the choicemethodwas trying to remember
something related tthe situationat hand. Sometimesthis may be a reasonable
strategy, but iis often insufficient when meetingdifferent kinds of problematic
situations (Berggvist et al, 2003).

When the students for some reason faitedarry out the chosenalgorithm,
two main different approachespften combinedwith questionsor commentsto
the interviewer, were found (Bergqvist et al, 2003):

» To quickly changeto anotheralgorithmchosenfrom a ‘toolbox’ of

possiblealternatives,and the decision whether an algorithm was
appropriate or not was based on surface considerations.

* To simply stop working.

The questionsor commentghat the student proposedto the interviewer were
made in order to get some kind of hint or guidance about what to doTimexe
were hardly any situations where the students made an attemptsomekind
of evaluation of the choseadgorithm,or to reconstructor modify the algorithm
to the situation at hand.

Oneimportantresultfrom this study wasthe identification of a description
of a new reasoning type, a repeated AR that will be c&lkgeatedAlgorithmic
Reasoning (RAR), with the following definition:

Repeated Algorithmic Reasoning (RAR)
The reasoningin a task solution attemptwill be called repeated algorithmic
reasoning (RAR) if the reasoning fulfils both of the following two conditions

1. The general strategy choice is to repeatexqtiply algorithms,where
eachlocal strategy choice is founded on recalling that a certain
algorithmwill (probably) solve a certaintask type. The algorithms
arechosenfrom a setof (to the reasoner)availablealgorithmsthat
are (to the reasoneryelatedto the task type by surfaceproperties
only.

2. The strategy implementationis carried through by following the
algorithms.No verifying argumentations required.If an implemen-
ted algorithm is stalled or does not lead to a (to the reasoner)
reasonable conclusion, then the implementatiorotsevaluatedbut
simply terminated and a new algorithm is chosen.
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RAR doesnot differ from AR only in the sensethat it is repeated.The main
difference betweenthese two is that to be classified as RAR, the chosen
algorithms musbe chosenon surfaceproperty consideration®only. It mustbe
stressed that, especially if teetof algorithmsto choosefrom is smalland each
one is relatively simple, RAR often works well.

Only one clear exampleof PR was found amongthe chosen situations
(Bergquvist etal, 2003). In severalsituations,a possible(and elementaryrelative
to the coursetaken) PR seemedclose, for instanceasking one self about the
appearanc®f a graphor the meaningof an equality sign. It was striking that
even a limitedamountof reflectionor afterthoughtcould have led the students
to far more positive results (Bergqvist et al, 2003).

One purpose in our work was to maketady similar to Lithner (2000). We
made the following comparisons (Bergqvist et al, 2003):

» Thesamelack of PRwasfound, but whenin Lithner’s study it was
replacedby EE (reasoningoasedon establishedexperiences)if was
here replacedby AR (algorithmic reasoning)and RAR (repeated
algorithmic reasoning).One reasonbehind this difference might be
that AR and RAR are not effective choices in undergraduate
mathematicsDue to the much larger range of available algorithms

and proceduressomeother meansto guide the superficial strategies
must be found.

* In both studiesthere was a dominance of superficial reasoning
strategies.This was in both studiesfound to be one of the main
reasons behind the students' difficulties.

The research questions that served as a basis for the analysis were:

Q1: In what ways do studentsmanageor fail to engagein PR as a meansof
making progress in solving tasks?

Q2: What are the roles of EE, AR, PdR or other types of reasoningin these
situations?

To answerthe questionswe summarisednd discussedhe types of reasoning
that were found.

The studentsin the Social Scienceprogramme(SP) and the Hotel, Restau-
rant and Catering programn@eR) to a large extent usedalgorithmicreasoning
(AR) in their work. They tried to find a suitablealgorithm, often by trying to
remember or omther superficialgrounds.The algorithmwas chosenbecauset
had somethingto do with the situation at hand, and (occasionally)that it
seemed possible that it would solve the task. The algorithm wasaneadout,
step bystep,mostly without attemptsto verify or evaluatethe algorithmor the
result. It is possible that AR is an effective method in school mathematieasat
on lower levels(year6 - 10), wherethe numberof possiblealgorithmsin each
areais very small. If therearetwo alternativesthe chanceof picking the right
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one is rathergood, especiallyif you take surface keyword-like' characteristics
into consideration.

Repeated algorithmireasoning(RAR), where new algorithmswere chosen
on more or less surface considerations, was tested wherogmesss experien-
ced. That type of reasoningwas found in the work of a few studentsin the
Natural Scienceprogramme.They changedquickly between algorithms,and
appeared rather skilfuh their work. The problemwasthat they rarely had any
intrinsic property considerations as a groundtfair choicesof algorithms,and
thereforethe possiblesuccesslependson two things: if the chosenalgorithm
will solve the task, and if the algorithm is mastered gendughby the student.
In the mostclearexampleof RAR, one studenttries four different algorithmsin
only a few minutes.The first choice would have solved the task if she had
mastered the whole algorithm and not only the first part.

RAR might needa slightly higherlevel of understandingcomparedto AR,
sinceit requiressomekind of evaluationof the algorithm at hand, even if this
evaluation can be made on very superficial grounds. If so, Réid have had
a betterchanceof succesghan AR, sincealmostall availablealgorithmscould
be tested.RAR should alsobe morevaluableat upper secondaryschool (year
10 - 12) where each mathematical aceatainsseveralalgorithms,and not only
two or three as in earlier years. The definition of RAR is a result of this study.

Among the situationswhere the studentsused algorithmsthat failed, the
mostnotable part was the almosttotal lack of attemptsto understandwhy the
algorithm failed, or if it could be modified the situationat hand. This lack also
seemed to be one major reason behind their difficulties.

There are also severalsituations,mainly in the Social Scienceprogramme
and in the Natural Scienceprogramme,where studentsrely heavily on their
interactionwith the interviewer. This is classified as piloted reasoning(PdR),
since all important strategy choices are either made by the intervieweresirlta
of a question or a comment from the interviewer. Piloted reasoninding iwith
the conceptof the didactical contract (Brousseau,1997). The studentslisten
carefully to what the teachersays,and actsaccordingto the conversation.For
the students, this is a way to get correct answers in a very large pasttasks.
To the teacherjt meansa quick and manageablevay to guide almosta whole
classthrough the textbook. Brousseau(1997) claims that as long as both
teacher and student follow the didactical contractleaoningoccurs.However,
piloted reasoningcan also be somethingpositive, a way to help a studentto
reach understanding in an area. If the student is uncexttaispecificlevel, it is
possible for the teacher, by piloted work dtigherlevel, to help the studentto
strengthen his or hamderstandingon the lower level. In that caseiit is crucial
that the guidanceis not too extensiveso that the guider doesnot resolveall
problematic situations for the student.

One studentin the Natural Scienceprogrammeused PR in his work. He

76



Bergqvist, Lithner, Sumpter

analysedthe shapeof a graph and could from that decidewhereto find the
smallestvalue. Tracesof PR was also found in a few situationswith other
students.n severalsituationsplausiblereasoningseemednear at hand to the
students, but for various reasons, the students refrained from using it.

It appearedthat sometimesstudents did not attempt to use PR, and
sometimesheir conceptualunderstandingwas not sufficient for PR. The two
competences conceptual understandang PR ability are probably connected,
since PR requiresbasic conceptualunderstandingand the latter may not be
possibleto developby only solving routine,non-PR,exercisesvhere the main
goal is to practice algorithms (Lithner, 2003). It should be stressedthat the
conceptualunderstandinghat is indicatedin the analysesas missing are quite
elementaryrelativeto the coursesthe studentshave taken. Studentswho are
encouragedand able to use plausiblereasoningin their mathematicdearning,
will stand a better chanceto avoid what Ross (1998) calls “a matter of
following a set of proceduresand mimicking exampleswithout thought asto
why they make sense”.
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Teachers’ Preparedness for
‘Modern Mathematics’ in Iceland

Kristin Bjarnadottir
Iceland University of Education

Introduction
This study is concerned with how theelandicschoolsystemand,in particular,
teacher education, was prepared for riddical alterationof ‘modern’ mathema-
tics and its languagein the 1960sand onwards.Four measurestaken or not
taken by the authorities,hinderedthe developmenf mathematicgeachingin
Iceland:

« Mathematicswas not amongthe main subjectsin the single educa-

tion institution in Iceland, the Reykjavik Learn8dhool/Gymnasium,

for four decadesin 1877-1919,when there was no mathematics
department in the school.

* Admission to the Reykjavik Gymnasium was restricted for two
decades1928-1946,shortly after the establishmenbf its mathe-
matics department.

» Teachingof mathematicsat the TeacherEducation College, estab-
lished in 1908, decreasedduring four and a half decadesin
1922-1967.

* The part of the educationbill in 1946 about further education of
teachers was not adopted.

The study considers whetheétte compoundeffect of thesefour eventsinfluen-

ced the capacity of the Icelandic school systermojee with the modernmathe-
maticsreform movementand its specialemphasison formal symbolic mathema-
tical language Or did other circumstancessuchasthe Icelandicinheritanceof

home- and self-education mend the situation?

The Learned School

The roots of the conditions of mathematics education for teaché&slandcan
be traced back tthe 19" century. At the beginningof the 19" century, Icelan-
dic studentsalone, graduatingfrom the sole learnedschool in Iceland, were
exemptfrom requirementsn mathematicsat the University in Copenhagen,
Iceland being @olony of Denmarkand Copenhagerthus its capital. However,
during 1822-1862the LearnedSchool,first situatedin Bessasta_iand later in
Reykjavik, enjoyed excellentteachingfrom Bjorn Gunnlaugssona mathema-
tician who had earnedtwo gold medalsfor mathematicsat the University in
CopenhagenThe studentsstudied arithmetic, algebra,geometry, stereometry
and trigonometry. (Skélask_rsla, 1847-1862).
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Discussionsaboutteachingmodernlanguagesn learnedschoolswere intense
in Denmark and other European countries during the decade after Bjorn
Gunnlaugsson’s retirement. In 18ftie Danishparliamentpassedegislationon
division of Danish learned schools into two departmenksnguageand history
departmentand a mathematicsand science department.In 1875, following
Iceland’s own constitutionin 1874, a committeewas appointedin Icelandto
preparea regulationfor the Icelandicschool.In 1876 it presenteda proposal
where three modern languageswere introduced: French and English as
compulsoryand Germanoptional. Hebrewwas eliminated,Greekand a couple
of other subjectswere to be reducedwhile Latin and mathematicsvould keep
their previousstatus.(Alitsskjal, 1877). Lettersfrom the governor of Icelandin
Reykjavik to the minister of Iceland in Copenhagen famah the ministerto the
king of Denmark,found in the National Archives of Iceland,revealinteresting
intrigues resulting in the sacrifice of mathematicseducationin the last two
school-years for increased Danish educat{@he National Archivesof Iceland.
islenskastjornardeildin.S. VI, 5. Skdlamal.Isl. Journal 15, nr. 680. Skjalasafn
landshof_ingjalLhJd 1877,N nr. 621) The Reykjavik Learned School becamea
languagedepartmentchool. Stereometryand trigonometrywere droppedand
mathematics lost its place apestigioussubjectin the Icelandicschoolsystem
for a period of 40 years.

The problemsdealt with during that time were possibly reflectedin the
following final examination item from 1914 (Skolask_rsla, 1914):

92 ,, 15 707910

5689 142_ 871 101538190[0,052 +5,04 29[D12[4,6+58L7,164
32n1 21 1134:3 10,788

39 14 134 4

The Danish school system wasformedin 1903, resultingin greatercoherence.
In 1904 a new regulation about the Icelandic school adigpted whereit kept

its learned school’s characteristicsa largerextentthan the Danishschools.It

remainedas a 6-yearslanguage departmentschool with Latin as the main

subjectasbefore,and it did not have any direct connectionsto other schools
(Torleifsson, 1975, p. 70-72).

The primary teacher education
Following Iceland’shomerule in 1904, the first legislationon a public school
system was adopted in 1907. Children of ages 1@ehBswereto be educated
in schoolsand 7-9 yearsold children should be educatedat home upon the
responsibility of the homes under the supervision of communal authorities.
From 1746 regulationshad prescribedthat the homes were responsible,
under thesupervisionof the parishpriests,for childrenacquiringknowledgein
reading and Christendom. Only in 1880 was a simnégulationimplementedor
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writing and arithmetic.The regulationswere effective concerningreadingand
even writing while arithmetic educationwas beyond the capacity of many
homes.

For this reasonmany of the first studentsattendingthe TeacherEducation
Collegehad not beento school before and had to be taught basic arithmetic
skills. The collegavas fortunateto have a doctoratemathematicianQlafur Dan
Danielsson, for its first decade (1908-1919) and mathematics had fitadaas
a main subject.For mostof the following 40 years,until the 1960s,the college
did not have a full-time tenuredathematicseacher.The mathematicsshareof
teaching hours decreas&dm 8% of the total teachinghoursto 5%, while the
schoolwas lengthenedfrom threeyearsto four. The syllabus,up to 1946, did
not reachintroduction to algebra.Thus the graduatedteacherswere, by and
large, not familiawith the specialsymboliclanguageof advancedmathematics.
(Sk_rsla um Kennaraskélann 1908-1962).

As wasthe casein the single learnedschool/gymnasiumn the country in
1805-1919%herewas only one mathematicdeacherin the TeacherEducation
College in 1908-1967The responsibilityand the respectof the subjectgreatly
dependedon whethertherewas a respectedscholarat work, such as the gold
medalists Bjorn Gunnlaugssonand Olafur Danielsson,or persons deeply
engaged in other obligations or even having personal problems.

In 1946, following Iceland’s independencen 1944, new education legis-
lation was adoptedgstablishinga coherentschoolsystemfrom the ageof 7 up
to university. Educationfrom 7—15 yearswas now compulsoryand a national
examinationat the age of 16, held in manyschools,openedthe door to a four
years’ gymnasium.

A part of the 1946 legislation bill was aimed at ensufinther educationof
teachers in the University of Iceland, established in 1P4.1p educateteachers
for the lower secondarylevel. However the University rejectedthe idea of
acceptingstudentsfrom the TeacherEducationCollegeand the bill was never
presentedfor final discussionin the parliament.The bill only allotted for one
new professor,in pedagogyand didactics,and the University seemsto have
been expectedto take over further education of teachersin Icelandic and
mathematicat no extra cost, neitherin housing nor teaching.The University
referredto ‘another kind of preparation’.(Al_ingi. Dagbdk 45—-46. 615). The
TeacherEducationCollegegraduatesvould not havefitted into the mathema-
tics teaching for the engineerstudentswith the preparationthey had. The
TeacherEducation College was thereforea dead end to the primary teacher
education until 1963. Teachers hiadseekfurther educationabroad,in teacher
university collegesin the Nordic countries,England and the United States,
which only a small fraction did.

Before 1946 teachagraduatesonly had had arithmeticbut after 1946 they
were providedwith first coursesin algebraand classicalgeometry.Graduation
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from the collegeonly providedrights to teachin the primary schools,including

the first year of the lower secondary school up to the add ahd possiblythe

second year. However in the time of a great shortddewer secondaryschool
teachersthe entire period 1946-1977until the basic school was established,
primary teacherswere often appointedto teachin the lower secondarylevel,

though preferablynot for the national examination.In 1957-1958there were

760 tenuredprimary teacherdn the country, whereof 604 had teachereduca-
tion, or 79 %. In the same year, tenutedchersat the lower secondaryschools
were 275, whereof about 70 had primary teacher education, or 25 %

(Gunnarsson, 1958, p. 141).

The lower secondary teacher education

In 1919 a mathematics department watablishedat the gymnasiumin Reykja-
vik and the mathematicianOlafur Dan Danielssonwas hired to teach there.
Shortly thereafterin 1928,the ministerof educationconcludedthat the increa-
sing number of applicants to the Reykjavik gymnasium, (_orleifsson, 1978) p.
which still was the only upper secondary school, would resultao aumerous
class of professional men and officials. The minister initittiedestablishmenof

a number of district schools in the following decade to edugaieg peopleto
becomegood farmers and housewives,which indeed increasedgreatly the
generaleducationin the country, while, at the sametime, he decidedto restrict
the admission to the gymnasium. Even if Akureyri gymnasium was estabiished
the more sparselypopulatedNorthern Iceland, the restriction resultedin that
only approximately 370 students graduated fromntia¢hematicslepartmenin
Reykjavik Gymnasium (Skolask rsla,1919-1946),and a little over 100 in
Akureyri Gymnasium in the period 1919-1946 (Jonsson, 1981, p. 27-34).

According to the 1946 legislation tlmequirementdor teachersat the lower
secondarylevel were 1-2 years of study in the respective subject and the
equivalentof a one year coursein generalpedagogyand didactics.However
therewas no institute in the country to train mathematicseachersand the
Second World War had cut Iceland off from the university in Denmark.

As the Teacher Education College had hadlgebraand mathematicsvas
first taught in the University of Iceland from 1941 to studentsin the newly
establisheengineeringdepartmentthe only competentcandidatesfor mathe-
maticsteachingfor the national examinationwere among the lessthan 500
studentsfrom the gymnasiumin 1919-1945,most of whom had become
professional men and officials.

A short survey of five teachersborn in the 1920s,renownedfor being
‘good’ mathematics teachers, shows thlhof themhad graduatedfrom one of
the gymnasiums’mathematicsdepartment.Thereaftertheir background was
studies of engineering, medicine, lawveconomyfor 1-3 yearsor elseone year
in the Teacher Education College (Kennaratal).
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The University of Icelandestablisheda BA-educationprogrammefor mathema-
tics teachersfor the lower secondarylevel in 1952, mainly as a part of the
engineer training. Approximatel§0 studentsgraduatedfrom the programmaen

the period 1952—-1972(Arbok Haskolaislands,1952-1972).0nly 15 of these
ever taught at the lower secondarylevel (Kennaratal).As we shall seethey
proved good servants to teelucationsystem.They weretrainedby dedicated
teacherssuchas Gu_mundurArnlaugssonwho sharedwith them their mathe-
matical skills. Most of the studentsthemselveshad begun teachingand there-
fore received the instruction with that in mind.

The ‘modern mathematics’ reform

Icelandwas a founding memberof OEEC, later OECD. However, probably for
the reasons of small population and relative isolation at that time, |cehicumebt
participatein 1959 in the important OEEC seminaron ‘modern mathematics’
teaching in Royaumont, France, nor did it participate in the wbtke NKMM,
the Nordic committeefor modernizingmathematicgeaching.During the next
few years,though, Icelandic educatorsparticipatedin severalfollow-up mee-
tings about modermathematicgeaching,arrangedoy OECD, andin 1967,the
modernizing of mathematicsteaching was in action at all school levels in
Iceland, mainly by the initiative of the university and gymnasiumteacher
Gudmundur Arnlaugsson.

The situationin teachereducationup to the mid 1960swhen the ‘modern
mathematicsreforma kind of sweptover Icelandat all school levels hasbeen
described. In addition to the lack of teachers with adequate edutiadi@was
lack of textbooks. Textbooksfor the lower secondarylevel in arithmeticand
algebrawere eitherwritten by Olafur Danielssonin the 1920sor basedon his
books. Textbooks for the primaschoolwere alsowritten in the 1920sby one
of Olafur Danielsson’sstudentteachers.Impatiencefor innovation was in the
air.

Reform in the Lower Secondary Schools

In the lower secondaryschool the reform beganwith a textbook written by
Gu_mundurArnlaugssonfor the selectivegroup headingfor national entrance
examinationinto the gymnasium(Arnlaugsson,1966). In 1968 all thesepupils
were studying modernmathematicgMinistry of Education,1968). In the early
1970smodernmathematicsvas introducedto all levelsof the lower secondary
school.

Headmaster®sf the lower secondaryschools,running the national exami-
nation all aroundthe country, put their pride into finding ‘good persons’from
the small group of eligible people,to take care of the mathematicsA small
survey shows how the national examination results in mathematicswere
dependent on stability in the teacher force and the education of the teachers.
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The results irthe nationalexaminationin 6 schoolsin the period 1967to 1973
are shown in the graphsbelow. The red curve showsthe generalaverageof
gradesin 9 subjects:Icelandic, Danish, English, history, geography, natural
sciencesphysicsand mathematicsyhile the blue curve showsthe averagefor
mathematics (Ministry of Education, National Examination Board 1967-1973).

Schools A and® were situatedin the capitalarea,School A was a selective
school, attended by especially able pupils.

Schools B and R were typical fishing town schools.

Schools D and S were boarding schools in rural areas.
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In 1967 severalschoolsbeganteachingmodernmathematicsas a part of the
syllabusand in 1969 all schoolshad modern mathematicsas a part of their
syllabus.In most years mathematicsvas 0,2 below the generalaverageon a
scale0-10,while in the years1969 (year 3), possibly as all schoolswere now
obligedto take up the modernsyllabus,and in 1971 (year 5) the averagefor
mathematics was considerably lower (0,6 and 0,8) thageneralaverage The
graphs have been corrected for this by addinglifierenceto the mathematics
grades.

In school A the mathematics teacher, a lawyer, was on ledM@6into 1969
while non-mathematicsiniversity studentshad taught mathematics After the
lawyer cameback and sharedthe mathematicdeaching with a BA-educated
teacher the results became on equal terms with other subjects.

In school P a BA-educatedmathematicgeacherwas on sicknessleavein
1967 and 1969. Otherwise the reswitsre above average.The headmastesaid
(in 2002) that the results had been better earlier when the entranceto the
national examination had been restricted. The results with the present
mathematicseacherhad beenaffectedby his illness. He had not realizedthat
they were above the average.

In schoolB a BA-educatedteachertaught the pupils for all three yearsof
lower secondaryeducationand the resultswere by far the bestin the country.
In 1969, when the mathematicsaveragein the country was 0,6 below the
generalaverageijt did not affect his pupils. The headmastesaid (in December
2003) that he knew that the resultsin mathematicswere better than in the
neighbourhoodschools.However he believedthat this had beenthe casein
most subjectsin his school, as he had had excellent staff. The mathematics
teacherthough had managedto motivate his pupils to work hard. The head-
master had not connected the results with the mathematics teacher education.

SchoolR sufferedfrom frequentchangesof teachersin 1968-1970a BA-
educated teacher taught mathematics. The first yeaesudtsdroppedwhile in
the second year the results were exceptionally good.

School D was a typical rural school with some changesof mathematics
teachers with no special training, even if tleaydly attendedin-servicecourses
in ‘modern mathematics’.The results were generally about 0,4-0,6 below
average.

School S was also a rural school where a BA-educated teacher died
suddenly in 1970. After that university studetiek over. The headmastesaid
in a conversation (in 2002) that mathematics had been @ careof in his
schooland it always had had extra hours comparedto the standardnumber
recommendedby the ministry of education.The teacherhad been an excellent
person while the headmaster did not connectéisaltsin mathematicavith his
special education in mathematics.
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Beforethe survey only the exceptionalresultsin school B were known. The
good resultsn school S were a surpriseaswas the one yearin schoolR. They
show that a teacherwith good educationand teachingskills, given time, can
obtain good results. The sample of teachers is not typicacfaolsat that time
and by coincidence more schools wBA-educatedteacherswvere chosenthan
the average.The Reykjavik schools,with the majority of pupils taking the
national examination, were not included in the survey as the examimatoed
between institutions within the national examination period 1946 — 1976.

The survey showsthat in this period of ‘modern mathematicgeform’ with
new and unfamiliar languagethe few BA-educatedteachersseemto have had
an advantage of easier adaptation to new syllabus.

Reform in primary schools

In 1966 a set of textbooks by the Danish teacher Agnethe Bundgaard in
FrederiksbergCopenhagen(Bundgaardet al, 1966—-1968)was chosenby the
initiative of Gu_mundur Arnlaugsson (Gislason, 1928\ translatedand tested
in six groupsin the first grade of primary school. The following year, schools
andteacherscould apply to join the testgroups.Over 80 teachersappliedand
began to teach the nemvaterial.In 1969 approximately50% of the agecohort
of seven years old pupils in Icelahdd the new material (Kristjansdottir,1977).
A greatnumberof in-servicecoursesn mathematicslastinga couple of weeks,
were held, a novelty for most teachers.

Soonafter 1970 problemsarose.From grade 3 the mathematicalanguage
became increasingly formal. When new teachers, wi@ not familiar with the
extremelyformal mathematicdanguagein this set of textbooks,took over the
classes4 to 6, problemsarose.lt becameclearto parentsand the public that
schoolmathematicseachingwas changingradically. This arouseddiscussions
and reactionswhich aredifficult to traceas very little is found in newspapers,
journalsor lettersto the ministry. Oneteacherdaredto expresshis view in the
teacherjournal that in no other country would it have beenallowed to pour
such a new syllabus over the whole population (Sveinsson,1972). The
problems,however,were mainly discussedvithin the teacherroomsin schools
and certainly the teacher consultants must have heard more than a rumour.

Teachersinterviewednow 30 yearslater,remembetthis time vividly, all of
them for hard work, some of them as an exciting and rewarding time while
others thought the syllabus too difficult, both for the teachers anpuihiés. All
agreed that it was rather aimed at the more able pupils.

The ministry of educatiohurriedto have a new setof textbookswritten, a
kind of synthesiswith lessemphasison set theoreticallanguageand notation,
yet a more varied coverage than the traditionaterial. This changedthe lower
mathematics syllabus ilcelandicschoolspermanentlyfrom simple arithmeticto
a varied materialwith geometry,introductory statisticsand numbertheory in
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addition to arithmetic. The arithmetic skills may never have reachedthe same
level asbeforethe reform, but then one shouldkeepin mind that a new era of
hand calculators was on its way.

Conclusions

‘Modern’ mathematicsvas a great challengefor both primary and secondary
school teachers. The tradition of mathematics education in Icelasdeak for
the four reasons cited in the introduction. They certainly influencedapacity
of Icelandicteacherdo copewith the ‘modern mathematicsreform movement,
asonly few teacheran compulsoryschoolscould acquireadequatetraining in
mathematics in contemporary sense. Yet the reform opened up a whodeasew
of previously unfamiliar mathematics for thetoelandiceducationtradition was
self- and home-educationa tradition which may have helped many teachers
over the most difficult obstacles.

However, it was shown that it was easierviall educatedower secondary
teacherdo guide their pupilsto the core of the reform, deeperunderstanding,
while others may have looked at the new syllaasigist a setof a new type of
problems.Thoseprimary teachersywho were inclined for mathematicsenjoyed
this opportunity for further educationthrough this work, while others were
overwhelmedand gratefully acceptedthe synthesissyllabus, somethingthey
might not have done without the previous experience.

Lastly it is remarkable to notice how the history of mathematitgcationin
Iceland dependedn singleindividuals; first Bjorn Gunnlaugssonn the middle
of the 19" century, then Olafur Dan Danielssonin the first half of the 20"
century and thirdly Gu_mundur Arnlaugssonin the second half. They are
examplesof how, in a smallcommunityasicelandis, an individual can have a
strong influence on the whole community.
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Teachers and Assessment —

A Description and Interpretation of Teachers’ Actions
Connected with the Mathematics National Test
for School Year 5

Lisa Bjorklund
Lararhogskolan i Stockholm

In Swedenthereis no externalexaminationof pupils’ knowledge - the class
teacherdoesall the assessmenfo assistin this assessmerthere are National
Testsand diagnostic materials.In this paper| focus on the ways in which
teachersassess&nd describepupils’ performancesn mathematicsin our work
in PRIM-gruppet with the National Testfor schoolyear 5, we continuously
collect data from pupils and teachers from all of Sweden and thissdegadfor
the analysean this paper.Theseinquiries then form a picture of teachersand
their assessment.

Theoretical perspective, purpose and questions

This paper is mainly based on the theoretical perspective entaietiagogical
assessment (Gipp$994). The purposeis to deepenour knowledgeabouthow

teachers in school year 5 assess pupils’ knowledtpgevementn mathematics.
The following questions are being discussed:

- Do teachersverbalisetheir observationsand assessmentsf pupils’
knowledge achievemenin the competencyprofile enclosedin the
National Test for year 5? What commentsdo they write about the
pupils’ competencies?

- How do teachers assess pupils’ work in one part of the test?

- What attitudes do teachershave towards the National Test in
mathematics and towards pedagogical assessment?

Background

Theories regarding assessment of knowledge

Pedagogicahssessmenh the 2000s must be basedon contemporaryknow-
ledge about how learning takes place. We find ourselvesnow in a cultural
transitionperiod,from a testing cultureto an assessmentulture (Gipps, 1994).
Shepard (2000) proposes a similar viewpoint sagisthat today we arelargely
centred on constructivism arscio-culturaltheory when dealingwith theories

! See www.lhs.se/prim
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of learning. If weintend that all studentsshouldbe ableto investigate analyse,
reasonand interpret,then our assessmemnnust reflect this (Gipps, 1994). Also
Leder (1992) emphasises the relationdigtweenteachingand assessmerand
shestatesthat assessmenh mathematicgloesnot always consistof the same
type of questionsand tasksthat the teaching of mathematicss expectedto
have,that is, assessmeill include tasksthat give the pupil opportunitiesto
use general solutions and to use more unconventional thinking.

Leder also saysthat it is preciselythis joint developmentof teachingin
collaborationwith the developmentof assessmenthat will influence pupils’
learning of mathematics in a positive direction.

De Lange (1992) describeghe following principlesfor the constructionof
test items:

1. Assessmemghouldbe an integratedpart of the learningprocessi.e.
the assessment should support pupils’ learning.

2. Assessmenshould give the pupils the opportunity to demonstrate
what they can do rather than what they cannot do.

3. Assessment should reflect and concretise all the course goals.

4. The quality of an assessmentloes not primarily dependon how
objectively pupils' results can be assigned numerical scores.

5. Assessmentshould fit well into the school environment and
programme.

Petterssor{2001) emphasiseshat assessmerns characterizedoy considerable
flexibility. The pupils should be put in different situationsso that they can
demonstrate their competence in various ways.

Gipps(1994)describesn summarya definition of pedagogicalassessment
that includes the following points:

* Pedagogicalassessmenis basedon the view that assessingper-

formances is noan exactscience;and that the relationshipbetween
student, task and context is complex.

* In pedagogicalassessmentlear goals/criteriaare set up for the
pupils’ performances.

» Pedagogical assessment encourages pupils to think th#relisting
or “regurgitating” facts.

» Assessmenthat elicits the best possible performanceof the pupil
requirestasks that are concrete and are experiencedas being a
relevant part of the pupils’ world. The tasks are presecie=atly and
the assessment situation must not be felt as threatening to the pupils.

» With regardto grading and/or scoring the assessor/teachareeds
guidance to ensure good comparability with other assesRusscan
be achieved by providing examples of assessments/evaluation.
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* In pedagogical assessment we should move away dn@tuationsin
the form of one single number/letter.Instead we ought to strive
towards other ways of describingthe achievementof pupils that
include more comprehensivedescriptionsof their knowledge and
profiles of various types.

The National Test in Mathematics for school year 5

In Swedenthe teacherhasthe exclusiveresponsibilityof assessinghe pupils’
knowledge throughout all school years, that is, ther® externalexamination.
To help the teachersin their assessmenthe National Agency of Education
provides national tests and diagnostic materials.

Every year,subjecttestsin English,Mathematicsand Swedisharegiven in
school year 5. The national tests in mathematicsare constructedby PRIM-
gruppen at The Stockholm Institute of Education. Theftestchoolyear5 is a
serviceoffered to the schools,but most municipalities have decreedthat all
schoolsmustparticipatein theseassessment3he main purposeof the subject
test is to help the teachers to assess the development of knowledge in telation
the goals stipulated for attainment by school year 5. Another aim is to ehable
identification of both the strong and weak points of the pupils. The test is
carried out during the major part of the spring term each year and is one
componentin the entire assessmenf the student'sknowledge made by the
teacher.There are no fixed test dates, rather the teacher/schoolplans and
administers the test when it best suits the local conditions. The testsearded
to be integratedinto the ordinary teachingand each pupil is given sufficient
time to work on the various tasksin the test. Teachersare encouragedto
respondto a questionnaireand alsoto submit student solutions for students
born on a certainbirth-date.The submittedmaterialcan be usedfor studiesof
various kinds (Skolverket, 2000).

Not all the goalsto be attainedby schoolyear5 are testedby one single
test. Instead somespecific areasare focused upon in one given year. These
mathematicabreasare testedby meansof tasks of various kinds, from short
individual questions to more comprehensive group tasks.

Besidestest questionsthe testing materialalsoincludesinformationfor the
teachers to assist them in their assessment. An example of such inform#tmen is
provision of guiding norms for each question with examplesof acceptable
answersand descriptionsof misconceptionghat students might show. The
teacher is expected twllate his/herassessmerndf the knowledgeof a pupil in
various areasusing a competencyprofile (seeappendix).As a guide for this,
each part of theéest containsa descriptionof what knowledgethe pupil ought
to demonstratdor eachpart. As a guidelinefor the assessmentjarious accep-
table answers thdhe pupil shouldhave on eachpart are presentedWhenthe
teacher fillsin the competencyprofile table,consideratiorshould alsobe given
to the pupils’ performance on other occasions besides the test situation itself.
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The subjecttestfor schoolyear5 conformswell to the majority of the criteria
that characterizepedagogicalassessmentThe pupil has opportunities to
demonstrate knowledge in various situations, e.g. short answer quelstiyes,
guestionsand largergroup tasks.In the assessmemjuidelinesthereis a clear
connection withthe stipulatedgoalsto be attainedand goalsto strive towards
and in the competency profile table the goalscearly presentedor the pupil.
There are also two different self-assessment paxssioh the pupil is giventhe
opportunity to reflect upon his/her own ability (Bjorklund, 2004).

Method and implementation

The empiricalwork reportedhereincludesqualitative and quantitative analysis
of about 200 competencyprofiles from the National Test in Mathematicsfor
year 2000, qualitativeand quantitative analysisof 200 studentsolutionsfrom
the National Testin Mathematicsfor year 2000, as well as an analysisof the
teachers’answerso the teacherquestionnairesThe dataconcerningthe com-
petencyprofiles and studentsolutionsconsistsof materialswhich include both
studentsolutions and competencyprofile. The test for school year 5 is not
compulsory,andit is not possibleto draw any generalconclusionsfrom these
data. | still think that it is possible to get a hint about the general situasoime
test is carried out in more than 90 % of the municipalities.

Results

How teachers fill in the competency profiles

It is not commonfor the teachersn the surveyto makeuseof the opportunity
to commenton/describeverbally their assessment® the pupils’ competency
profile (see appendix).

In 66% of theseprofiles such commentsare madein two or less of the
spacesprovided. The percentageof the profiles in which teachersmadeno
comments is 45%. To a much greater extent the teanteksuse of the option
of indicating using ariX” on the existing arrows.On 88% of the profiles 6, 7,
or 8 such marks were indicated. It is clear that the teachers prefer inditeing
evaluationusingan X ratherthan describingit in words, when both methods
can beused.On the competencyprofiles wherethe teacherhasfilled in one or
more spaces, almost one third (318aye only written a negativecommente.g.
what the pupil is unable to do, general negative commentsetc. Seventeen
percentdescribeonly strongpoints. Thereis a differencebetweenthe goalsto
be attained that are tested in the test for year 2000 and the otherrgoadsmrd
to the numberof filled-in spaces.Teachersverbalisetheir assessment®r the
goalstestedby the testto a muchgreaterextentthan for the other goals. The
sameis true for the indication “X” at the arrows provided, but not quite as
significant as in the former case.
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How teachers assess each task
The test includes tasks of various kinds with respeass@ssmentn this paper
| have analysed one section of the testore of the tasks,pupils areto choose
the missing puzzle piece. In this casethere is only one correct answer. For
several questions theexetwo or morecorrectanswers.The assessmerguide-
lines give examplesof different possibleanswersto thesequestions.For some
tasksthereis a risk that the teachermakesa negative evaluationbecauseof a
follow-up error. A follow-up error can arisewhen a pupil usesthe resultof a
previousquestionto solve a later one. If the answerto the earlier questionis
wrong, but the solution of the later one is correct, the answer should be
consideredcorrect. For such questionsthere is a descriptionin the teacher's
guide to prevent the student suffering a deduction for sifollow-up error. In
sometasks,accuracyis an importantaspectof the assessmentn one casethe
teachermust use a ruler to check an answer. Teachershave followed the
assessmemjuidelineson all questionsin 67 % of the student solutions. The
types of mistakesthat teachersmake in assessmenagreein part with the
character of the tasks described earlier:

* Follow-up errors.The teacherlooks blindly at the “correct” answer

given in the guidelines,not noticing that the pupil’'s apparenterror
depends on an error in an earlier question.

 Shortageof accuracy.In somecasesa student’ssolutionis assessed
as correct though it was inadequate, and vice versa.

» Other errors. Sometimest is difficult to understandwhy a teacher
makesthe assessmertte/shedoes.One such exampleis when the
pupils’ answeris judged as incorrect becausethe answeris not
located at the right place.

Teachers attitudes to assessment
Teachersaregenerallypleasedwith the structureand contentof the test. They
think that the coverage on the national test is acceptable. Mtds obmments
on the various parts of the test are positive. Teachersalso appreciatethe
competencyprofiles. The teachersfeel that the test gives them support in
assessinghe performancesof the pupils and that the assessmenguidelines
provide sufficient help. They also feel tithe recommendationsegardingwhat
pupils shouldbe able to achieveare reasonablan relationto the goalsto be
attained, as expressed in the study curriculum (Alm & Bjoérklund, 2000).
The fact that théeachersare positively inclined towardsthe testin general
and that they arspecifically positive towardsthe assessmerguidelines,makes
it evidentthat they are also positive towardspedagogicahssessment at least
in connection with the National Test for School year 5.
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Conclusions
In summary,basedon previously describedanalyses] cometo the following
conclusions:
* Most teachersin the survey do not verbalisetheir assessmentef
pupils’ knowledge in the various areas of gwbject.Many teachers

that in fact do make verbal commentson their assessmenteports
tend to focus on weaknesses of the pupils.

* Most teachers in the survewjth the help of a subjecttestin school
year5, have sufficient competencdo assespupils’ performanceon
individual tasks in one section of the test. Some teachersmake
mistakesin their assessmenilhis can be of consequencdor some
groups of pupils.

* Most teachers are by and large positive towards assessmenthusing
test material. Thus | conclude thabstteachersare positive towards
pedagogicalassessmenin connectionwith the National Test for
school year 5.

Discussion

Looking back at the findings presentedn this paper, my dominating feeling
when it comesto the teachersis that they really want to do a good job in
assessingheir pupils’ performancesThey alsowant to documenttheir assess-
mentin a professionalway. Thusthe first conclusionpresentedabove (saying
that most teachers do not verbalise their assessment and that when titeydo,
tend to focus on weaknessesjlon’t comefrom the teachersbeing lazy or not
willing to be supportiveto the pupils. When teachersdo not verbalisetheir
assessmerthey probably find the marking with X on the arrows sufficient.
When they verbalise the weaknesses higher extentthan the strengthsthey
probably want to focus on what the pupil hasto learn. All this is from the
teachers’point of view. From the pupils’ point of view it is better when the
teachersdo verbalisetheir assessmenand when they describethe pupils’
strengths. Black & Wiliam (2001) put it this way:

Feedbacko any pupil should be aboutthe particular qualities of his or her
work, with advice on what he or she can do to improve, and should avoid
comparisons with other pupils.

The Swedish model — how can it be improved?

In my opinion the Swedismodelis mainly a good one and shouldbe retained.
With the teacher as assessor the pupil has many opportunities botrestthg
situationand in teachingsituationsto demonstratehis/her abilities. But | also
think that teachers must get help to improeir competencyin assessingOne
way towards this end is forovide moretime for teacherdo do assessmerand
above all, time for discussionsabout assessmentt has been shown that the
guality of assessmenis significantly enhancedif teachersdiscusstogether
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assessment in concrete ter(@spps,1994).Black & Wiliam (2001)alsoempha-
sise the importance of the competence of teachdmnmative assessmeni hey
state that this in addition leatis betterachievementevelsfor the pupils. They
further statethat they seeno other measurethat is so certainto increasethe
level of performanceof the pupils. In view of the findings of this paper,
professionaldevelopmentof teachersin the areaof assessmentvould be a
desirable measure.
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Competency profile in mathematics year 5 for

The purpose of the competency profile is o show your overall assessment (assessment of Subject Test 5 + other work) of the pupil’s merits and weaknesses

in mathematics.

Competency areas

1(2)

Teacher’s comments

Attainment of objectives for year 5

Concrete problems in the

Satisfactory

. . . -
immediate environment >
Arithmetic
basic number perception and number
concepts for natural numbers
calculating in natural numbers: mental >
calculation, written calculating methods
understanding and being able to use
calculating methods
.o >
calculating with a calculator -
numerical patterns, unknown numbers
. . . -
number perception — simple numbers in >
the form of fractions and decimals
Geometry
comparing, estimating, measuring:
length, areas, volumes, angles, mass >
basic sparial perceptions
geometrical figures and patterns >
scale
time and time differences >
Statistics
diagrams, tables, measures of central -
Eal

tendency




On the Role of Problem Solving and
Assessment in Swedish Upper Secondary
School Mathematics in Finland

Lars Burman
Abo Akademi, Vasa

In this article | will focus on teachers’use of problemsolving and of different
kinds of assessment in Swedish upper seconstdrgol mathematicsn Finland.
Information about the teachers’ use of problem sohand assessmenthethods
as well as possible signs thfeir willingnessto changethe instructionalpractice
in these respects are gatheredgart of a survey,directedto all the mathema-
tics teachers in Swedish upper secondary schools in Finland.

Problem solving as a part of instruction

My starting point for a conceptual understanding of problem solgif@und in
Mason and Davis (1991), according to whom the Prol8$eming ThemeGroup
report from the Fifth International Conference on Mathematics Education
(Burkhardt et al., 1988)took asthe salientcharacteristiof a problemthat the
problem solvers face an unfamiliar task and they do not know an immeditte
to a solution”. They continue with pointing out importantaspectsof mathe-
matical thinking like specialising,generalising,conjecturing and convincing.
Furthermorethey find a supportiveatmospherean the classroomand challen-
ging questionsimportant for problem solving instruction and state that “an
atmosphere of constant questioniaugd conjecturingis morelikely to be effec-
tive than the occasionalburst of problem solving within an otherwise formal
framework”.

To meet new challenges in work, school, and life, students will tteadapt
and extendwhatevermathematicthey know. Doing so effectively lies at the
heart of problem solving. A problem solvinigspositionincludesthe confidence
and willingness to take onew and difficult tasks.By learningproblemsolving
in Mathematics, studenshouldacquireways of thinking, habitsof persistence
and curiosity, and confidencein unfamiliar situationsthat will servethem well
outside the mathematics classroom. (NCTM, 2000)

In Principlesand Standardsthere is generally a strong emphasison the
processes in mathematics instruction and thesels tell us aboutthe direction
of many American efforts in the areambblemsolving in the last decadesalso
stated by others, for instance Lambdin (1999). Ea8&roenfeld(1985),having
performeda study of “heuristic training”, made the conclusionthat problem
solving practiceis not enough but explicit training is required,and that much
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work has to be done in order to find out an appropriate classroom instruction.
Two yearsearlier Frank Lester(1983) had summarisedour basic principles
about problem solving and assertedthem to have emergedfrom research
literature over about fifteen years:
* pupils mustsolve many problemsin orderto improve their problem-
solving ability
* problemsolving ability developsslowly over a prolonged period of
time
» studentsmustbelieve that their teacherthinks problem solving is
important in order for them to benefit from instruction

* most pupils benefit greatly from systematically planned problem
solving instruction

Lester’s conclusions will serve as my starting pa@stoncernsproblemsolving
in this article. It shouldbe said that although my text so far could have been
based on work from other par$ the world aswell, the progressin the areaof
problemsolving and instructionin USA is quite outstanding,all the way from
Polya’s (1957) fundamental work (Black & Atkin, 1996).

My perspectiveon problemsolving is to great extent that of the teacher,
which makes it quite naturéb posequestionsto teachersn a survey.Therole
of problemsolvingin mathematicsnstructionwas discussedy Ernest(1998),
who made a classificationin four perspectives.His third perspectiveis the
problemsolving perspectivewhich hasits origins in the work of Polya (1957).
In accordance with Ernest, Bjorkqvist (2001) has formulated that the
perspective is the problem-solving perspective when the impsirtantto learn
Is considered to be the acquisition of problem solving strategies and heuristics.

With at leastpartly a problemsolving perspectiveit is desirableto usethe
conceptproblemsolving in a wide senselt could mean,for instance an ability
to handlequestionssuchas“Can you find a way to handlethis task?” when
posing an almost but not quite familiar task to the pupilsolld also meanthat
the pupils are expected to find a solution tprablemthat is in a way similar to
what they have seen but requires anosteategy,or that is not so similar at all
but canbe solvedby a known strategy.The taskscould alsotake moreor less
time to solve, from some minutes to sevéralirs,when talking aboutinvestiga-
tions or modelling projects.Modelling projectscan also be relatedto Ernest’s
first perspectivewnhich is the applicationsperspective Bjorkqgvist (2001) finds
Ernest’sfirst perspectivelo be nearthe origin of what is often called realistic
mathematics instruction, when sub-processehartransferbetweenreality and
the abstractworld of mathematicsare formalizedand a mathematicaimodelling
of phenomenan the real world is accomplished Bjorkqvist also considersit
reasonableto regard mathematicalmodelling as the most profound kind of
problem solving in mathematics.
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Assessment asa part of instruction

Charles et al. (1987) state th@bblemsolving hasto be a regularand frequent
part of the instructionalprogramif the studentsshall considerproblem solving
to be important.They also think that assigninggradesto progressin problem
solving makesproblemsolving more importantfor the studentsand they give
guidelines like “Advice students in advance that their work will be graded!’
“Use a gradingsystemthat considersthe processusedto solve problems,not
just the answer”.

In the Principlesand Standardg(NCTM, 2000), under the headline“The
AssessmenPrinciple”, the authorsmakethe following statementas concerns
the important purposes of assessment: “Assessshentid be morethan merely
a test at the end of instruction to see how students perform under special
conditions;rather,it shouldbe an integral part of instruction that informs and
guidesteachersas they make instructional decisions.Assessmenshould not
merely be donéo the students; rather, it should also be done¢he studentsto
guide and enhancetheir learning.” They continue with severalconsiderable
research-based statements about assessment enhancing the learning:

» researchindicates that making assessmen@an integral part of
classroom practice is associated with improved student learning

* thetasksusedin an assessmentan convey a messagdo students
aboutwhat kinds of mathematicaknowledge and performanceare
valued

« feedbackfrom assessmentasks can also help studentsin setting
goals,assumingesponsibilityfor their own learning,and becoming
more independent learners

 afocuson self-assessmerand peer-assessmehas beenfound to
have a positive impact on students’ learning.

Assessment is also a valuable tool for makmsiructionaldecisionsand a wide

variety of assessment methods as well as purposes for assessment are indicated:

* assessmendnd instruction must be integratedso that assessment
becomes a routine part tfe ongoing classroomactivity ratherthan
an interruption

* in addition toformal assessmentsuchastestsand quizzesteachers
should be continually gathering information about their students’
progressthrough informal means,such as asking questionsduring
the course of a lesson ...

« assessment. should focus on students’ understandingas well as
their procedural skills

 to make effective decisions, teacheh®uldlook for convergenceof
evidence from different sources

* over-relianceon formal assessmentmay give an incomplete and
perhaps distorted picture of students’ performance
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» assessments should allow for multiple approaches

» although less straightforward than averaging scores on quizzes,
assembling evidendeom a variety of sourcess morelikely to yield
an accuratepicture of what each studentknows and is ableto do
(NCTM, 2000).

Problem solving and assessment in upper-secondary schools

Although Finland, in comparisonto most other countries,gives less time to
Mathematicsin the upper secondary school, the Finnish results in Third
International Mathematics and Science Study (TIMSS) have been widely
noticed. However,Naatanen(2001) points out that the resultsindicate that it
has not been paid enough attention to the fundamentsof mathematicsin
Finland. Especiallythe way of practicing problemsolving is not sufficient to
build asystematicknowledgein mathematicand to developabstractthinking.
In the basesfor uppersecondaryschool curricula (1994), however, it is in the
generalpart stressedthat the pupils should learn to examineall information
critically and to apply their knowledge to different problemsand practical
situations. Furthermore, in the part for mathematics it is straamglyhasizedhat
instruction should give the pupils abilities to make applicationsin problem
solving and alsdraining to find solutionsto mathematicaproblems.According
to N&aatanen(2001), these statementsmay not necessarilygive the right
inspiration to a sufficient instruction in problem solving.

As concerns assessmestiidentsin uppersecondaryschoolin Finlandcan
gettwo marksin Mathematicspne given by the teacherdn the schooland an
optional one based on the resultthe nationalmatriculationexamination(ME)
after completedupper secondaryschool. In the national test in mathematics
therearetwo tests,one basedon the 10 compulsorycoursesn “long course”
and one basedon the 6 compulsorycoursesin “short course”. In both tests
thereare 10 tasks(chosenout of 15 tasks)that ought to be donein six hours.
Thetasksin such an examhave a very strong impacton the teachingin the
uppersecondaryschool (Burman,2000). Thereare reasonsto believethat the
teachersthink they have no time to focus on anything but the important
contentthat is supposedo be assessedn orderto preparetheir pupils for the
exam in the best possible way.

In addition, the whole systemmakesit hard to teach problem solving in
another way than witlthe kind of tasksthat can be found in the final national
assessmentMoreover, when teachersfeel that there is a considerabletime
pressurethey stick to “good old methods” rather than to new and untried
ones. Of course, there is a considerable amount of applied tasks in thexdimal
but many of themare pseudo-realisti@and have no close similarities with task
situations in life beyond school (Palm & Burman, 2002hen a low proportion
of the tasksinclude a relevantreal-life question,studentsmay get the feeling
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that solving applied taskis a game,with rulesnot necessarilyconsistentto the
rules of real-life problem solving (Palm & Burman, 2002). In this respectan
alignment betweerurriculum,instructionand high-stakesassessmerdoesnot
occur. The consequencés a conflict and we arefar from assessinghe specific
skills of a mathematical modelling process.

Is it possibleto find a way out of this conflict, at least as concernsthe
students’marksfrom the school?One possibility is to include tasksand even
projects that in a better way correspondto e.g. problem-solving abilities.
Another possibility is to usetestsduring the courseswhich enablesthe inclu-
sion of morevaried tasks.Of course,there is not much time for assessmerih
mathematics in Finnish upper secondary schools, becausasthetanuchtime
for instruction. Consequentlythereis a needfor a kind of assessmerthat is
effective and takesaslittle time aspossible.Therefore,one of the mostinteres-
ting aims with the surveis to get someanswerto the questionhow the teach-
ers solve their almost insolvable time-equation under the pressure from the ME.

Theresearch questions

On the theoreticalbaseaboveand with respectto the Finnishsituation,l have
formulated the object of my interestin four researchquestions,A-D. Each
guestion has giverniseto statementand questionsin the survey.Theteachers
are supposed to give marks to the statements on a Likert scal€l, 6o not

agreeat all” up to 5 = “totally agree”. In the questionsthey are supposedto

give percentagedetween0 and 100 to somealternatives.The four research
questions are:

A. To what extent do the teachersinclude problem solving in their
instruction?

B. Which methods do the teachers use when they assess their pupils?

C. To what extent do the teachersinclude problem solving in their
assessment?

D. Are the teacherssatisfiedwith their presentmethodsin problem
solving and assessmenbor are they wiling to change their
instruction in these respects?

About the sample

The participants in the survey were, in November 2002, registemadrabersof

the SwedishTeachers’'Union in Finland (FinlandsSvenskal ararférbund,FSL)

and at that time also registeredas mathematicdeachersat the lower or upper
secondary school levekinding the addresseshrough the FSL was considered
to be fast and reliablenough,asteachersbelongto the teachers’union with a

percentagecloseto 100%. The target group consistedof 223 teacherswhen

mathematicseachersat the teachertraining schoolin Vasaasa pilot group for

the survey were excluded.
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In Januari 2003, questionnaires were sent out to 68 teaichapper secondary
schoolsand 155 teacheran lower secondaryschools.In the stipulatedtime 82

of them answered After a follow-up letter and a reminderin the membership
paper of FSL, the answers reached the very satisfying numbg€b3%3). Seven
guestionnairesvere empty, mostly becausethe respondenthad recently left
teachingbecauseof retirementor other duties. Of the remaining 125 respon-
dents | have picked out those %ho had answeredhe questionsfor teachers

In uppersecondaryschool. They were 44 teachersin upper-secondargchool
and 10 otherteachersywho had chosento answerthe questionsof both levels,
although they might have had their main teaching in lower secondary school.

Results from the survey
QuestionA. In the survey 89% of the respondingteacherstotally or partly
agreed that there are some important strategies in problem sooguson in
their instruction.When askedaboutthe relationbetweenproblem solving and
assessmen®2% totally or partly agreedthat problem-solvingability should
have impacbn the marksin mathematics98% totally or partly agreedthat the
studentsshouldbe good problemsolversin orderto get a high markand 83%
totally or partly agreedthat studentsshould be able to describemethodsof
solving tasksfor high marks. About project work in mathematics45% of the
teacherdotally or partly agreedto give projectsan influence on the marksin
mathematicsbut only 17% totally and 13% partly agreedwith the issue of
having at leastone project in mathematicsluring the students’time at upper
secondary school.

Question B About assessment methods the teachers agreed twtalyrtly
as follows:

- 55% to use tests during the courses as a part of their instruction

- 66% to usually construct at least one new task for a test in mathematics
- 77% to prefertestswith somekind of possibility to chooseamongthe
given tasks

- 100% to want the students to take responsibility for their own learning

- 91% to try to make the student aware of their knowledge

- 51% to use tests during the courses as a complement to the course test.

The teachergstimatedhat they in the shortcoursein mathematicshose28%
of the tasks from previous tests, 32% from books or test banks, 16% from
previoustestsin the Finnish matriculation examinationand that 23% of the
taskswere home-maddor the test. Correspondingpercentagesor long course
in mathematics were 24%, 40%, 15% and 16%.

QuestionC. Most of the resultsas concernsincluding problem solving in
the teachers’ assessment have already been presented in A. In additidrgress
10% of the teachers said that they include tasks meil elementsn their tests
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and the teachersestimatedhat 4% of the final marksin a courseare basedon
problem solving and 2% are based on projects in mathematics.

Question D. About the teachers’ willingness to make changesin their
instruction, there was a difference between answersfor short course and
answersfor long coursein mathematicsAs concernsshort course,65% of the
teachers were in favour of decreasing the weight of the course téise foarks
and 48% of increasing the weight on tedtsing the course 42% of increasing
the weight on problem solving and 3286increasingthe weight on projectsin
mathematicsThe correspondingpercentagedor long coursewere 53%, 32%,
26% and 29%. On the whole, when willingnéssnakechangeswasindicated,
it was often with small steps. Half of the teachbist suggestecchangeshad at
most a 10% change in the weiglrisassessmerdituations.Teachersywho were
over 50 yearsold, or 30 yearsold or younger,showed lessinterestin making
changesthan the others. The percentageswere, respectively,33%, 44% and
80%. Finally, male teachersshowed more interestfor changesthan female,as
with 32 male and 22 female teachers the result was 69% to 50%.

Concluding remarks

At first it hasto be saidthat someteachersn the actual group of respondents
may know the authorand the one who asksthe questionsasteachereducator
and perhaps try to givexpectedanswersMoreover,it is alsopossiblethat the
respondentdave a different comprehensiorof conceptssuch as “test during
the courses”, “problem solving” and “projects in mathematid$iesefactsare
reasonsfor having asked indirect questionsin the survey and for making
conclusionswith a certain margin for security, but they are not considered
strong enough to prevent from making conclusions. For instance,young
teachers did not use mopeoblemsolving or projectsor show moreinterestfor
making changesin their instruction than older teachersas could have beena
consequence if there were many “expected answers”.

As concernsthe results about problem solving, more than half of the
teachersseemto think that their presentinstructionis enoughto preparetheir
students in this respect withoucluding any “explicit training”, asthey agree
with consideringproblemsolving important(severalpercentagesbout 90% in
A) but do not intend to changetheir instructionin this area(42% and 26% in
D). As only 30% of the teachersawvant to include more projectsin mathematics,
severalteachersmay have their picture of projects from other subjectsand
consider them to take much time and to give very little mathematical béredit.
impact of matriculation examinationwas confirmed although not extremely
strong, as 51% of the teacherstotally or partly agreedthat national tests are
important for their instruction and 26% totally or partly disagreed.
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Hamper or Helper: The Role of Language
In Learning Mathematics

Bettina Dahl*
Norwegian Centre for Mathematics Education

I ntroduction

This paperreportsa part of a study of how ten successfuhigh school pupils
from Denmark and England expldimat they learna mathematicatonceptthat
Is new to them. It focuses on what the pupils tell about the rdengtiage.The
analysisusesvarioustheoriesof learningto get a greaterunderstandingof the
pupils’ explanations.

Methods

Metacognitioncan be understoodboth asknowledgeaboutand regulation of

cognition. This knowledge develops with aged thereis a positive correlation
between performanceon many tasks and the degree of metacognition.In

relationto regulationof cognition, this is relatedto the planning of activities
prior to problem solving, the monitoring ase goesalong,and the checkingof

the outcome. The “presencé suchbehaviorhasa positive impacton intellec-
tual performance ... itabsencecan have a strong negativeeffect” (Schoenfeld,
1985, p. 138). One might thereforeassumethat successfulpupils know how

they learn mathematics. | therefore asked five teachers tepmkof their best
pupils in the classes that studied mathematics at the highestdiigbllevel. In

Denmark it isNiveau Aat theGymnasiunmand in England it is thAS (Advanced
Subsidiary)Level Mathematics| namedthe Danishpupils: Z, /&, @, A andthe

English pupils: A, B, C, D, E, F. The Danish pupils were interviewed aganep
and the English pupils were interviewed in pairs. PUpjlg, &, @, A were girls;

A, B, C, E, F were boys. The English pupils were given a sheetwith someknot

theory to initiate a discussion, but otherwise all the interviews were explorative.

Theories of learning that focus on language
The opinions of the role of languageare divided. To some, languageis a
necessary thinking-tool; to others it obstructs thinking.

! Full name: Bettina Dahl Sgndergaard; alternative spelling: Soendergaard.
> The study reports parts of a Ph.D. study (Dahl, 2002). Qtheings are reportedin Dabhl
(2004).
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Language as helper
According to Hadamard Polya said that “the decisiveidea which brings the
solution of a problem s rather often connectedwith a well-turned word or
sentence. The word or the sentence enlightens the situation, gives dsings,
say, a physiognomy({Hadamard1945,p. 84). Also Russelltalked in a positive
way aboutlanguage:‘Language servesnot only to expressthoughts,but to
makepossiblethoughtswhich could not exist without it. ... | hold that there
can be thoughtand eventrue and false belief, without language But however
that may be, it cannot be denied that all fairly elaborate thoughts requics”
(Russell, 1948, p. 74). 1 will call thisrmaoderatepositiveview sinceit holdsthat
words not only expressor “mirror” thoughts but also more actively helps
thinking. However, not all thoughts require words, only higher-order thinking.
Another positive view is seenin Muller who statedthat “no thought is
possiblewithout words” (Hadamard,1945,p. 66). This view is connectedwith
Vygotsky’s descriptionof languageas the logical and analytical thinking-tool
(Vygotsky, 1962, p. viii) and that thoughtsarenot just expressedn words but
comeinto existencethrough the words (ibid., p. 125). Vygotsky also said that
“Language doesnot of necessitydependon sound” (ibid., p. 38), and that:
“Thought development is determined by language, by the linguistic tools of
thought and by the socio-cultural experience of the childti( p. 51). Thusto
Vygotsky, thoughts develop from social interaction and what we learn is
inherentlya product of humancommunicationand it would not exist for us if
we were not part of the human community. Th&seng positiveargumentsare
basically that no thought or learning can take place without thefuseguage
and that languageis an indispensabléhinking-tool that makesthoughts come
into existence.

Language as hamper

Berkeley argued that “words atke greatimpedimentto thought” (Hadamard,
1945, p. 68). Galtonexplainedthat resultscan be perfectly clearto himself but
“when | try to expressthemin languagel feel that | mustbegin by putting
myself upon quite anotherintellectual plane.| have to translatemy thoughts
into alanguagethat doesnot run very evenly with them” (Hadamard1945,p.
69). Hadamardstatedthat “thoughts die the momentthey are embodiedby
words” (Hadamard,1945,p. 75), and that a thought “can be accompaniedy
concreterepresentation®ther than words. Aristotle admittedthat we cannot
think without images” (Hadamard, 1945, p. 71). Furthermore, “the more
complicated and difficult a question thie morewe distrustwords,the morewe
feel we must control that dangerousally and its sometimestreacherous
precision” (Hadamard,1945,p. 96). But Hadamardacknowledgedthat “signs
are necessarysupport of thought” (Hadamard,1945, p. 96). Wittgenstein
arguedthat a main sourcein our lack of understandings that we do not have
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an overview of thaiseof our words,the grammaris confusing.Philosophyis a

battle against the bewitchment of our mind by means of the language
(Wittgenstein,1983,8109 & 8122-126).The views quoted here all centreson

language as either obstructing or confudimigking, that words are not always
necessary for thoughts, or that language isahwaiysableto expressthoughts.
Piaget(1970, pp. 18-19) statedthat “This, in fact, is our hypothesis:that the
roots of logical thought are not to be found in languagealone,even though
language coordinations are important, buttarbe found moregenerallyin the
coordination of actions,which are the basisof reflective abstraction”. Here
Piagetseemedo disagreewith Vygotsky who statedthat thoughts develop
from social interaction where the languageis the thinking-tool. To Piaget,
knowing an object doesnot meanto copy it, but to act upon it: “Knowing

reality meansconstructingsystemsof transformationghat correspond,more or

less adequately, to realityibid., p. 15). An abstractionis “drawn not from the

object that is acted upon, but from the action itself. It seems than¢his is the

basis of logical and mathematicalabstraction” (ibid., p. 16). Hence, actions
perform the basis of mathematical thinking, not language or interaction.

A dual nature of language

Vygotsky criticised Piagetaroundthe conceptof egocentristhand egocentric
speecH.Vygotsky statedthat egocentricspeechis not just accompanyingthe

child’s activity but the child usesit as a meansof expressionand to release
tension, but it soon becomes an instrunarthought that the child usesto, for

instance plan the problem-solving(Vygotsky, 1962, p. 16). Thus,to Vygotsky

egocentricspeechpesidests communicativerole, is an importantthinking-tool

and as a tool to solve problems.“Egocentric speechemergesvhen the child

transferssocial, collaborativeforms of behaviorto the sphereof inner-personal
psychic functions” (ibid., p. 19). Vygotsky then continued and stated that:

“Thus our schemaof development- first social, then egocentric,then inner

speech- contrastboth with the traditional behavioristschema- vocal speech,
whisper,inner speech- and with Piaget'ssequence from nonverbal autistic

® The notion of egocentrismin Piaget'swork is “quite unrelatedto the common meaning
of the term, hypertrophy of the consciousness of self. Cogrgfij)peentrismas| havetried
to make clear, stems from a lack of differentiation between one’spmim of view and the
other possible ones, and not at all from an individualism that precedes relatiloregthers”
gPiaget, 1962, p. 4).

Piaget stated that “I have never spokdrspeech’'not meantfor others’; this would have
beenmisleading,for | havealwaysrecognizedthat the child thinks he is talking to others
and is making himself understood.My view is simply that in egocentricspeechthe child
talks for himself” (Piaget, 1962, pp. 7-8). This wRimget'sresponsewvhen Vygotsky wrote
that Piaget'sview wasthat “In egocentricspeechthe child talks only about himself, takes
no interest in his interlocutor, does not try to communicate” (Vygotsky, 1962, pp. 14-15).
® To Vygotsky, inner speech “igot the interior aspectof externalspeech- it is a function
in itself. It still remainsspeech,i.e., thought connectedwith words. But while in external
speech thought is embodied in words, in inner speech words die as theyobtfinthought.
Inner speech is to a large extent thinking in pure meanings” (Vygotsky, 1962, p. 149).
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thought through egocentric thought and speechto socialized speech and

logical thinking” (bid., p. 19-20). To Vygotsky, the order of tdevelopmenbf

thinking is from the social to thiedividual. This internalisationprocesshastwo

levels,the socialand the individual: “first betweenpeople(interpsychological),
and then inside thehild (intrapsychological)’(Vygotsky, 1978, pp. 56-57). As

a responseto Vygotsky’s views and critique, Piagetreferredto Vygotsky's

propose that:

egocentricspeechs the point of departurgor the developmenbf inner speech,
which is found at a latestageof developmentandthat this interiorisedlanguage
can serve both autistic ends and logical thinking. | find myself in complete
agreement with thedeypothesesOn the otherhand,what| think Vygotsky still

failed to appreciatefully is egocentrismtself as the main obstacleto the co-

ordination of viewpoints and to co-operation.... In brief, when Vygotsky
concludes that the early function of language must be that of global
communicatiorand that later speechbecomedifferentiatedinto egocentricand
communicativeproper, | believel agreewith him. But when he maintainsthat
thesetwo linguistic forms are equally socializedand differ only in function, |

cannot gaalongwith him becauseéhe word socializationbecomesambiguousn

this context: if an individual A mistakenhelievesthat an individual B thinks the
way A does, and ihe doesnot manageo understandhe differencebetweenthe
two pointsof view, this is, to be sure, social behaviorin the sensethat thereis

contact between the two, but I call such behavior unadapted from th@paimt/
of intellectual co-operation. (Piaget, 1962, pp. 7-8)

Vygotsky emphasisethat languageis not just a meansof expressionjt is also
an instrumentof thought. Piagetagrees,but found that Vygotsky failed to
understandthat egocentrismitself could be a main obstacle for reaching
understanding through the use of language.

Analysis
Below | will discuss three examples from the interviews.

Hamper AND helper
This exampleis from an interview with two English pupils, D and E. ‘They’
refers to the authors of the book about knot theory.
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E | Don't use such big words, they are aiming to peeogie don’'t understandt and usq
basic. It's the way they approach it, the language, it's just too, people stoudg)ling
with the language when they are suppose to be learning the maths.

| | Sois therea diff, | mean,er, so mathshasnothingto do with the language®r, car
you learn maths without language.

Yea.
E | No, but you can use different language, simple language to convey a point.

Causethe mathsin it is quite easy,| think, well, it's not. It is nothingreally difficult
what it is saying is this ighata knot is, this is (E: Yea)whata link is, and, OK, thaf
really really simplistic. It took me a long time to work out whatthey weretrying (E:
Yeawhat they were explaining)whereaghe fact assoonasl|, kind of translatedit, |
thought oh well, that's what a knot is, find that’s easy.

| | What did you translated it.
D | Into simple language [laughs] er, it er.

| | You translate it before you understand it, er, so if you have understand,dbetgn’t
need to translate it.

E | I think it here would be easidr the authortranslatedD: Yea[laughs])ratherthaner
leaving the reader to do it, | mean.

D | You haveto do the two together,you have to translate while you're trying to
understand.

Pupil D and E seem to agree that language canhiredaanceto learningbut at
the same time at least PupilEguesthat one cannotlearnmathematicavithout
using languageput he finds that one can use different language for instance
simple language. Pupd seemdo arguethat one indeedcan learnmathematics
without the use of language. Elsewhere in the interview she arguemthaan
learn mathematics without language Jeastwhen the mathematicss easy.She
explains that it took her a long time to understand whatttieorswrote but it
was easy as soon as she translated it. It can therefore be intetbattedPupil
D, language can obstruct thinking, but iilsoa necessaryranslation-tooland
that simple language, after being translated from a difficult language, sedras
a thinking-tool. Pupil Ealsoexpresseshat the appropriate(for instancesimple)
languageis a thinking-tool. This might seemodd as they also state that
language/notatiorconfusesthe meaning,which could be an exampleof the
double nature of languagethat Piagetargued for. Pupil E does not himself
directly argue for a dual natucé languagewhereasPupil D directly statesthat
one hasto “do the two together,you haveto translatewhile you're trying to
understand”.
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Written language
This example is from an interview with two English boys, Pupil A and C.

A

If | am revising from my notes, | find thaelpsif | actuallywrite the notesout again
just copying them, out from you know [C coughs] the previolBcauseif you just
sort sit down to revise, you redlsrough,evenif you readit aloud,you pick up soms
things, remember some things. But if you writeut, you sort of readagainandthen
write again(l: mmm) and it sort of reinforcesit. And | definitely found er, if it is
something where | have to memorfdesecsilence],you know sort of examplessort]
of methodsgequationshow thingswork, | definitely find it easierif | write, er,as an
aid to memory [2 sec silence] (I: mmm) er, [1-2 sec silence] Yea.

Do you know othertricks or do you know other peoplehaveothertricks you know
about?

[2-3 second where C and A talk at the same time].

Remembering or learning?

Er. Why is? Is there a difference between remembering and learning?
Yea, well [interrupted)].

Memorizing something,then you needto know the [1 sec silence] set number of
points (I: mmm) so you needto write them out, and, you know, find somesort of
sequence, in to remember it. But if you are just learning, theabdtstunderstanding
you don’t needto remember(A: Yea) the detall, just (I: mmm) needto know the
overall, you know, concept (I: mmm) [A tries to break in] you know, principals.

Yea, it's important to understand how things (C: Before) how you GET the a((Sy
mmm). Because [2ecsilence] YEA, it is in math,it’'s going backto the samething.
It's fairly easyto learn a general formula for loads of different things like
trigonometry and things like that, you can juBARN the generalformula (I: mmm),
and every time yoget a question,you canjust sit anduseit and getthe answerout.
But thenif you come up againsta problemwhich is SLIGHTLY different to the
generallinaudible] you've learnt,if you just memorizedt andyou don’t understan
how it's got there, so you've got no change to work back, and ivorkt for yourseli
(I: mmm) whereas$f you understandt [1 secsilence],you canseewhereit’'s comeq
from and see where you need to change it tott you've got. (I: mmm) Got to try
and do.

Pupil A argues that written languagean aid to memory,which doesnot mean
that he seeswritten languageas the thinking-tool. Vygotsky’'s view was that
thoughtscomeinto existencethrough the words after the learnerhas partici-
pated in a social interaction where he has internalised aspebislafowledge.
To aid the memoryis accordingto Pupil A not real learning.Reallearningis to
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know the overall conceptsand principles. Furthermore glsewherein the inter-
views thereis a discussionabout whether words comefirst or not, and here
Pupil A says that he is not sure but it probably depemdhe problem.If it is a
visual problem where one has to think it through in 3D, he finds that it is
probably better to first have the picture or a graph,but with a linear algebra
problem, it might be bettdo have the words first and then the picturesto help

one understandpecausehe finds that it is the words one is trying to under-
stand. This means that although words and language have a great valasethey
by no meanshe way to get to understand all branches of mathematics.

Ping-pong between language and images

Below are pieces from the interview with four Danish girls, here mainly
emphasising on Pupil Z’'s explanations. The original Danish texbedound in
Dahl (2002, pp. 356, 359-361).

Z | If you for instance sit down and then say,raght, whatis a triangle,andthenline up
what kind of concepts we are working with, it is so very important to haventieepts
lined up. What is the probleneally about,and whatkind of areaarewe in, andthen
you can begin to work with it. And | think that it is vamportantto havesometerms
and have them worked through.

Z | | ama pupil-teachelin mathematicand| havebeensitting with a pupil who get so
caught in what i§ (Someone else: mmm) aitds idiotically to sit andwonderabout
this, it is not what it is all about.wantto getto the point. But this is whatis relevant
when one does not understand what ihat is really relevant(Someoneelse:mmm).
And where one is going.

I | Yes OK, thissoundedike you talk abouta kind of bricks built on top of eachother
(someone else says yes yes). [Interrupted by Z]

Z | It's like the teacher speaks a differdamiguagethanus (Someoneslse:mmm). It's a
little like if you learn ItalianthroughDanishthenyou would also sit and get stuckin
what the teacher said insteadtoé meaningof it, right (I. mmm). The teachercomes
with this big mathematics language and then we becorstiskbwith whatthe things
are called instead of what it means.

| | Can one find the meaning outside of language?
[A few seconds of silence].

This is perhaps a bit philosophical?
| think it is difficult. | think that it is very difficult.

| also thinkso. Thenyou would needa kind of flair for it, or a kind of feeling of in
what direction it goes. Because it is almost hopeless ifipauot havethe ehh basics
and then to understand what it is that you are suppose to reach (Someone else
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Z | Itis also important, this motivation, which | also thinks liesheconfusing,thereis a
kind of motivation there, right. One really WANTS to learn itnjimm) And this you

needto have, becauseit doesnot help just sitting and learning this mathematics
LANGUAGE first doesit. | alsothink that we [inaudible] haveto stick to what you

[D] said, that perhaps a person has a kind of flair fandtis ableto seethis thing in

another wayAnd | alsothink thatthis is wherethe distinctionis betweenstartingto

seethe thing FOR YOURSELF and creatively,in somekind of way, becausaf one
really hasthis flair [inaudible] one canjust seethis spatial geometry,one can seeit

inside one’s headthe momentoneis told aboutit. And then one doesnot needall

theseconceptsjf onecanseeit for oneself.(Someoneslse:mmm), andthenl think
that one beginsto work in quite a differentway with it (Someoneelse:yes) [a few
seconds silence]. One can also first [inaudible] concepts and examples.

| | Do you think perhapghatthereis a ping-pongbetweerthatonein a way canseeit
and then the language?

Z | Yes.

Pupil Z explainsthat it is importantto have sometermsand have themworked
through. For instancein geometryit is very importantto line up the concepts
one works with to be clear about what the problemis about. Pupil Z also
expresses that it is difficult (but skiéd not say impossible)to learnwithout the
languageand as an exampleshe mentionsspatialgeometry.She explainsthis
further by sayinghat if one knows the notation, it is simply logical. According
to her,one can perhapslearnmathematicevenif one hasnot understoodthe
notation. The notationis what seemsrelevantwhen one doesnot understand
what it is that is really relevant as one becomes stocked with whtktitigs are
called, the mathematicdanguage,insteadof what it means.Learning is ping-
pong betweenimagesand the language.She seemsto argue that language/
notationsare necessarytools in learning, but that they in themselvesare not
mathematics and that an unsuitable use of langoagélock learning.Notions
can hamper learning if one does not know them, especially if one doksowt
them in the beginning of the learning process.lt may be possibleto learn
mathematicevenif one hasnot understoodthe notation. This seemsto some
extentto contradictwhat Pupil Z sayswhen she statesthat one cannotfind
meaningwithout language,but it could also reflect that, to her, the (right)
language isiecessanput notsufficient

Discussion of typologies

The ten pupils fall into various groups. Pupils C, /, and A do not seemto
express much here, but otherwise | will also include information about pgdils
quoted above. See Dahl (2002) for full transcriptions of all the interviews:
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I: Difficult to learn outside language {A, Z, J}.

[I: Language ighethinking-tool {B, D, E, F}.

[ll: Language can hamper learning but language can also help learning
{B, D, Z}.

IV: Language can hamper learning {E, F, @}.

The main difference between Group | and Il is whether learning is only
“difficult” outside language or if it iSimpossible” without language In Group
I, knowing the notation is essentialto be able to learn the mathematics.
Language carfunction asa thinking-tool andit is difficult to find the meaning
outsidethe language.They do not, however,say that it is impossibleto learn
outside of language.This seemssimilar to the moderate positive view of
language.Group Il has a strong positive view of the nature of language.
Languageis not just a meansof translation,but languageis a necessary
thinking-tool for learning. Different languagesfacilitate learning. Some pupils
arguethat simplelanguageis the best.In Grouplll the pupils describein their
own words a dual nature of language in learning. This could be interpreted to
in line with Piaget'sdescriptionof that languagedue to egocentrismcanboth
hamper and help learning. Members of Grdwifhave eithera more“negative”
view of the role of languagefor learningor they elsewheredescribethe dual
nature of language,but without themselvesreflecting directly on this. They
merelyat one placein the interview say one thing, at anotherplacethey say
something else.

Conclusions

There seem to be various views of language in relation to how the puplkn
that they learn a mathematical concept that is new to them. Sapils say that
languageis the main thinking-tool, othersthat it hampersthinking, and again
othersthink that languagehasa dual nature as it both facilitateslearningand
hampers learning. Some directly indicétes through expressionsuchas“you
haveto do the two together” or agreesthat thereis a “ping-pong” between
languageand images.This alsodependson the kind of language for instance
simple languageor written language.The membersof these groups are criss-
crossingnationsand gender.Referringto Piaget'scritique of Vygotsky, Piaget
declaredhimselfto be very muchin line with Vygotsky aboutthe positive role
of languageput Piagetalso arguedthat Vygotsky failed to acknowledgethe
obstacledanguagecan give rise to. Thus,basedon what the pupils here have
explained, Piageteemedo be right in his critique. But the quotesshown here
do not revealwhetherthoughts develop from social interactionand internali-
sation or from personal activities and construction. Howevddain (2004) it is
discussed that the pupils are divided on this issue. The pupils do, howeer, in
guotes above seemto argue that thoughts (in line with Hadamard)can be
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accompaniedoy other representationshan words, for instanceimagesor, as
Pupil Z puts it, by having a “flair” for it. Th&atter might be connectedwith the

notion of inner speech whidk thinking in pure meaning.They do not seemto

arguethat languageis not alwaysable to expressthoughts. Hence,the pupils

investigatedhereseemin variousdegreedo arguefor a dual role of language,
namely as language both being a hangreta helper.
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Deaf Children’s Concept Formation
In Mathematics

Elsa Foisack
Malmo University

The aim of the study is to illuminate defildren’s conceptformationin mathe-
maticsby describinghow somedeaf children expressthemselvesand act on
their way towardsunderstandingwo basic concepts,the conceptof multipli-
cation with whole numbers and the concept of length.

Theoriesdevelopedby FeuersteinFeuersteiret al., 1979; 1988; 1991) are
usedin orderto describehow deaf children develop concepts,and to investi-
gate possibilitiesto help deaf children develop their cognitive potential in a
more effective and adequateway. Conceptmapsillustrate stepsand pathways
taken by the pupils. The importanceof languagein conceptformation, with a
focus on sign language is illuminated.

The childrenin this study were pupils in a School for the Deaf, a bilingual
schoolwith the languagesSwedish Sign Languageand Swedish.Seven 11-
year-old pupils, all the pupils in one group in grade 4, were studied. Video
recordings were made of pupil-teacher interaction@ailemsolving situations
in signlanguageonly, with paperand pencil, with learning materialsand with
real things.

A large variationin the pupils’ ability to solve the problemswas found
dependingon different factors identified by Feuerstein,e.g. self-confidence,
looking for meaning, search of challenge, intention to finishatbek and use of
known facts.No differencewas found concerningthe stepstowards compre-
hensionof the conceptsfor the deafpupilsin the study comparedto those of
hearing pupils. In accordancewith earlier studiesit was found that the deaf
pupils neededmoretime to learn mathematicghan hearingpupils normally do.
As a consequencethey may learn certain conceptsat a later age and the
pathways towards comprehensionmay vary comparedto those of hearing
pupils. The structureof sign languageand the lack of an establishedermino-
logy in mathematics are also of importance.

The bilingual situation for deaf pupiis a reasonfor developingmethodsof
teaching mathematics to deaf pupils, alternative to methods used today.

I ntroduction

This study (Foisack,2003) is basedon the questionwhy deaf children have
difficulties in learning mathematics.International research (Frostad, 1996;
Magne, 1991; Moores, 2000) shows that daabils achievemuchlower results
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on testsin mathematicghan hearingpupils do. On the other hand thereis no
researchavailabletoday showing that the cognitive potential of deaf pupils
differs from that of hearing pupils (Martin, 1991). If it is a fact ttheaf pupils do
not use their cognitive potential to a full extent, it is of greatimportanceto
investigatewhy this is so, and to find possibleways of improvement.Other
ways of assessinghan by ordinary tests might show other resultsthan those
referred to.

The children in this study were pupils in a SpecialSchool for the Deaf, a
bilingual school with the languagesSwedish Sign Language and Swedish.
Going to school ira SpecialSchoolfor the Deafis in someways different from
going to a regularschool.The signlanguageenvironmentis crucial as well as
the bilingual approachwith the two languagesSwedish Sign Languageand
Swedishin its written form astwo separatesubjects(Skolverket,2000/2002).
The basic objectives are the same as in all schools in Swedeathematicihe
deafpupils aretaught on the basisof the samecurriculumasall other pupilsin
Sweden(Lpo94, 1994). Syllabi and grading criteria (Skolverket,2000) are the
same.In the curriculumfor compulsoryschoolsin Swedenthe aim of learning
mathematicss “to masterbasicmathematicathinking and be able to useit in
everyday life”.

As to communicationand particularly language,as an important tool for
developing thinking the importance sign languagefor sign-languageusersin
learning mathematicsis emphasizedin this study. Deaf children learn sign
language imna naturalway if they areexposedto it in a sign languageenviron-
ment. Thatis the casefor most deaf childrenin Swedentoday. Swedishis re-
garded as a second languagedeaf people.Most deafchildrenlearn Swedish
at the sametime asthey learnto read and many of them not until they start
school. Thusit is self-evidentthat mathematicgs taughtin sign languagefrom
the beginning and that sign languageis the languagein which they develop
basic concepts. By the time the ability to read amite is developedthe pupils
can find new information on their own and expressthemselvesin written
language, buthereis still a needfor directcommunicationn signlanguagen
the syllabusfor the schoolsfor the deaf (Skolverket,2000/2002) there is a
general text on bilingualism from which the following quotation is taken:

Learningoccursthroughboth languagesBilingualism is thereforeimportantin
all schoolsubjects,not only in the two subjectsSwedishand Swedish Sign
Language. Every subject hasasn subject-specificonceptsand a terminology
that the pupils do not meetin other subjects.As a consequencet is every
teacher’sobligationto makesurethat the pupil masterstheseconceptsin both
languages.

Concerning mathematics there is a gaabuntof well defined subject-specific
conceptsand relatedterminology in spoken/writtenlanguagesthat pupils in
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schoolneedto master.The quotationabove showsthat thereis a needfor an
established terminology in Swedish Siganguagefor mathematicslt doesnot
seemfair that testsusedin nationalassessmentshould be availablein written
Swedish only, the second language of deaf pupltsst learningmaterialis also
in written Swedish.

Aim

The aim of the study is to illuminate deaf children’s concept formation in
mathematicdy describinghow somedeafchildrenexpresshemselvesand act
on their way towards understandingtwo basic concepts, the concept of
multiplication with whole numbers and the concept of length.

How deaf children achieveknowledge of basic mathematicalconceptsis
studied in order to find ways to meet the needs of deaf children learning
mathematicsand to promote more effective and adequateteachingin general.
Questions of significance to the study are:

* How do deafpupils,thosewho have alreadyunderstoodas well as

those who are on their way to understandingthe concept in

guestion, express themselvesand act when confronted with a
mathematical problem of this nature?

 Does the way deaf pupils expressthemselvesin sign language
influence their concept formation?

From a mathematicseducation perspectivethe following questionsare then
raised:

* What steps are needed for understanding the concept?
» Are the steps the same for deaf pupils the same as for hearing pupils?

In orderto follow the developmenbf the pupils on their way towards under-
standingthe concept,learningsituationsare arrangedon the basisof theories
developed by Feuerstein concerning mediated learning.

Theoretical framework

Two perspectives wenesedin the study, cognitive educationand mathematics
education. Thecognitive educationperspectivas basedon theoriesdeveloped
by Feuerstein (Feuerstein et d1991), StructuralCognitive Modifiability (SCM)
and Mediated Learning Experience (MLE). Feuersh&ina constructivistview
of learning in contrast to a behaviourist vieSCM is closelyrelatedto theories
by Piaget, buthe uniquenessn Feuerstein’sheory is the connectionwith the
theory called Mediated Learning Experience(MLE). Feuerstein(Feuersteinet
al., 1988) has been influenced by Vygotsky (1978) as to how learning is
developedin a social context. The mostimportant characteristicof MLE are
mediationof intention and reciprocity, mediationof transcendencyand media-
tion of meaning.MLE is usedin the methodfor assessinghildren’s cognitive
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potential developed by Feuerstein, called Dynamic Assesqhenérsteiret al.,
1979)to revealthe learning potential of an individual. In dynamicassessment
interaction is crucial. How much mediation is used and of whatikinegistered
for the purpose of the pupils to understand and solve problems on their own.

Mediation and dynamic assessmendre used in this study to reveal the
processof learninghow to form conceptsin mathematicsThe theoriesdeve-
loped by Feuerstein are used in order to describe how deaf childrendedto,
investigateif it is possibleto help deaf children to develop their cognitive
potential in a more effective and adequate way than is usually done.

From the mathematicseducation perspectiveinsightful learning, problem
solving and communication are considered to be crucidéuelopingmathema-
tical knowledge (Verschaffel& De Corte, 1996). Conceptual knowledge in
interaction with proceduralknowledge is of importance(Hiebert & Lefevre,
1986). Insight and understanding of how to solwask mustgenerallyprecede
the training ofthe calculatingskill. Accordingto Ahlberg (1992),childrenneed
to learn to count and to solve problems.Automatisedcalculationsare time-
saving,but they do not developthe ability to formulate,understandand solve
problems.

Steps children in general take their pathwaystowardscomprehensiorof
the conceptswere searchedfor and are describedin concept maps (Novak,
1998). In the concept map the conceptsare hierarchically ordered and are
connectedto eachotherin a network by linking words to build statements.
Conceptmapswere usedin this study to give an overarchingdescription of
mathematicaconceptsand their connectionsincludedin this study. Concept
mapsillustrate stepsand pathwaystaken by someof the pupilsin the study in
forming concepts.

The importanceof languagein concept formation, with focus on sign
language, is illuminated in theudy. Sincethe study is theoreticallybasedon a
constructivistic view withconceptsbeing developedin a socioculturalcontext,
a language for direct communicationis crucial. Swedish Sign Language
(Bergman,1979)is the languagedevelopedby deaf peoplein Swedenand is
used among people who do not hear.

The empirical study
The study is focusingon the processof learning basic mathematicakoncepts.
By choosingto concentrateon the conceptmultiplication with whole numbers
and the concepof lengthin two separatepartsof the study, it was possibleto
look into both arithmetic and geometry, since thegresendifferent aspectsof
mathematicaknowledge and since both numberand spaceare mentionedas
basic concepts in the current syllabus (Skolverket, 2000).

The children in thestudy were pupilsin grade4 in a SpecialSchoolfor the
Deaf. There were seven 11-year-old pupils ingtuely. They were all the pupils
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in one of two parallel groups the fourth grade.All the sevenpupils had been
taught in the same school sinite first grade.The level of knowledgewas not
consideredvhen organizingthe groups. None of the pupils in the study had
deafparents.As manyas half the numberof the parentshad anotherlanguage
than Swedish as their first language.

Video recordings were made of pupil-teacher interactiomgoblemsolving
situations. Communication wdsoughtaboutin sign-languageThe pupils met
the teacher one by one several times.

Problems to be solved were generatedada given situation. The solution
of a problempresentedvas discussedn four different ways: in sign language
with no materialavailable,with paper and pencil, with learning materialsi.e.
Centimoand Cuisenaire-rodsand with real objects.In the assessmeressonit
was important to start in the most abstract way and let the most concrebeway
the last. To go from telling to acting was neededfor the assessmentf the
pupil’s level of abstraction. Later on the pupils were free to clr@ses to solve
or to explain the problem.

In the multiplication study a problemwas chosenand the difficulty of the
problem was increased by changing one of two factors. The probleroiiad
out how manyapplesare neededif three/fourchildrenareto havethreeapples
each, if seven children are to have three apples eaclooeihundred-and-three
children are tdhave threeappleseach.The reasonwhy | chosethe numbersof
childrento be 3 or 4, 7 and 103, was that they were numberswith a certain
meaningto the pupils. They were the number of children in groups they
belongedto themselvesTherewere 7 pupils in their class,there were 3 boys
and 4 girls in the class and thevere 103 pupilsin the schoolaltogetherat the
time, a matter that hagcentlybeenfocusedon in a speechby the principal of
the school.

In the length study the teacher and eathkhe pupils discussedhe lengths
of shelves tdoe put on the wall in different places.It was a problemthey were
familiar with from thesubjectof woodwork. Another reasonwas that we could
put real shelvesin front of us on the table. We could talk about lengthsin a
horizontal direction and the lengths could be kept shorterthan one meter to
focus on working with measurementsn centimetresonly. The pupils were
challengedto estimate,measureand comparethe lengths of different shelves.
Four different shelves were used.

Thefirst lessonwith eachpupil andin eachof the two parts of the study
was regarded as an assessment lesson. After the lessonamalysfswas made
from the videorecordingsand an assessmemwas madeof the pupil’'s ability to
solve the problem presentedand the level of understandingthe conceptin
guestion. Assessment was also made of wlsathe pupil might needto know
about how to learn and how to develop understanding ofdaheept.Dynamic
assessmemas usedby mediationif neededfor the pupil to solvethe problem
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and to develofbetterunderstandingdf the concept.How muchmediationwas
needed and of what kind was registered.

With pupils who solved the problemon their own, attention was con-
centrated on how the pupil described his or her ofathinking in orderto find
new ways of helping other pupils to solve the problem. With puyis needed
help to solve the problenanalysesvere madeto find what was neededfor the
pupil to solve the problerand to developbetterunderstandingf the concept.
One or two lessons were consciously planned out oh&aelsof the pupil. The
goal for the teaching was for each pupil to understand the concty éxtent
it was presentedin the study. The teacherinteracted with the pupil using
mediationif neededfor the pupil to solve the problemand to develop under-
standing of the concept.

A test was then given to the pupils in the stedytainingthe samekind of
problemsasin the lessons.The testswere presentedin written Swedishand
were given to the pupilsindividually. After the pupil stoppedworking on the
test, the teacherinitiated communicationf neededfor the pupil to understand
the solution of the problem. Video recordingswere madeto be usedin the
analysis.

For eachpupil an assessmenvas madeof what mathematicaktepshe or
she mastered during the first lesson and in the test situdtienesultsfrom the
two occasions were compared.

Conclusion

When analysingthe data from the cognitive educationperspectivel found a
large variety in the ability of the pupils to solve the problemsdependingon
factors defined by Feuerstein(Feuersteinet al., 1988) e.g. self-confidence,
looking for meaningand searchof challenge,intention to finish the work and
use of known facts. They are all factors of importanceto communicative
competence and to problem solving.

When analysingthe data from the mathematicseducation perspectivel
found no difference in general concernisigpstowardscomprehensiotior the
pupils in the study comparedto those of hearing pupils, as far as comparing
spokenSwedishfor hearingpupils and signed Swedishfor deaf pupils. In the
areaof numbersense,severalpupils in the study did not masterthree-digit
numbersan ability usually automatisedat an earlier age by hearing pupils. In
accordance with earlier studidsaf pupils needmoretime to learn mathematics
than hearing pupils. As a consequence they may learn certain coatafdser
age and the pathwaystowardscomprehensiomay vary comparedo those of
hearing pupils.

How deaf pupils’ way of expressing themselvesign languageinfluenced
their conceptformation was studied. It was analysedout of the four charac-
teristics of sign language iconicity, simultaneitypvementand spatiality. It was
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found that the structureof sign languagecould be of help but it could also be
an obstaclein mathematics.Ilt was helpful when showing what something
looked like iconically and what happened.On the contrary argumentshave
beenraisedwhetherthe visual aspectsof sign languagemay hamperconcept
formationin mathematicsln this study the possibilities of using the pupils’
expressions in sign languate revealtheir level of knowledgeandto promote
their conceptdevelopmenthave beenfocusedon. In constructingone’s own
knowledge it is essential that all possibilities are taken advantage of.

The importance of teaching mathematics by problem solvingpgradmmu-
nication todeaf pupils aswell asto hearingpupils hasbeenemphasizedn this
study. For deafpupils,a more developedterminologyin sign languagewould
make learning subject-specificconcepts of mathematicsless dependenton
competence in spoken/written language. The pupils could theffdred better
conditions to reach a more abstract level at an earlierTageilingual situation
of deafpupilsis a reasonfor developingmethodsfor teachingmathematicdo
deaf pupils, approaches differing from or supplementing methods used today.
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Prospective Mathematics Teachers’
Learning in Geometry

Mikael Holmquist,
Goteborg University

Introduction

When discussingeacherqualificationsin mathematicand educationof future
teachers in mathematics, the branch of geometryceswfseonly a small part of
the sciencemathematicsNeverthelessthere exist reasonsand argumentsfor
why we should try to observe and educate competenciesfor teachersin
mathematicsvith geometryin focus (Niss, 1998). This will include teachers’
views andknowledgeof geometryasa mathematicatopic aswell asthe kinds
of knowledge and views that they should have of the processesf learning
geometry.In Swedenaswell asin other countries,geometrywas an essential
part of school mathematics during the period fromrtfigdle of the 19" century
to theend of the 1950s.Later on, there have beendiscussiongKapadia,1985)
whether the loss of geometryin the school mathematicsmay have causeda
drawbackregardingstudent’sunderstandingpf generalconceptsor not. As a
result,geometryand measuringhas a more prominentposition in mathematics
syllabi for the Swedishschooltoday. The programmedsfor teachereducation
seem to have followed the same patterns, only with a slight displacemniené.
Despite this, teachers of today are expected to ftiidinational curriculumand
ensure that their students reach proficiency in these areas.

Background

In recentyears,there have beenresultsreportedbasedon researchaimed at
prospectivemathematicseachers’formation of conceptsin more well defined
fields of mathematics.The researchresults point out the necessity of the
teacher’s readiness to reconsider her or his own understanding.

Investigations show that there are different ways for teachesgpt@ssheir own
appreciation of a concept. Explicit expressions based on ressemto be most
effective. But future teachersanust also learn to acceptstudents’evaluationsas
expressions of their personality when they differ from their appreciatiorof a
concept (Vollrath, 1994, p. 64).

In a situation where the teachedsd the student’'sappreciationof a mathema-
tical concept meet, demands will be raised for the teacher’s abistypportthe
students’ conceptual developmeifitie teacherhasto have both soundknow-
ledgeand a broadview with respectto the conceptin point. Aspectsof geo-
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metrical concepts asonceivedby prospectivemathematicdeachershave been
studied in several research studies duringdketwo decadesSettingout from

a hierarchicalclassificationof such concepts,Lichevsky, Vinner and Karsenty
(1992) have reportedtheir results.Hierarchicalclassificationis a fundamental
thought processin Euclidian geometryand is requiredin many domains,not

only in mathematicsTheir resultsshow that the students’ conceptionof the

geometrical figures is global. The students relate only to the visual aspelots
figures and not to their properties,the students’ conceptionlacks analytical
elements. Theesearchersonsiderthis to be connectedto the students’ability

to make relations to other importaagpectsof geometry suchasdefinition and
proof.

Gutiérrezand Jaime (1999) presentedthe results of a test designedto
analysepre-serviceprimary teachers’'understandingdf the conceptof altitude
of a triangle. Their conclusionsrefer to the identification of the pre-service
teachers’conceptimagesand the way they make use of their conceptimages
and the mathematicadefinitions of altitude of a triangle in the resolution of
specifictasks,taskssimilar to thosethey will find in the textbooks when they
begin their professional life. One of their conclusions is that prospeetahers
should be giverthe opportunity to presentexplain,and defendtheir particular
conceptionsof basicgeometricalconcepts.Any cognitive conflicts that arise
from different conceptimagescould be consideredand resolvedin the light of
the formal definition.

The purposeof this study (Holmquist, 2003) is to describe prospective
teachers’understandingof geometricalconcepts,as it will be manifestedby
their explanationsyecordedin words and drawings. What are the prospective
mathematicsteachers’ answerswhen they are askedto give their written
explanationto somebasicgeometricalconceptsVhich are the most frequent
answers and what are the characteristics of a certain answer?

Theoretical framework
Researchconcerningour understandingof words, objectsand conceptsis of
greatinterest,not only in geometryor mathematicsand extendsover a lot of
different areas.Commonly used are theoriesin psychology or theories in
linguistics and semantic structures. Theories fpmychologyand linguisticsare
usedin researchdealingwith our understandingof mathematicalwords and
concepts.

Our interest is in the frame tifie epistemologicalnterpretationof mathema-
tical knowledgeand we ask ourselvesthe question;what is a concept?Accor-
ding to an encyclopedia (Nationalencyklopedin, NE, 1998) a concept is

the abstract content inliaguistic term unlike the term itself, aswell as (concrete
or abstract) those objects represented by the term or those the term is applied to.
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This descriptionof a conceptis basedon what is called the Ogden’sand
Richards”semiotic triangle or the model of signs (Ogden & Richards,1989/
1923). Steinbring (1994) uses the characterization of “meaning” as the ¢friad
thoughts,words and things” as a basefor what he calls the epistemological
triangle of mathematical knowledge, a model to be consideradrastatic.This
more dynamical way to loolpon the modelwill makethe interpretationthat a
concept could be understood in relation to other concepts possible.

With regard to this epistemological triangle of "object,” "sigarid”"concept,”
it is not assumed that the relations between the “corners” of the tramedired
a priori, but thatthey must continuouslybe developed,nstalled, and eventually
modified according to new prerequisites (Steinbring, 1994, p. 96).

The use of this model raisesthe question about demandsfor mathematical
conceptsto be unambiguousand non-contradictory.This appearsdistinctly in
definitions of conceptsmadein mathematicaltheories and the characterof
mathematicalconcepts therefor often differs from those used in everyday
communicationTherole of the mathematicaterm in the epistemologicainter-
pretation of mathematical knowledge is in the limelight for our interest.

This will lead us to take into accounta three-dimensionamodel,a model
were thedefinitionwould give the epistemological triangle an additiotiahen-
sion. The epistemologicaltetrahedronmodel is used to illustrate the mutual
relations between concepeferent,term,and definition (Spri, 1999).In figure 1
the model is used together with the mathematical corttagbnal

-

S )
~r - Referent

diagonal

~
‘
A segmenconnecthg two
non adj@ent \ertices of

a polgon(in the plane)

Figure 1 The epstemological tetrahedon modé
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The dashedand the unbrokenlines in figure 1 show how every connection
between terms and referents, teramsl definitions,and definitionsand referents
take place through the concept. If there is a teraefinition or a referent,there
will always bea concept.For the model,to have an epistemologicafunction, it

shouldbe possiblefor the referentto be not only an object but also a relation
between objects or a situation.

A theoretical model for analysis of students’ answers
The well-known and discussedesultsin the areaof conceptualunderstanding
are about how mathematics students at diffeeglicationalevels expresstheir
understanding of mathematical concepts. A theoretical structuenédysisand
descriptionof that kind of resultsis basedon the students’ conceptimages
imagescommonlynot identicalwith the conceptdefinitions they face in their
instructionto becometeachers.Vinner (1991) and Hershkowitz (1990) have
reported on both results and theories in this area. Bethemsss no final stage
of how a conceptan be understood(Vollrath, 1994),thereis no interestin the
discussion of the students’ explanations in terms of right or wrong. In retation
an establishedmneaningof a mathematicalconcept, different descriptionsand
explanationwill, of coursebe found. In connectionto this Vinner and Hersh-
kowitz (1983)and Vinner (1991) give a usefultheoreticalstructurefor analysis
and description of the students’ explanationsof the geometrical concepts
included in the study. When we listen to or rétae nameof a moreor lesswell
known concept, or when we are solvingnathematicaproblem,somethingcan
be evoked in our mind. Usually, it is not tbenceptdefinition; evenin the case
the conceptdoeshave a definition. Insteadit is somethingnon-verbalin our
mind associated with the concept name. It can be a collectiosuzl represen-
tations, pictures, characteristics, impressionexperiencesSucha collection of
elements associated with a concept name constihesoncept image
Vinner (1991) claims that a student’s experiencesthodeexemplifications
given for a concept,eitherin educationalsituationsor in other contexts,are of
decisiveimportancefor how the conceptimageis developed.During their time
in school studentsusually meetjust a few examplesof a certain geometrical
concept, exampleswith a common and specific visual character. Such an
example therbecomeghe prototypical exampleand the studentusesit asthe
frame for reference.This is called the prototype phenomenonand has been
described by Vinner and Hershkowitz (1983) and Herskowitz (1990).

The study

At GoteborgUniversity, studentspreparingto becometeachersof mathematics
and naturalsciencefor year4 to 9 or for the gymnasium(year 10 to 12) take

coursesn manydifferent branchesof mathematicsOne such 5-credit point (5

weeks fulltime study) courseis called Geometryand MathematicalModeling.
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The studentscome to the course after having taken different coursesin
mathematics where the content varies over time. Usuallgttiteentscomewith
coursesn numbertheory, Euclidiangeometry linear algebra,and real analysis,
which approximately corresportd 30 weeksof full time studies.Beginningin
the spring of 1999, the studentswho came to the course were given a
guestionnairewhich addressguestionsregardinghow the studentsconceive
concepts in geometry.

This study is basedon written responseshat have been collectedfrom all
the entrancequestionnaireson geometry administeredduring 8 consecutive
semesters, including the fall 2002 course. The studests given the question-
naire the first day of the course and there wasme limit for themworking on
it, althoughup to now no studenthasusedmore than 80 minutes.At present,
213 studentshave respondedto the questionnaire.The issuein focus is the
identification of the prospectiveteachers’conceptimagesand the way they
make use of their conceptimagesand the mathematicaldefinition of certain
concepts, geometrical concepts that they will foethtralwhen they begin their
professionallife as mathematicsteachers.The selection of questionsin the
guestionnaireis closely related to the national curriculum for the Swedish
comprehensiveschooland for the SwedishGymnasiumto analysisof common
textbooksthat are used in Swedishschools,and to the kind of geometrical
conceptsthat are usedin national tests. The studentswere askedto give an
explanationto the following five concepts:diagonal congruence parabola
rhomb andcycloid

Explain in short terms the following geometrical concepts;please use both
pictures and words. Evenybur belief aboutthe conceptis vague,we appreciate
if you as clear as possible will try to give an explanation.

Different responseswere classified accordingto the critical attributes of the
actualconceptusedby the students,but the reasonsfor the differenceswere
not analyzed. With just a total of 10 faling off it is reasonabldo saythat the
students taking part in the studhell representhe whole group of prospective
mathematics teachers during the actual time period.

Results

Most of the findings corresponod thesedescribedoy Hershkowitzand Vinner
(Hershkowitz, 1990; Vinner, 1991). The concept image exprdssedstudentis
often only part of or may not coincide at all with the definition of the corre-
sponding mathematical concept. The prototype phenomemasmlsoobserved
frequently in the students’ descriptions.There are reasonsto separatethe
students” answers in a qualitative aspect, not only in ‘correct’ or ‘non correct’.

126



Holmquist

Diagonal
Table 1 showsthe resultof the analysisand categorizationof the students’
explanations of the concegiagonal

The conceptdiagonal is a well-known conceptamongthe studentsin the
study. The resultshowsthat in the main part of the explanationsthe students
make use of concept images in which the references are of strong visual nature.

Table 1 Distribution d student exganaions d the cortep diagond (N =213

1 2 3 4 5 6 7 8 9 10
Cloe to a | Definition | Definition | Definition| Divides| Justa | ...from | Rdates No No
formal connectal | limitedto | limitedto | asquare | drawing |onever-| toa | relevart | answe
mathe- toa a quadri- | acertain ora (square | texto | circle | ansver
matical polygon latgal | geametri- | rectamgle or arothe
definition cd dbject| intotwo | rectangle) | — reault
(eg. a equd ofa
square) parts process
1% 2% 15% 16% 22% 17% 6% | 11% 9% 1%

The overall dominating example asdiagonal drawn in a squareor a rectangle.
Those examplescould be seenas prototypical examples,examplesthat are
attained first. Among those there are notable many in the catdgddiagonal
5) Divides a square or a rectangle into two equal parts

If a descriptionof a certain conceptis bounding its meaningto a specific
situation, it will constitutea conceptnegativeexamplewith strong irrelevant
attributes.

Congruence

Table 2 showsthe result of the analysisand categorizationof the students’
explanationsof the conceptcongruence The object for the conceptof cong-
ruence is a relation betweé&no geometricalobjectsand thereforethis concept
Is different compared to the other concepts in the questionnaire.

Table 2 Distribution d studert explanations of he coneptconguence(N =213

1 2 3 4 5 6 7 8 9 10
Cloetoa| Cloeto | Objects | Reldesto Simi- Itis Rdates | Relatesthe | No No
formal | aformal | exacty characte- laiity alout the conceptto | rele- |answe
mathe- [ definitio | covering | risticsabout simila- | concept | conwer- vant
mati cal n ead geametrical rities to gence |answe
definition | without othea | objecs (equd between | number
certain (lay argds, equal geane- | theay
critical over) sides) trical
atributes objects
10% 14% 3% 8% 19% | 11% 1% 2% 19% | 13%

For explanationsin the categoriescl (congruencel) to c6 it is obvious that
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they are basedon similarities between geometricalentities. In this case the
prototype exampleis closely relatedto an explanationwhere congruenceis
describedas somethinglike similarity between triangles. The reasonfor the
students tachosean exemplificationwheretrianglesareincludedis mostlikely
to find in textbooksdescriptionsof the concept.Among all the studentsthere
areno one using only a drawing to describethe conceptcongruence On the
other hand,in the categoriescl to c6 thereare 30 out of 138 explanationg22
%) built solely on a linguistic statement.

Parabola
The concept parabola has its original definition in the geometry of conic
sections.Suchgeometrytheoriesare no morein the syllabusfor the Swedish
school system(year 1-12). Despite this, the concept parabolais used in an
analytic meaning as the name for tiraph of a function like f (x) = ax?, and the
graph is called “a graph of second degree”. The more everyday meahitigs
conceptarerelatedto physical phenomendike the parabolicmotion of a ball
projected into the air or a parabolic shaped antehable 3 showsthe resultof
the analysisand categorizationof the students’ explanationsof the concept
parabola

Talde 3 Distribution d studentexplanations of he coneptparabda (N =213

1 2 3 4 5 6 7 8 9
Close ba | The groh | Exanples| A graph A Jwst a | Relatesto | No relevart No
mahe- of an built on of the graph | drawing | aphysical answe ansver
matcal |equaionof | relevant | second of a pheno-
definition | thesecnd | atributes| degee graph menon
degee (x*>-gragh)
0,5% 9% 2% 3% |135%| 8% 4% 20% 40%

With regardto the notably large amount of students’ explanationsin the
categoriesp8 (parabola 8) No relevant answer and p9 No answer, the
prototype phenomenon for the concept parabola is not so obvizespitethis
it canbe of interestto look upon the prototype examplesamongthe concept
images in the remaining categories. Explanations in the categdripS and p6
are dominating and they are about a drawoh@ graphin a coordinatesystem.
This is also the most common descriptionin textbooks. In the case of the
conceptparabolathere are very few explanationsbasedonly on a linguistic
approach.

Rhombus

The concepthombusserves as an exampdé how a conceptcan be part of an

inclusiverelation,the setof rhombusess includedin the set of parallelograms,
which is included in the set of quadrilaterals.Table 4 showsthe result of the

analysisand categorizationof the students’ explanationsof the concept
rhombus
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Table 4 Digtribution of student explaations d theconapt rhonbus(N =213

1 2 3 4 5 6 7 8 9 10
Clos to a| Definition | Oblique | paglelo- | Quadri- | Justa | Polygon | A olid | Norele-| No
formal without [ square | gram lateral |drawing| (more | geame- | vart |answe
mathe- certain with (genera) than4 trical ansver
matcal critical argds verices | object
definition | attributes not 90 (paallel-
(concept degees efiped
negaive
exanples
23,5% 11% 21% 5% 5% 7% 2% 5% | 135% | 7%

The students’ explanationsof the conceptrhombusshow that this is a fairly

well-known concept.Besidesthis a relatively high amountof explanationsare
in categoryrl (rhombus1) Close to a formal mathematicaldefinition, the
highest amount in relation to otheonceptsin the study. The squareis usedas
a referentin many of the students’conceptimageswhich may connectto the
fact that the rhombusis part of an inclusiverelation.In this casethe prototype
exampleis characterizedby an explanationwhere the squareis processedo

become a rhombus. Theye given by the explanationsn categoryr3 Oblique
Square The strong visuatharacterof the squareasan equilateralobject, often
standing on one of its sides, clmadto explanationswerethe relationbetween
the rhombus and the square is somewhat contradictory.

Sr9 A square “standing” on one corner.
A rhombus has not necessarily right angles

Like in explanationsof other conceptsin the questionnairethereareinstances
where the relation between the picture and the text is contradictory.

Sr8 An equilateral parallelogram

a
Cycloid
Thereasonfor the conceptcycloid to be includedin the questionnairas quite
different from what is the casefor the other concepts.The conceptis not dealt
with in school mathematicsand it is reasonableto say that it has a limited
meaningin everyday language.Neverthelessthe conceptis included in the
terminology of mathematicsand also included in the Swedishlanguage.The
concept is part of the questionnaire to make it possible to evaluatetbdents
reacton moreuncommonconcepts.Suchan evaluationwill give an indication
of the students’willingnessto give an explanationwhether they think they
have a relevantconceptimageor not. Table5 showsthe result of the analysis
and categorization of the students’ explanations of the cocgefuid
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Table 5 Distribution d studerts explanaionsof theconcep cycloid (N =213

1 2 3 4 5 6
Definition Relaes toa Rdatestoa | Norelevant | Commen on No answer
relaed toa cyclic course circle ansver ones own

circle, (iteration) ighoran@
rotaingon a (Noansver)
straight line
2% 4% 4% 16% 25% 4%

The students’ explanations in categoBy(cycloid 5) arevery interesting.They
give arguments for theonclusionthat the studentsusuallyindicatewhen they
have no relevant concept image to presenthécasewherethe studentsoffer
an explanation they believe that they have a relevant concept image.

Discussion
The resultsmainly correspondwith the resultspresentedoy Hershkowitzand
Vinner (Hershkowitz,1990). This is above all true for the prototype pheno-
menon,which frequently appearedn the students’ explanations.Among the
conceptsused in this study, the concept of diagonal showed the strongest
prototypical concepimage,a diagonaltracedout in a squareor a rectangle.In
addition the concept of diagonal generatedexplanations built on specific
referents whose characteardly can be transferredto a more generalsituation.
Using the vocabulary of Hershkowitz (1990), they are concept negative
exampleswith strongirrelevant attributes

For the students in this study the results revealedathahceptimagemore
rarely refersto the correspondingmathematicalconcept definition. With the
exceptionof somepartsof the resultspresentedfor the conceptrhombus,the
students’conceptimageswere mainly basedon referentswith weak connec-
tions to the conceptdefinition. In other words, when askedto give a written
explanation to a geometrical concept, the studentisisrstudy rarely consulted
the concept definition. This can be schematically shown by a modificatitre of
epistemologicaltetrahedron model (figure 2). The dashed line between a
conceptdefinition and the conceptimage in the studentindicatesthe weak
connection;in some casesit is questionableif the connection were at all
established. It is worth noticinilpat the etymologicalaspectof the nameof the
conceptplayeda subordinaterole and seemgo have had almostno influence
on the concept images presented by the students.
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Prospetive mahemadic
teacters — concepts

Figure 2 Modified epigemdogical tetrahelron modé.

Usually a conceptin schoolmathematicss synonymouswith its definition. To
understand a concept is then to know and be t@béxpressthe corresponding
definition. This is also how the content of mathematicsis presentedand
organizedin manytextbooksfor school mathematicsThe textbooks analyzed
in this study are in general no exceptions from that.

In the light of theseresults,it is relevantto believe that the importanceof
concept images when developing understanding @inceptis underestimated
iIn mathematicseducation.At the sametime, as the descriptionsin textbooks,
education is mainly based @onceptdefinitionswhich do not supportwanted
results. This is not, in my opinion, to say that we havexcludethe definitions.
Metaphorically speaking; to reach good understanding of a comeepaveto
find different ways in the epistemological tetrahedron model.

In this study the visual aspectplayed a fundamentalrole in the students’
way to present their explanations. Conceplssereferentshave strongvisual
characteristic may lead to explanations were the vishdctsare contradictory
to the written linguistic expressionsed.Geometryis with naturalnessassocia-
ted with drawingswhich sometimedeadto negativeconsequencesAccording
to Hershkowitz(1990),the ontological statusof geometricalentitiesis a philo-
sophical problem. The question is whether the geometrical entities are faat of
physical world and if not, what are they? It is also relevantto discussthe
meaningthe answerof that questionhasfor an object to be regardedas con-
crete or abstract.

Theseaspectsare of particularimportancewhen a teacheruseshis or her
explanationsto meetand support studentsin their learning of geometrical
concepts.lt is alsoaboutthe teacher'sassessmerdand validation of students’
written answersand reports,a frequentactivity in school mathematicsWhat
kind of referentsand criteria arethe basesfor the teacher’'sstandpoint?What
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kind of concept definitions andonceptimagesare on the teacher’srepertoire?
The presentedmodelsmay be usedas a starting point for how a teachercan
analysea student’swritten production as an expressionfor understandingof

mathematical content.

The results emerging from the descrilstddy will form the basisfor deeper
studies of what these prospective mathematics teachers leargedmetryand
how their understandingof the theoreticalmathematicacontent later on was
expressed in their teacher practice.
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KULT-projektet —

Matematikundervisning | Sverige
| Internationell belysning

Johan Haggstrom
Goteborgs universitet

Klassrumsstudieinnebar alltid svarighetermed att tolka de skeendensom
dokumenterasinom KULT-projektet har ett mycket omfattandedatamaterial
samlatsin. Med utgangspunkti en inspelad sekvens,dar lararen diskuterar
l6sningenav en uppgift meden elevvid dennesbank, gors ett forsok att visa
hur tillgangen till detta datamaterial samt mojligheter till internationellajam-
forelser kan bidra till en preliminar analys.

Om 'The Learner’s Perspective Study’
KULT-projektet, Svenskskolkultur — klassrumspraktik komparativ belysning
(KULT, 2003), syftar till att beskrivasvenskmatematikundervisningch gora
internationellg@amforelser.Projektetingari en storre internationellstudie, ‘The
Learner'sPerspectiveStudy’, (LPS study, 2003) dar for narvarandelO lander
medverkar.Utifrdn en gemensandesign (Clark, 2000) insamlasempiri genom
avancerade videoinspelningar av matematiklektioner i arskkesrdineratmed
uppféljandeintervjuer med eleveroch larare. Det som utmarker LPS studien,
jamfort med andra internationella studier dar videodokumentatranatematik-
undervisninggjorts, ar att sammaklassfoéljs i minst 10 matematiklektioneefter
varandrasamt att tre kameroranvéandsvid inspelningarnaEn rorlig kamera
foljer lararensomar utrustadmed en tradlés mikrofon (mygga).En kameramed
vidare objektiv dokumenteraihelaklassrummebch en tredje kamerafokuserar
en mindregrupp elever(2—4) somsitter intill varandra.Pade bankar dar dessa
fokuseradeelever sitter finns ocksa ett par sma mikrofoner placeradesa att
konversationen kan fangas upp vid inspelningen. lsdehskaprojektetharen
portabel inspelningsstudiobyggts upp, vilket méjliggor digitala inspelningar
direkt pa harddisk.En av de storafordelarnavid faltarbetethar varit att elev-
intervjuer kunnat genomféras direkt anslutningtill de inspeladelektionerna.
Vid dessaintervjuer har intervjuarenoch eleventittat pa och kommenteragen
film déar fokuseleverna kan féljas samtidigt som inspelnirgeférarensynsi en
mindre ruta uppe i ena hornet. Den digitala teknik@ijliggdr en mycketsnabb
synkroniseringav de bada inspelningarnatill en mixad fim, vilket varit
vardefullt.

| vart och ett av de medverkanddéandernasomférutom Sverigear Austra-
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lien, FilippinernaHong Kong, Israel,JapanKina, Sydafrika, Tysklandoch USA,
gorsinspelningarav minst 10 lektioneri foljd i tre attondeklasseVarje lektion
foljs upp med intervjuer av minst tva av fokuseleverna. Dessutom inteléjaas
ren nagra ganger under inspelningsperiodenElevernasvarar pa enkater om
matematikundervisning samt gor ett allmant matematiktest.

Faltarbeteti Sverige ar avslutat och totalt har 48 lektioner i tre klasser
spelatsin. Eftersomvarje lektion filmats medtre kamerorinnebérdet totalt 144
lektionsfilmer. Darutéver finns ocksa 75 elevintervjuer ochétarintervjuer,om
vardera 40—-80 minutedokumenterade@a videofilm. Av de lektioner somfoljts
kommerdata fran 10 sammanhangandkektioner i varje klass att organiseras
enligt dekrav somstallsinom det internationellaprojektet. Det innebarbl.a. att
all konversation ska transkriberaspa ett standardiseratsatt och dessutom
Oversattas till engelska. Allt ska sedan tidskodas och infogas i ett speciatt
sa att man i en lopande textremsa kan folja med i det som sagspaktivefim.
Pa det har viset skapasett datapaketfran varje klass, med videofilmer fran
lektionerna och intervjuernalla transkriptionerjnskannatelevmaterial svar pa
enkateroch test, utdrag fran laromedelmm. Vid University of Melbourne har
inrattats ett internationellt centrum for klassrumsstudier, ICCR hiteenational
Centrefor ClassroomResearchgdar allt material kommer att samlasoch vara
tillgangligt for bestkande forskare.

LPS-studienavser att studera matematikundervisningpa ett mer uttom-
mandesétt &n andraliknande internationellastudier. Genom den design man
valt ar detta mojligt. Dokumentationenav inte bara lararen utan ocksa hela
klassrummet samt en mindre grupp elever, som efiesiindjlighet att kommen-
tera vad som hander under lektionen, genererarett mycket informationsrikt
datamaterialDet gar att badefdlja och studeraskeendenunder lektionen och
att beakta flera ade medverkandesolkningar, férstaelseoch uppfattningarav
det som sker, sa som de ger uttryck for detta i de efterféljande intervjuerna.

KULT-projektet

Det svenskaKULT-projektet bedrivs i samarbetemellan forskargrupperfran
Uppsalauniversitetoch Géteborgsuniversitet.Analysernakommerdarvid i det
forstaskedetatt ske medmetodersomar etablerada och tidigare anvandaav
respektiveforskargrupp.l den ena traditionen studerasinteraktionsmonster
klassrummetoch i den andra hur det matematiskainnehallet behandlasoch
forstas. En ambition inom det svenskaprojektet ar dessutomatt de bada
teoretiska perspektiven ska relateras till och berika varandra.

Ett av syftenamed det svenskaprojektet ar att studerarelationenmellan
undervisningoch larandeav matematik.Fragor som hur matematikinnehallet
hanterasi undervisningenoch hur elevernaforstar detta innehall, kommer att
belysas. Analyserna kommer bl.a. att goras utifran ett variationsteoretiskt
perspektiv (Marton & Booth, 1997; Runesson & Marton, 2002).
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Nar detta skrivs har endastprelimindraanalyserkunnat goras. Féaltarbetethar

nyligen avslutats och organiseringenav det omfattande datamaterialetar

mycket tidskravandeDe forstainternationellajamforelsernéhar dock paborjats
mellan en av de svenska skolorna oclskolafran USA, dar sasmmamatematik-
innehall (elementardinjara funktioner) ar foremal for undervisning.En poang
med dessa jamforelser ar att synliggéra aspekter pa undervisningesvedska
klassrummet, som annars latt kan tas for givna av svenska forskare.

Preliminara resultat

Den forst inspelade svenska klassen, SW1, féljdes under 16 konsekutiva
matematiklektionerDet matematiskannehalletsom behandladesunder dessa
lektioner var Linjara ekvationer med en obekant, Forenkling av uttryck,

Koordinatsystenoch SambandVid lektion 11 har man kommit in i det sist-
namnda avsnittet. Lektionen inleds medl@&marleddgenomgangsombehandlar
linjara funktioner och dessgrafer,samtavlasningoch konstruktion av diagram
som beskriver "verkliga handelser” t.ex. kostnhad—antal-diagramoch
vag-tid—diagram.Vid den lararledda inledningen pa lektionen diskuteras
begreppet”lutning” hos en linje utifran en OH-bild (se appendix 2). |

Emanuelssorm.fl. (2003a) presenteragpreliminararesultatfran de inledande
analysernaav dennalarargenomgangamtav en "banksekvens” lite senare
samma lektion, dar lararen och anelevernadiskuteraren uppgift i laroboken.
De preliminaraanalysernapekar pa att det som behandladesunder genom-
gangeninte var tillrackligt for att ge eleven mojlighet att 16sa uppgiften i

laroboken.

Vid en jamforelseav lektionssekvensernéran SW1 och US2 (den andra
skolan fran USA) pa makroniva framtrader tydliga skillnader. | S)&4eleverna
stort utrymme att interageramed lararenoch delta i konstituerandetav det
matematiskainnehdallet. Lararen i SW1 har pa det viset mycket mindre
"kontroll” Over innehalletan larareni US2.1 Emanuelssom.fl. (2003b) pekar
man ocksa pa skillnader i det spdmanvands. SW1anvandstill stor del ett
vardagssprak och "krangliga” matematiska termer undviks till skillnadisz,
dar stor viktlaggsvid att korrekt matematiskerminologianvands.En liknande
skillnad &r ocksa tydlig betraffande dppgifter manarbetarmed.Uppgifternai
SW1 handlaralla om nagot somelevernakan relateratill, t.ex. cykeltureri form
av vag-tid—diagram ocliknande.Uppgifternai US2 &ar daremothelt och hallet
"inom-matematiska” — algebraiska uttryck flimeny = f(x), vardetabelleoch
grafer — och gor sallan ansprakpa att beskriva nagot verkligt forlopp eller
liknande. | en forsta analys av banksekvenser med elev-elev interaigasatt
detta kan fa konsekvenserfor hur grafer tolkas. | EmanuelssonSahlstromé&
Liljestrand (2003) beskrivhur den "realistiska” kontexteni en uppgift, daren
cykeltur beskrivsi ett diagram,kan bidra till att grafen tolkas som att "hon
cyklar upp” och "hon cyklar ner”. Hen amerikansk&lassenfinns exempelpa
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hur eleverna tillsammans skapar en egen terminddogitt beskrivaegenskaper
hos olika kurvor.

Forutomde lararleddadelarnaav lektionernaarbetarelevernaenskilt med
(oftast olika) uppgifter larobokeni SW1,medande i US2 arbetari grupperom
ca 4 elevermed en gemensanuppgift. Uppgifternaskaraktar ar ocksa olika.
Uppgifterna i de svenska larobdckerna ar till stor del "korta” i shemingenatt
de inte ska ta sa lang tid och att eleverna forvantas gora ett flertalekdiga. |
US2 arbetar mamedsamma’langa” uppgift underflera lektioner. Slutligenar
det matematiskannehallettydligt sekvenserat SW1,badebetraffandelararens
genomgangaich elevuppgifterna.Exempelvisbehandlasforst olika lutning
(koefficientenk i linjens ekvation y = kx + m), sedanskarningenmed y—axeln
(koefficientenmi ekvationen).Innehdlleti de amerikanskdektionernapraglas
av en storresamtidighet- badelutning och skarningmedy—axelnhanterasvid
sammatilifalle. De preliminararesultatenfran denna mer évergripandeanalys
sammanfattas kortfattat i tabell 1.

Tabell 1 Preliminar jamforelse av SW1 och US2 pa makroniva.

sSwi us2
Vardagligt sprak Matematisk terminologi
Realistisk kontext Matematisk kontext
Elevmedverkan Lararkontroll
Enskilt arbete Arbetet i grupp
Korta uppgifter Langa uppgifter
Sekvensering Samtidighet

SW1 — Lektion 11 — Uppgift 37

Pa matematiklektioneii Sverigeanvandsen stor del av tiden till att eleverna
arbetar medippgifteri larobokenoch lararenhandlederen eller ett par eleveri

taget. Nedan beskrivs ett sadanttillfalle och ett forsok till analys. Handled-
ningenager rum under lektion 11 i SW1 och varari ungefartva och en halv
minut (appendix1). Bade lararenoch elevenverkar ha en uppriktig vilja att
kommatill rattamedsvarigheternaoch lararenlamnarinte elevenforran denne
sager att han forstatt.

Lektioneninledsmeden diskussionkring ett "disco” som elevernaarran-
gerat.Efter ca 7 minuterborjar en lararleddgenomgangutifran en OH-bild (se
appendix 2). Lutningen hos tva linjer, samalationentill motsvaranddormel (K
= kx) diskuteras! intervju beskriverlararenmalet som att elevernaska kunna
"se lutningen pa formeln”. Ungefar 3finuterin pa lektionenavslutasgenom-
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gangenoch elevernaborjar arbetamed uppgifter i laroboken.Efter ytterligare
nagra minuter kommer lararentill eleven Faros bank. Faro har kort fast pa
uppgift 37.

37. | diagrammet finns 3 olika linjer.

Kr A Kostmad

300

Vilken av linjerna visar sambandet 200 .
a) K=125+ %
b) K=4x 100 '

0 K=175+2%

Tid

20 40 60 min

Figur 1. Uppgift 37.

Faro borjar med att referera tilgot lararensagtundergenomgangergsamtalet
finns i sin helheti appendix 1), ndmligen att man ska "kunna se” linjens
utseende pa uttrycket.

1. FARO:Kaolla ... a. [pekar med pennan pa uppg. 37a som lydeKz4ap5 +
3x"]

2. L:/Aaa..

3. FARO:/NVil- ... vilken av linjerna visar sambandet?

4. L:Jajust//det.

5. FARO://Du sa du sa att man kunde se lin-//kurvan av bara den har.

6. L./[Ja ... aden har-

7. L:Jajust det den dar lutar mest, den lutar lite mindre, dut@nminst. [pekar
pa de tre funktionsuttrycken i uppgiften]

8. FARO:Mm..

9. L: Men har [L pekarventuelltpd”175” i 37c] hardomju slangtin en grej
framfor ocksa, vad betydelethar ... om X arnoll ... dablir detdar noll va
... men da borjar den pa hundrasjuttifem. [visar i diagrammet]

10. FARO:Mhm..

11.L: S& det ar den dar [pekar i diagrammet] ... C ...&tetendar ... K fyra X

den barjar frarorigo //och gar ratt upp ... dendar borjar pa hundratjugofem
dar har vi hundratjugofem ... (//Och dar har vi hundrasjuttifem) (...)

12. FARO:/1Ja.
13.[Har reser sig lararen upp och tittar irriterat ut over klassen]
14.FARO:Ar B noll har ... ar detlenB [L tittar nedmot FARO igen] ... nej B

ar den storsta eller hur?

15. L: Ja de- de- den lutar mest ... titta den har lutar ju brantare an dém deh

... [L séatter pennan mot "tX=4x" i boken]... mensenbd&rjar dom har pa
lite olika ... //varden. [L pekar ut kurvorna]
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Lararen verka tolka Faros uttalande athB (K = 4x) ar den stérstg somatt B
svararmot den linje somhar storstlutning. Det &r osakertom det ar vad Faro
avser med att B ar den storstéan verkar forst lata linje F varauttryck B (B ar
noll), for att sedan &ndra sigdj B ar denstorstg. En mdjlig tolkning ar att nar
Faro anvander storst har det betydelsenligger oOverst eller hogst upp |
diagrammei det har fallet. Alltsa att uttrycket B inte svararmot linje F somju
"ligger underst”.

16. FARO:Men alltsa ar det har fyra X. [FARO pekar pa linjen "F” i grafen]

17.L: Vavad ar det du ska- den dar ar fyra X ja [L pekar pa linjen ’F"ja...
mm for no- om du  sétter in noll dar ... sa //blir kostnaden noll.

18. FARO://Alltsa kan jag skita i dom har som ar framfor?

19.L: Nej for dom gor ju att du borjar dar ... det har vi inte gatt //igenom an.

20. FARO://Aha do- do- dom visar var jag borjar.

21.L: Precis ... och har star det egentligen noll plus.

22.FARO:Men vad //visar dom har da //férutom att de- denna vidlken som ar
/Istorst och minst?

23.L: //Lut- ... (aa) lutar [L lagger pennan langs limjdiagram]denvisar hur de
lutar och //hur mycket varje sak kostar.

24. FARO://Men jag kan- jag kan inte bara se bara sa har.

Det verkar som att Faro har svart att skiljadedlika betydelserkoefficienterna
125 och 3 har i ett uttryck soK=125 + X.

25.L: Joo. [till FARO] [L reser sig]

26. FARO:Jamen oninte dom har tva skulle finnas sa skulle ja aldrig kunnaha
vetat vilken- vilken tre X &r av dom har. [pekar pa linjerna i diagrammet]

27.L: Nej fast du kan veta vilken hundratjugofem plus tre X ar.

28. FARO:Hur //gér man det da? [till L]

29.L: /IFor- for att den borjar pa Y-axelns pa hundratjugofem.

30. FARO:Aa den borjar pa hundratjugofem sen tre X, var ska jag hitta det da?

31.L: Jo och det ar for varje san steg du gar dar s& okar den tre ... sa ly#de du
tio ut s kommer den a 6ka tretti. [pekar i diagrammet]

32.FARO.... Aa

33.L: Hangde du med?

34.FARO:Ne;j.

35.L: Denhar[pekarpa OH] tvaansavi d//entkar pa varje stegdu gar pa X-
axeln.

36.FARO://Mm..

37.FARO:Mm..

38.L: Safardu Y tva.

39.FARO:Aa..

40.L: Och ett till da 6kar vi Y med tva till.

41. FARO:Aa okej.

42.L: Den dar den &r ju- 6kar for varje steg déar ... tre steg. [L ser mot F&dRO
illustrerar en trappa i luften]
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43.FARO:... Aha ... jag trorjag fattar ... detar somen trappa.[FARO tecknar
sjalv en trappa]
44. L: Ja det blir det. [L pa vag bort fran FAROs bank]

Hur ardet mojligt att forst Farossvarighetemed uppgiften?Aven efter att ha
tittat igenomden har videosekvensertt stort antal gangerar det inte latt att
reda ut pa vilkesatt Farouppfattaruppgiften och vad han egentligenbehdéver
hjalp med. Annu svararér det naturligtvis for en larareatt snabbt(helstdirekt)
komma fram till hur man pa béasta satt kan hjalpa en elev i svarigheter.

| rad 19 konstaterarLararen att de inte gatt igenom uttryck av typen
y = kx + m(m# 0). Den lararleddagenomgangerunder forsta delen av lektio-
nen behandladeendastuttryck av typen y = kx. Faro har darmedendasthaft
mojlighet att erfaraen mgjlig variation nar linjer med olika lutning behandlats,
men inte att linjernas skarningspunkt med y-axeln kan variera. Detta i
kombinationmedden hastighetsindividualiseringom férekommer,g6ér att den
sekvenseringsom lararenkan ha planeratfor innehallet —att forst behandla
uttryck avtypeny = kx, dar betydelsenmav parametek tasupp, foljt av uttryck
av typeny = kx + m darm hanteras -omintetgorsda Faro "kommit langre” i
boken och moéteuppgifter somhan inte ar forbereddpa (se dven Emanuelsson
m.fl., 2003a).Farosuttalandeni rad 18 och 22 kan mojligen styrka tolkningen
av att han inte vet hur han kan hantera uttryck med flera parametrar givna.

| den lararleddainledningen om relationen mellan uttrycken K = 15x,
K =10x och K = 2x och respektivegrafs utseende(se figur 8 i appendix 2)
forsoker lararen ett flertal ganger poangtera relationen miedlafficienternals,
10 och 2 och lutningen pa respektivelinje. Elevernauttrycker sig inte lika
tydligt om lutningen utan anvander formuleringar som "ligger hogre” och
"ligger lagre”. Vid nagratillfallen undergenomgangeraccepteratararendetta
satt att beskriva forhallandet mellan de tre linjeifi.exempelpa det ari slutet
av genomgangen da sjalva poangen ska sammanfattas.

T IVa kan manalltsa utlasaav dentermeneller den-den siffra som
star i samband med X i en san har formel?

[...]

T Vi har tre stycken formler [borjar peka ut formlerna pa OH-bilden]

[...]

T Vad kan maralltsa sagaom femtontio tva direkt nar ni far en san
dar formel da kan ni séganat om dom héri alla fall hur dom ar
inbordes?

S Eh

Martina Vilken ordning dom ar eller?

T Ja- nej inte vilkerordningmen hur dom lutar [bérjar luta sin linjal
snett i luften]

Johan Hog lag eller eh ... mitt emellan
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T visst ... om du far tre kurvor ... sa har ... vi sager att du far den och
sa hai inte nagrasiffror eller nat pa axlarnamenvi har dom har
tre- tre |- linjerna ... kami sagavilken ekvationsomhor till vilken
lin//je da?

[...]

Annette /IDen hogsta ar hogst och den lagsta ar lagst [mycket sorl]

T Aa ... ssh ssh aa

Martina Men du ser ju det

T Ja hur ser du de da?

Martina Jo for de-

Annette Den hogsta ar hogst och den lags//ta ar lagst

Martina /[Ja precis

T Visst de //héar [pekar mot "K=2x" pa OH-bilden]... den eh het-
den har ett namn den kallas lutningskoefficient

Martina //(De-)

S Adh
Veronica  [Smackar irriterat] aah [lagger huvudet pa banken]
T Men- men de spelar ingenll men-de-detsomar viktigt ar ... i

vet hur mycket dom lutar [pekar pa alla funktioner snabbt stegvis]

Uttalandet, "derhogstaér hdgstoch den lagstaér lagst” accepteradill sistav
lararensom en korrekt beskrivningav sambandetnellan formel och graf. En
majlig tolkning avvad elevenegentligenmenarar att "den formel somharden
hogsta koefficienten svarar mot den hogsta linjen i koordinatsystemet”.Sa
lange man endast jamfor proportionaliteter, som under denna lararledda
genomgang, bliskillnadenmellan”lutar mest/arbrantast” och "ar hogst/ligger
overst” inte markbar da man avser samma linggl badasattenatt uttrycka sig.
| Uppgift 37 blir daremotskillnadenbetydlig, linjen F som "lutar mest” ar den
som “ligger underst”. Faro verkar ha svart att halla isar lutningen och
placeringeny-led) och det kan mgjligen forklara hans osakerhet i rad 14.

SW1 - Lektion 11 — Elevintervju

Under intervjun efter lektion 11 framkommerdet att Faros forstaelseav de
algebraiskauttrycken ar oklar. Efter att Faro tittat pa sekvensendar han och
l&raren diskuterar uppgift 37 stoppas bandet.

Int Du fattar du detta? ... forklarar hasra har?

FARO Nej sadar

Int Sadar?

FARO Ja ... jagfattar fortfarandeinte varfor manhar X och massagrejer
dar det ar onodigt tycker jag

Int X blir problemet

FARO Ja

[..]
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Int Vad stardet har for ndgontingX &r lika med 125 plus tre X vad-
vad- vad- vad betyderdet har? ... har du nagonidé om vad det
betyder?

FARO Nej

[...]

Int Ja ... men X blir lite knepigt

FARO Mm

Int Vadar det da?

FARO Nagonting sager han. X ar nagonting / man vet inte vad det &r

Int /I X &r ... ndgonting [skrattar]

FARO Ja nagonting sager han

Int Nagonting precis vad som helst?

FARO Nagonting

Int Atomer eller spoken eller?

FARO Ja

Int Nej det kan det val inte vara?

FARO Nej men nagonting sager han- nagot tal man vet inte vad det ar

Int Aha

FARO Det sa han i alla fall pa al- algebran

Innebordeni variabelnx ar inte klar for Faro utan staller till besvar,”x ar
onddigt”. Farotolkar i bastafall x somett oként tal, vilket ar den betydelsex
haft i avsnittet om ekvationer och ekvationslosning som arhetatmednagon
veckatidigare. For att kunna forsta formler och hur de ar relateradetill grafer
rackerdock inte den uppfattningentill. Nu kan vi battre forsta de svarigheter
Faro har med Uppgif87. Badevid diskussionerom uppgiftenoch vid lararens
genomgang kravs attforstas som en variabel, en symbol &rhel uppsattning
tal pa sammagang. Med den begransadeippfattningav x som Faro har maste
en stor del av diskussionen vara utomordentligt svarbegriplig.

Vid den lararleddagenomgangernvaxlar man dessutomperspektiv pa ett
annatsatt ett flertal ganger.lbland betraktashela uttrycket/formelnsom eget
objekt som ar relaterat till en "hel linje"diagrammetjbland betraktasuttrycket
for ettx-varde i taget och en punkt i taget pa linjen. Liknaskiéte i perspektiv
gor lararen obehindrat under "banksekvensen”. |'tdgetranskript) betraktas
hela linjer och dess lutning, i rad 9 ett enda varde. péad 31 borjatararenlata
variabelnx anta flera olika varden,ett i taget. Att Farointe hdngermedi det
resonemanget forstar vi lattare eftertmttagit del av hansuppfattningom vad
bokstaverx kan ha for betydelse.

Sammanfattning

En design dar matematikundervisning dokumentpéastt omfattandeséatt med
flera kamerorunder en lang foljd av lektioner och med videoinspelningav
uppféljandeintervjueri snaranslutningtill respektivelektion, déar elever och
larare kommenterarlektionsforloppet, ger stora mdjligheter till en djupare
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forstaelse awden studeradeundervisningeroch relationenmellanundervisning
och larande.Dessutomkan internationellajamforelserbidra till att synliggora
karakteristiskadragi undervisningerpa makroniva,vilket underlattaranalysen
av forlopp pa mikroniva. De mycket preliminéra tolkningar av "bank-

sekvensen”som presenterathar hade varit svara att géra utan den stora
tillgAngenpa datasominsamlatspa mangaolika sétt. Trots det ar det svart att
dra nagra sékra slutsatser om nagot sa komptariarandeoch undervisningi

matematik.
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Appendix 1
SW1-L11 [39:40 — 42:15]

FARO Kolla ... A [pekar med pennan pa uppg. 37a som lyder: "a) K=125 + 3x"]
T IJaa..

FARO /Nil- ... vilken av linjerna visar sambandet?

T Ja just //det.

FARO //Du sa du sa att man kunde se lin-//kurvan av bara den har.

T /Ja ... aden har-

T Ja just det, den dar lutar mest, den lutar lite minolrk den lutar minst. [pekar pa
de tre funktionuttrycken i uppgiften]

FARO Mm..

T Men har [T pekar eventuellt pa "175” i 37¢] har dom ju sldngtn grej framfor

ocksavad betyderdethar ... om X arnoll ... dablir detdarnoll va... menda
borjar den pa hundrasjuttifem. [visar i diagrammet]

FARO Mhm..

T Sade ar dendar [pekari diagrammet]... C ... detardendar... K fyra X den
borjar fran origo //och gar réatt upp ... den déar borjar pa hundratjugofehadiér
hundratjugofem.. ( //fochdar harvi hundrasjuttifem)_...) [T resersig upp och
tittar irriterat ut Over klassen]

FARO //Ja.

Jessica//John nar far vi byta platser? [till T]

FARO Ar B noll har... Ar detdenB [T tittar ned mot FARO igen] ... nar B &r den
storsta eller hur?

T Ja de- de- den lutar mest ... titta den har lutar ju brantare an démdeh ... [T
satter pennamot "b) K=4x" i boken]... mensenborjar dom har pa lite olika
... Ivarden [T pekarut kurvorna][BankgranneAlva vandersig mot FARO och
1]

Rodi //John! [ropar pa T]

FARO Men alltsa ar det har fyra X. [FARO pekar pa linjen "F” i grafen]

T Va vad ar det du ska- den déar ar fyra X ja ... aa ... mm. [T pekar pa linjen "F’]

ALVA John jag behdver hjalp! [till T]

T FOr no- om du sétter in noll dar ... sa //blir kostnaden noll.

FARO //Alltsa kan jag skita i dom har som ar framfor?

T Nej for dom gor ju att du borjar dar ... de har vi inte gatt //igenom an.

FARO //Aha do- do- dom visar var jag borjar.

T Precis ... och har star det egentligen noll plus.

FARO Men vad //visar dom har da //férutom att de- denna visar vilken séfst@nstoch
minst?

Hanneg/Miraz ... har () ar det femton ... kilometer. [asyftar uppg 24138, pratartill
Miraz som kommer in i klassrummet]

T /lLut- ... (aa) lutar [T laggepennaniangslinje i diagram]denvisar hur det lutar
och //hur mycket varje sak kostar.

14:



Papers

FARO

FARO

FARO

FARO

FARO
FARO

FARO
FARO

FARO

FARO

FARO ...
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/IMe jag kan- jag kan inte bara se bara sa har.

Joo! [till FARO] [T reser sig]

Jamen om inte dom har te&ulle finnas sa skulle ja aldrig kunnaha vetavilken-
vilken tre X ar av dom har. [pekar pa linjerna i diagrammet]

Nej, fastdu kan veta vilken hundratjugofem plus tre X &r. [till FARO]

Hur //g6r man det da? [till T]

/IFor- for att den borjar pa Y-axelns pa hundratjugofem. [till FARO]

Ja den borjar pa hundratjugofem sen tre X var ska jag hitta det da? [till T]
Jo och det ar for varje san steg du gar dar sa dkar den trehadedu gatttio ut
s& kommer den att 6ka tretti. [pekar i diagrammet]

.. ja..

Hangde du med?

Nej.

Den har [pekar pa OH] tvdan sa vi d//en dkar pa varje steg du gar pa X-axeln.
/IMm..

Mm..

Sa fardu Y tva.

Ja.

Och ett till d& 6kar vi Y med tva till.

Ja okej.

Dendarden ar ju- 6kar for varje stegdar ... tre steg.[T ser mot FARO och
illustrerar en trappa i luften]

aha... jag tror jag fattar ... det &rsomen trappa.[FARO tecknar sjélv en

trappa]
Ja det blir det. [T pa vag bort fran FAROs bank]






Appendix 2

Grafer som visas med OH under den lararledda inledningen av lektionen.
Lararen borjar med figur 1 och kompletterar den successivt till figur 8.
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Limits of Functions —
How Students Solve Tasks

Kristina Juter
Kristianstad University College

| ntroduction and questions
This study was conducted to reveal how students at univéesiyjustify their
solutions to tasks with various degrees of difficulty. Bhedy is part of a larger
study of students’ concept formation of limits of functions. The study was
carried out at a Swedish universitythe first level of mathematicsTwo groups
of studentstaking the samecoursein successivesemesterfiave been solving
tasks.Their solutionsare here categorisedand analysedto createa picture of
how students reason about limits.

The questionsare: How do studentssolve problemswith limits? How do
they explain their solutions?

Theoretical background

About problem solving in general

Mathematicsis often expressedwith symbols operatedby certain rules. The
ruleshaveto be known to anindividual engagedin mathematicakctivity and
they can be memorised.This is not enough,though, if he or she wants to
understandmathematicsinsteadof only memorisingformulasand procedures,
the individual needs to have an exploring attitude to problem solving
(Schoenfeld,1992). Polya (1945) describesa way to go about it in terms of
decomposingand recombining.The problemis at first consideredas a whole.
Then details are examined to give more information foistiletion process.The
detailsare combinedin differentways and this may give a new perspectiveto
the problem as a whole.

Students learn new and improved methtmsproblemsolving asthey take
coursesn mathematicsThis meansthat they eventually can have quite a few
methodsto choosefrom, both new and old ones.When an individual encoun-
ters a problentne or shemight not fetch the optimum solution methodfrom the
mind (Davis & Vinner, 1986; Pdlya, 1945). This is not the sansagmgthat the
student can't solve the problem in a better way. 3&e’'t know what strategies
areavailablein anindividual’'s mind, but we can seethe chosenmethod.The
students’actionsare shapedby their abilities (Star, 2000). However effective
and numerous methods a person has in his or her mind, if they are unreathable
the time they are needed they are of no use.
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A conceptimageis the total cognitive representatiorof a notion that an indi-
vidual hasin his or her mind (Tall & Vinner, 1981).1t might be partially evoked
and different parts can be active in different situations leading to possible
inconsistenciesAn individual's conceptimage might differ from the formal
concept definition or the concept image in itself can be confusing or incoherent.

Lithner (2003) has studied studentssolving tasks at university level. His
study showedthat almostall the time the studentsspent on mathematicsat
homewas devotedto exercisesThe students’ preferredway to reasonwas:
look for surfacepropertiesin other solutions or theoremsand use the same
method in the new problem. The students compareg@rbl@demswith solutions
in the textbook to the problemsthey should solve and usedthe strategyfrom
the textbook. One problem for the studentswas to identify for them useful
surface properties to select the correct procedure for the solution.

About problems related to limits

Infinity is a notion thattan causetrouble. It is somethingan individual hasone
or severalintuitive representationsf (Tall, 1980).If thereare multiple different
representation®voked simultaneouslythe result might be erroneous.When
dealing withlimits of functionsone hasno specificmethodor algorithmasone
has, for example,for Diophantineequations.The limit processappearspoten-
tially infinite and students caget the impressionthat thereis no endto it (Tall,
2001). It can be hard for them waork with itemsthat are confusingin identity.
Is it an object or a process?

A common error in students’ concapterpretationsof limits of functionsis
that functions do not attain their limit values (Cornu, 1991; T&93; Tall, 2001,
Szydlik, 2000). Thereis also a possiblemix-up of f(a) and Ixi[rg1 f(x) (Davis &
Vinner, 1986). Thesetwo flaws combinedcan totally block studentsin their
struggle with tasks that could easily be solved, for instance, with an equation.

When studentsmeetthe conceptof limits at universitiesfor the first time,
they have alreadybeenworking with functionsand their graphs.The goalsin
the curriculum for upper secondaryschool in Swedendo not mention limits
explicitly, but the students are expectedearnaboutderivativesand integrals
(Skolverket,2003). This implies that limits of functions are discussedn some
form. The studentsat universitiesthereforehave an existing conceptimage of
limits of functionsthat hasbeensatisfactoryin the contextsthey have beenin
sofar. Hencethereis no needto learnthe formal limit conceptto be ableto
analyse functions (Williams, 1991). The students have to experienoedikéor
further sophisticatiorn their mathematicatlevelopmento adjusttheir existing
mental representations of limits.

The definition of the limit conceptoften causedifficulties for the students
(Cornu,1991; Juter,2003; Vinner, 1991). The students’ concept definitions are
not always compatible with the formal concelgfinition and that can causean

14



Papers

incoherent concept image with different rules for different situations. If a
problem is stated in a manner that is not specific@presentedn the students’
concept images, there can ierethan one representatiorevokedin the effort
to solve the problem. This can make the students confused and unable to
proceed.

There are many things the&n disturb the solving process.The goal of this
study is to find out moreaboutthe students’ solution strategieswhen solving
problems involving limits of functions and the justifications of their choices.

The study and the students
The studentsin this study were enrolledin a ten weeks full time coursein
mathematics. They were learning analysis and algebra at basic university level.

In the spring semesterof 2002 111 studentssolved Task 1 to Task 3
describedbelow. They had treatedlimits of functionsin the courseand it was
nothing new for them. 11 dayslater they got Task4 and Task5. 87 students
participated in that session. The last set of tasks provided solutions thabeould
wrong or incomplete. This was stated on the sheetwith the tasks and the
studentswere to give a complete and correct solution to each task. The
solutionswere given to provoke the studentsto eitheragreeor find the errors
instead of just leaving the tasks or giving a brief answer.

A new group of students got the same taslesfollowing semestefautumn
of 2002). They got all the five tasks at the same timftey the notion of limits of
functionshad beendealtwith. 78 studentstook part in this study. They were
fewer than the previoussemesteand one reasonis that the studentswho had
biology or chemistryas main subjectwere offered anothercoursemore suitable
for them and this was not an option for the students in the spring study.

In both casesthe taskswere part of three questionnairesvith questions
about limitsand attitudestowards mathematicsn general. Two interviewswith
each of 18 of the students were conducted in the autumn study (Juter, 2003).

Thefirst threetasksin this presentationvere slightly alteredin the second
study since many of the students misinterpretedid not understandwhat the
taskswere about. The changewas from “Can the function f(x) = 2x+ 3 attain
the limit value?” to “Can the function f(x) 2x + 3 attain the limitvaluein 1a?”
with respective functions iflask 1to Task 3below.

All studentsin both groups got the questionnairesso no selectionwas
done.

Method

The taskswere constructedio focus on different aspectsof the limit concept.
The difficulty variedin orderto identify the level the studentscould handle.|

explainedwhat | wantedthe studentsto do at eachsessiorthey respondedo

the questionnaires to make sure that it was clear to them.
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The collected data has been rewritten and categorisedwith the aid of the
computerprogramNUD*IST (N6, 2003). The categoriesnvere decidedfrom the
raw material.| did not createthemin advanceother than that the right and
wrong answersmadedifferent categoriesTherewere subcategoriesn each of
them based on the studenjsstificationsof their responsesThey were chosen
from the different reasorthe studentsusedfor their solutions.This procesded
to a numberof categories.Categorieswith similar types of reasoningwere
merged together to make the presentation more accessible. Some salgians
more than one category since somestudentsgave more than one solution or
solutions that fitted more than one category for other reasonswalyiso work
with the data gave different types of category systems for the different tasks.

Empirical data

Examples of typical student answers are providedtable after eachtask. The
tables also include the numbersitidentsfrom eachsemestem eachcategory.
The numberswithin bracketsare percentage®f participatingstudentsin each
class. (R) indicates that the answer is right and (W) denotes a wrong answer.

Task 1: a) Decide the Iimitiimg(2x +3).
b) Explanation.

c¢) Can the function f(x) 2x + 3 attain the limit value in 1a?
d) Why?

Thefirst two partsof the task were solvedmainly in two ways. The students’
eitherjust replacedx with 3 or they solvedthe task by letting x tendto 3 and
statethat the function getscloseto 9. Almost all studentsansweredcorrectly.
The last two parts of the task resulted in a more variedf sgilutionspresented
in Table 1

Table 1.Typical student answers in the different categorie§&sk 1c — d.
Number of students (% of the students).

Category 1c 1d Spring Autumn
2002 2002

Theory (R) Yes | The function is continuous at the po| 22 (20) |23 (29)
Replacex by 3 (R) |[Yes [|2x+3=9 forx=3 22 (20) |21 (27)
No explanation (R) | Yes |- 15 (14) |8 (10)
Limits not attainable| No A function does not attain the limit |9 (8.1) 10 (13)
(W) value, it only comes very close, it is if

the definition
No reason (W) No - 3(2.7) ]13(3.8
Empty or The answer has no connection to 40 (36) |16 (21)
misinterpretation the question or is missing
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3

Task 2: a) Decide the limitlim X3
x-o X741

b) Explanation.

x¥-2

c) Can the function f(x) =— i1 attain the limit value in 2a?
X

d) Why?

Most studentssolvedthis task by locating the dominanttermsand either just
reason about what happensthe function asx tendsto infinity or go through
algebraiccalculationsto find the limit value. About 15 percentof the students
were unableto performthe algebraiccalculations.The resultsof partsc and d

are presented imable 2

Table 2.Typical student answers in the different categorie3 &sk 2c — d.
Number of students (% of the students).

Category 2c |2 Spring Autumn
2002 2002

x*-22x*+1(R) NO [ x3-2 can never be equal to 7(6.3) |17 (22)
x® +1 for the same value of

-2& 1 (R) No [terms -2 and 1 will always remai 7 (6.3) |5 (6.4)

No explanation (R) No |- 18 (16) |8 (10)

Infinity reason (W) No | Sincex never attains the value 16 (14) |21 (27)

Theory (W) No | The function tends to the limit 7 (6.3) |6(7.7)
value, it does not attain it

No reason (W) Yes |- 15 (14) |7 (9.0)

Empty or The answer has no connection |42 (38) |17 (22)

misinterpretation to the question or is missing

5
Task 3:  a) Decide the limitfim ...

X 00 D

b) Explanation.
5

c¢) Can the function f(x) %2(; attain the limit value in 3a?
d) Why?

Almost all studentswere ableto solve partsa and b of this task using standard
limit values. A few students gdit backwards.The following partsare described
in Table 3
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Table 3.Typical student answers in the different categorie &k 3c —d.

Number of students (% of the students).

Category 3c 3d Spring Autumn
2002 2002
x=0 (R) Yes 0 15 (14) |16 (21)

For x=0 _ f(0) = 1 =0

No explanation

(R) Yes |- 5 (5) 6 (7.7)

Does not reach limit (W) [No | We can only get infinitely close| 14 (13) |16 (21)

5 0 No Then the numerator has to be | 22 (20) |12 (15)
x> #0 or 6 (W) zero and it never is
Right for wrong reason (W Yes | Because the denominator attaif 5 (5) 16 (21)

a much larger number for largg

Empty or misinterpretatiof The answer has no connection| 47 (42) |12 (15)

to the question or is missing

Task 4

2

: N : +
Problem: Decide the following limit valuetim X2 )1(
x-1 X —

The students were given the following:
X*+x _ xX(x+D) _ X
x2-1 (x-D(x+1) x-1
The task was for the students to decide the pragpgrstmentso make
the solution correct:

Adjustments (What changes or complements are needed and why):

Solution: -~ oo whenx - 1.

Table 4.Typical student answers in the different categorie3 &k 4.

Number of students (% of the students).

Category 4 Spring Autumn
2002 2002
Both sides (R) X - 1 from minus or plus 18 (21) |28 (36)

One side (R) Incompletd As x - 1 the denominator becomes 10 (11) |5 (6.4)

negative

Dominant facto

r (W) 2[] . 10 15 (17) 12 (15)
X+ H 141 _
0 10 1-1

B eH

Reasoning (W)

X tends to 1 hence it can not be infinite | 14 (16) | 18 (23)

No change (W)

It is entirely correct!! 8 (9.2) |4(5.1)

Empty or unclear The answer is missing or does not 24 (28) |17 (22)

make any sense
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Task 5

L
Problem: Decide the following limit valuelim xsin%E.

X —»00

The students were given the following:

L
po SR

Solution: XSirB;B: 1 . We know that% - 0 when x - « and
X

1—>0WhenX—>00.

X
Si Pl
The limit valuelim SINX _ 1 implies that n?’ZHa 1 when x — co.
X > X 1
X

The task was for the students to decide the pragprstmentso make
the solution correct:
Adjustments (What changes or complements are needed and why):

Table 5.Typical student answers in the different categorie3 &k 5.

Number of students (% of the students).

Category 5 g(%izng %Jégmn
All right (R) 10 (11) |16 (21)

- 2

0 [P0
S"BZE: SI%E@_
1 2

Part right (R)
Incomplete

2. 1 9 (10) |11 (14
— is not the same thing as therefore
X X

you can not use limit values on limit values

Reasoning (W)

1 _ 31 (36) |18 (23)
— - 0 when X - o so the denominator has
X

to go —» 0 and the expression oo

No change (W)

Nothing 4 (4.6) 1(1.3)

Empty or unclear | The answer is missing or does not make 33 (38) |32 (41)

any sense

Analysis

The students’solutionsto Task 1a-b are mainly correct. The correct solutions

were divided

into categorieswith mostresponsedalling into two categories.

The secondcategoryexplicitly suggestghat the limit valueis attainableand a

large part of
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part of the students solves the task in waytlapproachingthe limit value. The
idea that limits are not attainable comes agaihaisk 1c-gdwhere studentaseit
as an argument for the function not to attain the valuei®aldocumentedact
that some students have this misinterpretationof the limit value definition

(Cornu,1991; Tall, 1991). Somestudentsdo not separatehe part with the limit
value fromthe part with the function, that is they mix up f(a) and lim f(x) as

—

Davis and Vinner (1986) describe. If the studdrase the conviction that limits
are unattainable,there might be problems analysing the function. This is
somethingthat follows through Task1 to Task3. A large part of the students
did not answeror answeredlasklc-din a way that did not make any sense.
Somewrote that it dependson what x tendsto and this is the reasonfor the
additional words in the formulation of the task in the autumn of 20B2result
of the changeis that this categorycontaineda smallernumberof studentsthe
second semester. This applies for alldkeequestions.

Task 2 is harderfor the studentsto handle and one seriousproblem is
algebra.Thereare severalstudentswho think that x* in the numeratorand the
denominatorare cancellingout in a way that eraseghe termsand leavesonly
the constants or that® can be replaced by with a similar reasoning.Thereare
more studentsin the autumnstudy using algebrain a correct mannerto solve
the task than in the spring study. The majority of the studentsare unable to
solve Task 2c-d. One problemis attainability as discussedabove. Only some
students regard this problem as an equatiosolve and this is obviousin Task
3c-das well. 22% of the students in the autumn stsolyed Task2c-d with an
equation in a correct way, whereas tterespondindigure in the spring study
IS 6.3%.

Task 3a-bis a standardimit value that is well known to the studentsapart
from about 10% who got it backwards(“Infinity or no limit (W)”). Thereare
fewer categoriesfor this task since over 70% of all the studentsused the
standardlimit value reasoning.The problemscomein Task3c-d where the mix
up of limits and functionsis clear. Studentsclaim that x is never zero since x
tendsto infinity, but this hasnothing to do with the functions ability to attain
the value 0. Algebra is a problem for some students here too.

Task4 offers a challengefor many students.46 of the 165 studentswere
able to solve the task completely. One mistake many madewas to use the
dominantfactor and divide, but that is not solving the problemwith left and
right limit value. This methodis often usedwhen x tendsto infinity and the
students seemto just go through the motions without considering the
characteristics of the task they are involved in.

Task 5 is apparentlythe most demandingone since only 26 of all the
studentsmanagedo solve it properly. The 20 studentsin the “Part right (R)
Incomplete” categorywere also correct but they did not give the limit value,
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they only pointed at the inaccuracy, and thus they might or mighienableto
carry out the calculations.The vast majority of the studentseitherleft the task
unsolved or reasoned incorrectly.

Discussion

The tablesshow that the students’ explanationsof choicesof solutionsvary.

The students’ problemsseemto comewhen the tasksare a bit different from

what the studentsare usedto. Partsc and d are not mathematicallymore
demanding than the otheartsof Taskl1 to Task3 but thereis somethingthat

troublesthe students.The outcomemight have beendifferentif the partswere
not presentedogether.The studentswere in the context of limits when they

were askedto examinethe functions for attainability. The effect was that the

functions were only considerediocally in somecases,and the misconception
that limits are unattainable(Cornu,1991; Tall, 1993; Szydlik, 2000) madesome
studentsclaim that the function could not attain the value evenif it obviously
could (Task landTask 3. The confusion of functionwith limits of functionsis

a problem that indicates a lack of relations between the concette.dfudents
were more confidentabout the propertiesand possibilitiesof the notions they

would havea betterchanceto solve problemscorrectly. An insufficient mathe-
maticalbaseto work from can causeconstraintson the individual in that he or

sheis not sure what operationsare allowed and how to carry them out. This

uncertainty can be the reason for the many empty answers.

Infinity is obviously an elementthat can causeconfusion (Tall, 1980). All
tasks revealedproblemswith infinity in different degrees.One thing that is
connectedwith infinity is the notion of local limits in a wider context. Table 5
indicates this by the categories “Reasoning (W)” and tRange(W)”. Many

students are reasoningabout the local limits for the functions 2 and 1
X X

separately or dissect the given function in other ways and locally cotisider
The studentsfollow part of Pdélya’s (1945) model with decomposingand
recombining,but the recombiningto check at the whole againis overlooked.
There appears to be a lack of parts in the mental web that represefrisctios
of the concept image (Tall & Vinner, 1981), since tkheynot have accesdo the
essential information about the properties of the limit process and functions.

Table 4 shows an exampleof studentsusing surface properties(Lithner,
2003) as the studentsin the category“Dominant factor (W)” use a solving
techniquethat is usually effective on rational functions as x tendsto infinity.
Here the students recognise the rational function but dleayot considerwhat
X tends to.

The choicesof methodsseemto be triggeredby first sight resemblancem
other cases too. There are comparisons with standard limit v8loieetimedhe
methodis working, asit did for most students’ solutionsto Task 3a-b. Other
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times it does nowork, asfor somesuggestedsolutionsto Task5. The students
do not appearto have a global view of the important characteristicof the
mathematicsat hand. The effect of this can be that critical featuresare over-
looked and the solution is beyond the possibility to reach for the students.

Table 2 and Table 3 show examplesof solutionswith correctanswerand
wrong explanation. Thigs somethingthat studentsmustbe confrontedwith to
be able to repair. Thixtbook only givesthe answerand not a full solutionto
the tasksso the first confrontationis in the worst scenarioat the exam.If the
students haveisedthe wrong argumentdor a long time, an adjustmentcanbe
hard to make. The students representebainle 2who have answerecbrrectly
with no explanation,canalsobelongto the categoryof studentswith correct
answerfor the wrong reasonssincewe do not know why they answeredthe
way they did.

The studentshave to becomeaware of their problemsbefore they feel a
need to alter anything, and if the errors are not discovered nothing will happen.
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Learning to Communicate —
Communicating to Learn
In Mathematics Classrooms

Sinikka Kaartinen
University of Jyvaskyla

The aim of this paperis to investigatethe practicesof classroomlearning com-
munitieswhosepedagogyin the learning of mathematicgdraws on the socio-
cultural perspective (Kaartinen, 2003). This pedagogical framework views
learning as aollective processof meaningmakingsituatedin cultural contexts
(Cole, 1996; Vygotsky,1962,1978; Wertsch,1991; Wertsch,del Rio, & Alvarez,
1995). Methodologicallythe paperis concernedwith unravellingthe dynamics
of collaborative reasoning and how they give tsehe constructionof diverse
voices during participation in cultural activities (Kaartinen & Kumpulainen,
2001; Kumpulainen& Kaartinen,2003). The empirical findings discussedhere
are derived from an in-service teacher education course.

I ntroduction

This study emphasizeshe role of in-serviceteachereducationfor enhancing
teacherparticipationin culturally organizedactivities and the developmentof
their pedagogicalthinking. The need for large-scaleeducational reform is
currently being discussedKwakman,2003; Sfard,2001) at all levels of educa-
tion. New skills addressing social atethnologicalcompetenciesre being em-
bedded into curriculunm additionto traditionaldomainspecificunderstanding
(Kwakman,2003), but we lack, however,researctbasedevidenceof teachers’
readiness in fulfilling their new role as facilitators of studelgarningprocesses
for life-long learning. The sufficiency of traditional professionaldevelopment
activities such as attending courses,training, conferencesand reading pro-
fessionaljournalsto refreshand update teachers’ pedagogicalapproach,has
beenwidely debated(Bransford,Brown, & Cocking, 1999; Darling-Hammond,
1998). Although the limitations of the traditional professionalknowledge have
beenrecognizedteacherslack the necessarysupportand tools to modernize
their pedagogicathinking. This paperappliesthe conceptof a “community of
learners”(Rogoff, Matusov,& White, 1996) for enhancingteachers’readiness
to respondto the challengesthat modernsociety posesfor mathematicedu-
cation. The theoreticalstanceof a community of learnersapproachhighlights
transformation of participation ia collaborativeendeavour(Goos,Galbright, &
Renshaw,1999). In this processthe participantsbuild on each other’s initia-
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tions and developa joint solution for the problem. Thereforethe focus of the
paperis to investigatehow mathematicdeachersnegotiatetheir role in joint
problem solving. Specific attention will be paid to the adoptedstanceduring
problem solving and the nature of participation in the communicative activity.

Theoretical framework

In recent years cognitively-oriented approachesto education have been
challengedby socio-culturaltheories.The former have approachedearningas
an acquisitionprocesswhich takesplace as a result of the individual’s active
reconstructionof domain specific knowledge. Sincethe acquisition approach
conceptualiseknowledge as a kind of property that can be transmitted,the
goal of learning is seen as the individual enrichmemtomhainspecificconcepts
and procedureqdcf. Sfard,1998). The socio-culturallearningtheoriesapproach
learningby examiningteacherlearningin its culturally situatedcontext (Cole,
1996; Vygotsky, 1962; 1978; Wertsch, 1991; Wertstei Rio, & Alvarez, 1995),
and hence define the learneras a cultural and historical subject embedded
within, and constitutedby, a network of social relationshipsand interactions.
Learningand developmentthen,is explainedby the changingnature of these
relationshipsand types of participationin cultural activities (Goos,Galbraith,&
Renshaw, 1999). From this perspective, teacher learning can be seeopsEn-
ended processwith the possibility of diverse ways of acting, feeling and
thinking (Renshaw & Brown1998).SeealsoKaartinen& Kumpulainen(2001;
in press).

Pedagogical challenges to mathematics learning and instruction

While theoreticalgrounding for learningand developments being discussed
(Lave & Wenger,1991; Wertsch,1991; Wenger,1998), there is also a growing

interestin a socioculturalapproachto mathematicseducation (Sfard, 2002;

Hoyles, 2002). The key constructsin defining the application of the socio-

cultural frameworkto mathematicppedagogyin this paperare the communica-
tive approachto cognition (Sfard, 2002) and the mediationalrole of semiotic
tools (Saljo, 1995) in the collaborative meaning making optmticipantsof the

domainin question.The theoreticalconstructsrepresentedy socio-culturalists
challengethe traditional views of mathematicdearning and instruction where
pre-organisedpieces of mathematicalknowledge are being transmitted to

consumersThetask of instructionaldesignin mathematicseducationfrom the

socio-cultural perspective is to give to participants the possibilitiaseonathe-
matics in structuring and re-structuring their experiencesin social practices
where mediationaltools are put to use for specific purposes(Saljo, 1995). The

adopted stance in this paper holds that promagtengicipatorystudentlearning
in mathematics requires also the teacher to go through participatmrgsses

similar types of activities. The communicativeapproachto cognition (Sfard,
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2002) stresseghe role of languagein the collaborative meaningmaking of
participants.In this paperHalliday’s(1978,p.2) formulationof “languageasa
socialsemiotic” is appliedto interpretlanguagewithin a socio-culturalcontext
in which thecultureitself is interpretedin semioticterms.In the analysisof this
study, the languagetook a specific meaningin communaldiscourseand was
further interpretedto constructcultural meaningsacrosscontexts. The role of
languagefor collaborativeinquiry is also reflectedin the writing of Jarvilehto
(2000),who stresseshe importanceof the developmen®f joint languageas a
tool for collaborationand the importanceof the developmenbf consciousness
in the evaluation of collaborative action.

The Study

Research goals

The goal of this study was to investigate mathematicalproblem solving pro-
cesses ira collaborativelearningsituationwith in-serviceteachersAn analytic
tool for highlighting the mechanismsof collaborative problem solving was
applied(Kaartinen& Kumpulainen,2001) and further developed.The specific
research goals for this study are:

* To developan appropriateanalytic tool to highlight collaborative
problem solving processes in the learning of mathematics.

* Toinvestigatethe role of culturaltoolsin the collaborativelearning
of mathematics teachers.

* To investigatethe processesf teacherparticipationin the colla-
borative learning of mathematics pedagogy.

Participants

The data for the study was collected from two in-service teachereducation
coursescarried out at the Departmentof Educational Sciencesand Teacher
Education,Oulu University, Finland, during the years 2000 and 2003. Alto-

gether twenty in-service teachers,who representedeither early childhood
education (10) or primary education (10), participated in this study.

Description of the professional activities

The activities presented in this study are part tfachereducationcoursewith

the aim of giving the participantstools to anchortheir instruction aroundthe
collaborativeapplicationof cultural tools. The cultural tools selectedfor the
activities were geo-boardsalgebratiles and Cuisenairerods. The selection of

these tools was du® their ability to mediatethe core domainof the mathema-
tical curriculum, such as number sense,geometry and algebra. The specific
activities were: The Application of geo-boardsin mathematicanstruction, To

Model the computationalalgorithmsof fractionswith Cuisenairerods,and To

Model the algebraic expressions of polynomies with the hefgdgefbratiles. All
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the activities involved collaborativeinquiry and experimentation.During the
course, the in-service teachers worked in self-selected grnoalps.The average
size of the mixed-gender groupss four to five participants.The whole group
of twenty teachersvorked simultaneouslyn the sameclassroomcarrying out
their researchdesignsfor executingthe activities. In this paper,the empirical
example of the usage of algebra tiles will be discussed.

Data Collection

The primary data for the study consist of videotaped and transcribed epidodes
social interaction in collaborative problem solvisituations.In the investigated
activity, the role of cultural tools, such as geo-boards,Cuisenairerods and
algebra tiles, is investigated collaborativelearningactivities. Specificresearch
guestionsposedfor the study are the following: “How are cultural tools
applied for instruction building in primary mathematics?’and “What is the
mediationalrole of cultural artefactsfor algebraic/arithmeticcomputations

in collaborative meaning making?”

Data analysis

This paper applies discourse analysis (Kaart&eumpulainen,2001,2002) in
the investigation of collaborative interactions within mathematicslearning
situations.The discourseanalysisprocedureappliedin the paperdraws on the
ethnographically grounded approach (Gee & Green, 1998)aiakysismethod
and its specificategoriesvere groundedin the discoursedataof the study. In
the analysisprocedure,the collaborative interactionis approachedfrom two
dimensions,namely from the viewpoint of discourse moves and from the
viewpoint of cultural focus The analysisof discoursemoves highlights the
nature of conversationalexchangesbetween the membersof the learning
community,and consequentlyshedslight onto the participatory roles of the
group members in communal activity. Moreover, the analysiksabursemoves
supportscontent analysisby highlighting thematicpatternsemergingin joint
problem solving. Discourse moves identified in the discourse dataiieging,
continuing, extending, organising, agreeing, evaluating, tutoring, thinking
aloud and concluding. To highlight the interplay between problem solving
elementsan the collaborativeactivity of in-serviceteachersthe seconddimen-
sion in the analysis method investigatesthe cultural focus of the social
interactionon a moment-by-momeniasis.The cultural focus of the interaction
dataconsistedof the procedural jdentity, materialand semiotic modes.Table 1
summarises the analytic frames and categories of the analysis method.
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Table 1 The analytic method for analysing collaborative problem solving
mathematics
Discour se Description Example
moves
Initiating Begins a new thematic interaction this is x squared
episode
Continuing Elaborates either own or colleagues’ | umm and these equal four X
reasoning
Extending Bringing in new perspectives yes, should we draw
Agreeing Accepts the ideas or explanations okay, clear
proposed in the previous
conversational turn
Evaluating Evaluates reasoning so there itis
Tutoring Tutors the colleagues in reasoning | May Istill advise,we had this
x squaredour x and three as
given
Organising | Organises the working space should we movethis, so they
don’t hinder us
Thinking aloud| Makes reasoning explicit this was one, two, three,
four x
Concluding Draws together explanation building
processes
Cultural Description Example
focus
Procedural Focuses on procedural elements, sud so we should organise this
mode negotiating working strategies for join{ with the help of one tile, four

investigation

rods and three ones

Identity mode

Highlights the evaluation of prior
learning experiences in the light of ne
experiences through the processes o
reflection, dialogue and collaborative
inquiry

| am totally unfamiliar with
these

Material mode

Concentrates on physical features of
learning situation

should we movethis, so they
don’t hinder

Semiotic mode

Highlights the visibility of meaning
making via mediational tools

so this colour connectedwith
ordering thesepiecescarrieg
out the meaning

Results

The resultsof this study arediscussedria case-basedlescriptionderived from
one teachergroup,to highlight joint reasoningand the applicationof cultural
tools in collaborative learning of mathematics pedagogy.
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A case-based description

This case-baseddescription highlights the collaborative processesof one
teachergroup when factoring polynomialswith the help of algebratiles. The
extract characteriseshe teachers’discourseas they negotiate and apply the
usageof algebratiles in collaborativeproblemsolving. Table 2 showsthe dis-
course data of the teacher group. The extract consists of 24 conversatiosal
in total, from a 2-minute continuous working period. The data presenikabir
2 will be discussed here Wiystly summarisinghe findings from the analysesf
the teachers’socialinteractionwithin the group. Specialattentionwill be paid
to the identification of problem solving episodaghe teachers’discourseThis
Is followed by a micro-levelinvestigationof three interactionepisodesin the
teachers’discourse.The analysisof the teachers’discourserevealsaltogether
threethematicepisodesn the constructionof an applicationfor the usageof
algebraictiles. The themesfor episodesare problemsolving with the help of
algebratiles (Episodel), clarification through mathematising Episode2), and
clarification through hands-onactivities (Episode3). The analysisof discourse
movesshowsthat the thematicepisodesstartedfrom the initiation, questioning
and tutoring moves, leading to several conversational turns whaghthe form
of problemsolving elementssuch as, questioning,extending, evaluating and
tutoring. The analysisof the cultural focus of the teacherparticipationreveals
the interplay of procedural,identity and semiotic modesof interaction.In the
proceduralmode of interaction, the mathematicalactivity included problem
solving and problem posing,and the symbolic nature of the interaction was
groundedin the pictorial and proceduralapplication of algebraictiles. In the
identity mode ofinteraction,the prior learningexperiencesere reflectedupon
through the applicationof new cultural tools. In the semiotic mode of inter-
action the problem was clarified by negotiatingthe nature and meaning of
algebratiles and the mathematicakctivity was approachedhrough mathema-
tising the situation either verballgymbolically or pictorially. The materialmode
of interactionwas seldompresentand it was usedfor organisingthe working
space.
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Table 2 Teacher participation (Task: Factor the expression4dx + 3 with the
help of algebra tiles)

No| Name Transcribed Discour se Cultural focus
discourse moves
Episode 1: Problem solving
1 [Maritta [so we should organisq initiating procedural | problem posing
this with the helpof one
tile, four rods and threg
ones
2 |Annikki || am totally unfamiliar] evaluating identity evaluation of
with these one’s learning
history
3 [Maritta | should wemovethis, so| organising material organising
they don’t hinder us working space
4 |Liisa so this colour extending semiotic clarifies the
connectedvith ordering problem
thesepiecescarries out
the meaning
5 |Maritta |yes agreeing
6 |Karra |this guestioning | procedural | problem solving
7 |Maritta |thatis how | would agreeing
imagine
8 |Maritta |this isx squared initiating semiotic mathematising
9 |Liisa umm and these equal | continuing
four x
10 [Karra [sothereitis evaluating
11 | Maritta [so thereitis evaluating
Episode 2: Clarification through mathematising
12 |Liisa but also | don’t guestioning | identity evaluation
understand this of one’s
understanding
13 | Maritta |[but the length of this | tutoring semiotic the meaning of
equals< and this one algebra tiles
and this three
14 | Liisa yes, should we draw | extending procedural | symbolic pictorial
No [Name [Transcribed discourse| Discourse Cultural
moves focus
15 |Karra [xplus one continuing semiotic mathematising
symbolic algebrai
16 [Maritta [ multiplies threex plus | continuing
three
17 | Annikki |1 fell off the wagon evaluating identity evaluation of

one’s _
understanding
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No| Name Transcribed Discour se Cultural focus
discourse moves

Episode 3: Clarification through hands on activities

18 | Maritta | may I still advise, we | Tutoring procedural | Starting
had thisx squared four information of theg
x and three as given problem

19 | Annikki |yes okay but this guestioning | procedural | clarifying the
handicraft carried out meaning of action
the important meaning

20 | Maritta | The handicraft was to | Tutoring semiotic the meaningof the
collectthesepiecesinto action

a connected region in ¢
way that there are no

holes
21 [ Annikki |yes okay agreeing
22 | Annikki |this wasone,two, three| thinking aloud [ semiotic the meaning of
four x cultural tools
23 | Maritta | and now edge tutoring semiotic the mathematical
multiplied by edge meaning of the
action
24 | Annikki | okay, clear agreeing identity understanding thg
meaning of the
action

Episode 1

In Episodel the teachergroup startedthe activity by posingthe problem.The
episodesuggestghat the usageof algebratiles was new to all of the partici-
pants. Maritta was eager ( 6 turns of 11participatingand tutoring the others.
Annikki (turn 2) expressecdhere unfamiliarity with the usageof cultural tools
and Maritta and Liisa madetheir thinking visible in their turns so that Annikki
had the possibility to follow the joint problemsolving. Karra was mainly silent
but when participating (turns 6 and 10) he supportedthe group’s problem
solving by questioningand evaluating.In this episodethe group reachedthe
solution to the problem.

Episode 2

This Episode 2 nicely highlights how the group of teachersdeepenedtheir
understandingof the situation. Liisa startsthe episodeby saying “but also |

don’t understandthis” referring to the mathematicaimeaningof algebratiles.

This turn (turn 12) raisethe semioticnatureof interaction.In herturn (turn 13)

Maritta explains the meaning of algebra tilestbioring “but the length of this
equals x and this one and this thradfisa (turn 14) extends th@int reasoning
by suggestingthe modelling of the solution by drawing. This leadsKarra (turn

15) to join the discourseby writing the expression® x plus one” and Maritta
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(turn 16) continueSmultiplies three x plughree”. The mathematicamodelling
of the situationdoesn’t help Annikki who in herturn (turn 17) says“l fell off
the wagon”.

Episode 3

This Episode 3 starts with Maritta’s (turn I&gctionto Annikki's commentby
tutoring “may | still advise, we had this x squared for x and thasgiven”. In
doing so Maritta refers back to the starting informaténhe problemsituation.
In her turn (turn 19) Annikki expresseghat she couldn’'t connectthe bridge
betweenthe mathematicameaningof the situationand the hands-onactivities
with algebratiles. Maritta’s tutoring turns (turns 20 and 23) connectedwith
Annikki’'s agreeingand thinking aloud turns nicely highlights the interaction
pattern where concrete activity was connectedwith the abstract nature of
mathematical reasoning.

Discussion and Conclusions

In this study, the interplay between the two dimensionsof the analysis
procedurein collaborative problem solving of mathematicsteachers nicely

highlights the nature of communicative meaning making of mathematics
teachers. The analysis discoursemovesmakesvisible the natureof reasoning
from the viewpoint of participationin socialactivity. Four different participant
roles emergedin the analysisof discoursemoves.Theseroles were the tutor,

clarifier, questioner and silestipporter.From a mathematicapoint of view, the

communicativeproblemsolving consistedof procedural,identity, materialand

semiotic modesof interaction. The patterns of interaction were constructed
around these modeswhen groups of teachersnegotiated the mediational
meaning of cultural tools. The analysistbésepatternsrevealeddiversethema-
tic episodedn collaborativemeaningmaking,suchas problem posing, problem

solving, clarification through mathematisingnd clarification through hands-on
activities. The study suggests the power of mediatito@s to makevisible the

abstract nature of mathematicalideas behind the computational rules of

algebraicproceduresFurthermore the analysisof the data revealedthat the

usage of cultural tools collaborativeproblemsolving of mathematicseachers
aided them in elaborating their conceptuaterstandingpf mathematicaldeas.
On the whole, the study yields useful information about teacherlearningand

developmentfrom both the social and the mathematicalpoint of view, and

provideseducatorsand researchersvith tools to developcurriculumaswell as

instructional solutions for mathematics classrooms, bhothe schooland at the

teacher education level.
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Mathematish —
a Tacit Knowledge of Madgmatics

Hakan Lennerstad, Blekingetekniskahtgskola
Lars Mouwitz, Goteborgs universitet

Purpose and method

The purpose of this paper is to highlight the symbolic notations of mathematics
and to present some hypothes@/e will stress the language aspect of tha-sy
bolic notdion system, and therefore we call it “Mathematish”. This definition is
of course rather vague, but we try to specify our use of the ternctiors2.

There is already a lot of research done about mathematics representations in
mathematics education, also using linguistic toalshort overview is presented
in Brown (2001). Also inNordic mathematics education some research is done in
the semiotic fieldle.g. Bergsten, 199%ngstrom, 2002) and/A(inslgv, subni-
ted). Despite this our hope is that our approach to consider mathematics symbol-
ism as a fully developeldnguagecould create some fruitful hypotes for this
field.

Our method is a rather speculative reasoning, but with some empiricat unde
pinnings from the history of mathematics, from our teacher experience, and from
findings in mathematics education research. Some of our arguments are sup-
ported by references to the philosophical and linguistic fields of kums.

In Section 1 the historical evolution dathematish is dseribed briefly.
Section 2 is devoted to the various propertieMathematish as a language, by
reference to semiotics and linguistics and by comparisons to natural languages.
Section 3 describes aspects of mathematics content and ways that content and
Mathematish interact in learning situations.

Background and need for articulation

Mathematish is a very young language compared to other languages. élany r
searchers have contributed Mathematish in the form of different shorthand
notations replacing expressions of natural languages. Thus Mathematish initially
inherited some structure from natural languages. Mathematicians and philoso-
phers likeLeibniz and Descartes have promoted the idea of a full-blown formal
language, and Mathematish has henceforth grown by further linguistic innova
tions by researchers fuelled by its sheer efficiency. The success for Mathematish
in research and technical applications is overwhelming. This has reshaped mathe-
matics into a subject of formal calculation. Interpretations, typical of rhetoric
mathematics are often omitted, which moves “content” to the background.
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David Hilbert and the formalists attempted to formalize all mathematics — for
them mathmaticsis formal calculation. One central ambition of the formalists
was to axiomatize mathematics, i.e. to investigate the formal &and in order

to make calculations as reliable as possible (Davis & Hersh, 1980). A special
feature ofMathematish is therefore that its grammar is designed to make it possi-
ble to deduce true semhents without involving content during the detioc
procesgsee Kline, 1980Davis & Hersh, 1980).

In 1931 Kurt Godel demonstrated a limit of axiomatization for mathematics
in his incompleteness theorem. A conclusion is that relevant parts of mathematics
cannot be formalized. Nevertheless, as symbolic mathematics evolved, the domi-
nance of formalized mathematicsreased. The role of relevance or meaning of
mathematical concepts and goals of mathematics research in research papers de
creased, as well as explicit texts about how to construct proofs in Mathematish.
In textbooks proofs often were ready-made, and intuitive and strategic aspects
not expressed. It may be considered as a main part of matilbal content —
strategies, ideas and methods of how to use the rules. Note that such questions
cannot be answered or describedviathematish; the symbolic notations are not
constructed to have themselves as references. Mathematical content of this kind
occurs today mostly verbally among researchers and experienced teachers.

The success of Mathematish has inevitably reshaped school mathematics. |
dustry has posed a need for engineers who can read and handle the mathematical
formalism, perhaps underestimating the notion that a successful use of mathe
matics requires also reflection about content. The needs of matheresdiastr
ers have formed the dominant description of mathematics today.

In this paper we focus on the Mathatish issue to develop alternative de
scriptions. Initially we unfold the idea thitathematishs a language of its own,
and thereby we obtain the possibility to use analogies with natural languages and
tools from senwtics and the philosophy of language.

Purposes of Mathematish articulation
By Mathematish articulation we mean descriptions where the immediate purpose
is not to provide understanding of mathematical concepts, but on mathematical
symbols and their use. This includes general and specific rules and habits in the
grammar ofMathematish, and how ways of writing Mathematish correspond
to mathenatical ideas.

Firstly, if we regard mathematics as a natural human capability which can be
expressed in many individual ways, while Mattatish is the official language, it
is very natural that children when starting school do not meet mathematics for the
first time in their mathematics class — they merely meet the dvettish formu-
lation of mathematics for the first time. Furthermore, it is well known that many
people in practical occupations with no higher education are able to solve
mathematical problems that occur in their occupation. Perhaps these solutions
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may not be regarded as mathematics sMaghematish is not used (L6thman,
1992). Sometimes the incultivation athematish seems tecreaseadult stu-
dents” capabilities to solve problem&slgxandersson, 1985). Mathematish ar
ticulation may help people to recognize their mathematical capabilities.éFhis r
guires mutual translations between academic mathematics culture and informal
mathematical knowledge embedded in practice.

Secondly, the lack of articulation could be a reflectioMathematish as be
ing an unknown foreign language for many students. Of course there s a co
stant struggling to learn Mathematish in the mathematics classroom, but the
shortcomings may depend on that the teachers themselves have not thoroughly
recognized its grammar, especially not compared its grammar to grammars in
natural languages. This may depend on that mathematics teachers not so often are
trained in linguistic methods. Here we can also see a mother tongue teaching
paradox: the more fluently the teacher speaks the language, the more invisible
(and unneessary!) the grammar sttuce tends to be for him.

Thirdly, in mathematics research there is an intricate interplay between
Mathematish formulation and development of both proof ideas and new co
cepts.Mathematish articulation may clarify this interplay. The history of eath
matics gives us many examples of how Mathematish can enforce an introduction
of a new concept. The mathematicians will rather stay to the symbolic manipu-
lation rules, the grammar, and gradually accept for instancéiveegad imag
nary number than alter these rules (Kline, 1980). Of course it is sometimes also
the other way around; a new concept enforces an introduction of a new symbol
and how to handle it. A historical example is theaduction of symbols in dif
ferential calculus made by Newton abeibniz. This gnamic interplay between
grammar and thought gives interesting perspectives on the history anmaiath
ics and also on learning situations.

Fourthly, articulation oMathematish may play a role when discussing the
nature of mathematics in general. This is important in its own because of the
central position of mathematics in science and society. Other properties of
mathematics may become visible by means oMhthematish-content point of
view. One important aspect is the interplay between language and cattire,
lyzed bystructuralists and poststructuraligie Saussure, 191Berrida, 1976).

Properties of Mathematish

Mathematical texts are bilingual

The perspective and focus of this paper is mathematics as a subject having two
sides that relate in complicated ways: its general and abstract concepts, and its
special symbolic language. This is reflected in the fact that mathemizixts
arebilingual. By this we mean that some parts are written in natural language,
extended with a mathematical terminology, and some parts are written in the
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mathematical symbolic language, typical for arithmetic, algebra, angsenahs
a simple example we choose the faling text line:

A linear equation is one that can be written ax + by + ¢ = 0.

The first part is following ordinary language grammar and the very signs used are
symbols forphonemesrepresenting the spoken language. The whole structure of
the signs used is therefore phoneme based. Words, concept representing clusters
of signs in ordinary language, are organized along ordinary language grammar,
and the word structure is following ordinary spokerglaage.

The second part of the line is using other signs, not repgnegghonemes
but mathematical concepts. The “grammar”, the rules for ordering these signs, is
very different from the grammar of an ordinary language. The structure of the
symbols used is following rules of mathatics, a “grammar”, especially 1©o
structed for this purpose.

Knowledge ofMathematish is knowledge of its grammar: to recognize co
rect formulas and correct rules to change formulésthematish knowledge is
knowledge in “pure formalistic manipulation”. We consider neither purposes,
goals nor meanings of the manipidas as parts oMathematish knowledge —
this is content.

The idea that mathematics texts are bilingual is not new, for instance is this
idea very important in Wittgenstein’s philosophy of mathematics, ¢iexd in
Waismann(1979):

... What is caused to disappear by (a critique of foundations) are names and
allusions that occur in the calculus, hence what | wish topcalie It is

very important to distinguish as strictly as possible between the calculus and
this kind of prose. (p. 149)

With the term “calculus” Wittgenstein included both arithmetic and algebra. We
will not follow Wittgenstein all the way to his rather extreme position that “cal-
culus” (Kalkul) isthe real mathematics, and that “prosetdsa)is merely co-
fusing and blurring (Marioi998), but we find his distinction fruitful. Narrative
natural language (rhetoric) as occurring in a mathematics text, extended with
mathematical terminology, we wihll mathematical prose

Of course mathematics also has other types of representations, for instance
pictures, graphs and schemas, but in this paper we focus on the two languages
mentioned above, and especially on Mathematste reason for this focus is
that bothmathematical prosand Mathematislare established vehicles crucial
for problem solving and proof awities in both school mathematics and neath
matics research, and both have a language character.
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The main purpose and aim of this paper is to discuss the following question: Is it
fruitful for mathematics education and mathematics research to Mathe
matish with similar linguistic tools that are used to study natural languages; could
analogies with natural languages create interesting hggesth

Mathematics terminology versuglathematish
Physics, literature, mathematiesnost sciences have a terminology of its own.
Specialized texts in these subjects may be unreadable for laymen. The special-
ized terminology is an extension of the vocabulary and is used within the gram-
mar of the natural language. Such a specialized text may be unreadable by lay-
men also because of unknown figures of thoughts or unknown referenees. Ho
ever, if the grammar is different, a person needs to learn not only new words and
their meanings, but also new rules of the language. There are certainly many
other specialized languages thislimathematish, such as musical notation, mo-
lecular notation in chemistry and the Labanotation in dance.

There is a mathematics terminology with is not a paMathematish: words
such as “addion”, “real number”, “continuous”, “differential equation”, etc. But
texts with no formulas, i.e. with ndathematish, are normally not considered as
mathemaécs texts. Conversely, mathematics texts do not consist of Mathematish
only, and no natural language. They are bilingual, and switches from one la
guage to the other are frequent and ofteanmounced. Some statements can be
made in any of the twdvlathematish or English. Some mathematics authors use
this possibility to &plain Mathematish. However, in a mathematics text the two
languages are mostly used for different purposes. While Mathematish is used to
specify and manipulate quantitative relations, English is mainly used to describe
the logic in the argument, as well as purposes, connections to other results,
analogies, images, examples and ajppbaos.

Comparisons of MathematisandEnglish

The sentence “1 + 1 = 2" is a true statement, “1 + 1 = 3" is a false statement, and
“l+ 1 =+%"is no statement at all, it is meaningless. The first two follows the
grammar of Mathematish, and are either true or false. The third rauesllow

the grammar. Then it is not a statement and can not be assigned a truth value. It is
only a sequence of signs. Note that this grammar is tacit: it is not easy to say
which rule is violated. A rule need to be constructed, such as: “on both sides of
an equal sign there has to be symbols for numbers or variables”.

This is similar to the sentences “A frog has four legs”, “A frog has seven
legs” and “A frog legs”. The first two follow the grammar of English, and we can
(in principle) cecide if it is true or false. The third “sentence” is meaningless.

It is important to observe that the truth of “A frog has four legs” or “A frog
has seven legs” cannot be decided within the language itself. In this case one
must import knowledge of biology to decide the truth/falsity. A naturgguage
does not contain truths which thegsdribe, with the exception of analytic truth
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(rhetoric logic). Note that this grammar is not tacit. “A frog legs” is no sentence
since it has no verb. Someone who has English as mother tongue can probably
formulate such a rule, even no explicit rule is needed to say that “A frog legs” is
no sentence.

The grammar of a natural language does not follow the very structure of the
empirical world, and indeed our views of that structure are changing over time.
Therefore you cannot deduce new truths (except analytical) about the empirical
world with natural languageMathematish, on the other hand, has a specially
constructed grammar follang the structure of mathematics, which is mostly
numerical and logical. If you start with true premises it is possible to deduce true
mathematical sentences within Mathematish without “checking” with enath
matics on an outside concept or idea level. This is for instance crucial when you
are trying to prove a conjecture. In an ordinary proof, conceptions, intuition and
metaphors are {eerwards) “cleaned out” and replaced Mgthematish. An im-
portant attendant question is therefore to what degree Mathematish in fact is con-
stituting the mathematical world of concepts and theories. Could it also be fruit-
ful to analyze the claim for using Mathematish when proving as an act of power
from the established mathematical discourse, in the meaning of Foucault? See
(Foucault,1961).

You could talk about “good Mathematish” in the same way as “good Eng-
lish”. Both good and baathematish are following the grammatical rules, but
good Mathematish presupposes a “cultural” knowledge and a feeling for the
context. An example is that it is “better” to wrag + by + ¢ = Oinstead oka +
yb + z = Ofor representing a line. Anothexample is to know that the parenthe
ses inf(x + h) and ina(b + c) probably have different roles, even if you do not
know the actual contextsredding the expressions. How mulditeaches take
it for granted that students master not oMlgthematish but also “goddathe-
matish” in the classroom?

You can even identify “dialects” iMathematish; small differences in how to
use symbols and following rules. This is very apparent when comparitig tex
books from diferent countries. Is there a learning problematith dialectal
Mathematish in traslated books, or for students not sharing the teachers dialect?

Mathematish — a typical language?

The theoretical background underpinning our question on the rdatife-
matish in mathematics, is that the strictly regulated system of arithmetic and for
mula handling that has emerged in mathematics in many heesthe features of

a language: it is using a special sesigins the use of the signsiisgulated by a
grammar (syntax)and it is possible tproduce, interpreaindtranslateproposi-
tions deigned with these signs and grammdathematishalso has one of the
most powerful “design features” typical for a language;dbeble articulation

(or duality ofpatterning, see (Hjelmslev, 1961). This double articulation enables
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a semiotic code to form an infinite number of meaningful combinations using a
small number of low-level units, which in themselves are meaningless. For in-
stance is the use of x, y and z as signs for variables a mere convention started by
Descartes when he chose the letters at the end of the alphabet for variable signifi-
cation.

All these language features open for using methods and perspectives from
well elaborated discourses in linguistics, semiotics and the philosophy of lan-
guage Our cajecture is therfere that it is fruitful to identiffMathematishas
mentioned above, not only as representations but as a language of its own.

Tacitness oMathematish
There is a risk that teachers, well incultivatedviathematish, will focus merely
on content presupposing that the students already master the language: As a r
sult, the structure and the rulesMéthematish will remain largely tacit.

We use the concept “tacit” with the same meaning as in Pola8gv), that
the knowledge isiot formulated but perhaps possible to formul&8eme tacit
knowledge is possible and also relevant to formulate by language, but other parts
are better t@how in practice We can also imagine that there could be a kind of
knowledge that is neither possible to formulate nor to show, but it is not clear if
this should be called knowledge. For an elaborated analysis of tacit knowledge,
see (Molander, 1996). Molander identifies a third kind of tacit knowledge, a
knowledge that is suppressed to silence. A rather common experience in adults
education is that adults’ informal knowledge is suppressed by for instance a
teache'rs claim for Mathematish rementationNunes et al, 1993).

Another relevant distinction named alreadyRiyle (1949) isknowedge-how
and knowledge-thatboth could be tacit but the latter more easy to tdabe:
even if you know the rules of a game (knowledge-that) it is not sure that you are
an expert in playing the game (knowledge-how), and it could be hard to express
this expert knowledge in words. A strong remark is made by Wittgenstein
(1983) that there cannot be a rule that also includes how to use the rule.

Mathematish and mother tongues
A good knowledge of formula manipulations can be compared to knowledge of a
mother tongue; it is used without any explicit tratinlg processes. It is well
known that the structure of a mother tongue is naturally tacit for the user. It is
“tacit” in the meaing that it is not expressed or reflected upon, and perhaps
some parts are not even expressible. If mathematics teacheviatismatish
similar to a mother tongue, they may mistakenly see the translation problem
merely as a concept urrdganding problem.

Despite the tacitness dMathematish, the main part of mathematics teaching
Is by tradition calculation with formulas. The learners are heavily confronted
with a “foreign” language in the mathematics classroom. Many learners perceive
mathematics as a large set of fragments with an almost non-existing larger pi
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ture about adults mathematics memories of their school(timdenskov, 2001).

This is a natural consequence when a general description of the language Mathe-
matish is absent. Such a generadalgption, showing similarities betweerois

lated calculations, constitute a grammar. Furthermore, learners often feel unfa
miliar with the very symbols they use whenctéating — the alphabet of Magh
matish. Rather than coursesNtathematish gnamar, teacher-learner dialogues
could be a good tool for formulating the relevant aspectdaithematish. In a
dialogue you can “play” the language game and detect the rules in sbeiad-i

tion (Wittgenstein, 1967).

Learning of foreign languages

The grammars of foreign languages that are learned later in life than a mother
tongue are usually not tacit. Then the learning is done with the grammar of the
language, which therefore is conscious. It is known that a language learned later
in life is represented differently in the human brain than a mother tongue. Fu
thermore Mathematish seems to be represented in the brain differently than natu-
ral languageg$Butterworth, 1999). In an example, one person, after a brain da-
mage, could not read “54” but could readnuequattro”, which is Italian for

“five four”. Sometimes it is the other way around; one patient with bramatge

could not read the phoneme based words signifying a specific number, but could
read (and understand) the digits signifying the same nuntuoes) (

The development of Mathematish started to a large extent as a short hand for
mathematics expressed by natural language. An example is the Italian naathem
ticians who started in the fifteenth century to replace standard words stméaas
(the unknown thing)censo(square), andadice (root) with the abbreviations,
ceandR. Luca Pacioli replacegio (plus) andmeno(minus) withp andm with
small horizontal lines above them (Katz, 1998). Another typical example of this
change is the following cite from Robert Recorde in his introduction of the
equality sign (Kalan, 1960):

And to avoide theediouse repetition of theseoordes ‘is equalle to’ | will
sette as | doeften inwoorke use, a paire @aralleles, olGemowe [twin]
lines if onelengthe, thus = because noe .2. thynges, can be moare equalle.

Unlike natural languaged$athematish has beemritten from the start. Being
born as a shorthand for natural languages, it naturally inherits some grammatical
elements from natural languages, for instance logical variables. However, due to
the specific use oMathematish, which is quantitative calculations, it hasea d
velopment which differs strongly from the development of natural languages.
Mathematish is usually encountered in elementary school, however most h
mans develop mathematical intuition earlier in ({@ements & Sarama, 2004
HeibergSolem & LieReikeras, 2004). If mathematics intuition avidthematish
connect or stay separate for students is a central question for didactics & math
matics.
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It appears as iMathematish becomes intuitive and effective as a mother tongue
for a rather small minority in the population. A basic educational problem for
mathematics is that matimatics teachers often come from this group, while
many of the students do not. Then many learners may have problems @ math
matics of a kind that represent tacit knowledge for many teachers. We regard this
as a problem that must be recognized fully in the entire mathematical commu-
nity. This is particularly serious in the mathematics teacher education. An exa
ple of the present wedlathematish awareness is that there is no generad-agre
ment about a very basic language question: what is a widdtimematish?

Mathematish and computer programming

Mathematish has symbols that are concept based, as is the case of Chinese, and
not phoneme based, as in the case of English. As a result, symbols and “words”
may be pronounced differently in different parts of the world, however written
essentiallythe same way. Hence there is no needrmslaing the symbols, a

fact that facilitates communication and mathematics developrHemiever, a
demand for translation would force clarification of the structure of Mathematish
and diminish itdacitness, as has been the case for naturgliges.

Computers have been constructed with mathematics and logic as its basic
structure. Computer programmingifpuages have been developed which provide
alternative ways of expressing mathematical ideas, algorithms and facts. The
grammar is often similar to that of Mathematish. Some computer programming
languages can partially be considered as dialeciadifiematish. This allows
computers to effectuate formal mathematical calculation with no regard to
meaning. It appears as if mathematics content cannot be expressed by computers,
in the sense that the formal calculations appear to be very inefficient once there
are no clear rules for how to calculate. This can be considered as a late-endorse
ment by computer technology of Wittgenstein’s claim that there cannot be rules
for using rules in the same language.

The term “vernacular” is used for a native spoken tongue as opposeat-to co
structed or official ones. The term “mathematical vernacular” was introduced by
de Bruin in 1987 in a computer science context (de Bruin, 1987). The term has
been established fa formal language for writing mathematical proofs tleat r
sembles the natural language from mathematical texts. There exist several such
systems today, such as Hyperproof and Mizar. These are attempts to construct
new languages or representation systems for increased consistency orcgfficien
while Mathematish represents the present factual use of mathematical notations
and symbols.
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Mathematish-content interplay in mathematics

Two kinds of mathematical knowledge

In the previous example equati@x + by + ¢ =0, five “unknowns” (letters) are
present. Most mathematics teacs probably think ot andy as parameters, and

a, b andc as constants, and a mental image of a straight line given by the values
of the constantsa, b andc may appear. This is not at all given by the equation
itself. The geometric interpretation is an example of “mathematics content”. You
could also for instance interpret the equation merely as a relation between num-
bers. Such a concept ofrdent is strongly culturally dependent and often per
sonal. It is not easily formalized or defined, since it by definition is not formulas.
As regards the meaning of mathematicahtent as knowledge that cannot be
written in Mathematish, we may talk about content of two different kinds:

1. Mathematical meanings #he target of the symbols and expressions of
Mathematish
2. Mathematical knowledge that cannot be expressed in Mathematish.

Examples of the first kind are applications of mathematics and geometgical fi
ures that may be represented by formulas, where some may be rather personal.
Further examples are concepts such as “onendssjnéss”, and so on, as prop-
erties of certain sets, represented by the symbols “1” and “2”, and so on.

Examples of the second kind are strategies for problem solving, ideas of
proofs and calculations, and evaluation of models and results (Ernest, 1999).

Very often mathematical equations are starting points of mathematidal thin
ing, and mental “anchors” for various considerations of mathematiaatlye
persons. Many of these considerations are essential for successful mathematical
work, however norfermalisable and partially personal. We consider also this as
part of mathematics content of the second kind.

Semiotic approaches to Mathematish
As mentioned above our perspective opens for the use of methods som di
courses like linguistics and semiotics, and we will use some terms and ideas from
for instance deSaussure and Peirce, and their followers often named post-
structuralists and neo-pragmatists.

From deSaussure we borrow the idea that a “sign” has two partsjghdier
and thesignified Saussure himself stressed that both signifier and signified were
on amentallevel, but in accordance with many p&sussurians we stress the
signifier as anaterial entity, for nstance the ink doodles constituting a text in a
book. The signified, though, we claim iscanceptor a kind of mental picture.
Although the signifier is treated by its users as “standing for” the sign8isais-
sure emphsizes that there is no necessary, intrinsic, direct or inevitable relation-
ship between the signifier and the signified. The link between them isagbite
trary: “the signs used in writing are arbitrary, the letter t, for instance, has no
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connection with the sound it denoteSaussure 1916/1983). The links, when
culturally established, lseme parts of a structure, and the meaning of the signs
is regulated by this structure and systematic relatietvgeen the signs. No sign
makes sense on its own; the meaning of “tree” is related to other signs; for i
stance “bush”. Saussure usesanalogy with chess, noting that the value of each
piece depends on its position on the chessboard. \8lgification (what is sig-
nified) clearly depends on the relationship between the two parts of the sign, the
value of a sign is determined by the relationships between the sign and other
signs within the system as a whole (Saussure, 1983). The signifiers défieet
encesthat are important for the language users; the meaning of a sign is about
what it is not rather then what it is.

FromPeirce we use the idea that the sense-making of a sign requires an act of
interpretation and therefore an intereter The interpreter produces his own
“sign” of the external sign in his mind, and this sign must also be interpreted.
This model is sometimesalled “the semiotic triangle” with the three parts sign
vehicle, sense and rafent

The process of interpretatiotie semiosiscould be ongoing in several steps,
in principle ad infinitum. A very familiar situation where the signified also could
play the role of signifier is when you are using a dictionary; sometimes also some
terms in the defining text must be defined. Beeniosis could take a dialogic
form in one persds mind or beveen persons. Whil&aussure emphasizes
structure in a synchronic walgeirce emphasizeachronical aspects. Peirce ar
gued that “all thinking is dialogic in form. Your self of one instant appeals to
your deeper self for his assent” (Peirce 1931-58). The same idbalajical
understandings elaborated more deepiy Bakhtin (1981).

Peirce also made a typology of signifiers, depending on the grade ofrtheir a
bitrarinessSymbolsare quite conventional andveto be learnediconsare in
some way resembling the signified, andicesare directly connected, like ph
tographs, measuring instruments, and indexical words (that, this, here, there).

The Saussurian concepts stress Mathematish as a ready-made cuéural ph
nomenon with a given structure, while the Peircian concepts stress Mathematish
learning and nderstanding as a subjective interpreting activity, both aspects of
importance for our analysis. We will also use Wittgensteins concéahgiiage
game (Sprachspietp highlight the social aspect of Mathematish, and that “u
derstanding” is to do the right thing in this “game”, see (Wittgein, 1967).

There is also an ontological question about Mathematish that has bearing for
the philosophy of mathematics. Umberto Eco says “a symbol is a lie” (Eco,
1976), i.e. it stands for sathing else, but what? This is one way to answer:

“For example...the expressior® + y> =1 can be seen as mixture of numbers
and letters with no particular significance, as an algebraic equation, as a repre-
sentation of a circle, oasa circle” (Brown, 2001, p. 193).
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What isMathematishabou® Is it about objective existing concepts now labelled,
Is it about constructed objects now labelled, is it the “real” mathematics, is it a
template for economizing thought, or is irlpaps just a sometimes useful game?

As we have seen in the history of mathematics, and also in our teachsng pra
tice, sometimes the notation creates the concept, and sometimes the other way
around. This is also a theme in mathematic education research. For instance,
Sfard describes how mathematical discourse and mathematical objects fare crea
ing each other in the learning process (Sfard, 2000), and how template-driven
activities create awepts.

Content - beyond the concept

There are many forms of mathematical content. The content closklsithe-

matish is the set of truths, i.e. the true statements that mathematicians consider to
be true in the sense of being cansences of the axioms. This kind of content

can appear almost indistinguishable from its Mathematish formulation (sée ama
gamation below), partially since Mathematish calculation is the dominant way
that is used fochecking its validity. This content is defined by Mathematish cal-
culation.

Another part of mathematical content is images and associations connected to
abstract entities. It is quite possible to give a strict definition of the number 2. But
the digit “2” will also have personal con@bbns for a student. Part of this
meaning is related to experiences of this particular iyaf2”), perhaps from a
multitude of examples (two appldasyo ideastwo hands,...), and from a more
intrinsic mathematical direction: from knowledge of even numbers and ifactor
zation of integers. This may be parts of atent “behind” the strict concept of
number 2. A mathematical sign is therefore in pcacsignifying not only a strict
mathematical concept but also (or instead!) a big amount of personal conceptions
and memories, typical for the person reading or using the sign. This is usually
referred to asoncept imagé€Tall & Vinner, 1981).

Concept construction

The notion of Mathematish is useful when analysing the process of students’
concept construction in cultural and cognitive aspects. As an example we chose
the introduction of different kinds of numbers in school mathematics. We will
analyse three aspects of thexistence forcing, amalgamati@mdtranslation

The analysis reflects the theory that a discourse constructs its objects and “real-
ity” by introducing signifiers, and relates Rerrida (1976) and the elaborated
ideas inSfard(2000).

In everyday languaga namelike “table” could be introduced ostensibly
(“look, this is a table”); yowpoint at the signified object. Many aspects ai-la
guage could behownin practice and in interaction between language and action.
In mathematics this is not possible, since visible objects are at most apgroxim
tive examples of objects. Even in geometry the visible object is just a represent
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tion of the mathematicalbgect: it is for instance hard to draw a line with no
thickness. To discudke nature of these objects is beydhe scope of thisgp

per, but it is indeed an interesting ontological question. The pointing procedure
must be substituted by something else. Alsohuedling of objects is invisible,

and you cannot ostensibfhowhow to handle mathematical objects. You must
usematerial signifiers for these purposes, for instance hands-on materials or the
signifiers in Mathematish. Often operations with Mathematish are used to present
and motivate new kinds of “names”, for instance signifiers for numbers. In the
following examples different kinds of numbers are presented by referring to
Mathematish opetions:

“We have that 8 — 5 = 3 but what about 5 — 8?

“We have '[hat1—35 =5 but what about%?

“We have thatx? =4 has the rootx =2 or x =-2, but what aboui?® = 3?

“We have that x?-4=0 hastheroots x=2 or x=-2, but what about
X +4=07?

In all these cases the operators used grammatically correct will provoke new
kinds of results, and these results will in tuetdme signifiers for new objects.

The result is transformed to a “name”. Often you could still trace the operator in
the signifier, for instance 3/7, a fact that is sometimes confusing for the learner:
how could 3/7 and 9/21 be “the same number”? When using Mathematish gram-
matically correct new types of objects &oeced into existengeoften without a
pre-existing learner inttion (if you are a Platonist this is of course not what is
happening; insteaathematish helps to “remember” the object). The coostru

tion of new concepts is not a process started in the learner's mind, omthe co
trary the language structure initiates and constructs the concepts. The concepts
are not firstly existing, and than “baptized”, on the contrary the namesbexist

fore the concepts (Wittgenstein, 1983). The same situation can be seen in the
history of mathematics. For example, firstly the mathematicians constructed
complex numbers by Mathematish rules, and later claimed that these should be
seen as gnifiers for a new kind of maber (Katz, 1998).

A common tool in textbooks is to use the “number line” and put signifiers in a
row along a line. Qén textbooks say that “the negative numbers” are on this
line, but in fact they are not. You could only see the ink doodles. Also in this
case the very presentation of “names” will force objects into existence, according
to Sfard. She points out that the introduction of new names and new signifiers is
the beginning rather than the end of the st@&fard, 2003). She demonstrates
how the new signifiers for negative numbers appear from the very beginning: at
the same time as the description of the new concepts.
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A common problem in this existence forcing process is that the concepts desired
never will start to exist in the learner’'s mind. Instead the signifier and the signi-
fied amalgamatgthe signifieris the mathematical object, the objesthe ink
doodle.Mathematish may then for the learner appear as a “meaningless* proce
dural game with no relevance for intuitive thinking or outside schiahsla-
tionsto mathematical prose and other types of representations are here very im-
portant to “help the object into existence”. Pictures, analogies, metaphors and
schemas can in a dialeml way interact with Mathematish resuits orderto
strengthen the learner’s intuition and creativity. Followlerce, an interpreta

tion of a signifier is an ongoing process, as a dialogue, and this dialogue is
necessary also between Mattatish and ma#matical prose.

A problem with manytextooks is that they are in fact encouraging amealg
mation: “theline y=3x+4", “the function y=x?+3x” and so on. These ex-
pressions irMathematish are not presented as special representations @f math
matical objects, but as the very objects themselves.

Interesting questions are for instance what the difference is between a
mathematical fantasy, or “lie”, and a mathematical concept forced into existence,
and why students believe (or should believe) in these concepts.

Mathematics produces Mathematish rules — and vice versa
Mathematish consists of pure conventions, and of rules of calculations. Examples
of pure convations are the choice of symbols, such as “=" for equality instead of
“#” or “EQ”, or choices of notation such as writiaf for n fectors ofa, and not
"a, a " or pow(a,n) (e.g. Bergsten, 199®@imm, 1987).

Logic and other truths are often formalized ini¢es of calculation: aalcu-
lus. These rules mathenbe used without any regard to their meaning. Examples
are x(y+z)=xy+xz (i.e. replacingx(y+2z) by xy+xz is OK), 0=3-3,
sin(arcsirx) = x. Which rule is meaningful at a particular instance depends e
tirely on the goal and purpose of the calculations; hence on the mathematics
content. Such rules of calculation take the form of grammatical rules. A counter
part in English is the stateent “The horse pulls the car” that can be replaced by
“The car is pulled by the horse. Hendeyelopmentsn mathematicgive new
Mathematish rules to use.

But sometimes it is the other way around; a calculation with iethe-
matish creates an unexpected result thi@naards has to be interpreted. This
holds both for school mathematics and research.

Mathematial intuition — a human trait

A part of becoming human is learning to handle quantity, size, space and order —
practical forms of mathematics that often are not formulatedathematish. The
process of learning to walk is strongly driven by instjrtmiit also involves and
develops the mind. Simultaneously, consciousness of the body and of three
dimensional geometry develops. One may say that every human develops mathe-
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maticl intuition from the first years in life, which ®rmulatedmore or less
verbally. When beginning school, this intuition meets the official language of
mathematics: Ma#matish.

During the first years in school, mathematics only concerns the symbols +, =,
—, -, I and the ten numerals. These symbols are certainly abstract. The abstraction
lies in the generality: the same symbols are used for counting or meassying
thing. This generality can be seen as the most basic property of the nature of
mathematics: a separate formulation for calculation that is independent of appli-
cation areas, and fettive for all of them. It also represents the main leap of
thought that challenges pupils.

Philosophy and practice

The identification of a special mathematics language may seem to be a rather
philosophical endeavour, but in this paper we have tried to show that philosophy
and classroom practice go hand in hand. The basis of observations about st
dents’ relations tdMathematish is our teaching ptize, the teaching practice of

our colleagues, and findings in mathematics education. We have described
mathematics as a p®nal mathematics intuitive content that is both expressed
and shaped by elaborated mathematics notations, cMiathématish”. We hope

that our perspective, that Mathematish is a compdetguage could create fri

ful analogies with other tegyuages.
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The Linguistic Side of Mathematics

Thomas Lingefjard
Goteborg University

Introduction

Any discussionabout different aspectsof mathematicsought to start with a

discussion or maybe a declaration about mathemiggeds Despitethe fact that

the mathematiceducationcommunityoften declaregshat mathematicss much

more thanust figuresand calculationsmostcoursesn teacherprogrammesor

prospective teachers of mathematics are mainly traditiorthle sensethat they

address calculation techniqgues more than other aspects of mathethates.n

the other hand searchthrough sourcesconcernedwith what mathematics
strictly speakingis, we find very little about calculation.Courant & Robbins
(1941) write in the foreword t@/hat is mathematicthe following:

Mathematicsas an expressionof the humanmind reflects the active will, the
contemplative reason, and the desire for aesthetic perfection. Its basic elments
logic and intuition, analysis and construction, generality and individuality.
Thoughdifferent traditionsmay emphasizalifferent aspectsit is only the inter-

play of theseantitheticforcesandthe strugglefor their synthesisthat constitute

the life, usefulness, and supreme value of mathematical science.

(Courant & Robbins, 1941, foreword)

In this statementt is difficult to seethe foundationfor all the computationwe
normally connectto the subjectmathematicsTraditional philosophiessuch as
Platonismor intuitionism, assumethat mathematicsexpresseseternal relation-
ships betweenobjectsthat are intuitive as well as objective. Diverging from
these perspectives philosophers,such as Lakatos (1976) and Wittgenstein
(1956), considered mathematics to be also a product of social processes.

Lakatos used classroom discussiongltstrate how mathematicatoncepts
are changed ostabilizedover time through processe®f agreementnd refuta-
tion. From this philosophical point efew, the truth of mathematicaktatements
IS not absolute. Thetatementsre mainly justified conjectureswhich very well
can fail in the future when new problemsare createdand new solutions are
produced.Wittgenstein(1956, p. 99) describedthis inevitablenesdy his con-
cept of a language game:

The indelible nature of numbersand figures and the certainty of proving
procedures are not expressions ofitteal existenceof mathematicabbjectsnor
of the absolutevalidity of proceduresBecauseve neededsucha rigid language
gamefor various purposes,we invented it along with its grammarand its
dovetailing with practice. The mathematician is an inventor, not a discoverer.
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ReubenHersh(1994)discussesnathematicsas a social-cultural-historicaton-
struct, one that has beamd is continuouslyconstructedn social, cultural,and
historical contexts,and consistsof “truths” in those contexts. Hersh defines
mathematics this way:

The study of lawful predictable parts thie physicalworld hasa name;the name
is “physics”. The study of lawful predictableparts of the social world has a
name; the name is “mathematics”. (Hersh, 1994, p. 19)

The debateis old, is mathematicsnventedand human-madeor is it discovered
and pre-given?It seemdo be both importantand helpful to make distinctions
betweendifferent componentf mathematicsRényi (1967) offered a distinc-
tion — the mathematician invents concepts and discovers theoreratsdtem-
pared the mathematicalresearchewith a seafarerwho discoversunknown
islands:

If a seafarer intendt® sail into a regioninto which nobodybeforehassailedhe
hasto be an inventor. The seafarerhasto constructa ship that is more storm
proof thanthe ship of predecessord. would like to say that the new concepts
which a mathematician puts forward are like ships of a new type. Thesé¢adleips
the seafarewho is out for discoveriedasterand fasterover the stormy seainto
new regions. (Rényi, 1991, p. 28)

Regardlessf it is hardto find a comprehensivestatemenbf what mathematics
really is, the fact that mathematicss much more than just figures and calcula-
tions is a certainty that hopefully is well adoptedby mathematiciansmathema-
tics educatorsand teachersof mathematicsEven a cursory glance at school
mathematics will show that mathematics is not alsbut numberslt is a system
made up of letters as well asmeralswhich relateto eachother by operations,
processeslaws and theorems.Regardedlike this, mathematicds an array of
symbolsand laws. It is a highly symbolicart and for many studentsthat is also
where the problem of understanding mathematics begins.

A growing consensugegardingthe needof a deep understandingof the
languageused in mathematicalclassroomsseemsto be well founded in the
mathematics education community. Many researchers ingestigatedthe fact
that studentsat different levels of the educationalsystemhave difficulties to
understandthe languageof mathematicsFor instanceCocking and Chipman
(1988) examinedthe mathematicalability of languageminority - particularly
bilingual - students attemptingto identify linguistic and cultural variablesthat
might explain why their mathematicabbility falls increasinglybehind that of
studentswho speak English as their primary language ("majority students").
They also investigatedthe competencieshe mathematicsteachershad and
stressed the importance of the educational quality.
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Math achievementis heavily dependenupon schoolinstruction...,and it is not
likely that math achievementwould be related strongly to family background
variables tied to socioeconomic status. Occupational expectatidmsformation
associatedvith socioeconomicstatusmay affect the value assignedto mathe-
matics study and achievement. (p. 32)

In an article in the Swedish anthololyl\athematics — a communicati@ubject
there is a constructeddialogue between two researcherspne mathematics
educatorand one languageeducator wherethe languageeducatorclaims that
our languageis our mentalthumb In the sameway asour thumb allows us to
get a grip arounda tool of somesort, our languagecan allow us to get a grip
around abstractions)ike mathematicsHe suggestsfurther that theoretical or
abstractknowledge of any kind hardly can exist beyond or without the
individual’s language (Emanuelsson et al., 1996, p. 59).

As soon as we start thinkirapout linguistic ability, it is inevitableto touch
on the notion of communication competence. The hdsigbehindalanguage
Is to be ableto communicateand the generalnotion of communicationcompe-
tenceentailsknowing how to uselanguageto communicaten various social
situations — to use language appropriate to context. Normally we judge
language without meaning as uselessand we automatically strive to find
meaning in for instance infants’ prattle.

During 2003,a debatebetweentwo Swedishmathematiciansegardingthe
language of mathematics occurred in articlesiartdvo public meetingsHakan
Lennerstadand Ulf Persson,both well-known mathematiciansin Sweden,
debatedaboutthe possibility to seea comprehensiblalifferencebetweenthe
content of mathematicsand the language of mathematics.And if so, what
meaning would this view haver how we shouldteachmathematicsThe two
different perspectiveson one hand the importance of letting students at
differentlevelstranslatethe symbolic languageof mathematicso Swedish(or
any other native language) and tre other handthe fact that the languageof
mathematics in an imprecise and vaggren, cameout from the oral and written
debates. My interpretationof the debateis, however,that the two debatersas
well asthe audienceconsideredthe languageof mathematicsas an important
concept, somethingproven by the theme of this conference(Lennerstad&
Persson, 2003).

Teachereducationin generaldoesnot explicitly stressthe importanceof
developing a mathematical language competence as a stadehér.Thereare
in generalno courseslabeled “Mathematics and language” or “The correct
way to addressand teach mathematicalobjects” or somethingequivalentin
their teacher programs. The coursesare mainly well-establishedcoursesin
different branches amhathematicavherethe matterof mathematicaslanguage
falls far behind computational and conceptual skills.
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It is a fact that students’difficulties with algebraand algebraicexpressionsare
common,not only when studentsarefirst introducedto algebrain compulsory
school,but also when they are presumedto have masteredthe subjectand
moved on to study mathematicsat the university level. All languageshave
grammar and meanings, syntactic and semantic compoii&et®are mathema-
ticians andmathematiceducatorsvho claim that many students’difficulties in
algebradependmoreon their strugglewith the language“mathematics”than
on their procedural shortcomings.

Every languagehas a semanticcomponentor descriptiveaspect,which is
the part of the languagethat carriesmeanings- aswell asa syntacticor gram-
maticalcomponent.in the caseof the languagealgebra,there is an asymmetry
betweenthe semanticand syntactic componentwhich is well worth explicit
mentioning.The languageof elementaryalgebra,defined as being a shortened
versionof our naturallanguage porrows meaningfrom the naturallanguage’s
semantics.The semanticsof algebrais however not fixed; d might mean
“distance” or be a parameter in a polynomial expression, or a vareeguadri-
lateral. Nevertheless, whatever special meaning we asstgwitlobe a meaning
defined in our natural language.

To teach mathematics with a focus on language

In an algebracoursel gaveto prospectivemiddle schoolteachersin mathema-

tics at Jonkoping University almost a year ago, | clainmed the algebracourse,
which was labeled’Mathematicsaslanguage”insteadof “Introductory alge-

bra for Middle school teachers”,indeed carried an appropriate name, since
algebracan be considereda languagein manyways. The studentswere asked

to monitor and recordthe growing languagedifficulty they experiencedas we
proceeded towards deeper algebraic understanding, and they were alstoasked
do a field study where they should record and analysethe languageusedin
classrooms they visited as part of their student teacher training.

The main questionfor the field study was:“How do studentsand teachers
handlethe languageof mathematicand how do they changeback and forth
between common language and the language of mathematics.”

The resultsfrom the field study were quite homogeneousalthough the
studentsvisited a broad variety of schools,coveringthe whole rangeof K-12.
One commonfinding was that the conceptof “language” was not explicitly
addressed or even mentionedthg teacherthey followed. The studentsin the
classwere not aware of the fact that they in generalused quite many words
from a common mathematicallanguage,like for instance probability, graph,
percent,and median.Neverthelesssomestudentsdid find childrenof early age
who expressedhat “you have to know the mathematicallanguagein quite
many professions,and thereforeyou should learn it.” One young girl even
claimed that "it is easier to communicate with peaoleundmewhen | express
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myself in mathematicakterms.” The observedand interviewed teachers- in
contrast- sawthemselvesnainly asteachersof mathematicalnethodsand not
as “mathematical language” teachers.

The difference between a natural, descriptive languageand a normative,
precisesciencelanguagelike mathematicss huge. Normally, we do not correct
natural language the same precise way as we do with mathematical lanfjuage.
fact, someof our naturallanguageis not even consideredto be correctable.
Steven Pinker, a languageand cognition researcherclaims that languageis
innate and that humans have a common "universal grammar".

Imagine that yoware watchinga naturedocumentaryThe video showsthe usual
gorgeoudootageof animalsin their natural habitats.But the voiceoverreports
some troublingacts. Dolphins do not executetheir swimming strokesproperly.
White-crownedsparrowscarelesslydebasetheir calls. Chickadees’'nests are
incorrectly constructedpandashold bambooin the wrong paw, the song of the
humpbackwhale containsseveralwell-known errors, and monkeys’ cries have
beenin a stateof chaosand degeneratiorfor hundredsof years.Your reaction
would probablybe, What on earthcould it meanfor the song of the humpback
whale to contain an “error”? Isn’'t the son§the humpbackwhale whateverthe
humpback whale decides to sing? (Pinker, 1994, p. 370)

Many studentsdo of coursenot seealgebraas a language,a view that is not
unreasonable. Very fewould call a systemof symbolsa languagejf it had no
semanticcomponent.No real languageis used only to manipulateits own
words. The power of &anguagelies not justin the words themselvesbut more
in the usewe can make of them when communicatingwith each other. The
words of our language suppardmmunicatiorsincethey are symbols,pointing
beyond themselves to things we experience in our wddde real,a language
has to be about something.

As for the prospectivéeachersown learningof the languagealgebra,quite
a few of the studentsin the courseadmittedthat they experiencedt easierto
learn algebra when it was looked uporbash a new languageand asan array
of laws and symbols.Another importantaspectl emphasizedvas the impor-
tanceof differentlanguagesyntaxin mathematicsThey were askedto look at
the following different ways to present the same mathematical problem.

a) Try to find the two numberswhich add up to 78 and wherethe productis
1296.

k+y=78
b) Solve [
X[y =129¢

c) Draw the graphs of +y = 78 andx - y = 1296 in thesamecoordinatesystem
and determine the intersections.  (adapted from Polya, 1957, p. 175)

Clearly, all the three different ways to present this same problemctdally lead
us to implicit orexplicit ways of moving betweenour naturallanguageand the
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formalistic language of mathematicl. we take a), it is obviousthat we will try

to expressthe situation in formalistic languagelike in caseb). If we are
presented to case hye arelikely to try to interpretthe meaningof our taskin

languagelike casea). When solving it like casec) we probably will express
ourselves in both formalistic and natural language.

The view of mathematicsas a languageis not unproblematicand any
attemptin that direction s likely to narrow the broaderview of mathematics,
which | advocated for in the beginnimg this paper.l do not claim that mathe-
matics should be taught as a language,more so that the language part of
mathematicsshould be recognizedand accountedfor. It has frequently been
pointed out that mathematicgtself is a formalisedlanguageand it has been
suggested that it should be taught as s@clth statementpossessa degreeof
validity, but would appearto be somewhatdangerousand potentially confu-
sing. Mathematics is not a language — a means of communication — &cttvén
ty and a treasurbouseof knowledgeacquiredover many centuries.(Austin &
Howson, 1979, p. 176)

In orderto more strongly advocatefor the necessityof thinking aboutthe
linguistic aspect of the mathematics you studpeécomea teacherof mathema-
tics, the following examquestionwas given to a group of prospectivemiddle
school teachers at the university of Gothenburg in the fall 2003.

Describe the following statement in a common language” and give an example
of what the statement actually says or means:

il n L
On %1>2D Si? <n“E

i=1
Exactly the same statement wdiscussedn a lecturesome4 weeksbeforethe
exam. It was given as one exampfehow the mathematicalanguagebecomes
more and more precise and consequently at the same time becomeisfinoale
to interpretand hardto connectto daily language We also discussedn what
way we could define ithereis anything missingin a mathematicaktatements
the one above, as we ordinarily can in a sentenceexpressedn our mother
tongue. The students were in thiist year of academicstudiesin mathematics,
and hadall graduatedfrom the naturalscienceprogramin the Swedishgymna-
sium.

It was quite a surprise to dlsat the vast majority of the studentshad major
difficulties with this questionin particular.Only one studentout of a group of
ten managed to givefall and well developeddescriptionof the statementand
someexamplesMany of the other studentsdid not manageto give correct
examplesof for instancethe summationpart of the statementExpressiondike
“1" is always smallerthan n" and therefore 1" <n"“ were common,just as
mixing the meaning afandn.
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The maindifficulties in translatingthe theoreminto commonlanguageseemto
be divided into the following categories:
* The order of symboland their semanticmeaning.Student’sdescrip-

tions of the meaningrevealedconfusionabout what the symbolic
form says about what to do first, second, third and so on.

e Whatis includedin the summationand what is not, i.e. should n"
also be summarized?

* The meaning of the symbol “for aif.

Sinceso many studentsfailed to translatethe symbolic statemeninto common
language, we gave them the following statement in the re-exam:

Describethe following statementin a "common language” and give an
example of what the statement actually says or means:

Do n(n+1)(2n+1)

>k

k=1 6

Even though we hatad a sincereand long discussionafter the first exam,the
students to a large extent failed to transthte statementoo. To translatefrom
algebraiclanguageto “common language” disclosedmuch more difficulties
than we had anticipated. Students,who very well may masterthe algebraic
handicraft in these two examples, demonstrétege difficulties when trying to
explain what they actuallyneanin a commonlanguage.Theseexamplesllumi-
nate the difficulties we have to develapd maintaina well structuredand well
balanced teacher education for teachers of mathematics. As prospeatkers
of mathematicsit is crucial that they are skilful in their use of the languageof
mathematicsogetherwith other necessaryompetenciesin what way should
coursesbe changedor developedso that studentswho study mathematicsn
order to becomegualified and competentteachersof mathematicsalsodevelop
and cultivate their own mathematical language?

A couple of studentsclaimed,that sinceno other coursesin mathematics
requiresthat they should be able to translateor even speak about symbolic
statementsthey had neverthought aboutthe vastimportanceof being ableto
speakcorrectly when being a mathematicseacher.Even though they com-
plained about our way of extorting their weaknessin understandingthe
meaningof mathematicaktatementsthey welcomedthe fact that we had set
their eyes on an important competence for their future profession.

Student 11t's a trueshamethat we can managelo passexamsin coursesabout
abstractalgebra calculus,discretemathematicsand so on... and yet we are not
able toexplainwhat the symbolsactually meanswhenthey are put togetherin a
statement. It's a shame!
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Student 2Why don’t coursesn mathematicstartwith for instancea list over
the symbols we should use and a deep and throughout explanation and
discussiomaboutthe many different meaningsof the symbols? Imagine how a
languageteacherswould start with any new language,why not do so with
university teaching in mathematics (at least for prospective teachers) too?

Student 31n my mind, | sense that the sigma symbols is storecbatiae and|
normally never attachany real meaningto it — its’ just there in my memory.
When there are other symbolsconnectedo it, above,under and togetherwith
eachother,it becomegust like Chineseor any otherinconceivabldanguage- a
blurred scatter of images. It just doesn’t make any sense to me.

Davis (1984) argued that mathematical knowledge storedir memoriess not
just coded in any native language’swords or sentencesHe assertedthe
following three possible positions:

l. Knowledgeis storedin the humanmemoryin the form of ordinary native
language words and statements.

[I.  Knowledge is stored in the human memory in the form of pictures.

[ll.  Knowledgeis storedin the humanmemory in a form, which is neither
words and statements, nor pictures. (p. 189)

Davis acknowledgedthat the three positions did not need to be mutually
contradictory nor mutually exclusive.lIt is quite possiblethat more than one
single form of coding is used.

We wantto arguethat coding mechanism| — pictures— is not used,although
something close to it certainly is. (Indeed, many mathemstiickentsvould be
betterof if they could learnto make more use of quasi-pictorialrepresenta-
tions.) Coding mechanism | — Words and statemenay-be usedto a modest
extent (we all know some quotations,or poemsor slogansform memory,
verbatin), but does not have tldominantrole that one might naively suppose.
The main mechanisnfor mathematicsand probablyfor many other things, is
coding mechanism lll, which igotverbal, and isot pictorial. (p. 189)

Some of the students obviously view themselvesvasersof mentalobjects,in
some way correspondingto mathematicalobjects. Apparently we all have
mentalobjectslike for instancea circle that we easily can get from whereit is
storedin orderto handlethe circle is someway. The languagehas labelled it
circle (or “cirkel” in Swedish),but what is actually storedin our mind? Accor-
ding to Davis it is somethingsignificantly more than a picture or image, some-
thing more like a representation of a mathemattgéct. Our mentalcircle must
have the samepropertiesand act the sameas the mathematicadefinition of a
circle. So for a sufficient understandingof mathematicshe studentshave to
constructthe mentalobjectscorrespondingo the mathematicabbjects she or
he is studying. The constructionmustbe of sucha dignity, that thereis an iso-
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morphism that holds between the two worlds in where the two different
constructionsexist. And the isomorphismis proven valid or unacceptable
through our language.

It is important to explain that not all mathematical objeets have a true or
correctmentalrepresentationyve meanan infinite line when we draw a finite
line and we mostlikely storea finite line in our mental representationStill we
can talk about an infinite line and use our mental representationpur mental
object, to support our presentation.The language consequentlybecomesa
necessary tool foconnectingour mentalobjectwith the correspondingnathe-
matical object, when helping someone dtseonstructhis or her mentalobject,
or in orderto help us betterunderstandvhat we are observingwhen studying
mathematicsConsequentlythere are many more argumentsfor teachingthe
languageof mathematicsthan just the fact that prospectiveteachersshould
have a languagecompetencesteachersAll studentswho study mathematics
should be taught the importanceof the languageof mathematican order to
better understand the subject.
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Kategorisering av sma gruppers handlingar

Stefan Njord, Gunilla Svingby, Malmd hégskola
Barbro Grevholm, Hogskolen i Agder

Inledning

| dagens svenska gymnasieskola ar det manga edewente klarar av matema-
tikkurserna.Enligt statistik fran Skolverketvar det 15 procentav elevernapa
det nationellaprogrammesominte uppfyllde malenpa kurs A i matematikpa
hostens kursprov 2002, medan motsvarande andehigiskursprov2003 var
25 procent. Nar det géaller kurs B i matematik var det drygt 25 procent
(Skolverket, 2004) .

Det finns mangasammanhangandersakertill att elevernainte klarar av
matematikenEn orsakkan vara hur undervisningerbedrivsoch vad detta for
med sig. Flera undersokningarhar visat att det &ar svart for skolor att hitta
fungerandearbetssatioch arbetsformersom tar hansyntill varje elevs forut-
sattningar och behov (Skolverket, 2003b). Det har ocksa visat sitatmatik-
amnetar det amnedar undervisningenpraglasav enskilt arbete och att laro-
boken ar styrande(Skolverket,2003a). Att arbetaenskilt innebar att elevens
egna fragor och funderingar inte diskuteca$ blir bemotta.Det innebarocksa
att elevernagar miste om att lyssnapa andraeleveroch kunna bemotaderas
pastaenden och argument.

Dennaartikel presenteraen del i en studie somtar fastapa elevensmaj-
lighet till att deltai dialogeroch att anvandaen artefaktsomstod for larandet.
Studiensom helhet har som syfte att kartlAggahur en liten grupp elever, 4
stycken, samtalari &mnet matematik utan larares narvaro och hur eleverna
anvander en artefakt, i detta fall TI InterAcfivender samtalet.

Studien som redovisas i denna rapport har tva syften:

1. Att studerahur en mindre grupp eleverutan lararesnarvaro samar-
betar for att I6sa de experiment som gruppen enats om.

2. Att studera hur gruppen utnyttjar artefakten.

Teoretisk bakgrund

Forskningen har har berdring med flera olika teoretiskaenepiriskafalt. Dessa
ar samspel grupper,anvandandetav artefakteroch det matematikdidaktiska
faltet. Det socialasamspelesessomden processsom ar barandefor elevernas
utveckling och 6kande forstaelsefor matematikenEn viktig fraga ar hur en
undervisningska organisera®ch genomforador att elevernaska utvecklaen

LTI InterActive ar en interaktivt programvara.
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formaga att kommuniceramed matematikenssprak och symboler. Nagon

entydigt formuleradteori for dennaundervisningfinns inte. Daremotkan man

forsoka hittaen balansmellanen individuell undervisningoch en undervisning
som bygger pa samspel(Dysthe, 2003). | denna studie betraktas samspelet
mellan eleveoch artefaktennar elevernadiskuterardet matematiskdbegreppet
rata linjen.

Den larosyn som ligger till grund for den storre studien har sina rotter i
Vygotskys teorier. | denna teori ses inte bara spra&etkommunikationersom
ett medel for larandet utan detsjélvagrundvillkoret for att ett larandeoch ett
tdnkande skall kunna ske (Saljo, 2000).

Man kan ofta férundrasover hur kort innehalleti en elevsreplik & med
avseendepd ord och specielltinnehall av fackuttryck. Men &ven om detta ar
falleti mangarepliker uttrycks andaen position hos den talande.En position
som nagon annan elev kan svara pa och forhalla sig till (Bakhtin, 1997).
Bakhtins tonvikt pa dialogen ar ett viktigt komplement (Wells, 1999) till
Vygotskys "The zone of proximal development” (Vygotsky, 1978). Det ar
Bakhtinstredje grunddragfor ett yttrandesom ar av intressefor dennastudie
och larandeprocessefBakhtin, 1986). Detta innebaratt ett yttrande inte bara
paverkar mottagarentan kommerocksaatt paverkatillbaka till den somfallde
yttrandet.Nar en elev uppfattaroch forstaren annanelevsyttrande har denne
lyssnat aktivt. Om sa skett kommer eleven forr eller senaresggbnderaga den
forra elevensyttrande.Dettainnebaratt elevensyttrande kommeratt paverka
tillbaka, vilket ar en viktig ingrediens i larandeprocessen.

Fragestallningar
| anslutningtill de tva syftena att studerahur en mindre grupp elever utan
l&rares narvaro samarbetar for att I6s&xeerimentsomgruppenenatsom och
hur gruppen utnyttjar artefakten har foljande fragor preciserats.

1. Hur kan marpa en detaljeradniva, kopplattill det matematiskanne-

hall som gruppernadiskuterar,beskrivahur gruppensamarbetafér
att |0sa de experiment som man enats om?

2. Hur kommer artefakten in som en del i samarbetet?

Den 6vergripande studien

Den studie som beskrivs i déér artikeln ar en del av en stérrestudie.Fér den
storre studien har Stefan Njord foljt sammaelever under en langre tid (4
manader) amnetmatematik(kurs B pa gymnasiet).Den storre studien bygger
pa klassobservationeav elevernai helklass samt videofilmning av mindre
grupper (4 elever)utan lararesnarvaro.Datatill dennarapportér fran delar av
den videofilmning songjortsi grupp utan larare.Innan elevernaarbetade sma
grupper gjordes en enkéatundersékningom elevernas attityder till skolan,
matematiken)Jarandetmed mera. Under studien av elevernagenomfordestre
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skrivningar i anslutning till deras kurs i matematik, varav eslawningarnavar
det nationella provet. Efter det att videofilmningen var slutférd gjordes en
enkatunderstkning om elevernas attitygng att arbetai grupp och hur man
sag pa datorns betydelse for gruppens arbete.

Studiens upplaggning

Samspeletar en viktig forutsattning enligt var teoretiska utgangspunkt. |

studien fokuserassamspelei mindre grupper. Med mindre grupper i denna
studie menasgrupper om 4 elever. Grupperna studerasenskilt i ett eget
grupprumutan narvaroav elevernaslarare. Varje grupp hade tillgang till en
dator kopplad till en OH-kanon. OH-kanonen projicerade bildskarmen pa
vaggeni ett format pa cirka 2-1,5meter. Detta innebaratt det som gjordesvia
datorn blevsynligt for allai gruppen.Padatornfanns matematikprogrammef

InterActive installerat. Gruppenvideofiimadesi 30 minuter. Totalt filmades 4

grupper om vardera 30 minuter.

Elevernai studien laste matematikkurs B pa gymnasietoch arbetadei
helklass med begreppetrata linjen. | anslutning till detta skulle grupperna
diskuteranagot manredangjort i helklass.Valet blev hur man med utgangs-
punkt fran tva punkter och deras koordinater kastammakvationenfér den
rata linje som gar genom dessa punkter. Uppgiften utgar integivaa punkter
utan dessa valjs av eleverna. Detta inneb&elatternasjalvakan styrade olika
perspektiv pa den rata linjen som man vill diskutera.

Elevernai studienhadeinte fore studien kommit i kontakt med pogram-
varanTIl InterActive. Valet av programmotiverasmedatt 1) den har ett grans-
snitt somi mangaavseenderpaminnerom elevernasminiraknareoch de data-
program som elevernavarit i kontakt med under sin skoltid och 2) att de
funktioner somelevernafick anvandaunder studieninte gav den matematiska
l6sningen via erknapptryckning.Valet av dataprogrammebch majlighetenatt
via programmetfa en koppling mellan symboleroch grafiska representationer
var en viktig del i upplagget.Eftersomelevernainte anvant programmetnnan
var det ocksaviktigt att elevernalatt skulle kunna lara sig programmetgenom
en kort demonstrationoch inse fordelar och nackdelar med att anvanda
programmet.

Urval

Eleverna som medverkade i studien gickdeénaturvetenskapligg@rogrammet.
Samtliga elever hade betyget godkant fran matematikkursenkurs A. Under
studiens utférande laste elevetasen,MatematikB. Totalt deltog 16 eleveri
studien, varav 4 var flickor och 12 var pojkar. Megangspunktran elevernas
forkunskaper definierades sedan vad som skulle diskuteras i grupperna.
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Instruktion till gruppen
Gruppen informerades om att syftet med deras experiment \gruatienskulle
ha som mal att

1. allai gruppen med utgangspunktfran tva punkters koordinater

skulle kunna bestamma den réta linjef@dneny = kx + msomgar
genom de tva punkterna och

2. att samtliga i gruppen skulle férsta det som diskuterades.

Gruppenvalde sjalva vilka tva punkter man ville utga ifran. Gruppenvalde
ocksahur mangagangermanbehdvdetitta pa olika punkter innan man ansag
att gruppen natt deva uppsattamalen.En forutsattningvar att gruppenskulle
avsluta sitt arbete efter 30 minuter.

Dataprogrammeintroduceradegenomatt vi visade elevernahur manvia
dialogrutan "Draw line” kan ange tva punkters koordinater attiprogrammet
darefter automatisktvisar punkternasrepresentation ett koordinatsystem.l
grafenvisasocksaen streckadrat linje som gar genomde tva punkterna.Via
grafen ar det sedan mojligt att med hjalp av muspekiéytta punkternaoch de
nya koordinaterna visas automatisktialogrutan’Draw line”. Vi visadeocksa
elevernaatt manvia dialogrutan”Functions” kan angeen funktion paformen
y = kx + m och automatisktfa dennarepresenterad sammakoordinatsystem
som punkterna. Eleverna informerades onviatidessatva dialogrutorkan man
seen koppling mellande tva punkter man véljer och den réata linje pa formen
y = kx+msom man kommer fram till.

En forutsattning var att de punkter som valdes skulle angegrammetsa
att alla sagkopplingenmellanpunkternaoch den grafiskarepresentationemv
dessa.Darefterfanns det inget krav pa att gruppen masteanvandadatorn i
diskussionernaGruppeninformeradesom att nagonvarderingeller kommentar
till vad gruppengjort inte kommer att presentera®fterat. Hela arbetetvideo-
filmades och avslutades efter 30 minuter.

Analys

Analysenav studienar gjord med utgangspunktfran den videofilmning som
gjordesav gruppernasarbete.Filmningenhar registreratdet som elevernagor
meddatorn genomatt aven dataskarmeriimas. Aven det somelevernaskriver
pa sina papper har filmats. Som stod for analysam vissafall elevernassamtal
transkriberats. Aven utskrifter av elevernas filmade pappegjorts. Genomatt
titta igenom videofilmerna ett antal ganger har analysen gjorts i tre steg:

1. Att forsdka hitta beskrivande kategorier for det som sker.

2. Att forsokaformuleraoch darmedskapakategoriersombeskriverde
handlingar som respektive grupper gor (=handlingskategorier).

3. Att forsoka sparamonsterfor hur gruppernakombinerar de olika
kategorierna.
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Resultat

Analysenharresulterat 4 handlingskategoriesom mer eller mindre beskriver
gruppernasprocessmot att I6sa de foreliggandeexperimenten.De 4 hand-
lingskategoriernadbenamnsl) tolkning via graf, 2) verifikation, 3) trial and
error och 4) formelrakning De tre forstakategoriernar koppladetill anvand-
ning av artefakten. Handlingskategorierna beskrivs nedan.

Tolkning via graf (T)

Via dialogrutan "Draw line” kan gruppen ange koordinaternafor de tva
punkter man vill studera.Nar gruppen angett punkternaskoordinater gene-
reradedataprogrammeautomatisktpunkternai ett koordinatsysteml koordi-
natsystemet visades inte bara punkterna automatiskt, utan agereatadlinje
genom punkterna,det vill sagaden réta linje vars ekvation gruppen skulle
bestammaDenna grafiska bild var hela tiden under gruppensdiskussioner
synlig for gruppen.Vid analysenav videomaterialetramgick att gruppernavid
ett flertal tillfallen anvande sig av denna grafiska representaticatféolka och
resonerekring. Via analysenkan sesatt gruppernaanvandersig av dennagraf
framfor allt for att bestammam-vardet ur grafen och/eller for att bestamma
riktningskoefficienten (k-vardethr grafen.Grafenvar en centralutgangspunkt
vid ett flertal diskussioner ochttalanden.Handlingskategorirtolkning via graf
innebaratt elevernaanvandersig av dennagraf vid diskussionereller vid ett
enskilt uttalande for att bestamma k- och/eller m-vérdet.

Verifikation (V)

Somnamntsovan skapardataprogrammeautomatisktmed utgangspunktfran

att man angertva punkterskoordinateri dialogruten”Draw line” en grafisk
representation av de tva punkterna och den rata linje sogegampunkterna.
Via dialogrutan "Functions” ar det mojligt angeden ratalinjens ekvation pa
formeny = kx + m Nar man anger en rat linje i dialogrutan "Functions”
genererardataprogrammetiutomatiskt dess grafiska representationi samma
koordinatsystenmsom skapatsvia dialogrutan”Draw line”. Detta innebar att
gruppen far en visuell koppling mellan de tva punkter man haattalitga ifran

och de forslag pa k- och m-vardensom gruppenkommerfram till. Handlings-
kategorinverifikation definierassom att gruppen har uttalat en teori/er eller

hypotes/er som grund for ett angivetdch/ellerm-varde.Darefteranvandersig

gruppenav mojlighetenatt via dialogrutan”Functions” kunnabeddmarimlig-

heten i det angivna k- och/eller m-vardet.

Trial and error (U)

Handlingskategorifrial and error beskriversammafrfarandesomhandlings-
kategorinverifiera medden skillnadenatt gruppeninte uttalat nagon teori/er
eller egnahypotesemar mananvandersig av dialogrutan”Functions”. Hand-
lingen tolkas merasomom att gruppen chansarpa olika k- och m-vardenoch
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darefter forsoker dra slutsatserom chansningenmed hjélp av den graf som
automatisk genereras av dataprogrammet.

Formelrdkning (F)
Den fjarde handlingskategorinformelrédkninginnebéaratt gruppenarbetarmed
papper och penna och anvander sig av matematiska symboler och formler.

Hur grupperna kombinerar handlingskategorierna

Processen fran det att gruppen valt tva puniittermanbestamtekvationenfor
den réata linjessomgar genompunkternabenamnegxperiment| studienvisade
det sig att grupperna gjordeellan3 och 6 experimentper grupp. | tabell 1 har
de 4 handlingskategoriernanvants for att beskriva den eller de strategier
gruppernaanvandesig av for att diskutera sig fram till en I6sning for sitt
experiment. Till hbéger ormearje experimentangesden totaltid somexperimentet
tog att genomfora.Handlingarnasymboliseras tabellenav T:m som betyder
"Tolkning av m-vardetvia graf’, T:k betyder”Tolkning av k-vardetvia graf”,
V:m betyder "Verifierar m-vardet”, V:k betyder "Verifierar k-vardet”, V:k&m
betyder "Verifierar k- och m-véardet samtidigty):k betyder”Trial and error [k-
vardet]”, U:.m betyder”Trial and error [m-vardet]’, U.k&m betyder”Trial and
error [k- och m-vardetsamtidigt]”, F:k betyder”Formelrékningfér att berédkna
k-vardet” och F:m betyder "Formelrakning for att ber&dkna m-vardet”.

Tabell T Sammanstallning av respektive grupp och respektive experiment med hjalp av de
fyra handlingskategorierna.

Grpp & Tid (poin)
Experiment 1| Tin Vm | Tk 3
Experiment 2| T Vi Ukfm Tk 0 Wk | T | Vi | Tk | Vk | Tk |Tk 1
Experiment 3| Tk T | Vh&m 2
Experiment 4| Tk Tm | VhkEm Tk 1
Experient 5| Fk Fm VhkEm Um Fk Tk | Uk Ki Fk | Fm 15
Gripp B Tid (poin)
Experiment 1| Fk Fm | Vhim 3
Experiment 2| Fk Tm Tk VhkEm| Tk ViEm Tk | Fk (Viém 1
Experiment 3| Fik Fm | Vkm 2
Experiment 4| Fik Fm | Vhm ]
Experient 5| Fk Fm | VhkEm 2

Experiment6 | Fk Fm | VhkiEm 5
G C Tid {oin)
Experirnent 1 | Timn Fk | VikEm 3
Experiment 2| Fik Fm |Th#m| Tin Flhfm| Vi Fkfm Tk | Twm |[VhEm U Fkém Tk 17
Experitnent 3| T Fk Tk (VhkEm Wk | TkEm Fhém ViEm Fm i
Experient 4| Fk Tm (VkEm| Fm  VhkEm 3
Grapp D Tid {oin)
Experiment 1| Fk Fm VkEm Fm | Vi | Fm | Uk | Fk 17
Experiment 2| Fik Fm | Vkm ]
Experitaent 3| Fik Fan | Vikém 5
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Via tabellenkan man se att grupp A utfér 5 experiment,grupp B utfor 6
experiment, grupp C utfor 4 experiment aptupp D utfor 3 experimentGrupp
A loser sitt forsta experimentgenom att utfora handlingarnai ordningen;en
tolkning av m-vardet(T:m), en verifikation av m-vardet(V:m) och slutligenen
trial and error fOr att hitta k-vardet (U:k).

Grupp A

Gruppenanvandersig uteslutandeav att diskuterafram I6sningengenom att
gora tolkningar viagrafen(T:m eller T:k), for att darefterverifiera (V:m, Vk eller
V:k&m) tolkningarna.l samtligafyra forsta experimentenvisade gruppen att
man ar séker pa att avlasa m-vardet ur grafen. | tvd experiment, experiownt 3
4 laste man utan problemav savalk- och m-vardenagrafiskt och verifierade
dessaGruppenhittar har en strategifor att genomféraexperimentenT:k. Tm
och V:k&m). | det sistaexperimentetexperiment5 anvandegruppen papper
och pennafdr att forsékaberaknak- och m-véardet.Gruppenvet vilka formler
man ska anvanda, men gor en felaktegakningsominnebéaratt varkenk- eller
m-vardet blir ratt. Gruppehar inga problemmedatt bestammé- och m-vardet
grafiskt, daremothar mansvartatt hitta det fel mangor vid berékningarnamed
hjalp av papperoch penna.Nagot stod for att hitta de fel man gjort i berak-
ningen med papper och penna ger inte datorprogrammet.

Grupp B
Gruppenhittar en tydlig handlingsstrukturfor att genomférasina experiment:

beraknak-vardet med hjalp av formeln k=Y2" N (Fk), beraknadarefter m-
-

vardet med hjal@v formeln y, = k [k, + m (F:m) och avslutamedatt verifiera att

berakningarnaverkar 6verensstammé/:k&m). Gruppenanvanderi stort sett

berakningvia formel somverktyg for att bestdmmé- respektivem-vardet. For

att sedanutvarderarimligheteni det svarmanfatt via berakningarnaanvander
man sig av datorprogrammet.

Grupp C

Gruppen visade att man visste hur man skall berdkna k-vardeto@fkjur man

kan avlasasavalk- somm-vardeur grafen (T:k och T:m). Daremotgjorde man
felaktiga berékningar nar man anvande formlerna som i experimptarRinsag
dock via tolkningar av grafenatt man gjort fel i beréakningarnaAtt hitta felet

eller felen gav dock inte datorprogrammenagot stod for, precissom for grupp

A. | sista experimentet berdknade man k-vardet (F:k), tolkade m-vardetd€hm)
verifieradeslutligen formeln (V:k&m). Darefter beraknademan m-vardet (F.m)

och avslutade med att verifiera att man hade det ratta k- och m-vardet (V:k&m).

Grupp D
| forsta experimentettar det lang tid for gruppen att 16sa uppgiften da man
laggerned myckettid pa att samtligai gruppenskall forsta hur man beréknar
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savalk- som m-vardet.Metoden som gruppenanvanderfor att beraknaupp-
gifterna ar samma strategi som grupFk, F-m och V:k&m). Vi kan precissom
for grupp B seatt en grupp kan anvandaformelrepresentationerreav den rata
linjen och darefter anvdndadatorprogrammefoér att verifiera svaren. Dator-
programmetsom ett verktyg for att verifiera berakningarnaverkar vara ett
viktigt moment for utvarderingen.

En sammanstallningv hur mangagangerrespektivegrupp utforde de 4
handlingarnavisar pa att trial and error anvandsmycket lite i forhallandetill
tolkningar, verifieringar och formelrékningar.

Tabell 2 Fordelningen mellan de fyra handlingskategorierna och de fyra grupperna.

rupp A Grupp B | Grupp C | Grupp D | Totalt

Antal Antal Antal Antal | Antal
Talkningar 11 3 10 1] 24
Verifieringar 10 a8 7 4 24
Trial and error 5 1 2 1 9
Formelrakning 5 12 11 g 37

Sammanfattning

Resultatetvisar hur manmed hjalp av att skapahandlingskategoriekan pa en
detaljeradniva, kopplatftill det matematiskainnehall som gruppernadiskuterar,
beskrivahur elevernai gruppensamarbetafor att I6sade experimentsomman
enatsom. En av dessahandlingar(formelrékning)ar kopplad till att gruppen
anvande sig av matematiskaformler och papper och penna. De tre andra
handlingarna(tolkning, verifiering och trial and error) &r kopplade till att
gruppenanvandesig av artefaktenoch den inbyggda mdjlighetenatt koppla
samman matematiska begrepp med motsvarande grafiska representationer.

Totalt genomférde grupperna 18 experiment. 11 av dessa experiment
avslutadesgenom att gruppen via artefakten verifierade att deras slutliga
I6sningsforslagiverensstamdmedden ratalinje somgick genomde tva valda
punkterna. Endast 3 experiment avslutades begdkningar Inte i nagotav de
18 experimentenavslutadeelevernamed att konstateraatt man inte kunde
komma fram till en gemensam I6sning.

Samarbetetnom gruppernakan beskrivasmed tva strategier.Den forsta
bygger pa att gruppente anvander papper och penatan diskuterarsig fram
till det k- och m-vardesom man tror beskriverden rata linjens ekvation. Som
utgangspunkt for diskussionen anvander gruppen sig av den graf som
genereratsvia artefakten.Nar gruppenslutligen enatsom ett k- och m-varde
later man artefaktenmed utgangspunktfran sina k- och m-varden generera
grafenav uttrycket y = kx + m. Genomatt sedanstuderagrafen drar man
slutsats om rimligheten i k- och m-vardet. Dendrastrateginar att elevernavia
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formler och papperoch pennabestammek- respektivem-vardet.Darefteran-

vander man artefakten for att studelen grafiskarepresentatiorsomgenereras
av artefaktenmed utgangspunktfran formelny = kx + m och kan darmed
avgora rimligheten i berékningarna.

Artefaktensroll i samarbetekan beskrivasur tva perspektiv.Det forsta ar
artefaktensmojlighet att direkt nar gruppen valt startpunkterge gruppenen
grafisk bild som representerar saval punktesoim den tanktaratalinje somgar
genompunkterna.Dennagraf far en central betydelsefor tva grupper (A, C)
genomatt mangatolkningar gérs av gruppernamed utgangspunktfran denna
graf. Det andra perspektivetar artefaktensmajlighet att via den rata linjens
ekvationy = kx + m automatisktskapa dessgrafiska representationDenna
majlighet anvander sig samtliga grupper av i diskussionerna.

For att fa en storre forstaelse for den undervisningssituatiorugogrsoks
denna studie ar néasta steg att kogm@adlingarnaoch gruppernasstrategiertill
vad eleverna uttrycker i dialogerna.
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A Theoretical Framework for Analysis of
Teaching — Learning Processes in Algebra

Constanta Olteanu, Barbro Grevholm, Torgny Ottosson
Hogskolan Kristianstad

I ntroduction

In this article we focus on describinga theoretical framework, which can be
appliedto analysethe teachingand learningprocesseshat occur in the class-
rooms as seen from the studeraisd the teacher’spoint of view. This theoreti-
cal framework can be used to analyseteaching and learning processesin
general, but we will apply it to teaching and learnpmgcesses algebra.More
specifically, we useit to analysethe quadraticfunctions and equationsas an
object of learningand the way in which the forming of this object of learning
during classroom lessons influences the students’ learning.

Historical context

The history of algebra shows that algebra in some foratr@r hasbeentaught
explicitly for some1000 years,and implicitly for perhaps3000 years.Diophan-
tus of Alexandria wrote the first treatise on algebrtéhm3rd century,and since
then algebrain different forms has been developing.Eves (1990) and Burton
(1991) describe three stages in the development of algebraic notationfitatthe
stage,rhetorical algebra,no symbolsare used at all, and all equationsand
problemsare posedand solvedcompletelyin proseform. This type of algebra
was used in Europe until approximately the sixteenth centhign syncopated
algebra(the secondstage),becamestandard.Diophantusis generallycredited
with the introduction of this algebraform that is characterizedy the use of
some abbreviations for the frequently recurring quantities and operatid¥0 in
AD. The third stagen the developmenbof algebrais symbolicalgebrawhich is
the algebrawe usetoday. Symbolic algebrawas developedthrough contribu-
tions by FrancoisViete (1540-1603)and René Descarte1596-1650),among
others,and gainedwidespreaduse by the middle of the seventeenthcentury.
With symbolic algebra, the symbols became objects of manipulatitreir own
right, rather than simply shorthand for describing computational procedures.
mathematicalsymbols were developedin parallel with the developmentof
algebra,and in this developmentwe can distinguishthree importantkinds of
symbols. Symbolsfor numbers,quantities,variables, or objects, for example,
symbolsusedfor trigonometric functions, powers, roots and logarithms, their
indicesand exponents,and symbolsusedfor variables;symbolsof operation,
which describe things to be performed, for examgyepbolsindicating addition,
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subtraction, multiplicationdivision, and their attendantgrouping symbols;sym-
bols of relation, which describethings established for example, symbols of
equality and inequality.

Sfard (1995) describes the impact of symbolic algebra as follows:

Employing letters as givens, together with the subsequentsymbolism for
operationsand relations,condensedand reified the whole of existing algebraic
knowledge in a way that made it possible to handle it almost effortlesslihasd
to use it as @onvenientasisfor entirely new layersof mathematicsin algebra
itself, symbolically representecquationssoon turned into objects of investi-
gation in theirown right andthe purely operationaimethodof solving problems
by reversecalculationswas replacedby formal manipulationson prepositional
formulas. (p. 24)

| mportant research findings

Researchon teaching and especiallyresearchon mathematicsteaching and
learning has a long histoigee,e.g.,a numberof “Handbooks”, which address
issuesof teachingor learning, such as Bishop et al., 1996; Richardsson2001;
Wittrock, 1986). Trendstoday dominatingthe field of researcton learningand
teaching are constructivism, situationism and collabord¢iaming.More speci-
fically, we cansaythat in moderneducationstudentsare encouragedo con-
structtheir own knowledge,in realistic situations,togetherwith others.Many
researchers havgeenconcernedwith the movefrom arithmeticto algebraand
in particularthe cognitive gap that existsbetweenthe two (e.g.Bednarzet al.,
1992). They have understandably focusedparticularaspectsof algebrasuch
as the modelsused when solving word problems(e.g. MacGregor& Stacey,
1993, 1998), the understandingof the equality sign (e.g. Kieran, 1981), the
translation from tabular forrto symbolicform (e.g.Ryan & Wiliams, 1998),the
solution of linearequations(e.g. Linchevski & Herscovics 1994; MacGregor&
Stacey, 1995), and functions and graphs (e.g. Herscovics, 1989).

Anna Sfard has outlined a theoretical frameworkdescribingthe develop-
ment ofunderstandingn algebra(Sfard,1991,1994,1995; Sfard& Linchevski,
1994). This framework is based on tieory that the developmentf algebraic
understandingin the individual student follows the samestepsthat can be
observedin the historical developmentof algebra.Sfard’s theory is that the
historical developmentof algebrafrom rhetoricalto symbolic must be repro-
ducedin the individual to achieveunderstandingpf algebra.More specifically,
Sfard(1991,1995) describeghree stagesthat characterizethe developmentof
mathematical understandimg any areaof mathematicspot just algebra.ln the
first stage,interiorization,someprocesss performedon a familiar mathematical
object. In rhetoricalalgebra,for example,numbersare effectively manipulated
and those manipulationsare describedin prose.In the secondstage,conden-
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sation, the processis refined and made more manageableas in syncopated
algebra. In the third stagegification, a giant ontologicalleapis taken:"Reifica-

tion is an act of turning computationaloperationsinto permanentobject-like

entities" (Sfard, 1994).

Researcher¢e.g.,Herscovics,1989; Kieran, 1989, 1992; Sfard, 1991, 1994)
describe a number of obstacles that can be connected directlydiffitdty in
reification as described by Sfard. For example, childiinally have difficulty in
accepting an algebraic expression as an answer; they see an asawpecific
number,a numericalproduct of a computationaloperation.The equality sign is
usuallyinterpretedasrequiring someaction rather than signifying equivalence
between two expressions.Kieran (1992) proposed that the problem with
modernalgebrais that we imposesymbolicalgebraon studentswithout taking
themthrough the stagesof rhetoricaland syncopatedalgebra.Thus, as many
educators and students have observed, studentsasftergefrom algebrawith
a feeling that they havieeentaught an abstractsystemof operationson letters
and numberswith no meaning.Herscovics(1989) describesthe situation by
stating that the students have been taught the syntaxaofjaagewithout the
semantics;in other words, they know all the rules of grammar,but do not
understandhe meaningof the words. Sfard and Kieran would very logically
arguethat this situationhasresultedfrom jumping to symbolicalgebrawithout
exploring rhetorical and syncopated algebra.

Because the students still have problems with learaiggbrain school,we
need to find new theoretical perspectives to understand this complplated-
menon.

Theoretical framework

A central question around which recent researchon learning and teaching
revolvesis how social interaction mediatesthe constructionof knowledge in
classroomsThereis researclthat hasexploredthe constructionof knowledge
in classroomsand the ways in which meaningsare socially constructedin
classroom interaction (e.g. Bergqvist & Sall®95; Edwards,1993).In the light
of current research it is clear that classroom interagiseenasa valuabletool
for learning,which should be studied from different perspectivesn order to
deepenour understandingof the practice of learningin and through social
interaction.

In examining the difficultiestudentsencounterin algebrait is necessaryo
study the teaching and learning that ocituthe classroomStudents’opportu-
nities to learn algebra during classroom lessons can be influencedabiety of
factors,including the knowledgeand skills they alreadypossesas well asthe
activitiesin which they engageduring the lesson.Teachingcontributesto the
students’learning,to the developmenbf knowledge,but it is only one of the
meansby which the students develop knowledge (Marton et al., 2003).
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Teachingcan be analysedfrom many perspectivesThe approachtaken in this
paperis to focus on featuresof teaching,and the way thesefeaturesinfluence
the learningopportunitiesfor students.The way in which algebraiccontentis
worked on during théessonmay add importantinformationaboutthe learning
opportunitiesfor students.In orderto analysethe phenomenaof the teaching
and learning processesin the classroom,a tentative theoretical model was
developed We will now explainthe structureof the model (seefigure below)
and some of its key concepts.

object of learning

collective level

‘7 learn actually
infended object sitg for encougfier lived object ot
learning

f learni ,
L enacted object
of learning

the space of
learning /variation

undegired  defired

different ways of making sense

' e LT T B B S
discourse generate of different phenomena

ts in
l eachers” individual
he lp stop

effectiveness of
communication

x

focal anavlysis

individual level us\ lementedby [ preoccupational analysis

1
pronunced attended intended interactivity flowchart

(Olteanu, 2004)

Observations of many different classes consistestityw that teachergypically
do betweenhalf and three quartersof the talking in classroomsTalk is one of
the major waysn which teachersconvey informationto studentsandit is also
one of the primary meansof controlling students’behavior.Since the teachers
do so much talking, it is importantto analyzewhat they are talking about
(Ottosson, 2000; Sfard, 1998; Sfard & Kieran, 2001), whiglansto understand
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the discursive construction of mathematicalobjects as accounting practices
(Salj6, 1997). The wordiscoursess definedby Sfard (2002) asany specificact
of communicationwhetherverbal or not, whetherwith othersor with oneself,
whethersynchronic(like in a face-to-faceconversation)or asynchronouglike
readinga book). The word communicationdenotesan activity in which one is
trying to make an interlocutor (possibly oneself) act or feel in a certain way.

The historical developmentof algebra shows that the developmentof
algebraicnotationsand symbol use was a long and difficult processthat was
basedon verbaldescriptionghat precedesyncopatedand symbolic notations.
For this reason it is important to understand how the discourse that octies in
classroomon both the collective and individual level, can generatedifferent
ways of makingsenseof different phenomende.g. sign system,algebracode,
concepts)as a componentof the object of learning (Marton et al., 2003;
Ottosson, 2000)The object of learningis formedin the classroombetweenthe
teacherand the studentsand is somethingthat can be identified from an
observer’'sperspective The term“ways of makingsense”can be usedfor the
way senses madein a discourseas well asthe way one is making sensefor
oneself,that is, in thinking (Ottosson,2000). If we seethinking as commu-
nicating, the term discourse may be substituted for knowledge, and the obtion
learning can be redefined to denote the activity of becomsiglfal participant
of a certain specialised type of discourse (Sfard, 2002).

To investigatethe variation in the different ways of making senseof the
object oflearning,it is necessaryo study the effectivenesf verbal communi-
cation. The communication is effective if it fulfils its communicative purptiss,
Is, the different utterance<f the interlocutorsevoke responseshat arein tune
with the speakers’meta-discursiveexpectations(Sfard & Kieran, 2001). The
most fundamental meta-discursive expectation of a spéait®at the conversa-
tion is coherent; that ishe respondentefersin his or her responsedo the same
thing as the speaker has been talking aboubdther words the effectivenesof
verbal communication is se@sa function of the quality of its focus. Because
the term focus is an interpretaticenceptand becauset is up to aninterpreter
to decidewhat shouldcount asa focus of a given utterance,Sfard introduced
the termdiscursivefocus with the help of threediscursivecomponentghat are
indispensabldor effective communication:a pronouncedfocus, an attended
focus and an intended focus (Sfard, 2002).

By understandinghe effectivenessof the classroomcommunicationswe
canunderstandhe possibilitiesthat are given to the studentso that he or she
can “see algebraicexpression®@sobjects” (Sfard, 1994). The possibilitiesthat
are offered in the classroom can be understood in terms of spk@gning,and
in this spacewe canidentify the words usedby an interlocutorto signal what
he or sheis talking aboutwhich is calledthe pronouncedfocus. The attended
focusrefersto what and how we are attending,looking at, listeningto and so
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forth, when speaking.Finally the intendedfocus is the interlocutor’s interpre-
tation of the pronouncednd attendedfoci and mustbe consideredalong with
them. The pronouncedfocus marksthe public (anything that is perceptually
accessible)the intendedfocusis predominantlyprivate (anythingthat is expe-
rienced), and the attended focus mediates between the two.

With the help of the threefocal componentsSfard built the focal analysis,
which we canuseto get a detailedpicture of the student’sconversation(with
anotherstudentor with the teacher)on the level of its immediatemathematical
content. This should make it possible to understanetieetivenesof commu-
nication. The effectivenessof verbal communicationis dependentupon the
degree of clarityof the discursivefocus. The focal analysisis complementedy
preoccupationahnalysis,which is directedat meta-messagemnd examinesthe
participant’s engagement in the conversation, thus posikighlighting at least
some of the reasons for communication failures (Sfard, 2002).

In a real classroomsituation the teacherobservesthe lived object of
learning, that is, the way students seegderstandand makesenseof the object
of learningwhen the lessonends and beyond. The students,as well as the
researcherpbservethe enactedobject of learning,that is, what it is possibleto
learnin a situationfrom the point of view of what is meantto be learned.The
enactedobject of learningis the spaceof variation/learningconstitutedin the
classroomFromthe teacher’sperspectivethe object of learningis the sameas
the intendedobject of learningandit is somehowrealizedin the classroomin
the form of a particularspaceof learning. This spaceof learning containsany
number of dimensions of variation addnotesthe aspectsof a situation,or the
phenomenaembeddedin that situation. From the student’s perspective,the
forming of theenactedobject of learningshouldopenup new ways of making
sense of the presentedncepts.This may be reflectedin the way in which the
studentworks with the exercisesand the questionsthat the studentasksthe
teacher. The notion of conceptdsfinedby Salj6 (1999,p. 81) as“repositories
of humansense-makingapacitiesand activities, they are sedimentsof human
experiences and simultaneously tools for action.”

By using the discoursedefined by Sfard (2002), the teachermust, as an
observer, be able to identify how the students’ discourse chahgles.teacher
deems that thehangein the student’sdiscourses developingin an undesired
direction, he or she must be able to present the enacted object of learthiag so
it can openup new possibilitiesto apply differentways of makingsenseof the
discourse to the student. Varying the presentatiotooteptsin algebraon the
basis of the threaistorical phasesof the evolution of algebraby changingthe
discourseand focusingon an effective communicationcould createsuch new
possibilities.
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Concluding remarks
Eventhough the ontological or epistemologicabssumptionf the presented
perspectives magliffer in someways, theseperspectivesan, from our point of
view, be appliedto understandhe connectionbetweenteachingand learning
algebrathat occursin the classroom.Ottosson’s(2000) suggestionto change
the term“ways of experiencing”’to “ways of makingsense”opensthe possi-
bility to analyse teaching aridarningprocesse®n both the collectiveand the
individual level. The theoreticalapproachof variationsmay be usedto empiri-
cally identify different ways in which the symbolic algebrais enactedin the
classroom. In this way we can better understand the difficulties thatutents
encounterin the reification processesSfard’sfocal analysisand the reification
theory can be applied to analysethe effectivenessof the communication
between teacher and student in terms of reification process, thastadyohow
the discourse focus levels the algebra from an operational to a structural level.
For teachers, to sustain a mathematical discourse of algebra in the classroom,
the domain of algebramustbe reflectedin ways that allow studentsto make
senseof the object of learning,seeunderlying patterns,and developtheir own
discourse.
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Artefacts — Instruments — Computers

Rudolf Strasser
Luled University of Technology

A definition of artefacts

At presentthe internationaldiscussionon artefactsmostoften concentrateon
one major type of artefact,'artefact’ is usedto simply denote information and
communicatiortechnology (ICT’), sometimest is even reducedto computers
and (hopefully appropriate)software.l will try not to follow this reductionist
approach - even if the discussion in (mathematics) educatidaidacticsoften
takes‘artefact’ in this restrictedsenseln contrastto this, the paperstartsfrom
the broaderdefinition given by Wartofsky: In the introduction to a book
presentinghis work, he defines‘artefact’ as“...anything which humanbeings
createby the transformationof nature and of themselvesthus also language,
forms of social organisationand interaction,techniquesof production, skills”;
(see Wartofsky 1979, p. xii)). Taken as wide a definition as cited, arte&dated
to teachingand learningmathematiccan be the mathematicakymbolism,ruler
and compassa probability distribution, the derivativeor integral of a function,
(scientific) journals, grades like “licentiate” or “phd-thesistyriculato control
the teaching of mathematican classroomsteststo grade students,but also
institutions like Skolverket and Institutionen for matematik.

In his text, Wartofsky offers an additional classificationof artefactsinto
three levels, which basically rests upon different uses of artefacts.He dis-
tinguishes'primary’ artefacts(thosewhich are “directly usedin the produc-
tion”) from ‘secondary’ artefacts (“used in the preservatmal transmissiorof
the acquiredskills or modesof action or praxis by which this production is
carried out”) and ‘tertiary’ artefacts (those artefacts, which “constitute a
domainin which thereis a free constructionin the imagination of rules and
operationsdifferent from thoseadoptedfor ordinary ‘this-wordly’ praxis”; see
Wartofsky, p. 202/209). Didactics (of mathematics) is matalgcernedwith the
analysisof ‘secondary’ artefactswhile mathematicgasa discipline) sometimes
seems to produce ‘tertiary’ artefacts.

The artefact which is most used in Swedish schoolsis the ‘secondary
artefact’ textbook (meant to be “... used in the preservationtr@angmissiorof
the acquiredskills or modesof action or praxis by which this production is
carried out”). Present-day ‘informatiand communicatiortechnology(ICT)’ -
like hand-heldcalculators,computers software,internet - is anotherimportant
exampleof artefactswith the whole rangeof levelsfrom primary artefactslike
Computer Aided Design (CAD) to secondamgefactslike DynamicalGeometry
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Software(*DGS”) and tertiary artefactslike computergames. ICT is normally
taken as the 'standard’ example of artefastsnetimesonly ICT is discussedas
‘artefacts’. To give some more recent examplesof ICT-artefactsrelated to
teaching andearning,one should mentionlearningin ICT-basednetworks,the
internet and distributed learning communities.

From artefacts to instruments

The row of artefacts by Wartofsky (primary/secondary/tertiary)classifies
accordingto different purposesof the tools. In line with this broad approach
and from an ergonomicand didactical researchquestion (“‘How do human
beingslearnto usemachines?”)the FrenchresearcheRabardelcameup with

an additional and helpful distinction: For analysisof (learningwith) artefacts,
it is necessary to distinguish the artefact (the tool itd&lfh an ‘instrument’,” a

mixed entity made up of both artefact-type componentsand schematic
componentghat we call utilization schemesThis mixed entity is born of both

the subject and the object” (Rabardel & Samurcay, 2001; Rabardel &

Bourmand, 2003; see also graphics below).

instrumental utilization schemes
genesis (individual/social)

artefacts <

The process,jn which artefactscome to be used by humanbeingsis called
‘instrumentalgenesis’.It is normally starting with the developmentof ‘utiliza-
tion schemes’ (ways to use the artefact) when nsersbeginto handlea new
artefact(from the artefactto the user,this is called ‘instrumentalisation’of the
artefact),while ‘instrumentation’ is the processwhere personsdevelop new
utilization schemes for given artefaceghich may not evenbeenthought of by
the creators of the artefact.

Using themathematicgdextbook asan exampleof a widely usedartefactin
teaching and learninmathematicsteadinga textbook problem,then solving it,
then controlling the solution with the 'facit’ at the end of the textbook is a
good example of such an instrumentalisation, wiekdinga textbook problem,
then deciding not to solve it, but looking the answerin the facit’ to impress
the teacher might be an excellent example of an instrumentationof the
textbook. Skolverket in its report “Lusten att lara” has offered detalfedma-
tion on the normal utilisation schemes textbooks are us8avedishclassrooms
(see Skolverket 2003p. 18f). The sectionon “Grundskolanssenaredr” gives
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the details*Modellen utgérsav genomgangbland, enskilt arbetei boken och
diagnos,alternativt prov. Lararengar runt och hjalper elevernaindividuellt™
(loc.cit., p. 20). The textot only showsthe utmostimportanceof the textbook
in Swedish classrooms,it also identifies the basic utilisation scheme of
textbooks.

In line with the ideaof secondaryartefactsa whole variety of instruments
was andstill is developedto facilitate teachingand learningmathematicsArte-
facts together with utilization schemes are created to ‘repres@atiiematicsto
study these representations (instruments) and to learn about mathematics.

Information and communication technology “ICT”

More recently,a new type of 'artefact’ appeared.computersand (sometimes
appropriate)software. This new type of artefactcan be taken as a dynamical
add-onor a real alternativeto textbooks— it is the type of tool mostwidely

discussedand researchedn the didacticsof mathematicslf one doesnot only

look into the featuresyhich are offered by the computerand the software,but

also in the way, this tool is used, this enfitg into the conceptof ‘instrument’.

To put it the other way round: For a didactical analysis,there is one general
lessonto be learnedimmediatelyfrom our understandingof instruments:For a

didactical analysis, one has to look into the softwareitnesein orderto fully

understand the instrument ICT.

If | follow a recent phd-thesis(Samuelsson2003), in Sweden,’évning’-
software seems to be the predominant instrurteedeliver existing knowledge,
especially by using ’drill & practice’ programs. Nowadays in Sweden,d€Ems
not to be usedinnovatively. It is often simply usedas a meansto supportan
existing way of ‘individualised’ teaching and learning.

To illustrate my point on artefacts,| will now concentrateon Dynamical
GeometrySoftware(often called DGS). This type of software,theseartefacts,
can be characterisedby threefeaturespnamelydrag-modemacrosand locus of
points. | will onlylook into the drag-mode(for researclon macrosseeKadunz,
2002; for researchon locus of points seeJahn,2002),so | first give a standard
example for this DGS-featurasing a well-known geometricalstatementif you
construct the midpoints B, G and H of the sidesof a quadrilateralABCD and
join themto an “inner” quadrilateralEFGH (the ‘Varignon’-quadrilateral),you
will seethat this inner quadrilaterais a parallelogramls this correctfor every
quadrilateral?

' “This teaching model consists of sometimes a presentation, then individual work with the
textbook, and a diagnosis or a test. The teacher is helping the students individually.”
geditors’ translation).

For examples see ‘Cabri-géomeétre’ at http://www.cabri.com/ or ‘Geometer’s Sketchpad’ at
http://www.keypress.com/catalog/products/software/Prod_GSP.html
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Draggingthe point A in a DGS, you soon get the idea, that the Varignon-
quadrilateral is always a parallelogram, even if ABGSDot convex,evenif two
opposite sides of it intersect (see drawings further down).

| will not add aproof of this geometricaltatementbut hopeto haveillustrated
the drag-modeasthe mostsalientfeatureof DGS:the drag-modepreserveghe
geometricalrelationsused in the construction (here: E, F, G, and H being
midpointsof the respectivesegmentof quadrilateralABCD) — even when an
initial point of the constructionis changedby movingit around (here: moving
point A, which remainsn extremity of the quadrilateral) Researchon teaching
and learninggeometrytook the ‘drag-mode’asa mosthelpful learningtool in
geometry.lt is often even taken as the characteristicfeature of Dynamical
Geometry Software (DGS), as a characteristic feature of the artefact DGS.

Arzarello and his colleaguesin a detailed analysis presenteda whole
classification of different utilization schemesof this software feature (see
Arzarello, 2002p. 67). They identify six utilisation schemeg“wandering drag-
ging”, “guided dragging”,“dummy locusdragging”, “line dragging”, “linked
dragging” and the “dragging test”), givdescriptionsfor examplesseebelow)
and illustrate often used‘utilization schemesof DGS by a detailed analysisof
tasks.

The following task and its solution was presentedby the samegroup and
analysed in a different publication (Arzarello et al., 1998).

Task:

a) Draw a quadrilateral ABCD and the mid-perpendiculars of its sides!
b) Try to find out, if it is possible to make the four mid-perpendiculars meet if one
point!

c) If this is possible, find out when and why!

Taska) would be easilysolvedby the drawing on the left above. Dragging of
point B soon shows that task b) has a positive answer thardtawing on the
right (using the ‘trace’ feature of the software) indicatesy point B hasto be
dragged to preserve the uniqueness of the intersections.
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Arzarello and colleaguesdescribethis prototypical solution processin more
detail, showingus typical utilization scheme®f DGS: At first, the studentsuse
“wandering dragging” to find out about an answerto the task b). They are
“moving the basicpoints on the screenrandomly,without a plan, in orderto
discover interesting configurations magularitiesin the drawings” (Arzarello et
al., 2002, p. 67). This ia ‘utilisation scheme’ which from the very startof DGS
was mentioned by thsoftwaredesignersof DGS. It was the basicpedagogical
legitimisation for the use of DGS in teaching dedrninggeometry— andit can
be illustrated by the move from the first to the second drawing above.

The move from the second to the third drawiraga different quality: Here,
the usersdevelop an innovative ‘utilization scheme’, which the software
designersnever had planned: They are “moving a basic point so that the
drawing keeps a discoverguloperty;the point which is movedfollows a path,
even if the users do nogalisethis: the locusis not visible and doesnot 'speak’
to the students,who do not always realise that they are dragging along a
locus”, they are using ‘dummy locusdragging’ (for the citation and the name
‘dummy locus dragging’ see again Arzarello et al., 2002, p. 67).

Following Arzarello et al., the users'normally’ seemto add a third ‘utiliza-
tion scheme’ called “dragging test” (“moving dragable ... points in ordesee
whether the drawing keeps the initial properties. If so, therfigure passeshe
test; if not, the drawing was not constructed according to the geometric
propertiesyou wantedit to have”; descriptionloc.cit.). This often is preceded
by “linked dragging”, where the dragging poistlinked to an object,which is
thought to conserve theantedquality (in our example:linking the point B to
an appropriate circle).

In the text of Arzarello et al., the different utilisation schemesthe different
drag modesseemoften to be appliedin a clear order: wanderingdragging is
followed by dummylocusdragging,which hopefully leadsto a draggingtest.
With this standardchain of utilisation schemataywe seea more generalutiliza-
tion scheme for the exploration and argumentation em@vgaderingdragging
— dummy locus dragging draggingtest),which can be helpful in construction
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and proof tasksin geometrywhen Dynamical Geometry Software (DGS) is

available.The above-mentionedexts (Jahn2002 and Kadunz2002) can also

be read as researchon (possible)utilisation schemesof macrosand locus of

points when Dynamical GeometrySoftwareis available— thus showing how

helpful the idea of studying ‘instruments’ is. Heavily using the ‘instrument’

concept, Artigue (2002) describesresearchon Computer Algebra Systems
(CAS) and gives details on utilisation schemesbservedin Frenchclassrooms
using CAS.

Conclusion
What has been presented can be condensed into two basic messages:

* Fromthe conceptof ‘instrument’, we can learnthat — for research
into information and communication technology — it is not endwgh
study the features of the tool. Only research th®oways the tool is
used, a study of the ‘utilization schemes’will fully inform the
didactician. The cryor userstudiesoften heardwhen new software
for computer use isitroducedsomehowsimplerrepresentshe same
need. To state this more general: researching instrurfegrtesaching
and learning mathematics — like information technologyextbooks
— shouldinclude the identification and study of utilisation schemes
to fully understand the role of the instrument under study.

» For an individual piece of softwareor a generictype of software,
such user studieswill bring to light utilisation schemeswhich in
generalhave not been foreseenby the software developer. The
‘instrumentalgenesis’will createinnovative ways to use the tool
(computer andsoftware),which canbe very helpful in teachingand
learning mathematics.The utilisation schemesfound by empirical
studiescan enrichthe picture,which the didactician,the researcher,
has of the process of teaching and learning mathematics.
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What Mathematical Ideas Do Pupils and
Teachers Use when Solving a Rich Problem?

Eva Taflin, Kerstin Hagland, Rolf Hedrén
Hogskolan Dalarna

This reportis a part of a bigger study where pupils and teachersare working
with rich problems.In this article, built on a social constructivist theory of
learning, we will present whahathematicaldeaspupils and teachersusewhen
solving a mathematically rich problem We will also show how teachers
influence their pupils with their own mathematicalideas and how teachers
follow up their pupils' ideas. The data consistsof videotaped lessonsand
interviews,and of pupils'solutions.As a resultfrom our study, we have found
that
« The teachers' own mathematical ideas and solution methods direct
their pupils
» The teachers sometimes have difficulties producing feedback
building on their pupils' solutions.

» The teachers seldom make generalisations out of their pupils’
solutions.

Background of the project

Social constructivism

The thoughts and expresskuthis paperare,to a greatextent,basedon social
constructivismwhich hascharacterisedhe latest Swedishsyllabi (seeHedrén,
2000). Especially, the theory that Jaworski (1994) createsby the help of
grounded theory (the teachingtriad) points to the teacher'sthree fields of
responsibility in creating a mathematicéssroomthe managemenof learning,
the sensitivity to pupils and the mathematical challenge.

Problem solving

In the latest Swedish syllabus for mathematicsin the compulsory school
(Skolverket, 2000)it is written amongother things: "To makethe pupil ableto
practice mathematics, a balance between cregiredlemsolving activitiesand
knowledgeabout mathematicatonceptsmethodsand forms of representation
are called for." (Ibidp.2, our translation.)In both the nationaland international
researchpupils’ strategiesn mathematicaproblem solving, and their ability to
cope with mathematicaproblems,have beenarich field of researcHor quite a
long time. In our opinion, however,the mathematicaideas that teachersand
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pupils areworking with in problemsolving activities and the occasionswhen
the pupils seem to learn, have been much less researched.

We have usedother researchersideasand our own experiencedo define
somecriteria for a problemto be, in our opinion, classifiedas a rich problem.
These criteria can be found e. g. in Taflin (2003).

Mathematical idea

The mathematicaldeain a problemasan essentiafactor in problemsolving is

stressedboth by Schoenfeld(1991) and by Silver & Cai (1996). Schoenfeld
discussesesourcesasone of four importantpartsof knowledgefor successn

problemsolving. As resourceshe assignsintuitive and informal knowledge in

the actualfield, facts, algorithmic proceduresyoutine proceduresthat are no

algorithms,and understandingf specialrulesin force in the problemdomain.
We see these as examples of essential mathematical ideas.

Aim and questions

In this study we will try to describesomeof the mathematicaideasthat four
teachersand their pupils are working with and giving expressionto in their
work with a rich problem. Our questions are:

 What mathematical ideas do teachers and pupils use when working
with a mathematically rich problem?

* How do teachers' mathematical ideas influence their pupils?
* How do teachers follow up their pupils' mathematical ideas?

Method

This study is a part of a project called RIMA. \&ie=following four classedrom
two schoolsand their four teachersduring the schoolyears7, 8, and 9. During
thesethreeyears,the pupils work with ten rich problemsin all. The problems
have beerchosenin co-operationwith the participatingteachersThe teachers
have beeninformedaboutthe conceptrich problemsand are acquaintedwith
our criteriafor theseproblems.Researcherand teacheraneetbefore and after
eachproblemsolving sessionto exchangeexperiencesand observationsmade
during the problem solving processand to discussthe next problem. The
teachersindependentlydesign their teaching with the rich problems.On all
occasions, they have chosen to use at least one lesson for the problem.

Methods to gather data

The teachers were interviewed befared after the lesson.The problemsolving

session was video- and audiotape recorded. The teamdreiesda tape-recorder
with a small microphone during the lesson. The pupils were interviewed

individually in one schoolandin groupsin the other school. Theseinterviews

were video- and audiotaperecorded.The pupils’ solutionswere collectedand

examined in both schools. The problem tiles are shown below.
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You lay a pattern with the help of quadratic tiles, dark and pale.
The pattern looks like this:

Figure 1 Figure 2 Figure 3

a) How many tiles are there in figure 5?

How many of them are pale and how many dark?
b) How many dark and pale tiles respectively are there in figure 15?
¢) How many dark and pale tiles respectively are there in figure 1007?
d) How many dark and pale tiles respectively are there in figRire
e) Make a similar problem. Solve it.

(The problem has been shortened a little here.)

The problem is a pattern problem, a type of problems leading to an inductive reaso-
ning, an attempt to generalise (often expressed as a formula wieerecluded).

The solution is based on observations that should lead to the discovery of mathe-
matical patterns.

Result with comments

In this section, we account for pupils’ solutions and conversations between the

pupils and their teachers during the lesson, as well as interviews after the lesson
when the pupils recalled how they have been working with the problem together

with their peers and their teachers.

Short account of the lessons

In the introduction of the lesson, the teachers introduced the problem to their pupils.
Three of the four teachers told their pupils what mathematical ideas they should
work with. They also gave clues to strategies that their pupils could use to solve the
problem. The fourth teacher did not discuss what mathematics her pupils could use
or learn in any way, she did not give any clues in this phase.

- Teacher 1 placed and xon a par and gave her pupils the clue to think
how they have been taught to think, when there isiartheir books.
Teacher 2 told his pupils to look for patterns. He gave his pupils the clue
to examine how the figures developed, figure by figure, and try to find a
pattern that they could use.
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- Teacher3 connectedto the problemin algebra,which his pupils had
beenengagedin, and mentionedthat it could be useful when they
solved the problem.

- Teacherd gaveno information about the included mathematicsand
no clues.

During the problemsolving processthe pupils struggledwith the problemand
solved it fully or partly, and discussedaith eachotherin smallgroupsor with
their teacher.All teachersgave individual guidance,and when they worked
with their pupils they madthe suggestionto makea table. On someoccasions,
the teacherusedthe blackboardto give informationto all pupils at the same
time.

The lessonssometimedinishedwith an accountof pupils' solutionsat the
blackboard, in some cases with the teacher's comments.

Mathematical ideas

In this study we have started from mathematicalideas as proceduresand
conceptsin different mathematicafields and sortedthe pupils' solutionswith
this in mind.

Count Squares

Example 1

Pupil | cut out such squares that we counted afterwards ... These are
great!

Teacher  Well, you can count afterwards then. How did you do it then? ...
Which one are you working on?

Example 2

Pupil We need a bigger paper if we'll be able to paint figure 100.
Teacher  Will you paint it?

Pupil Yes, we painted figure 15, didn't we?

Commentsin examplel, the pupils have drawn the figures and cut out all
squares andountedthemafterwards.In example2 they have found a method
(to paint) which works and which they want to repeat. The pupils do not
account for a solution to the problem.

Recursion

Example 3

Pupil Thenit increaseon the white ones,and then the black onesyou
add four each time.

Teacher From what you had before?

Pupil Yes.
Teacher So to solve figure fifteen you must know the result of figure
fourteen?
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Pupil | don't know, we were counting, weren't we!

Teacher But if you add fourall the time, it meansto be ableto calculateto
fifteen you haveto know what fourteenis becauseyou have to
know where you add four to, don't you?

Thusto calculatefigure one hundredyou needto know what is
the calculation to ninetynine. Then you have to calcudiitef the

time to ninetynine.

Pupil That's the only way | know.
Example 4
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(Text in the figure: * Dark tiles increase with 4 per figure. * The number of Blesause
there are 9 tiles in figure 1 you add 7 to get as many as in figure 2.)

Commentsin example3, the pupil countedaheadfigure by figure and had to
know the number of tiles in the preceding figure to find lmav manythereare
in the next one.In example4, the pupil hasmadea completetable and shows
the connection between the numbers.

Mathematical patterns found with the help of area

Herewe found solutionsbuilding on a picture, visualisationswhere the pupils
form associationsvith the conceptof area.Somepupils have donethis by first
calculating the number of pale tiles, tin@er square.They havethen calculated
the numberof dark tiles asa framearound the inner square.In their computa-
tions, they have often used multiplication. It has been done in different ways:

a) They have calculated tile by tile without partitioning the sides.

b) They have calculated four times the sidéhefinner squareand then
added the four tiles in the corners.

c) They have calculatedfour times one tile more than the side of the
inner square.

d) They have calculated two sides as long as the side ofriteesquare
and two sides as two tiles longer than the side of the inner square.

22¢



Papers

e) They have calculatedone sidetwo tiles longer than the side of the
inner square,two sidesone tile longer than the side of the inner
square and one side as long as the side of the inner square.

Example 5

Pupil Dark onesyou can take ... if it is figure 100 you add 2 on the
upper edge and 1Qdlus 101 plus 100, 102 plus 101 plus 101 plus
100.

CommentsThe pupils have usedtwo main types of areacomputationto find
out the number of dark tiles. Either they have sbamthe dark tiles makeup a
frame around th@ale ones,or they have calculatedthe numberof dark tiles as
the differencebetweenthe total amountof tiles and the pale ones.They have
used the operations addition and multiplication.

Mathematical patterns found with the help of a table
During the problemsolving phaseall the teacherggave their pupils the hint to
make a table.

Example 6

Pupil 1 Then she [the teachermadeup such a table, at the blackboard
that we should draw, fill in and continue.

Interviewer Mm. Did it help you in some way?

All three Yes.

Pupil 2 It did.

Interviewer Mm. You had not made a table yourselves?

Pupil 2 [Shakes her head]

Algebraic Expressions withx and n

Whatn might stand for caused many pupils a lot of trouble. Many pinpéd to
find a formulafor the paletiles,n x n. They could alsoapproacha formulafor
the total amount of tilesp 2) x (n + 2).

Example 7

Pupil Thus,n as an equation.

Teacher Or as an algebraic expression. That is to say that you can eipress
in words, too, if you ask me to takiee digit of the figure, is it that

one.

Pupil Can you write the number aghen?

Teacher  That's what | mean, because it's the digit of the figure.
Pupil Then you can write an equation like this, you knaw, 2.
Teacher But it was not -2, was it?

Pupil n+2..
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Example 8

Teacher No, you havea formulathat you can calculatemainly what figure
you want to. Then you exchangethe digit for n. Instead of
calculating the 58th figure, you calculate the nth figure.

Pupil Thenth?

Teacher  The nth figure, the nth figure is mathematicaland it meansany
figure.

Pupil Then we shall only use that one?

Teacher No, you write n. Then mathematicianknow that then they can
use this formula for any figure they want to.

Pupil Then you have to know a little.

Example 9

Pupil What do you meam?

Teacher Whichever, any figure.

Pupil Then we use it, then we use 0!

Example 10

Pupil Er, er, yes, buthus,we startedwith to, to calculatelike this, soto

say, the pale onesfirst and call them x, and the dark ones were
only as many as they were. /.../
Thex stands for that the pale tiles, or, how many the pale tiles are.

Comments: In example 7, the pupil connettgith the concepof equation,but
still he seemdo think in generalterms.In example8 the teacherexplainsthat
the numberis exchangedfor n which meansthe nth figure and that n and
formula go together.In example9 the teacherlets the pupils choosen at will,
and then they choose to puequal to 0. In example 18,is used as aark,asa
unit, 4 + 12 means 4 pale and #iark tiles, which is a wrong theory, if you are
searching for a general expression.

Discussion

What mathematical ideas do pupils make use of?

The mathematicalconcept that the pupils were mainly working with was
pattern. During their search for connections between the amount ddniddse
number of the figure, the pupils made use of many different strategies.

The pupils that drew figuresand cut asin examplesl and 2, were working
with a strategythat was not very successful.The pupils wanted to continue
with their strategyto work out all figures. Becausethey had worked out 15,
they would also work out 100. The strategy guided the work.

Thereare manydifferent variantsof how the pupils worked with recursion
methodswhen they found out the numberof tiles in all figures precedingthe
figure askedfor. In example3 the pupils conducteda line of argument,and in
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example 4 they used a table as a strategy. None of theamasmmtedfor leads
up to a generalexpressionThe pupil who had arrangeda table found several
connections, amongthersthat the numberof dark tiles increasesvith four for
every increase in figure number.

Some pupildooked upon the connectionbetweenthe total amountof tiles
and the amountof paletiles asareasand could then find the connectionwith
the numberof the figure. Other pupils saw the amountof paletiles asareaand
the amountof tiles in the frameasa surroundingarea.In this study, we found
five different variantsof the calculationof frame area.This strategy,to think
geometrically to find an arithmetmonnection,was a successfuktrategyfor the
pupils. Many pupils also found a general expression with this strategy.

In this study, the symbol n was unknown to many pupils, for instancein
examplesr, 8, 9, and 10. In this case,the problem might function as an intro-
duction to algebraandto different ways to use letters as symbols.The pupils
can see how to useandx in different ways.

In this problem,the pupils were mainly working with arithmetic,and some
got on to algebraicexpressionsThe pupils that used the area concept to
calculatethe numberof tiles also arrived at generalexpressionsMany pupils
showedan instanceof conceptualknowledge as well as of proceduralknow-
ledge, as Hiebert (1986) describmathematicaldeas.The pupils alsoshowedif
they could executeroutine proceduresand use specialconceptslike area,as
describedby Schoenfeld(1985). The problemturnedout to hold a lot of diffe-
rent mathematical ideas that teachers and pupils could discover and work out.

What mathematical ideas do teachersuse when working with a mathema-
tically rich problem, and how do the teachers' ideas influence their pupils?
Already in the introduction of the lessonthe teachergyave cluesthat allowed
their pupils into fixed solution strategies. It would have bewneinterestingto
understanchow their pupils would haveworked if they had not been piloted.
This behaviourcannot be characterisedas mathematicallychallengingin the
way Jaworski (1994) and Lester (1985) call attention to as the teacher’s task.

Whenthe pupils were supposedto interpretand understandthe problem,
mostof the teacherschoseto give suggestionof how to solvethe problemas
well. The teacherssuggestionsarerepeatedn the pupils’ solutionswhen they
arrangetablesand calculatewith recursion.According to Lester (1985), the
teacherought to answertheir pupils’' questionsand only make sure that the
pupils have understoodwhat to do. We cannotjudge if the pupils themselves
had obtained the&leato makea table,if they had not beengiven that piece of
advice from their teachers.

The pupils that solved the problem with the help of the aosaeptdid not
seem to have obtained the idea as a suggestion from their teachers.
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All teachers suggested that their pupils should arrarigble,three of themdid
so in the introduction of the problem, and the fourth did so when walking
aroundduring the lesson.The pupils in example6 told us that they obtained
that ideafrom their teacherwho drew the table on the blackboard.The pupils
were helped in the righihaseaccordingto Lester'ssuggestion(1985).We can
also hear how the pupils are constructing their own knowledtiethe help of
the language and their peers in accordance withetmaingtheoriesthat social
constructivism describes.

Oneteachersuggestechow the pupils shouldthink when calculatingwith
X. For pupils working withequationswherex is a fixed number,it might cause
confusion, when they see that it is about exchangiiog differentintegers, i.e.
to look upon x as a variable.In their textbook, the introductory algebrawith
equationsfocuseson what the sign of equality standsfor, and every x hasa
fixed value.

One teacher asked the pupils to think akelgebrathat they had just been
working with. It might be a clue, but it might also misleadthe pupils if the
algebra tasks in the book only focus on working with letters as fixed integers.

One teacherturned his pupils on to thinking about patternsand finding
connections.In our results,we found that pupils find patternsboth with the
help of tables and the area concept.

How do teachers follow up her/his pupils’ mathematical ideas?

At the follow-up of her pupils’ ideas,the teacherhasa possibility to challenge
her pupils mathematically as Jaworski describes it irtrigd. In examplesl and
2 the pupils show how they get stucksiow and long-windedmethodswhich
do not lead to generalexpressionsThe teacherobserveshow her pupils are
working but lets them continue.

In example7, the teacherfollows up her pupils’ own thoughts, and the
pupils themselveadvancetowardsthe generalexpressionsWe concludethis
dialogue as good examples of mathematical challenges, as describemadrgki
(1994).
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Mathematism and the Irrelevance
of the Research Industry
A Postmodern LIB-free LAB-based Approach
to Our Language of Prediction

Allan Tarp
Grenaa International Baccalaureate

Mathematics education research increases togetiierthe problemsit studies.
This irrelevance-paradogan be solvedby using a postmodernscepticalLAB-
research to weed out LIB-based mathematism coming from the library intorder
reconstructa LAB-based mathematicscoming from the laboratory. Replacing
indoctrinationin modernset-basednathematisnwith educationin Kronecker-
Russellmultiplicity-basedmathematicgurns out to be a genuine ‘Cinderella-
difference’ making a difference in the classroom.

Theirrelevance paradox
All over the world there seems to be a crisis in mathematics education:

Thereare strongindicationsof increasingjustification and enrolmentproblems
concerning mathematicsand physics education, as a rather international
phenomenonDuring recentyears,reportsof a significantdeclinein enrolments
to tertiary level educatiomvolving mathematicand physicshaveappearedrom

many partsof the world, including many countriesin Europe,the US, Australia,
and Japan.Also at the primary and secondaryschool levels mathematicsand
physics inmany countriesnow seemto be receivinglessinterestand motivation
than before amongst many categories of pupils. (Jensen et al, 1998, p. 15)

In Japan Yukihiko Namikawa asks ‘can college mathematics in Japan survive?’

Actually the total educationsystemin Japanis in crisis, and so is the caseof

mathematiceducationat universities.(..) we arefacing a remarkabledecline of

mathematicaknowledgeand ability of fresh students.(..) In April 1994, we

establishedh working groupin the MathematicalSociety of Japanto overcome
this crisis. (..) So far wenadeseveralinvestigationdo clarify the situations.The
results were much more disastrousthan imagined before start and still the
problems are aggravating. (Namikawa in ICME9, 2000, p. 94)

In Denmarkproposalshave beenmadeto removepre-calculusasa compulsory
subject: In their suggestions for a reform of the Danish upper secoRdpgra-
tion High Schoolthe teacherunion writes that Danishmustbe strengthenedo

improve the student’s ability to write and read; that English rhestompulsory
and so must gaecondforeign language;and that all studentsmusthave a basic
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competencein mathematicsput not all studentsneed to take an exam in
mathematics. Mogens Niss has formulated a ‘relevance paradox’

The discrepancpetweenthe objectivesocial significanceof mathematicandits
subjectiveinvisibility constitutesone form of what the author often calls the
relevance paraddformed by the simultaneousbjectiverelevanceand subjective
irrelevance of mathematics. (Niss in Biehler et al, 1994, p. 371).

The 10" International Congress on Mathemati€alucationin 2004 showsthat
research in mathematieslucationhasbeengoing on for almosthalf a century.
On this backgroundl would like to supplementhis ‘relevanceparadox’ with
an ‘irrelevance paradox’ or ‘inflation paradox’: ‘the output of mathemaaths-
cationresearchincreasesogetherwith the problemsit studies- indicating that
the research in mathematics education is irrelevant to mathematics education’.

A methodology:

I nstitutional scepticism, sceptical LIB-free L AB-research

To get an answerto the ‘irrelevance paradox’ we obviously have to use a
counter-methodologyHistorically researchoriginatedas bottom-up 'LAB-LIB
research’ where the LIB-statementsof the library are induced from and
validatedby reliable LAB-data from the laboratory. However the word-based
‘LIB-research’ has createda ‘LIB-LAB war’ or ‘science-war’ exemplifiedby
‘Sokal’s bluff’ or by the ‘number&word-paradox’:Placedbetweena ruler and
a dictionary a thing can point to a numberbut not to a word, so a thing can
falsify a number-statemenn the laboratorybut not a word-statementn the
library; thus numbersare reliable LAB-data able to carry research,whereas
words carry interpretations, which presented as resdmobmesseduction- to
be lifted by thecounter-seductiorf scepticalLIB-free LAB-researchreplacing
LIB-words with LAB-words being validated by being, not ‘truth’, but
‘Cinderella-differences’ making a difference. (Tarp, 2003)

The inflation in today’s LIB-researchcomesfrom library cells inhabited by
personswith little or no practical classroomexperiencewhich remindsof the
production of scholastic scriptures in medieval monasteries. So a [p@ueer-
methodology could be inspired lmpunter-scholasticisras e.g.the institutional
scepticismof the enlightenmentas it was implementedin its two democracies,
the Americanin the form of pragmatismsymbolicinteractionismand grounded
theory, and the French in the formmdst-structuralisnand post-modernism.In
America Blumer talks about practical experience,symbolic interactionismand
research:

I merely wish to reassert here that current desigfiysroper’ researctprocedure
do not encourageor providefor the developmenbf firsthand acquaintancevith

the sphereof life under study. Moreover,the scholarwho lacks that firsthand
familiarity is highly unlikely to recognizethat he is missinganything.Not being
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aware of the knowledge that would come from firsthand acquaintance, headoes
know that he is missingthat knowledge (..) Respecthe natureof the empirical
world and organize eethodologicaktanceto reflect that respect.This is what|
think symbolic interactionismstrives to do. (..) Sociological thought rarely
recognizes or treats human societies as composadiatiuals who haveselves.
Insteadthey assumenumanbeingsto be merely organismswith somekind of
organization, responding to forces which play ugwm. (Blumer, 1998, pp. 37-

38, 60, 83)

America still hagts first republicwhereasFrancenow hasits fifth republic. The
Americansettlersemigratedto avoid the feudal institutions of Europe and to
install ‘freedomunderGod’. So what Foucault calls ‘pastoral power’ was not
present in America; but very much present both inside Francaranddit, and
several revolutions had to be fought forcing Erenchrepublicto organisethe
state as a military camp where French philosophershas developeda special
sensitivity towards any attempt to overthrow the democracy of ‘la Republique’.

Thus the French institutiongtepticismis quite different from the American
by turningthe questionof representatiorupsidedown and focusingupon, not
how outside structure installs internal concepts,but how internal concepts
install outsidestructure;and how words can be usedascounter-enlightenment
to patronise and ‘clientify’ people by installing pastoral power.

Derrida calls the belief that words representthe world for ‘logocentrism’.
Lyotard defines modern as ‘any science that legitimates itself with refei@mce
metadiscourse’;and postmodern as ‘incredulity towards metanarratives’
(Lyotard, 1984, pp. xxiii-xxiv). Foucault describes pastoral power:

The modernWesternstatehasintegratedn a new political shapean old power
technique which originated in Christian institutions. ¢&# this powertechnique
the pastoralpower. (..) It was no longer a questionof leading peopleto their

salvationin the next world, but rather ensuringit in this world. And in this

context, the word salvationtakeson different meanings:health, well-being (..)

And this implies that power of pastoraltype, which over centuries(..) had been
linked to a defined religious institution, suddenly spreatinto the whole social
body; it found supportin a multitude of institutions (..) those of the family,

medicine, psychiatry, education, amchployers(Foucaultin Dreyfuset al, 1982,
pp. 213, 215)

In this way Foucault opens oeyesto the salvationpromiseof the generalised
church: ‘You are un-saved, un-educated;social,un-healthy!But do not fear,
for we thesaved,educatedsocial,healthywill cureyou. All you haveto do is:
repentand cometo our institution, i.e. the church,the school, the correction
centre, the hospital, and do exactly what we tell you'.

So accordingto Foucaultpastoralpower comesfrom words installing an
abnormality anda normalizinginstitution to cure this abnormalitythrough new
words installing a new abnormality etc. (Foucault 1995). Tthagpastoralword
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‘educate’ installs the ‘un-educated’to be ‘cured’ by the institution ‘educa-
tion’; failing its ‘cure’ it is ‘cured’ by the institution ‘research’installing new
‘scientific’ words as‘competence’installing the ‘in-competent’ to be ‘cured’
by theinstitution ‘competencedevelopment’;failing its ‘cure’ it is againbeing
‘cured’ by new ‘research’ installing new ‘scientific’ words etc.

Thuspastoralpower is installed by a self-supportingtop-down LIB-LAB-
industry of researchand educationusing self-created_LAB-problemsto invent
new ‘scientific’ LIB-words that are exported to the LAB through master
educated inspectors creating new problems funding new research etc.

To increaseits productivity the LIB has replacedverb-basedwords as
‘educate’ withwordsthat arenot verb-basedsuchas‘competence’.Sowhere
the ‘clients’ themselvesknew when they were ‘educating’ themselvesor
others,they do not know when they are ‘competencing’themselvesr others,
only the pastorsknow — in full accordancewith the view of the inventor of
pastoralpower, Plato, arguing that the democracyof the sophistsshould be
replaced by the autocracy of the ‘philo-sopists’ educated at Plato’s academy.

By its distinction betweenwords and numberssceptical LIB-free LAB-
researchis inspired by the French postmodernscepticism by saying that
‘postmodernismmeansinstitutional scepticismtowards the pastoral power of
words’; and by the ancient Greek sophists always distinguishing between
necessityand choice,betweennaturaland political correctnesshetweenlogos
and nomos, according to the tywoerequisitef democraticdecisionsinforma-
tion and debate. Thus Plato’s half brother the sophist Antifon writes:

Correctnessneansnot breakingany law in your own country. So the most
advantageouway to be correctis to follow the correctlaws in the presenceof

witnessesandto follow nature’slaws whenalone.For the commandof the law

follows from arbitrarinessand the commandof naturefollows from necessity.
The commandof the law is only a decisionwithout rootsin nature,whereasthe

command of nature has grown from nature itself not depermfiragy decisions.
(Antifon in Haastrup et al 1984: 82, my tranlation).

By transformingseductionback into interpretationscepticismtransformsthe
library from a hall of fact to a hall of fiction to draw inspirationfrom, especially
from the taleghat have beenvalidatedby surviving through countlessgenera-
tions, the fairy tales.Hence the preferredinterpretationgenre in institutional
scepticism is the fairytale. Grounded theasescategorised_AB-data for axial
‘fairytale-coding’. Sceptical LIB-free LAB-researchlooks into institutional
LAB-texts to replaceopponentLIB-words with proponentLAB-words found
by discoveringforgotten or unnoticedalternativesat differenttimesand places
inspired by the genealogyand archaeologyof Foucault; and by inventing
alternatives using sociological imagination inspired by Mills (1959).
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The aim of sceptical LIB-free AB-researchis not to extendthe existing seduc-
tion of the library, so no systematic referencéhmexisting ‘research’literature
takes place. The aim is to solve LAB-problems by searchingfor hidden
Cinderella-differences the LAB, i.e. by 1) identifying the pastoralLIB-word
installing the problem 2) renamingthe LIB-word to a LAB-word through
discoveryand imagination,3) testingthe LAB-word to seeif it is a Cinderella-
differencesmaking a difference,and 4) publish the alternativeso the problem
can be decreased instead of increased.

Mathematics and mathematism

Mathematics education is an institution instituted to cure ‘mathematical
uneducated-nessNot being verb-based'mathematics’is a LIB-word to be
translatedinto a verb-basedLAB-word by observingwhat goes on in the
laboratoryof mathematiceducationthe classroomThe first day of secondary
school we witness a ‘fraction test’ as e.g.:

The teacher The students

Welcome to secondary School! 1/2 + 2/3 = (1+2)/(2+3) = 3/5

What is 1/2 + 2/3?

No. The correct answer is: But 1/2 of 2 cokes+ 2/3 of 3 cokesis
1/2 +2/3=3/6+4/6 =7/6 3/5 of 5 cokes!How canit be 7 cokes

out of 6 cokes?

If you want to pass the exam then
1/2 + 2/3=7/6!

Apparently we have a ‘fraction-paradox’ in the mathematics classroom:

Inside the classroom| 20/100 + 10/100 |=30/100

20% + 10% = 30%

Outside the classroo| 20% + 10% = 32% in the case of compound interg
e.g. in the laboratory or = b% (10<b<20) in the case of the

total average

20% of 300 + 10% of 300 = (20%+10%) of 300 = 30% of 300 since the
commontotal 300 can be put outside a parenthesisBut the fraction-paradox
shows that this is not always the ca&@20/100 = 20%, but no general rule stngt
20%+10% = 30% or 20/100+10/100 = 30/100.

Sincea part of mathematicg€annot be validated outside the classroomwe
can distinguish between ‘mathematics’, which sceencethat can be validated
in the laboratory, and ‘mathematism’,which is a doctrine, an ideology, a
scholasticism, that cannot be validated in the laboratory.
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This givesa possibleanswerto the irrelevanceparadox:What is disguisedas
‘education in mathematicsis really indoctrinationin ‘mathematism’teaching
‘killer-mathematics’only existing inside classroomswhereit kills the relevance
of mathematics.

As validation a killer-free LIB-free LAB-mathematicsmust be uncovered
through a combinationof conceptarchaeologyand imaginationand testedin
the laboratory of learning, i.e. the classroom.

Fractionsand sets- LIB-wordsor LAB-words?

In the laboratorywe talk about ‘fractions of ase.g.2/3 of 6. The textbook
however talks about plain ‘fractions’ as e.g. 2/3. To see if this is a LIB-atoad
LAB-word we look at its definition:

The set Q of rational numbers is definechaetof equivalencesetsin a product
set of two sets of [sets of equivalence se@pnoductsetof two setsof [setsof
equivalence sets in@roductsetof two setsof [Peano-numbers]]jsuchthat the
number(a,b)is equivalentto the number(c,d) if a*d = b*c, which makese.g.
(2,4) and (3,6) represent then same rational number. (Seexdbgokin modern
mathematics, e.g. Griffith et al., 1970)

Since fractions are defined as examplesefs’ the questionis whether‘set’ is
aLIB-word or a LAB-word. To separatel|B-math from LAB-math we travel
back in time in the mathematicdaboratory. As to the prospectsfor the en-
lightenment eighteenth century, Morris Kline writes:

The enormousseventeenth-centurgdvancesn algebra,analytic geometry,and

the calculus;the heavyinvolvementof mathematicsn science,which provided

deep and intriguingrroblems;the excitementgeneratedy Newton'sastonishing
successesn celestial mechanics;and the improvementin communications
providedby the academiesndjournalsall pointedto additional major develop-

ments and served to createmenseexuberancaboutthe future of mathematics.
(..) The enthusiasmof the mathematiciansvas almost unbounded.They had

glimpsesof a promisedland and were eagerto push forward. They were,

moreover, able to work in an atmosphere far more suitable for creatioat tuay
time since 300 B.CClassicalGreekgeometryhad not only imposedrestrictions
on the domainof mathematicdut hadimpressed level of rigor for acceptable
mathematics that hampered creativity. Progireseathematicelmostdemandsa

completedisregardof logical scruples;and, fortunately,the mathematiciansiow

daredto placetheir confidencein intuitions and physical insights. (Kline, 1972,

pp. 398-399)

Sothe enormouscreativity in seventeenth-centurgnathematicsvas a result of
neglecting the LIB-restrictions of classicalGreek geometry by practising ‘a
complete disregard of logical scruples’ and instead beisigredby the labora-
tory’s ‘physical insight’ and ‘confidence of intuition’.
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If the seventeenth century has correctly been called the centgeyiof,thenthe
eighteenthmay be called the century of the ingenious.Though both centuries
were prolific, the eighteenth-centurynen, without introducing any conceptas
original and as fundamentalas the calculus, but by exercising virtuosity in
technique, exploitednd advancedhe power of the calculusto producewhat are
now major brancheg..) Far more thanin any other century the mathematical
work of the eighteenthwas directly inspired by physical problems.In fact one
could say that the goal of the work was not mathematics, but ratreslttien of
physical problems.(..) The physical meaningof the mathematicsguided the
mathematical steps and often supplied partial arguments torfiinmathematical
steps.The reasoningvasin essenceao differentfrom a proof of a theoremof
geometry, wherein some facts entirely obviouthmfigure are usedeventhough
no axiom or theoremsupportsthem. Finally, the physical correctnessof the
conclusiongyaveassuranc¢hat the mathematicanust be correct.(..) Lagrange
wrote to d'Alembert oi'septembeRl, 1781,‘It appeardo me alsothatthe mine
[of mathematics]s alreadyvery deepandthat unlessone discoversnew veinsit
will be necessary sooner later to abandont. Physicsand chemistrynow offer
the most brilliant riches and easier exploitation; also our centastsappeargo
be entirely in this direction and it r©ot impossiblethat the chairsof geometryin
the Academywill one day becomewhatthe chairsof Arabic presentlyarein the
universities’. (..)This fear was expressecevenas early as 1754 by Diderot in
Thoughts on the Interpretatiai Nature:* | daresaythatin lessthana century
we shall not have three great geometerdmathematicians]eft in Europe. This
science will very soon come to a standstill (..) We shall not go beyonplatimits’
(Ibid., pp. 614, 616, 617, 623)

The seventeenth century saw the arrival of the last foroalotilationscalculus,
and the eighteenthcentury developedthe many LAB-applicationsof calculus
within physics. Only little new mathematicswas added; and around 1800
mathematicians felt that there was no mamethematicso developasexpresses
by Diderot. However LIB-mathematics soon cabaek. In spite of the fact that
calculus and its applications had been developed without it logical scruples
were reintroducedarguing that both calculusand the real numbersneededa
rigorous foundation. These LIB-scrupliemdto the introduction of ‘set’. Soas
numberswere introducedto distinguish betweendifferent degreesof multipli-
city having 1 asits unit, setswere introducedto distinguishbetweendifferent
degreesof infinity having the naturalnumbersas a unit. However changing
infinity from a quality to a quantity involves the question of acaral potential
infinity:

The centraldifficulty in the theoryof setsis the very conceptof an infinite set.

Such sets had naturally come to the atterdiomathematiciansind philosophers

from Greektimes onward, and their very nature and seemingly contradictory
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propertieshad thwartedany progressin understandinghem. Zeno'sparadoxes
are perhaps the first indication of the difficulties. Neither the infinite divisitwlity
the straight line nor thine asaninfinite setof discretepoints seemedo permit
rational conclusionsaboutmotion. Aristotle considerednfinite sets,suchas the
setof whole numbersanddeniedthe existenceof aninfinite setof objectsas a
fixed entity. For him, setscould be only potentially infinite. (..) Cauchy, like
others before him, denied the existence of infisgtsbecausehe fact that a part
canbe put into one-to-onecorrespondenceith the whole seemedcontradictory
to him. The polemic®n the variousproblemsinvolving setswereendless(Ibid.,
pp. 992-993)

Kroneckerobjectedto settheory and Russellobjectedto talking about sets of
sets:

A radically different approach to mathematics hasnundertakerby a group of
mathematiciangalled intuitionists. As in the caseof logicism, the intuitionist
philosophywasinauguratedduring the late nineteenthcentury when the rigori-
zation of the number system and geometry wamgr activity. The discoveryof
the paradoxesstimulatedits further development.The first intuitionist was
Kronecker, who expressed his views in the 1870s andl@0sronecker,Weier-
strass'srigor involved unacceptableoncepts,and Cantor'swork on transfinite
numbersand set theory was not mathematicsbut mysticism. Kronecker was
willing to accept the whole numbers because these are cliparituition. These
‘were the work of God.” Allelsewasthe work of manandsuspect(..) after the
paradoxesvere discoveredjntuitionism were revived and becamea widespread
and seriousmovement.The next strong advocatewas Poincaré.(..) He agreed
with Russell that theourceof the paradoxesvasthe definition of collectionsof
setsthatincludedthe objectitself. Thus the set A of all setcontainsA. But A
cannot be defined until each member of Alédined,andif A is one memberthe
definition is circular. (..) This idea that the whole numbers derive from the
intuition of time has been maintainedby Kant, William R. Hamilton in his
‘algebra as a Science of Time,’ atiek philosopherArthur Schopenhaue(lbid.,
pp. 1197-1200).

As to the paradoxedn set-theoryeven Cantor saw problemsasking Dedekind
in 1899 whetherthe setof all cardinalnumbersis itself a set; becausef it is, it
would have a cardinalnumberlarger than any other cardinal (1003). Another
paradoxis the Russell paradox showing that self-referenceleadsto contra-
diction, as in the classicalliar-paradox‘this sentenceis false’, when talking
about setsof setsase.g.the setM of all setsthat are not a memberof them-
selves:

If M=[A:AOA)O then NIM - MOM.

Russellsolvesthis paradoxby introducing a type-theory stating that a given
type can only be a member of (i.e. described by) tyqoas a higherlevel. Since
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fractions are defined as sets of setsof numbersthey cannot be considered
numbersthemselveanaking the addition ‘2+3/4’ meaninglessNot wanting a

fraction-problem modern LIB-mathematics has chosen to neBlessell'stype-

theory until computerlanguageneedingto avoid syntax errors, has brought a

renaissance to Russell’s type-theory.

To avoid the type-theoryZermeloand Fraenkelinvented an axiom system
making self-referencdegal by not distinguishingbetweenan elementof a set
and the set itself, which removesthe distinction between examples and
abstractions and between different abstraction levels thus hiding that
mathematicshistorically developedthrough layers of abstractionsand hiding
the difference betweenan object and its predicate or interpretation means
subscribingto the logocentrismcriticised by poststructuralisthinking and by
the number&word-paradox.

So ‘set’ is a LIB-word derived from axiomsand not abstractedfrom the
LAB. Since the definitions of modemathematicare basedupon the concepts
set, this ‘LIB-virus’ makesall definitions LIB-words different from the LAB-
words of the historical LAB-definitions. Thuswe can namemodernLIB-based
mathematicsmeta-matics’to distinguishit from historical LAB-based ‘mathe-
matics’.

The difference between LIB-based meta-matics,LIB-MATH, and LAB-
based mathe-matics, LAB-MATH, can be seen in the word ‘functiefinedby
modern meta-maticsas ‘an example of a set of ordered pairs where first-
componentidentity implies second-componententity’; and defined by Euler
in 1748 as a common name for calculations with a variable quantity:

A function of a variablequantityis an analyticexpressiorcomposedn any way
whatsoevepf the variable quantity and numbersor constantquantities.(Euler,
1988, p. 3)

Bringing L AB-based mathematicsto a L | B-based academy

A LAB-based mathematicsshould respecttwo fundamental principles: A
Kronecker-principlesaying that only the natural numberscan be taken for
granted.And a Russell-principlesaying that we cannot use self-referenceand
talk about sets afets.The appendixshowsan exampleof a Kronecker-Russell
mathematichasedon the LAB-words ‘repetition in time’ and ‘multiplicity in
space’ creating a LIB-free, set-free, fraction-free and function-free ‘Count
&Add-laboratory’ where addition predicts counting-resuttaking mathematics
our language of predictidn.

This multiplicity-basedmathematicanakesa differencein the Danish pre-
calculus classroom (Tarp, 2003), in teacher education in Eastern Europe
(Zybartaset al., 2001) and in Africa (Tarp,2002). Thusthe irrelevanceparadox
can be solved iset-basednathematisnis replacedby multiplicity-basedmathe-
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matics. But as pastoralpower LIB-basedresearchs interestedn, not solving,
but guarding the fundraisinigrelevanceparadoxby continuingto researchthe
indoctrination of mathematisminsteadof researchinghe educationof mathe-
matics.

To test this hypothesisl appliedfor a job at a LIB-based academy.The
verdict of the committeé showsthat challengingLIB-based meta-maticswith
LAB-basedmathematicss not consideredan assetyou areonly admittedto a
LIB-based academy if yoareloyal to its interpretationand willing and ableto
expandit evenif it is seductionandirrelevantto the field it studies.Henceto
solvethe irrelevanceparadoxan alternativescepticalLAB-basedacademyhas
to be installed.

The MATHECADEMY and PYRAMIDeDUCATION
MATHeCADEMY.net is an exampleof an alternative sceptical LAB-based
academy building on theophistdistinction betweenchoiceand necessityand
solving the irrelevancearadoxby introducinga count&add laboratoryposing
the educationalquestions:*How to count and predict multiplicity in bundles
and stacks?How to unite stacksand per-numbers?’thus respectingthat ‘re-
uniting’ is the original meaning of the Arabic word ‘algebra’.

At the MATHeCADEMY Primary school mathematicss learnedthrough
educationalsentence-freeneetingswith the sentence-subjeatievelopingtacit
competences and individual sentences coming fbstractionsand validations
in the laboratory, i.e. through automatic ‘grasp-to-grasp’ learning.

Secondaryschool mathematicss learned through educational sentence
loadedfairy talesabstractedfrom and validatedin the laboratory,i.e. through
automatic ‘gossip-learning’.

In PYRAMIDeDUCATION 8 student teachers are organise@ iiwamsof 4
studentschoosing 3 pairs and 2 instructorsby turn. The coach coachesthe
instructorsinstructingthe restof their team.Each pair works togetherto solve
count&add problems and routine problems; and to carry oetdacationakask
to be reportedin an essayrich on observationf examplesof cognition, both
re-cognitionand new cognition, i.e. both assimilationand accommodationThe
coachassistghe instructorsin correctingthe count&add assignmentslin each
pair eachstudentcorrectsthe other student’s routine-assignmentzach pair is
the opponent on the essay of another ggaichstudentpaysfor the education
by coaching a new group of 8 students.

1 coach

2 instructors
3 pairs

8 students in
2 teams
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In this way multiplicity-basedmathematicswill multiply as a self-reproducing
virus on the Internet, until it can surfaiceten yearswhen half of the mathema-
tics teachershave retired unable to reproduceby failing to make set-based
mathematism relevant to the mathematics students.
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Appendix I. A Kronecker-Russell Multiplicity-Based M athematics

1. Repetition in time exists and can be experienced by putting a finger to the throat.

2. Repetition in time has a 1-1 correspondence with multiplicity in space (1 beat <->1 stroke).

3. Multiplicity in space can be bundled in icons with 4 stokes in the icon 4 etc.: llll -> 4

4. Multiplicity can be countedin icons producinga stackof e.g. T = 3 4s = 3*4. The processfrom T
takeaway4’ canby iconisedas ‘T-4’. The repeatecprocessfrom T take away 4s’ can by iconisedas
‘TI4’, a'‘per-number’.So the count&stackcalculationT = (T/4)*4 is a prediction of the result when
counting T in 4s to be tested by performing the counting and stacking.

5. A calculation T=3*4 = 12 is a prediction of the result when recounting 3 4s in tens and ones.
6. Multiplicity can be re-counted: If 2 kg = 6 litres180 % = 5 $ thenwhatis 7 kg? The resultcanbe
predicted through a calculation recounting 7 in 2s:

T =7Kkg T =7Kkg T =7Kkg
= (7/2)*2kg = (7/12)*2kg = (7/12)*2kg
= (7/2)*6 litres = (7/2)*100 % =(712*5 $
= 21 litres =350 % =17.50$%

7. A stack is divided into triangles by its diagonEhe diagonal’slengthis predictedby the Pythagorean
theorema™2+b"2=c"2,and its anglesare predictedby re-countingthe sidesin diagonals:a = a/c*c =
sinA*c, and b = b/c*c = cosA*c.

8. Diameters divide a circle in triangles with bases adding op to the circle circumference:

C = diameter * n * sin(180/n) -> diametep*

9. Stacks can be added by removing overloads:

T =38 + 29 = 3ten 8 + 2ten 9 = 5ten 17 = 5ten 1ten 7 = (b+1)ten 7 = 6ten 7 = 67

10. Per-numbers can laeldedafter being transformedo stacks.Thus the $/day-numbera’ is multiplied
with the day-number ‘b’ before being added to the total $-number T: T2 = T1 + a*b.

2days @ 6%/day + 3days @ 8%$/day = 5days @ (2*6+3*8)/(2+3)$/day = 5days @ 7.2$/day

1/2 of 2 cans + 2/3 of 3 cans = (1/2*2+2/3*3)/(2+3) of 5 cans = 3/5 of 5 cans

Repeated addition of per-numbers -> integratiof Reversed addition of per-numbers -> differentiation
T2 =Tl +a*b T2 =T1+a*b

T2-Tl=+a* (T2-T)/b=a

AT =3 a*b AT/Ab  =a

AT =[a*db dT/db —a

Only in the case of adding constant per-numbers, as a constant interest of e.g. 5%, the percanivders
added directly by repeated multiplication of the interest multiplieygads@ 5 % /year= 21.6%, since
105%*105%*105%*105% = 105%"4 = 121,6%

Conclusion.A Kronecker-Russemultiplicity-basedmathematicscan be summarisedas a ‘count&add-
laboratory’ adding to predict the result of counting totals and per-numbegiscordancevith the original
meaning of the Arabic word ‘algebra’, reuniting:

Constant Variable
Totals T = a*b T2 =T1 + a*b
m, s, kg, $ Tlb=a T2-T1 = a*b
Per-numbers T=a"b T2 = T1 +[a*db
mis, $/kg, $/100$ = %| PVT = a logaT=b |dT/db=a




The Count& Add-L abor atory

i Through his successor-principlé’eanois forcing an additive structure upon the natural
numbers seducing us to believe that 2+2 = 4. However this is an example of Killer-
mathematics since outside the classroomwe meet many exampleswhere 2+2 is not 4:
2*meter + 2*cm = 202*cm, 2*week + 2*day = 14*day, 2*ten + 2*one = 22*one etc.
As we canseethe numbershere are per-numbersand should be addedaccordingly,asthe
integrationformula ‘T2 = T1 + Ja*dx’ tells us. l.e. they haveto be transformedto totals
first; then they can be added,but only inside a parenthesisecuringthat the units are the
same: T= 2 3s + 4 5s= 2*8 4*5= 6*1 + 20*1= (6 + 20)*1= 26*1= 26/3*3= 8 2/3*3=
26/5*5= 5 1/5*5. So in this case 2+4 can give both 26, 8 2/35atb. Thus2 3s+ 4 5sis
not 6 8s; whereas 2 3rds + 4 5ths = 6 8ths in the case of e.g. 3barties: 2/3*3+4/5*5 =
2+4 = 6 = 6/8*8.

Hence there is a need for a ‘Pedlio giving the natural numbersa multiplicative structure
so they will representdirectly what they describe,i.e. stacks. And so that mathematical
knowledge can grow out dhe count&add-laboratorywhererules are generalisedhrough
induction and validatedby counting the deducedpredictions.This leadsto a new kind of
natural numbers, stack-numbers always having the fbrma*b = (a,b). A relation can be
setup identifying stackswith identical totals by saying that the stacks(a,b) and (c,d) are
identical if a*b*1 = c*d*1 as e.g. (2,6) and (3,4).

Thus a natural number becomes an equivalence class in the set of stacks wiiark)if n
= a*b*1 ase.qg.8 = (2,4) since8 = 2*4*1. The naturalnumbersthen becomesthe total
‘area’ of a stackjdentical numbersoccur though a re-bundling of their stacks;and prime
numbers are stacksthat cannot be rebundled. This stack-representatiorof the natural
numbersis what Kuhn calls a new paradigm.It remainsto be seenif number theory will
look different within this stack-paradigmand whether special problems as Fermat’s last
theorem will be easier to solve within this stack-paradigm.

Reformulatedas stacksthe Fermattheorema”n + b”n = ¢c*n becomesa™n = ¢*n — b”"n.
Here a”n is an n-dimensional stack, an n-stack. And c*n — b”n is a binomidabthatome
an n-stack,hasto factorisedas a combination of n basic binomials of the form (c-b) or
(c+b). For n=2 the 2 basicpolynomials can contain different signs, making it possibleto
reduce the product of two binomials, normally having fearms,to two terms:(c+b)*(c-b)
= ¢"2 — b"2. But with three binomials, or mome of the signsis repeatedthus creatinga
trinomial, which then has to be reduced to a binomial by being multiplied with a binomial.
ii ‘The applicant presents, on a normative basis refewmy to sociology,an original new
formulation of the specific mathematicallycontent. Howeverthe distanceis far too big to
the reality and the problemsthat on a practicallevel can be connectedto the teaching of
mathematicsNo publicationsshowdirect signsof cooperationwith other researchwith a
deviating and a more general accepted starting point, which will be a central parwafrkhe
of the applicant.On this basisthe committeedoesnot find the applicant qualified for the
job’.
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