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Preface

This volume contains the proceedings of MADIF 4, the Fourth Swedish Mathe-
matics Education Research Seminar, with an introduction by the editors. The
seminar, which took place in Malmö January 21-22, 2004, was arranged by
SMDF, The Swedish Society for Research in Mathematics Education, in co-
operation with Malmö högskola. The members of the programme committee
were Christer Bergsten, Barbro Grevholm, Ingvill Holden, Thomas Lingefjärd,
and Marie Skedinger-Jacobsson. The local organiser was Marie Skedinger-
Jacobsson at Malmö högskola.

The programme included three plenary lectures, one plenary panel, and
twenty paper presentations. We want to thank the authors for their interesting
contributions. The papers have been reviewed by the editors, and some minor
editorial changes have been made without noticing the authors. The authors are
responsible for the content of their papers.

We wish to thank the members of the programme committee for their work
to create an interesting programme for the conference, and Marie Skedinger-
Jacobsson for her valuable help with the preparation and administration of the
seminar. We also want to express our gratitude to the organiser of Matematik-
biennalen 2004 for its valuable financial support. Finally we want to thank all the
participants at MADIF 4 for creating such an open, positive and friendly atmos-
phere, contributing to the success of the conference.

Christer Bergsten, Barbro Grevholm
Editors
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Introduction
Mathematics and Language

Christer Bergsten, Linköpings universitet
Barbro Grevholm, Høgskolen i Agder

For the fourth mathematics seminar arranged by the Swedish Society for
Research in Mathematics Education, the theme was chosen to be Mathematics
and language. In this volume we have collected the contributions to the seminar.
It contains the three plenary lectures, the plenary panel presentation, and eighteen
paper presentations.

The crucial role of diagrams in mathematical reasoning is the focus of Willi
Dörfler’s plenary presentation Mathematical reasoning and observing trans-
formations of diagrams. Recognising that diagrams of many different kinds are
ubiquitous in mathematics, and that reasoning often deal directly with the
transformations of diagrams, building on their structural properties and often
rule-governed transformations, rather than with abstract ideas involved in
mathematical concepts, the character and relevance for mathematics education of
Peirce’s notion of diagrammatic reasoning is outlined. This points to the
importance of perceptive aspects of mathematical thinking. Diagrammatic
reasonning is used to solve tasks, to be distinguished from a representational use
of diagrams. By offering examples from elementary arithmetic, and from linear
and abstract algebra, Dörfler highlights the power and usefulness of different
kinds of diagrammatic reasoning.

Terezinha Nunes argues in her keynote conribution How mathematics
teaching develops pupils’ reasoning systems that the theories of Piaget and
Vygotsky are coherent and complementary, and combined will give a broader
picture of children’s learning of mathematics. Using the conception of thinking
systems, she shows by looking at pupils’ working with multiplicative tasks, that
the schema of one to many correspondence is used by very young children when
mediating thinking tools are available, as well as in multiplicative reasoning out
of school. Multiplication as repeated addition does not support this crucial
schema for developing this kind of reasoning. To build powerful reasoning
systems in classrooms, important principles and tools for the systems to work
must be analysed.

In her plenary address Assessing students’ knowledge – Language in mathe-
matics tests, Astrid Pettersson offers an insight into the Swedish old and new
systems of national testing in mathematics education. By looking at the variables
authenticity, feedback and documentation, she concludes that the new system
opens up for a broader and more supportive assessment process, for both teachers
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and students, with an aim to develop and analyse rather than to judge and
condemn.

In the plenary panel, moderated by Christer Bergsten, the conference theme
Mathematics and language was discussed by Håkan Lennerstad, Norma Presmeg
and Åse Streitlien. Focusing on language in mathematics education, one can
study both its structure and its use. The latter will be in focus when analysing
communication in the classroom – this was the direction taken by Åse Streitlien
in her contribution on discourse patterns in a primary mathematics class. The
aspect of meaning was then added by Håkan Lennerstad, which led into the study
of language also as a structure with the question: Why don’t we teach the
grammar of Mathematish? To analyse both the use and the structure of language
in the mathematics education context, Norma Presmeg offered examples of how
the ideas of semiotic chaining had helped mathematics teachers to reflect on and
develop their practice. Follow-up questions from the audience demonstrated well
that language is an important and deep issue in mathematics education.

The paper presentations open up with a contribution in Swedish, Reflekte-
rande samtal för pedagogisk utveckling (Reflective conversations for pedago-
gical development) by Ann Ahlberg, Jan-Åke Klasson and Elisabeth Nordevall.
In this study the overall aim is to explore how the special pedagog and teachers
work together in order to develop the teaching in mathematics. The results show
that the conversations contribute to the initiation of processes, which help the
teachers to make visible their standpoints and awareness of values. The conver-
sations help the teachers to develop a reflective attitude which give them
preparedness for action, and knowledge to better understand and change their
own practice.

Kristín Bjarnadóttir writes about Teachers’ preparedness of ‘Modern Mathe-
matics’ in Iceland. A historical account is given of the Icelandic school system
and in particular teacher education and how it was prepared for the radical
alteration of modern mathematics and its language in the 1960s and onwards. She
presents four measures not taken by the authorities that she claims hindered the
development of mathematics teaching in Iceland. She also raises the question if
other circumstances such as the Icelandic inheritance of home- and self-
education did mend the situation.

In the paper O n reasoning characteristics in upper secondary school
students’ task solving the authors Tomas Bergqvist, Johan Lithner and Lovisa
Sumpter investigate what it is that makes students succeed or fail in a proble-
matic situation. They ask in what ways students manage of fail to engage in
plausible reasoning as a means to make progress in solving tasks. Another
question is the role of use of established experiences, algorithmic reasoning and
piloted reasoning. The results show that most students use algorithmic reasoning
or repeated algorithmic reasoning. Sometimes students’ conceptual understan-
ding is not sufficient for plausible reasoning.



Bergsten, Grevholm

3

Lisa Björklund’s contribution has the title Teachers and assessment – A descrip-
tion of Teachers’ actions connected with the mathematics national test for school
year 5. In the paper the following questions are discussed: 1) Do teachers
verbalise their observations and assessment of pupils’ knowledge achievement in
the competency profile enclosed about the pupils’ competencies? 2) How do
teachers assess pupils’ work in one part of the text? 3) What attitudes do teachers
have towards the National Test in mathematics and towards pedagogical assess-
ment? The results show that teachers are generally pleased with the structure and
content of the test. They also feel that the recommendations regarding what
pupils should be able to achieve are reasonable in relation to the goals to be
attained. Most teachers do not verbalise their assessments of pupils’ knowledge.
The author claims that the Swedish model for assessment can be improved via
professional development of teachers in the area of assessment.

On the role of problem solving and assessment in Swedish upper secondary
school mathematics in Finland is the title of the contribution by Lars Burman. In
the survey the teachers agree that there are important strategies in problem
solving to focus on in their instruction. Two out of three teachers construct at
least one new problem for a text in mathematics. The results show that most
teachers (more than 90 %) agree that problem solving ability should have impact
on pupils’ marks in mathematics. More than every second teacher uses tests as
part of the instruction and during courses as a complement to the course test. All
teachers want to make students take responsibility for their own learning and
almost all try to make students aware of their knowledge. The impact of
matriculation examination was confirmed but not very strong.

Hamper or Helper: The role of language in learning mathematics is based on
the author’s, Bettina Dahl’s, doctoral thesis work. She has investigated four
Danish and six English students and interviewed them in order to find out how
they see language in connection to learning mathematics. There are various
views of language in relation to how the pupils explain how they learn a new
mathematical concept. Students use language as a thinking tool or they think it
has a dual nature as it both facilitates and hampers learning. Another group of
students think that language hampers learning.

Elsa Foisack writes about her work for the doctoral thesis in pedagogy in the
paper entitled Deaf children’s concept formation in mathematics. The concepts
of multiplication with whole numbers and length are investigated. No difference
was found concerning the steps towards comprehension of the concepts for the
deaf pupils compared to those of hearing pupils. As in earlier research, it was
found that deaf pupils need more time to learn mathematics than hearing children
normally do. Of importance for the learning of deaf children is also the structure
of sign language and the lack of an established terminology in mathematics.

Mikael Holmquist’s paper, Prospective mathematics teachers’ learning in
geometry, is based on a study of student teachers in Gothenburg. He has shown
that the concept images of the students more rarely correspond to the mathe-
matical concept definition. Some issues about the consequences for the prospec-
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tive teachers’ work in the classroom are raised. What kind of concept definitions
and concept images are on the teacher’s repertoire? What kind of referents and
criteria are the bases for the teacher’s standpoint in assessment and validation?
The emerging result will form the basis for deeper studies of what these
prospective teachers learned in geometry and how they will express this in their
teacher practice.

KULT-projektet – Matematikundervisning i Sverige i internationell belysning,
is the contribution (in Swedish) by Johan Häggström. The KULT-project stands
for Swedish school culture – classroom practice from a comparative aspect and is
part of a greater study, The Learner’s Perspective Study. A large data material
has been collected through video tape recording of classroom activities by three
different cameras at the same time. Teachers and pupils comment on the tape
recorded sequences immediately after the lesson. The method opens opportu-
nities for a deeper understanding of the studied teaching and the relation between
teaching and learning.

 In Limits of functions – how students solve tasks, Kristina Juter presents a
study of university students justifications of how they solve tasks on limits of
functions. The study is part of a larger study published as her licentiate thesis on
students’ concept formation of limits of functions. The study was carried out at a
Swedish university at the first level of mathematics studies. Two groups of
students on consecutive semesters solved the same tasks. Students’ solutions are
analysed and categorised and the results are presented in some detail from five of
the given problems and reveals that there are many aspects to work with in order
to improve students’ learning.

Sinikka Kartinen presents in her paper Learning to communicate – Communi-
cating to learn in mathematics classrooms an investigation of the mathematical
problem solving process in a collaborative learning situation with in service
teachers. The goal is to develop an appropriate analytic tool to highlight collabo-
rative problem solving processes in the learning of mathematics, to investigate
the role of cultural tools in the collaborative learning of mathematics teachers,
and to investigate the processes of teacher participation in the collaborative
learning of mathematics pedagogy. The study yields useful information about
teacher learning and development from both the social and mathematical point of
view. It also provides educators with tools to develop curriculum as well as
instructional solutions for the mathematics classroom.

The linguistic side of mathematics is discussed by Thomas Lingefjärd and
illustrated with examples form an algebra course taught with a focus on
language. How do students and teachers handle the language of mathematics and
how do they change back and forth between common language and the language
of mathematics? He presents many arguments for teaching the language of
mathematics and points out that all students should be taught the importance of
the language of mathematics to better understand the subject.

Matematish – a tacit knowledge of mathematics by Håkan Lennerstad and
Lars Mouwitz has the purpose to highlight the symbolic notations of mathematics
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and present some hypotheses. The authors stress the language aspect of the
symbolic notation system and call it ‘Mathematish’. Using speculative reasoning
in combination with empirical underpinnings form history of mathematics and
their own teacher experience, they argue that Mathematish is a complete
language and hope that this will create fruitful analogies with other languages.

Kategorisering av små gruppers handlingar is the title of the paper by Stefan
Njord, Gunilla Svingby and Barbro Grevholm. The aim of this study is twofold:
to study how a smaller group of pupils without the presence of a teacher
collaborate to solve the experiments the group decides to work with and to study
how the group uses the artefact (a graphical computer program). The detailed
analysis of the actions in the group creates the categories interpretation,
verification, trial and error and computation with formulas. Different sequences
of these categories of action are used by the groups. The strategies of cooperation
and the use of the artefact are described in the paper.

A theoretical framework for analysis of teaching-learning processes in
algebra is presented by Constanta Olteanu, Barbro Grevholm and Torgny
Ottosson. The framework is based on the variation in ways of making sense of
the object of learning and the effectiveness of the communication during the
lessons. The aim of the framework is to help in understanding the classroom
interaction and the influence it has on the forming of the object of learning in
algebra. The framework is a tentative try to combine Sfard’s focal analysis and
the reification theory with Marton’s theory of variations.

Rudolf Strässer starts from the definition by Wartofsky on artefacts in his
presentation Artefacts – Instruments – Computers.  He develops the concept
further as Warfofsky does in primary, secondary and tertiary artefacts. The
explanation of the concepts instrumentalisation and instrumentation is given in
connection to the development of utilization schemes. This leads the author to
information and communication technology, ICT. Illustrations from the use of
Dynamical Geometry Software are used to shed light on the points on artefacts.
In the conclusions Strässer claims that utilizations schemes found by empirical
studies can enrich the picture, which the researcher has of the process of teaching
and learning mathematics.

Eva Taflin, Kerstin Hagland and Rolf Hedrén ask What mathematical ideas
do pupils and teachers use when solving a rich problem? From videotaped
lessons and interviews they draw the conclusions that teachers’ own mathema-
tical ideas and solution methods direct their pupils, that teachers sometimes have
difficulties producing feedback building on their pupils’ solutions, and seldom
make generalisations out of their pupils’ solutions. In ten examples drawn form
their data they analyse and argue for these results.

Allan Tarp talks about Mathematism and the irrelevance of research industry.
He formulates an irrelevance paradox linked to the relevance paradox by Mogens
Niss. He also claims that mathematics education research increases together with
the problems it studies. The irrelevance paradox can be solved by using a
postmodern sceptical LAB-research to weed out LIB-based mathematism coming
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from the library in order to reconstruct a LAB-based mathematics coming from
the laboratory, as he phrases it. The reader has to find out what he means by the
fact that the ‘Cinderella-difference’ is making a difference in the classroom.

In the plenary lectures, debate and papers presented in this volume, the
relation between mathematics and language is viewed and discussed from many
different perspectives and the authors see the importance of being aware of the
language aspect of mathematics in teaching and learning. We hope that you as a
reader will find several of these perspectives interesting and fruitful and that they
can add something to your understanding of the character of mathematics
teaching and learning. We thank all the contributors for the many and varied
papers and are confident that the discussion on mathematics and language will
continue.



7

Mathematical Reasoning and Observing
Transformations of Diagrams

Willi Dörfler
Universität Klagenfurt

Introduction
This contribution is located in the context of the philosophy of mathematics by
the American philosopher and pragmatist Charles Saunders Peirce. Yet, it is
readable and understandable without a detailed knowledge of the stance taken by
Peirce. The interested reader might consult the papers Dörfler (2004a, 2004b) or
Hoffmann (2001, 2002). This especially holds for the notion of diagram and
diagrammatic reasoning which were introduced by Peirce to explain, on the one
hand, the stringency of mathematical proofs and, on the other hand, the
possibility of inventions and constructions in mathematics, or what he calls
"surprising observations". Thus he says (in Peirce, Collected Papers 3.363):

It has long been a puzzle how it could be that, on the one hand, mathematics is
purely deductive in its nature, and draws its conclusions apodictically, while on
the other hand, it presents as rich and apparently unending a series of surprising
discoveries as any observational science. Various have been the attempts to
solve the paradox by breaking down one or other of these assertions, but with-
out success. The truth, however, appears to be that all deductive reasoning, even
simple syllogism, involves an element of observation; namely, deduction con-
sists in constructing an icon or diagram the relations of whose parts shall present
a complete analogy with those of the parts of the object of reasoning, of experi-
menting upon this image in the imagination, and of observing the result so as to
discover unnoticed and hidden relations among the parts. ... As for algebra, the
very idea of the art is that it presents formulae, which can be manipulated and
that by observing the effects of such manipulation we find properties not to be
otherwise discerned. In such manipulation, we are guided by previous discov-
eries, which are embodied in general formulae. These are patterns, which we
have the right to imitate in our procedure, and are the icons par excellence of al-
gebra.

From this it already comes clear that a diagram might be of a great variety: geo-
metric figures and algebraic expressions as well. For short, diagrams in Peirce
are special (iconic) signs which have a clearly defined and recognizable structure
and which can be manipulated according to (conventional) rules for transforma-
tions and compositions, cf. again the above mentioned papers. The crux of all
that is that empirical and perceptive observation becomes a decisive part of
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mathematical reasoning, of devising and understanding proofs and mathematical
arguments. Mathematical reasoning in this view is not so much the handling of
abstract ideas in one's mind but the observation of the effects of one's manipula-
tions of diagrams. The mathematical ideas rather reside in the invention of dia-
grams and of their fruitful manipulations, transformations, compositions.
Mathematics in this sense studies the general properties and regularities of cer-
tain diagrams and of the operations with them. In accordance with the triadic sign
concept of Peirce those diagrams will be interpreted by their users in many dif-
ferent ways and will be related to "objects" (in the sense of Peirce) also in vari-
ous ways. In a way, I am analysing here only the sign aspect (representamen) of
that Peircean triad "sign, object, interpretant" but apparently this for mathematics
is of crucial importance.

From diagrammatic reasoning derives also the absolute reliability and secu-
rity of mathematics, its so-called logical necessity. This differentiates observation
of diagrams also from empirical observation in the natural sciences. Diagram-
matic observation "sees" that a certain relationship will hold in all conceivable
instances of the respective type of diagrams. This is enabled by the generic char-
acter of the (mathematical) diagrams: each single instance or token fully presents
the respective type according to an adequate perspective on the token. Like, say,
any inscription of the letter "a" presents that letter (as a type of inscriptions under
a certain perspective). Finally, it should be emphasized that diagrammatic rea-
soning is very much different from algorithmic calculations. Though it is rule
based it needs creativity and inventiveness like composing music.

Diagrams
Despite here the stance is taken that mathematical development to a great part
consists in the design and intelligent manipulation of diagrams no general defini-
tion of the notion of diagram is given but rather several examples and descriptive
features are presented. Generally speaking, diagrams are kind of inscriptions of
some permanence in any kind of medium (paper, sand, screen, etc). Those in-
scriptions mostly are planar but some are 3-dimensional like the models of geo-
metric solids or the manipulatives in school mathematics. Mathematics at all le-
vels abounds with such inscriptions: Number line, Venn diagrams, geometric
figures, cartesian graphs, point-line graphs, arrow diagrams (mappings), arrows
in the Gaussian plane or as vectors, commutative diagrams (category theory); but
there are inscriptions also with a less geometric flavor: arithmetic or algebraic
terms, function terms, fractions, decimal fractions, algebraic formulas, polynomi-
als, matrices, systems of linear equations, continued fractions and many more.
There are common features to some of these inscriptions, which contribute to
their diagrammatic quality as understood here. But I emphasize that by far not all
kinds of inscriptions, which occur in mathematical reasoning, learning and
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teaching have a diagrammatic quality. Quite a few of what are taken as visuali-
zations or representations of mathematical notions and ideas do not qualify as
diagrams since they lack some of the essential features. Mostly this is the precise
operative structure which for genuine (Peircean) diagrams permits and invites
their investigation and exploration as mathematical objects. On the other hand,
diagrams are of such a wide variety that a generic definition appears impossible
and impracticable, as well. Accordingly, the various kinds of diagrams in a Witt-
gensteinean sense are connected by family resemblances and by the ways we use
them. Some widely shared qualities of diagrams are proposed in the following:� diagrammatic inscriptions have a structure consisting in a specific spatial
arrangement of and spatial relationships among their parts and elements. This
structure often is of a conventional character.� based on this diagrammatic structure there are rule-governed operations on
and with the inscriptions by transforming, composing, decomposing, combining
them (calculations in arithmetic and algebra, constructions in geometry, deriva-
tions in formal logic). These operations and transformations could be called the
internal meaning of the respective diagram.� another type of conventionalised rules governs the application and inter-
pretation of the diagram within and outside of mathematics, i.e. what the diagram
can be taken to denote or model. These rules one could term the external or refe-
rential meaning (algebraic terms standing for calculations with numbers, a graph
depicting a network or a social structure). The two meanings closely inform and
depend on each other.� diagrammatic inscriptions (can be viewed to) express relationships by
their very structure from which those relationships must be inferred based on the
given operation rules. Diagrams are not to be understood in a figurative but in a
relational sense (like a circle expressing the relation of its peripheral points to the
midpoint).� diagrammatic inscriptions have a generic aspect which permits to con-
struct arbitrary instances of the same type of diagram. This leads among others to
consider the totality of all diagrams of a given type (like all triangles, all decimal
numbers).� there is a type-token relationship between the individual and specific ma-
terial inscription and the diagram which it is an instance of (like between a writ-
ten letter and the letter as such).� operations with diagrammatic inscriptions are based on the perceptive ac-
tivity of the individual (like pattern recognition) which turns mathematics as dia-
grammatic reasoning into a perceptive and material activity.� diagrammatic reasoning is a rule-based but inventive and constructive ma-
nipulation of diagrams to investigate their properties and relationships.
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� diagrammatic reasoning is not mechanistic or purely algorithmic, it is
imaginative and creative. Analogy: the music by Bach is based on strict rules of
counterpoint but yet is highly creative and variegated.� many steps and arguments of diagrammatic reasoning have no referential
meaning nor do they need any.� in diagrammatic reasoning the focus is on the diagrammatic inscriptions
irrespective of what their referential meaning might be. The objects of diagram-
matic reasoning are the diagrams themselves and their already established pro-
perties.� diagrammatic inscriptions arise from many sources and for many pur-
poses: as models of structures and processes, by deliberate design and construc-
tion, by idealization and abstraction from experiential reality, etc. And they are
used accordingly for many purposes.� efficient and successful diagrammatic reasoning presupposes intensive and
extensive experience with manipulating diagrams. A widespread "inventory" of
diagrams, their properties and relationships supports and occasions the creative
and inventive usage of diagrams. Analogy: an expect chess-player has command
over a great supply of chess-diagrams which guide his or her strategic problem
solving. Consequence: learning mathematics has to comprise diagrammatic
knowledge of a great variety.

Using Diagrams
Another dimension of explicating the notion of diagram or of diagrammatic rea-
soning is which uses are made of them in mathematics. First, the most wide-
spread usage is to use the admissible operations and transformations to solve a
given task. This comprises calculating a numeric value, solving equations, con-
structing a proof in geometry, finding a derivation (in formal logic) and many
others. Thereby one operates with the inscriptions by exploiting and observing
their structure and its changes. Thus, this is a material and perceptive activity
guided by the diagrammatic inscriptions. It is like in other material actions: to be
successful one has to have acquired an intimate experience with the objects one
is operating with, which here are the inscriptions. This is required and not so
much abstract or conceptual knowledge. There are algorithmic operations (con-
sider the Gauss algorithm) but much of diagrammatic reasoning is highly creative
because the appropriate operations with the diagrams have to be first of all de-
vised and deployed.

This first type of use is the only one which I want to subsume as diagram-
matic reasoning. It is essential that the diagrammatic inscriptions themselves are
the objects of the activity which produces knowledge about and experience with
the diagrams. Second, the other usages of diagrammatic inscriptions I will call
representational. The first kind of representational use is when a diagrammatic
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inscription is taken as a model for some other material or virtual structure from
any science including mathematics itself or from any practice. This is captured
by terms like application of mathematics or mathematization. It is not the place
here to discuss that any further. I only remark that therein lies an important
source for the design of diagrams which then within mathematics become the
topic of diagrammatic reasoning. A second type of representational use is wide-
spread in mathematics education: to use diagrams as representations for to be (by
the learner) constructed abstract objects. The diagrams are taken as a means for
mental or cognitive constructions and thus have little interest in themselves. They
are then more kind of a methodological scaffold possibly unavoidable but to be
dismissed when successful. This is diametrically opposed to diagrammatic rea-
soning where the focus is on the diagrams themselves as the objects of study and
of operations and not on their doubtful mediation with virtual objects. In this rep-
resentational view mathematics is a predominantly mental activity supported by
diagrams whereas mathematics as diagrammatic reasoning essentially is a mate-
rial and perceptual one. And this does not reduce mathematics to meaningless
symbol manipulations since the diagrams have meaning through their structure,
their operations and transformations and of course via their applications. This
holds for all diagrams as considered here in a way completely analogous to how
geometric figures can have meaning.

Observing Diagrams
In this section I will present some examples which hopefully offer to the reader
the experience that mathematical proofs in many cases depend on the observation
of structural relationships and regularities within transformations of diagrams.
Other examples can be found in Dörfler (2004a). In all examples the results of
previous "experiments" with diagrams are used as established formulae or "theo-
rems".

There is the surprising result of: 11x11=121, 111x111=12321, 1111x
1111=1234321 etc. This can be "explained" by observing a diagram like the one
below. One of the rules used here is the decimal multiplication algorithm which
in itself does not predict the observed relationships in the above diagrams. The
"understanding" of the surprising results derives from recognizing the pattern of
1's which is produced by the algorithm. The usual common interpretation of the
symbols might be helpful but the essential point consists in the perceptive obser-
vation of the outcome of one's operations on the diagrams. These would hold
even if there were no interpretation of the symbols as numbers. A precondition
for this diagrammatic reasoning clearly will be a close familiarity with the dia-
grams and proficiency in their operations. This possibly sheds new light on the
role of "calculations" conceived in a wider sense as intelligent and creative op-
erations with diagrams.
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1 1 1 1 1 1 1 x 1 1 1 1 1 1 1
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1 2 3 4 5 6 7 6 5 4 3 2 1

Based on these first observations there is a rich space of further diagrammatic
experiments and thought experiments with those diagrams. There is also the pos-
sibility of changing the diagrammatic rules, e.g. by choosing different bases for
the place value system.

In their famous book "Grundlagen der Mathematik" Hilbert and Bernays
analyze operations with arrays of strokes (or points) the observation of which
leads to much of what are taken to be properties of natural numbers. The natural
numbers are interpreted as types of arrays of strokes two of which are of the
same type if they can be matched one by one. Addition and multiplication appear
as operations with those arrays which clearly show a diagrammatic character.
Properties like evenness and oddness are observable qualities of those diagrams
in the form of specific arrangements of the strokes. A good example of diagram-
matic reasoning is the statement that the sum of two odd numbers (diagrams) is
even. This results from observing the combining of two odd diagrams in an ap-
propriate way. In this kind of diagrammatic reasoning that statement is a way of
reporting one’s observations (and not a statement about abstract objects):

********

******* plus

  *********

********** gives

*****************

*****************

Here the generic character of the diagrams is an important feature which provides
the generality of the assertions about the diagrams. Similarly, diagrammatic rea-
soning by inspection of the following diagram
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********

******** plus

*****

**** gives

*************

************

implies the rule “even + odd = odd”. In the same manner the corresponding rules
for multiplication are obtained by diagrammatic reasoning with rectangular
(product) arrangements.

Also the next example – as the others as well – is well known and only serves
the purpose of orienting the attention of the reader to the role of perception, ob-
servation, pattern recognition and manipulation of concrete inscriptions as a con-
stitutive part of mathematical thinking.

The young Gauss is reported to have found the sum of the first 100 positive
integers by thinking of those numbers as being written down in the following
way

1 2 3 4 … 49 50

100 99 98 97 … 52 51

and adding the two numbers in each of the 50 columns to get 
� � � �� � �� �

=×  as
the required sum. This is very similar to our first example: a certain recognized
pattern in a diagram gives the result. Here the generic character (for even num-
bers) can be seen: a thought experiment with the respective diagram gives the
formula ( ) ( )( )���

+��� . Further experiments with those diagrams will lead to an-
other more general diagram for arbitrary 

€ 

n, like the following:

1 2 3 4 5 6 7

7 6 5 4 3 2 1

I do not deny that an understanding of the involved symbols as natural numbers
is helpful or even necessary for recognizing the relevant pattern. But for the latter
a certain regularity, namely constant sum in the columns, is most important, and
that is not inherently related to natural numbers. Thus, the diagram is added to
the known properties of natural numbers and enlarges the knowledge about them.
In a similar way one can analyse many other number patterns like triangular,
square, rectangular numbers. In all cases besides symbolic presentations graphic
ones using arrays of dots is another kind of diagrammatic reasoning based on
experiments with and observation of diagrammatic structures. To that already
point names like "triangular", "square" or "rectangular".

Within linear algebra there is a wealth of examples for diagrammatic reaso-
ning. The basic diagrams there are matrices and their operations. Consider
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€ 

A aij= ( ) an 

€ 

m n×(
	

) - matrix and ( )
�=α  an 

€ 

n×(� )1 -  matrix(vector). Then the

€ 

i - th component of the product 

€ 

Aα  is

€ 

a a a a a ai i in n1 1 2 2+ + +

or more detailed the vector ( )���

=α  is given as:

€ 

b a a a a a a

b a a a a a a

b a a a a a a

n n

n n

m m m mn n

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

= + + +
= + + +

= + + +

�
�

�
�

An empirical investigation of this diagram exhibits a column-wise regularity,
which can be expressed as

€ 

A a a an nα α α α= + + +1 1 2 2 �
where 

€ 

α j ija= ( ) is the

€ 

j - thcolumn-vector of � . This is a result which is a strin-

gent consequence of the operation rules for matrices and the diagram above can-
not be doubted, it is an apodictic argument though (or possibly because of) being
based on "pattern recognition".

Once such a "pattern" is established as a formula or theorem, it can fruitfully
be used to derive further consequences. Assuming α  to be the 

€ 

i - th unit vector

€ 

εi j ia j i a i n= ≠ =( ) =0 1 1  for , , , ,� , leads to 

€ 

A i iε α= , which of course can be

recognized from other diagrams also. Here it becomes even more prominent that
the important thing are the operational rules and not so much the (referential)
meaning of the symbols manipulated. We only use our knowledge how to operate
with the symbols. But still it is not a meaningless, purely formalistic game: we
discover surprising and fascinating relationships for the diagrams. Thus diagrams
play here manifold roles. They are, on the one hand, the objects of reasoning
properties of which are detected and described (by new diagrams). On the other
hand, diagrams are the means for mathematical reasoning by which relationships
and regularities become observable patterns.

As another example we study one of the proofs of Cramer's rule for the solu-
tion of a regular square system of linear equations 

€ 

Ax b A aij= = ( );  an � � �  ma-

trix, 

€ 

x xi= ( ) the solution vector, 

€ 

b bi= ( )  the right-side vector. Then by assump-

tion the inverse 

€ 

A−1 (with 

€ 

AA A A− −= =1 1  identity matrix) exists and from previ-
ous diagrammatic operations one knows that 

€ 

A A Aji
− = ( )1 / | |  where 

€ 

| |A  is the

determinant, and 

€ 

A ji  is the cofactor of 

€ 

a ji  in � . Then 

€ 

x A b= −1  and therefore

€ 

x A A b A b A bi i i ni n= ( ) + + +( )1 1 1 2 2/ | | �
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Now 

€ 

A b A b A bi i ni n1 1 2 2+ + +�  is observed to be the result of expanding the de-
terminant of the following matrix 

€ 

Ai  by the 

€ 

i - th column

€ 

A

a a b a a

a a b a a

a a b a a

i

i i n

i i n

n n i n n i nn

=





















− +

− +

− +

11 1 1 1 1 1 1

21 2 1 2 2 1 2

1 1 1

� �
� �
�
� �

, ,

, ,

, ,

since 

€ 

A ji  is just the appropriate cofactor resulting from deleting the 

€ 

j - th line

and 

€ 

i - th column in 

€ 

Ai  or equivalently in 

€ 

A. Thus 

€ 

x A Ai i=| | / | |. This clearly is
recognised by observing invariant patterns when carrying out diagrammatic ope-
rations or experiments. For the latter, intimate experience with those diagrams
and their previously observed properties is indispensable. Of course, several ex-
perimental trials with the diagrams will be necessary before a useful pattern will
be discovered. In any case, it is scrutinizing the diagrams, which is at the core of
"inventing" the proof. In the hindsight, this might then be presented as the "idea
of the proof". We should therefore not expect our students at any level to be able
to independently produce proofs without preceding intensive work on the re-
spective diagrams. The reader might interpret this for instance in the case of
(Euclidean) geometric proofs. The reader is also encouraged to have a look in a
standard textbook on linear algebra and to read some of the proofs under the
pretext of diagrammatic reasoning. He/she will observe again and again the im-
portance of observing and recognizing patterns of relationships in the produced
diagrams, which are constitutive for the respective proof. Instructive examples
are: row rank equals column rank; matrix of a linear transformation; basis change
for linear transformations. But of course already the basic properties of the ma-
trix operations are good examples for diagrammatic reasoning.

Reading a finished (diagrammatic) proof demands first of all proficiency in
recognizing patterns in diagrams. Devising a proof mostly is based on inventing
new diagrams or parts of them. This becomes most clear in geometric proofs in
the form of auxiliary lines and figures. Here I will refrain from studying geomet-
ric proofs because the diagrammaticity of mathematical reasoning might be more
unexpected in other fields. For calculus see Dörfler (2004a).

As another example for a crucial invention I take the standard proof of the

Cauchy-Schwarz-Inequality for an inner-product 

€ 

α β α β α α, , , ,( ) ( ) ≤ ( ) i.e. 
2

€ 

β β,(� ). One invents a new diagram 

€ 

α β α β+ +(� )x x, , 

€ 

x any real number, and then

observes the transformation: 

€ 

0 2 2≤ + +( ) = ( ) + ( ) + ( )α β α β α α α β β βx x x x, , , ,  ,

which is using the conventional properties of the inner-product. From diagram-
matic reasoning with quadratic polynomials one now knows that 

€ 

b ac2 4 0− ≤  if

€ 

ax bx c2 0+ + ≥  for all 

€ 

x. And this gives for the above diagram
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€ 

4 4 0
2α β α α β β, , ,( ) − ( )( ) ≤

which is the desired inequality.
Clearly, this kind of diagrammatic reasoning presupposes intimate acquain-

tence with the handling of symbols and with ascribing generality to the respec-
tive expressions. But still the diagrammatic operations and their observation adds
to all this and constitutes the core of the proof, its stringency and security. Thus,
mathematics cannot be reduced to diagrammatic reasoning but the latter is an
essential component of its specific quality and character. Specifically, having at
hand a great inventory of diagrams, diagrammatic relationships and operations is
a precondition for mathematical inventiveness and productive ideas. The latter
very often are rich and productive diagrams of some sort. Take as an example the
Pascal triangle in combinatorics or possibly simple number relations in the con-
text of developing number sense.

Design
In this section I will present examples for a specific type of proof. It is those
proofs which consist in the purposeful design or construction of a certain kind of
diagrams or in the proof of the possibility of such a construction. In a sense,
those are constructive existence proofs by exhibiting diagrams with the desired
property or properties. A simple example is the proof that between any two frac-
tions 

€ 

m n/  and 

€ 

p q/  there is another one: Assuming 

€ 

m n p q/ /<  we find 

€ 

mq np<
because of 

€ 

mq nq np nq/ /< . Then for any 

€ 

k between 

€ 

2mq and 

€ 

2np the fraction

€ 

k nq/2  will be a required fraction. Or, the Euclidean proof that for any given set
of prime numbers we can find one not in this set is also of that kind.

The next example on the first glance does not give the impression that in es-
sence it is the design of diagrams, which is at the centre of the proof of the theo-
rem. It is the well-known theorem by Kronecker about the existence of roots for
polynomials. More technically the theorem reads as follows. For any polynomial

€ 

P x( ) over a field 

€ 

F  (i.e. the coefficients of 

€ 

P are elements of 

€ 

F ) there is an ex-
tension-field 

€ 

F1 of 

€ 

F  where 

€ 

P has a root (i.e. in 

€ 

F1 there is an element 

€ 

r  with

€ 

P r( ) = 0 over 

€ 

F1). Thereby one can assume additionally that 

€ 

P is irreducible

over 

€ 

F  (i.e. 

€ 

P is not the product of two polynomials over 

€ 

F  each of degree 1 at
least). The proof starts by considering the ring 

€ 

F x( ) of all polynomials over 

€ 

F ,

which can be considered to be a class of diagrams in the sense used here. Then
the general construction of the field 

€ 

F x P x( ) ( )/ , of 

€ 

F x P x( ) ( ) modulo , is em-

ployed which can be introduced as consisting of all equivalence classes of

€ 

F x P x( ) ( ) modulo . Thereby 

€ 

p p P1 2= ( ) if  

€ 

p p1 2−  is a multiple of 

€ 

P in 

€ 

F x( ).
Denoting by 

€ 

p[� ]  the class of 

€ 

p F x∈ ( ) the field operations on the classes are
given by 

€ 

p p p p1 2 1 2[� ] + [ ] = +[ ]  and 

€ 

p x p p xp1 2 1 2[� ] [ ] = [ ] . The latter definitions

have diagrammatic character but the notion of an equivalence class itself is not of
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a diagrammatic quality. Yet, the whole "construction" can be described easily in
a diagrammatic view. In each class of 

€ 

F x P x( ) ( )/  there is a unique polynomial 

€ 

p
of degree less than the degree of 

€ 

P. If 

€ 

n is the degree of 

€ 

P then 

€ 

F x P x( ) ( )/  can

be viewed as the set of all polynomials 

€ 

a a x a xn
n

0 1 1
1+ + −

−�  over 

€ 

F  with the
usual addition and a certain multiplication. The latter results from 

€ 

p xp1 2 (poly-
nomial product) by reduction modulo

€ 

P, i.e. it is the remainder of the division of

€ 

p xp1 2 by 

€ 

P. By various diagrammatic manipulations one demonstrates that
those operations for those diagrams satisfy all the properties of a field. The field

€ 

F  clearly is contained in the new field 

€ 

F F x P x1 = ( ) ( )/  and thus 

€ 

P can be
viewed as being a polynomial over 

€ 

F1. Among all the diagrams of 

€ 

F1 there is the
special diagram 

€ 

x(i.e. we have 

€ 

a a an0 2 1 0= = = =−  and 

€ 

a1 1= ), and for this
diagram we find according to the diagrammatic rules of 

€ 

F1 that 

€ 

P x( ) = 0 in 

€ 

F1

since 

€ 

P x P x( ) = ⋅ ( ) +1 0, i.e. 0 (the zero polynomial in 

€ 

F1) is the remainder when
dividing 

€ 

P by 

€ 

P. But this is just the same as saying that 

€ 

x is a root of 

€ 

P in 

€ 

F1.
To summarize: the proof can be interpreted in a diagrammatic way as the design
of a class 

€ 

F1 of diagrams containing the elements of 

€ 

F  for which a sum and a
product can be defined such that 

€ 

F1 is an extension field of 

€ 

F ; and in 

€ 

F1 there is
a diagram 

€ 

r x=( ) which is a root of 

€ 

P over 

€ 

F1. The important property of this

proof by design is that we can construct a diagram 

€ 

r  which is a root of 

€ 

P (this is
easy: just say that 

€ 

r  has the property 

€ 

P r( ) = 0) and which is element of an exten-

sion field (this is the hard and possibly surprising part). Ontologically, the theo-
rem and its proof are not about abstract objects but about perceivable, observable
and materially manipulable objects, viz., the diagrams 

€ 

a a x a xn
n

0 1 1
1+ + + −

−! .
The best known special case of the above of course are the complex numbers

where 

€ 

F R=  (the real numbers) and 

€ 

P x x( ) = +2 1. Thus the resulting diagrams

are of the form 

€ 

a bx+  , and 

€ 

x i=  is a root of 

€ 

x2 1+  in 

€ 

F C1 = . The product in 

€ 

F1

results from

€ 

a bx c dx ac ad bc x bdx ac bd ad bc x+( ) +( ) = + +( ) + = −( ) + +( ) +2 ( )"#
+$% &

which in 

€ 

F1, i.e. modulo 

€ 

x2 1+ , is 

€ 

ac bd ad bc x−(' ) + +( ) . The reader will recog-

nize the usual product in 

€ 

C where we write 

€ 

a bi+  instead of 

€ 

a bx+ . The dia-
grams in 

€ 

C can be designed more directly, of course, without the use of the poly-
nomials. This proceeds by considering all diagrams of the form 

€ 

a bi+ , by defin-
ing a sum and a product for them based on 

€ 

i 2 1= −  (a stipulated diagram again)
and by demonstrating via diagrammatic manipulations that thereby results a field.
Focusing on the diagrams, their design and their operations instead of looking for
"numbers" which are denoted by those diagrams turns this construction into a
rational and even perceivable and observable one. The complex numbers thereby
loose their common imaginary and mythical quality. Thus the diagrammatic
point of view contributes to demystifying mathematics. Of course, there remains
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the infinity of 

€ 

R which is beyond diagrammatic means. Yet, on the level of 

€ 

C
this does not pose specific problems.

To make the design of a root of 

€ 

P x( ) and of a field containing it even more
transparent I choose the specific case of 

€ 

F Z= 5, i.e. the field of residue classes of

€ 

Z modulo 5 which we denote for the sake of simplicity of writing by 0,1,2,3,4.
Consider the polynomial 

€ 

P x x( ) = +2 2 , which easily is seen to have no root in

€ 

Z5 since the squares in ()
 are 0,1 and 4 (

€ 

x2 1+  would have 2 as a root since*+,
=+  in 

€ 

Z5). The elements of 

€ 

F x P x( ) ( )/  are therefore the diagrams 

€ 

a bx a+ ,
and 

€ 

b in 

€ 

Z5, which are 25 elements among them all of 

€ 

Z5 and, for example,

€ 

2 3 4x x x,  , 2 3x, + , etc. For the sum, we have for example

€ 

2 3 3 0 4 4+(- ) + +( ) = + =x x x x ; and for the product

€ 

2 3 3 1 2 4+(. ) +( ) = + +x x x x

€ 

+ = + + = + +( ) =3 1 3 3 22 2 2x x x x x x modulo 

€ 

P.

The latter more easily is obtained by using 

€ 

x2 2 3= − =  in 

€ 

Z5 or better in 

€ 

F1. It is
then a matter of diagrammatic reasoning to convince oneself that those newly
designed diagrams with their operations of sum and product have all the proper-
ties of a field. Most of them are direct consequences of the respective properties
holding in 

€ 

Z5. For the multiplicative inverse one has to solve the equation

€ 

a bx c dx+(/ ) +( ) =1 with 

€ 

a b,  given for 

€ 

c d Z, ∈ 5. If 

€ 

b = 0 then 

€ 

c a=1/  and 

€ 

d = 0;

otherwise 

€ 

c a a b= +( )/ 2 22  and 

€ 

d b a b= −( ) +( )/ 2 22  (observe that 

€ 

a b2 22 0+ ≠
for all 

€ 

a b Z, ∈ 5 not both zero). In this (finite) case one has a complete survey of
all diagrams and there is absolutely no need for abstract objects, which the dia-
grams possibly stand for. At least in these cases the mathematics is about the
writing and manipulating of diagrams according to conventional rules, which
derive from specific purposes and intentions, which can be viewed to be a possi-
ble interpretant of the diagrams (the signs) in the sense of Peirce. Possibly one
has then to take the diagrams as their own objects to complete the triadic sign
relationship of Peirce.

A similar analysis could be carried out for many other mathematical "con-
structions". I just mention some more examples: direct products of algebraic
structures (design is the writing of ordered pairs); design of finite geometries;
existence of (combinatorial) graphs with certain properties.

Conclusion
I hope the reader has got an idea of what is meant by diagrammatic reasoning and
of its power and usefulness in mathematics. But I hasten to emphasize that
mathematics cannot and should not be reduced to diagrammaticity. There are
powerful ways of mathematical thinking and reasoning which appear to evade
diagrammatic methods, see Dörfler (2004b). Of very great interest also for the
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learning of mathematics possibly is the intricate interplay of diagrammatic and
other ways of presenting mathematical ideas, their relationships and differences.
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How Mathematics Teaching Develops
Pupils’ Reasoning Systems

Terezinha Nunes
Oxford Brookes University

Recent theoretical discussions have pinned constructivism and social constructi-
vism against each other. In this paper, I argue that Piagetian constructivism and
Vygotsky’s social constructivism are coherent and complementary. If we can reach a
synthesis of these two theories, we will have a more encompassing approach to
analysing how pupils learn mathematics and how mathematics teaching develops
their minds. I suggest that the theories are consistent because they are based on the
same metaphor of the mind and that they are complementary because they explain
different aspects of the development of reasoning. Together they can help us
understand the developments in pupils’ reasoning systems that result from changes
in the thinker (Piaget’s contribution) and in the thinker’s activity when using
different thinking tools (Vygotsky’s contribution). In order to develop these ideas, I
will first discuss the concept of thinking systems. I will then work with a simple
example in mathematics education, multiplicative reasoning. I will first consider the
origin of multiplicative reasoning - i.e., the development of the thinker, and then
discuss how mathematics teaching can affect pupils’ reasoning systems in this
domain. To conclude the discussion, I will consider a research agenda for mathema-
tics education based on the conception of thinking systems.

Reasoning systems
Systems theory was applied to reasoning by Piaget and the Russian developmental
psychologists in the first half of the twentieth century. They were attempting to
solve the same problem and envisaged systems theory as the solution. The problem
they were trying to solve was the mind-body problem, posed by the contrast between
biological and higher mental functions.

Biological functions are typically carried out by specialised organs. For
example, digestion is carried out by the digestive system; breathing by the respira-
tory system. Such functions involve a constant task performed by the same
mechanisms leading to an invariant result. If we consider breathing as an example,
the task is to bring oxygen to the cells in the body. This is accomplished by an
invariant mechanism: oxygen is received by the blood cells and transported to all the
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cells in the body. The invariant result is that the cells receive oxygen.
In contrast, higher mental functions are not carried out by a specialised organ

but through the co-ordination of different actions. They are carried out by functional
systems. According to Luria’s definition, in functional systems “a constant task [is]
performed by variable mechanisms bringing the process to a constant result” (Luria,
1973, p.28). I will take two of Luria’s examples to make this point. The first one is
‘remembering’. It is easy to be misled into thinking that we have a specialised organ
for remembering: the brain. But Luria points out that remembering involves
functional systems rather than a single biological unit. Imagine it is your partner’s
birthday and you want to remember to buy some flowers before going home. Your
task is to remember to buy flowers. You can accomplish this through a variety of
means. You can simply repeat this to yourself many times until you think it is now
impossible for you to forget. You may tie a knot around your finger: as you don’t
normally have a string around your finger, this will remind you to buy the flowers.
You might write it down to help you remember - on your palm, where it will be very
visible. Or on a yellow sticker, for example, and paste it on your wallet. Or you may
type it into your electronic diary and set an alarm to go off just before you leave
your office. These variable mechanisms can be used with the same end: to recover
the information. No single biological unit can account for all the different mecha-
nisms you may call upon.

A second example used by Luria is locomotion. Walking involves the same
organs: it is a biological function. But locomotion can be accomplished by variable
mechanisms: it involves a functional system. If your aim is to go from A to B, you
may walk, swim, ride your bike, drive, or fly. The end result will be to get to B. One
of the mechanisms will be chosen for practical reasons. Although it could be argued
that all of these mechanisms are under the control of some brain centre that helps us
make connections between different places, this is evidently not so. If I fly from
London to Tokyo, I might not have the faintest idea of how London and Tokyo
relate to each other. When I take a taxi from the airport to the hotel, I do not need to
know anything about the spatial relations between the airport and the hotel.
Locomotion is not a biological function and many of our target destinations could
not be achieved if all we could do was walk.

Higher mental systems are open systems: they allow for the incorporation of
tools that become an integral part of the system. When we take notes in order to
remember something, writing becomes an essential part of remembering. When we
fly from London to Tokyo, the aeroplane becomes an essential part of our loco-
motion. Vygotsky suggested that what is most human about humans is this principle
of construction of functional systems that allow activities to be mediated by tools.
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He termed this ‘the extra-cortical organisation of complex mental functions’ to
stress that these functional systems cannot be reduced to the brain.

Even the most elementary mathematical activities are carried out by functional
systems. Solving the simplest addition problem, for example, involves a functional
system. Paraphrasing Luria: we have no specialised organ for addition. If asked to
solve the problem ‘Mary had five sweets and her Grandmother gave her three more;
how many does she have now?’, a pupil can find the answer through a variety of
mechanisms. The pupil can put out five fingers, then another three, and count them
all; the pupil can put out just three fingers and count on from five; the pupil can
recall an addition fact, 5+3, and use no fingers. If this were a large number, the pupil
might decide to use a calculator. These are variable mechanisms that bring the
invariant result of finding the answer to addition problems.

For educators, one of the most significant features of higher mental functions is
that they are open systems: the variable mechanisms - which are often created
through the incorporation of tools - can be replaced by taking into the system some-
thing new from the environment. When a mechanism is replaced with something
new, the system changes. Children first solve addition problems using their fingers
to represent the objects in the problem. The principle used by the pupils’ reasoning
system in this representation is one-to-one correspondence: one finger represents
one sweet; one counting word is tagged to one finger; the last counting word
indicates the number of sweets. When pupils replace the use of five fingers with the
word ‘five’ by itself, the system changes: instead of one finger for each sweet, one
word represents all five sweets at the same time. This small change has a huge
impact on the reasoning system: whereas the pupil has a limited number of fingers,
number words continue indefinitely on. A system with fixed limits becomes much
more powerful because its limits are removed by a change in tools.

This change - from using fingers to using words - is not simple because it requi-
res refinements of the principles that organise the reasoning system. Fingers repre-
sent sweets through one-to-one correspondence but this principle is not sufficient for
pupils to understand numeration systems with a base. It has been widely documen-
ted that pupils need to understand additive composition of numbers in order to be
able to use number systems efficiently. Vygotsky (1978) himself pointed out that
forming complex mental systems mediated by tools involves a complex and pro-
longed process subject to all the basic laws of psychological evolution. Sign using
activity by pupils - such as the activity of using numeration systems to quantify
answers to problems - is neither simply invented by children nor passed down by
adults. Children’s own activities and the signs they know are initially not connected.
When they become connected, a major development is accomplished.
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To sum up: The points of convergence between Piaget’s theory and Vygotsky’s
theory reside in the use of the same metaphor of mind, the search for a solution to
the same problem, the acknowledgement of variations and invariants in thinking
systems, and the acknowledgement of qualitative developmental processes that
precede the possibility of mediated action. On its own, each theory is incomplete.
Piaget had a theory for the development of children's reasoning schemas but did not
have a theory about the consequences of acquiring conventional systems of signs.
Vygotsky did not have a theory for the developmental processes that precede
mediated action but stressed the increased power that conventional systems of signs
bring to our reasoning.

The consequences of these gaps are that Piaget’s child can understand number
but cannot solve numerical problems. To solve numerical problems, we need nume-
ration systems. Vygotsky’s child can count but may not know when and how to use
counting to solve problems. As mathematics educators, we must bring these two
together: we must understand how children organise their actions and help them
incorporate new tools into their thinking systems.

The description of simple problems, like the addition problem mentioned earlier
on, only gives a glimpse at how this process of co-ordinating pupils’ own activities
with conventional signs works. Because the problem is so simple, the example
conveys the false idea that a reasoning system will inevitably change - and change
for the better - when a new mechanism is incorporated into it. Unfortunately, as
mathematics educators know only too well, there isn’t necessarily a happy end to all
stories. An analysis of multiplicative reasoning will illustrate this point.

Multiplicative reasoning
Piaget’s (1965) hypothesis was that reasoning about multiplicative situations starts
with pupils' use of one-to-many correspondence as an organising principle. One-to-
many correspondence encapsulates the concept of ratio or a fixed relation between
two variables, which are at the core of multiplicative reasoning. Starting from the
Piagetian work, I will argue that mulplicative reasoning cannot be reduced to
repeated addition and that successful teaching about multiplicative reasoning should
attempt to promote the incorporation of systems of signs into the correspondence
reasoning. This is the contribution from Piagetian theory to mathematics education:
the identification of a schema of action that forms the basis of multiplicative
reasoning. From this starting point, we might ask which systems of signs used in
mathematics should be coordinated with this reasoning and what is the best route to
accomplish this in the mathematics classroom. The discussion that follows will be
based on research as far as possible. But there are many points where only hypo-
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thetical answers are possible presently: we do not have the research to answer many
of the questions raised here.

One to many correspondence and multiplicative reasoning
Piaget’s initial investigations on correspondence can be illustrated quite simply. The
interviews with children started with the well-known method of asking the children
to take one red flower for each vase. The red flowers are then put aside in a bundle
and the child is asked to take one yellow flower for each vase. The vases are then
taken away and the child is asked whether there are as many red and yellow flowers
on the table. Piaget suggested that this problem is not too difficult for children at
about age 5. They can understand that if the number of red flowers is the same as the
number of vases, and the number of vases is the same as the number of yellow
flowers, then there are as many red as yellow flowers. This is an example of the
famous transitive inferences studied by Piaget: if A = B and B = C, then A = C.

Piaget continued this interview by putting all the vases back on the table and
asking the children how many flowers would be in each vase if all the flowers were
distributed evenly in the vases. Children who succeeded in the preceding question
also knew that there would be two flowers per vase. Piaget’s final test of children's
understanding of correspondence was then to put the flowers away, leaving only the
vases on the table, and ask the children to pick up the correct number of drinking
straws so that each flower would be placed in one straw. The children could see the
vases but not the flowers. In order to solve this problem, the children would have to
think: there are two flowers per vase. To take the same number of tubes, I need to
take two tubes per vase. Piaget suggested that children at ages 5 and 6 show a good
degree of success in these problems.

In the last few years our research team investigated pupils’ use of one-to-many
correspondence reasoning to solve a variety of multiplicative reasoning problems.
Kornilaki and I examined pupils' solutions of multiplicative reasoning problems in
action; with Bryant, Watanabe and van den Heuvel-Panhuizen, I investigated solu-
tions to written problems, and with Park I investigated the teaching of multiplication
to young children.

Kornilaki (1999) asked young pupils in English schools to solve the following
problem: In each of three hutches there are four rabbits; all the rabbits will eat
together in a big house; the child's task was to place on the big house the exact
number of food pellets so that each rabbit had one pellet. In front of the child was a
row of three hutches but no rabbits. Kornilaki observed that 67% of the 5-year-olds
and all of the 6- and 7-year olds were able to pick up the exact number of pellets
needed to feed the rabbits. The 5- and 6-year-olds had two ways of solving the
problems. One route to solution was by establishing a correspondence between the
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pellets and the hutches, placing four pellets in correspondence with each hutch. The
second solution involved counting: the children first determined the number of
rabbits by pointing four times to each hutch as they counted, and then took that
number of pellets. The 7-year-olds could either use these correspondence solutions
or solve the problem through arithmetic, because they had learned multiplication
tables. It is significant that the lack of knowledge of multiplication tables did not
disadvantage the 6-year-olds in comparison with the 7-year-olds: all the children in
both groups were successful. Thus the principle of correspondence was used by the
younger children to solve multiplication problems before they learned about
multiplication in school; the older children could use a new mechanism, multipli-
cation tables.

In another study, Kornilaki (1999) gave children a slightly more difficult
problem: ‘I bought three boxes of chocolate; in each box, there are four chocolates.
How many chocolates do I have?’ What makes this problem more difficult is not
that it requires a different reasoning schema nor that the problem is about boxes of
chocolate: it is that there was no starting point for the children. In the previous
problem, Kornilaki gave the children a starting point: she set out in front of the
children a row of cut-out paper hutches. The representation of one of the variables
facilitates the use of the correspondence schema because the child only needs to
create a representation for the second variable. In this problem, the children had no
such initial representation of one variable. The problem involves the same numbers,
so there is no extra difficulty in terms of counting. But the children have to come up
with a representation for both variables on their own. This representational difficulty
significantly changes levels of success: 37% of 5-year-olds, 70% of 6 -year-olds,
87% of 7-year-olds and all of the 8-year-olds succeed in this more difficult problem.
Because the schema of correspondence is still the solution chosen by the majority of
5- to 7- year olds, the comparison between the results of this experiment and the
previous one shows that representing both variables is a considerable step in
children's progress. It also suggests a course of action for teachers. It is quite likely
that young children can profit from solving problems presented along with the
representation for one variable and that they will, in time, come to co-ordinate this
activity with the representation of both variables on their own. This would help them
progress in their ability to solve multiplication problems as a result from new co-
ordinations between reasoning and representations.

Young pupils can also solve such problems when they are presented through
drawings because drawings facilitate the use of correspondence. We have presented
the following problem to approximately 1000 children in England: ‘In each house in
this street (the drawing shows 4 houses) live 3 dogs. Write down the number of dogs
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that live in this street.’ The proportion of correct responses for 6-year-olds in this
problem is approximately 60%. Although it is not as high as the level of success
when the children have cut-out paper hutches in front of them, it is remarkable that
6-year-olds, who did not receive instruction on multiplication, can show such high
level of success. Figure 1 shows one of the children's productions in a problem
where they are asked to draw the number of carrot biscuits necessary to feed all the
rabbits inside all the houses: in these productions, the children left no doubt about
the mechanisms they used to solve the problem.

Figure 1. One drawing of the number of carrot biscuits necessary to feed each rabbit in
        the huts.

Reasoning by correspondences is not restricted to solving multiplication problems. It
is also used to solve multiplication problems where information on a factor is
missing. There are two ways in which the information about the factors could be
missing; we will consider each one in turn.

The first missing-factor multiplication problem would be: ‘I had a party; each
child that came brought me three flowers; I got 12 flowers; how many children
came?’ In this case, the children know the correspondence - 1 to 3; if they repeat this
until the total of flowers is 12, they will know how many children came to the party.
This problem, known in the mathematics education literature as ‘quotitive’ or
‘measure’ division problem, is in my view actually an inverse multiplication
problem. This is not simply a matter of terminology: if we think about it as an
inverse multiplication problem, we have a theory about how the child will solve the
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problem. In the same way that missing-addend problems are initially solved by
children through addition strategies - the child figures out how many to add to one
set to arrive at the total - quotitive division problems should be solved by children
initially through correspondence. This analysis also allows for some predictions
regarding children’s success. Children should show a higher level of success in
direct multiplication problems than in the inverse ones. Note that this is not a
prediction about division problems in general because sharing division problems are
as easy for children as the direct multiplication ones.

A second possibility would be to say: ‘I had a party. Three children came. Each
child brought me the same number of flowers. I got 15 flowers. How many flowers
did each child bring to the party?’ This problem has the same structure as the
problems described earlier on in the sense that it involves a fixed ratio. However,
because the ratio is not described, the children will find it very difficult to use the
correspondence schema. Thus this is an inverse multiplication problem where we
expect much less success.

Kornilaki did find that direct problems were easier than both types of inverse
problems and that inverse problems of the type traditionally described as quotitive
division were significantly easier than this second type of inverse multiplication
question. The rates of success in quotitive division problems were 30%, 50%, 80%
and 83%, respectively, for 5-, 6-, 7-, and 8 year-olds whereas in the second type of
inverse multiplication problem they were 10%, 30%, 56%, and 80% for the same
age levels.

An analysis of children's strategies showed that in the first type of inverse
multiplication problem, where the children knew the ratio, the vast majority of the
children who solved the problem correctly (83%) did so through correspondence
reasoning, either creating an explicit representation of both variables or creating an
explicit representation of the groups of flowers while counting the children in
correspondence with each group. In the second type of division problem, where the
ratio was not known, a correspondence solution could only be implemented by trial-
and-error. Only 21% of the children successfully used the correspondence solution
whereas about 50% seemed to be able to understand the inverse relation between
multiplication and division and actually shared out the total number of flowers into
three groups.

Reasoning by correspondences can also be documented amongst young children
solving simple proportion problems before they have been taught about proportions
in school. The example in Figure 2 shows a problem adapted from van den Heuvel-
Panhuizen. It was given to approximately 1,000 pupils in England. Because these
were given to whole classes of pupils, it is not possible to describe their strategy.
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Only some of the children make marks on the booklets, giving us a clue to their
solution process. However, the similarity between the percentage of children solving
the missing-factor multiplication problems and these simple proportion problems is
suggestive of the use of similar approaches to the solution of the two problems.

Figure 2. A simple problem involving proportions: the top roll has 8 sweets
    altogether; how many sweets in the bottom roll?

These analyses of children's solutions to multiplicative reasoning problems suggest
that mathematics teaching can develop pupils’ reasoning system by helping them co-
ordinate their correspondence reasoning with counting. As indicated by Vygotsky, a
very significant moment in children’s development is that when children co-ordinate
their actions with systems of signs. The hypothesis about the development of the
concept of multiplication is made more specific by Piaget’s theory, which suggests
that the schema of correspondence is the crucial action in the case of multiplication.

The hypothesis is by no means trivial: the teaching of multiplication in many
countries is based on repeated addition, not on correspondence reasoning. It is
noteworthy that the mathematics education literature contains arguments in favour
and against the use of repeated addition as the basis for multiplicative reasoning.
Whereas Yanomashita and Matsushita (1996) argued that repeated addition is only a
means to solve multiplication problems but does not represent its meaning, Fishbein
et al. (1985) and Steffe (1994) appear to suggest the opposite. Our hypothesis is
based on the analysis of reasoning systems developed here: if the child’s multiplica-
tive reasoning is based on correspondences, not on addition, the best way to develop
the child’s reasoning system is to promote its co-ordination with new systems of
signs. It leads to a very specific prediction: that children taught about multiplication
through correspondence reasoning will make more progress in solving multiplicative
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reasoning problems than children taught about multiplication through repeated
addition.

We (Park & Nunes, 2001) tested this prediction in an experimental study with
42 children attending two schools in London. The children's mean age was 6 years
and 7 months and they had received no instruction on multiplication in school,
according to their teachers. The children were randomly assigned to one of two
instruction groups: repeated addition or correspondence. The children were pre- and
post-tested on a set of mixed additive and multiplicative reasoning problems. We
use the phrases ‘additive’ and ‘multiplicative’ reasoning problems, rather than
addition and multiplication, because the problems included both direct and inverse
(i.e., missing addend and missing factor) problems. During the teaching phase, the
children in both groups solved a total of 16 problems, which could be represented by
the same arithmetic sentences. For the repeated addition group, the problem was
phrased as a sum of two identical sets; for the correspondence group, the problem
was phrased as a question where two variables were in a fixed ratio to each other.
For example, for the arithmetic sentence 2 x 3, the repeated addition group solved
the question: ‘Tom has three toy cars. Ann has three dolls. How many toys do they
have altogether?’ The same arithmetic sentence was exemplified in the correspon-
dence group by the question: ‘Amy’s Mum is making 2 pots of tomato soup. She
wants to put 3 tomatoes in each pot of soup. How many tomatoes does she need
altogether?’

Consistently with our theoretical framework, we expected the children to make
different levels of progress in the multiplicative reasoning problems from pre- to
post-test: we expected the children in the correspondence group to make signifi-
cantly more progress in multiplicative reasoning problems than the repeated addition
group. This prediction was supported by our results.  Although the groups did not
differ at pre-test, their performance was significantly different at post-test, with the
correspondence group performing better than the repeated addition group in
multiplicative reasoning problems. This difference could not be explained by a
similarity in the grammatical structure of the problems because the verbal descrip-
tion of problems in the pre- and post-test was varied and did not simply follow the
description of a ratio situation. For example, in three problems much of the infor-
mation was visually presented (see one example in Figure 3).
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You can’t see all the windows in the front of
the building. How many windows are there
altogether?

Figure 3. Example of a multiplication problem from the pre- and post-test
     which does not refer to ratio.

In conclusion, evidence seems to support the idea that children's reasoning schema
for multiplicative situations is based on setting correspondences between variables.
In order to develop their reasoning systems, mathematics teaching should lead the
children to use a variety of mathematical tools in connections with this reasoning
schema.

Reasoning by correspondences can create powerful systems for solving multipli-
cative reasoning problems. Relevant evidence comes from a variety of situations
where people solve problems outside school: children selling products in the streets,
foremen working out the size of walls from scale drawings, fishermen calculating
the amount of processed sea-food from the amount fished (Nunes, Schliemann, &
Carraher, 1993), and peasants calculating volume (Soto Cornejo, 1992), all reason
mainly by correspondences. They all have replaced the overt actions of a
correspondence schema with a new system of signs: instead of setting objects in
correspondence, they use number words followed by the quantities indicated.
Although they may occasionally make computational errors, they hardly ever make
errors in their reasoning.

Three examples are presented here as illustration. The first one comes from the
work on street mathematics (Nunes et al., 1993). A girl was selling lemons, which
cost 5 cruzeiros (the Brazilian currency at the time) each. Posing as customers, we
asked for 12 lemons. She calculated the price by separating out 2 lemons at a time,
as she said: 10, 20, 30, 40, 50, 60. She replicated the ratio 2-10 until she reached 12
lemons. Note the similarity in the activity of correspondence, which was carried out
in a more powerful way because the 1-5 correspondence was changed into 2-10.
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Another illustrative example comes from our work with fishermen. The fishermen
we interviewed in Brazil sold the fresh fish they caught to middlemen. The middle-
men salted and dried the fish to be sold far from the ocean. In order to know more
about their own commercial activities, the fishermen must understand that the
quantity they sell to the middleman is not the same quantity sold by the middleman
to the customer. When the fish is salted and dried in the sun, there is a loss of
weight. The quantity of processed fish is proportional to the quantity of unprocessed
fish. The same is true, for example, for the connection between quantity of unpro-
cessed and shelled fish.

A fisherman was told that there is elsewhere a kind of shrimp that yields 3 kilos
of shelled shrimp for every 18 kilos that you catch; if a customer wants to buy 2
kilos of shelled shrimp, how much do you have to fish for him? The fisherman
calculates: One and a half kilos [processed] would be nine [unprocessed], it has to
be nine because half of eighteen is nine and half of three is one and a half. And a
half-kilo [processed] is three kilos [unprocessed]. Then it’d be nine plus three is
twelve [unprocessed]; the twelve kilos would give you two kilos [processed] (Nunes
et al., 1993, p.112). His use of correspondence is quite clear: for each quantity of
unprocessed food, he names the corresponding amount of processed food. This is
accomplished by performing the same operation on each variable: if one is halved,
the other is also halved. This type of solution is known in mathematics education as
‘scalar’ reasoning, in contrast to ‘functional’ solutions. In functional solutions, an
operator is identified, which can be applied to one quantity to calculate the value of
the other one. Functional solutions have not been reported in unschooled adults and
are less common than one would expect even in British adolescents (see Nunes &
Bryant, 1996, for an analysis).

The third example I take from Soto Cornejo (1992), who interviewed rural
workers in the North of Chile. The workers sold wood for processing into vegetable
coal by volume. It has been documented often that students have difficulty with the
concept of volume and make many mistakes in calculating volume, particularly if
there is a decimal point involved in the calculation. Soto Cornejo drew a lorry
showing the dimensions 5 meters by 2 meters by one and a half meters, and asked
the worker to calculate the volume of its trailer. An illiterate worker reasoned like
this: ‘First I make a layer one meter high and always five meters long. That will give
you five cubic meters. (Note that the layer is an imagined object that he sets into
correspondence with the measures of volume) And that two times (the width of the
trailer is two meters), that makes ten cubic meters. Now I've got 5 (sic) centimetres
two times. We will take 5 centimetres (sic), this makes five times five, twenty five,
that is two and a half cubic meters. The total is ten plus five, fifteen cubic meters.’
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Once again we see the use of correspondence reasoning: to each layer corresponds a
volume, and the layers are simple (lxlx5) so that the correspondence is easily
established. This is a most imaginative way to solve a problem that students find
difficult after 7 or 8 years of school.

Multiplicative reasoning out of school is abundant with examples of scalar
reasoning; functional reasoning is almost completely absent. My conclusion is that
outside school people form powerful reasoning systems for the solution of
multiplicative problems by using new symbolic tools from arithmetic instead of
manipulatives. But they do not appear to refine the reasoning principles involved in
the system to generate functional solutions easily.

What happens in school? Can mathematics teaching develop pupils’ reasoning
system?

Piaget considered Vygotsky’s position optimistic with respect to didactic inter-
vention: ‘One must guard against an excessive bio-social optimism into which
Vygotsky sometimes seems to fall’ (Piaget, 1962). According to Piaget, teaching
will have a positive influence if it is coherent with the pupils’ reasoning; otherwise,
teaching might actually be ineffective or even lead the pupils astray.

The teaching of multiplication in many countries may not take pupils’ multipli-
cative reasoning into account. In many countries pupils are taught that multiplication
is the same thing as repeated addition. And in many countries pupils seem to
develop misconceptions about multiplication and have difficulty with proportional
reasoning (e.g. Hart, 1988). This analysis of multiplicative reasoning using systems
theory offers hypotheses about what could be changed in the teaching of multipli-
cation in order to promote the development of pupils’ multiplicative reasoning.
Many of these ideas will already be used by teachers. They are not necessarily new
ideas in this sense. What is a new outcome from this analysis is a framework that
can provide coherence and help choose - and test - effective ideas.

The first one is related to the representation of multiplicative reasoning prob-
lems in the classroom. Earlier on I suggested that it is appropriate for teachers of
young children to promote the co-ordination of the correspondence schema of action
with counting. But what next? How can this schema be translated into paper and
pencil representation?

I would hypothesise that the first translation might be into tables that show the
correspondences, rather than into arithmetic operations. Figure 4 shows an example
of a problem used in the classroom to support primary school pupils aged 7-8 years
in developing their multiplicative reasoning. A mixture of figurative and numerical
representations was used to strengthen the connection between the schema of action
and paper and pencil representation.
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Each child has 3 balloons.
Can you draw the rest of the balloons?
Can you write how many balloons there are
altogether in the table?

Figure 4. One example of the use of tables in the teaching of multiplication.

A second co-ordination with symbolic systems may be to represent the problems
through graphs. With the same group of primary school pupils, graphs were used
after they had worked with tables for a few lessons. The teacher was initially scepti-
cal about the possibility of working with graphs with such young children. After the
sessions, he was enthusiastic. A small scale pilot study in the school showed that the
children participating from this programme made significantly more progress than
the control children from pre- to post-test, although the intervention only lasted a
few weeks. A more detailed study is still needed.

The consequences of introducing the idea of graphs in close connection to the
solution of multiplication problems can only be speculated about. The difficulties
that pupils have in establishing connections between graphs and functions may be
much less important if they learn about graphs in the manner suggested here.
Algebraic representation of graphs and tables could be the third type of represen-
tation used in this context, which could be introduced perhaps through the explicit
representation of the constant ratio in graphs and tables. But our explorations have
not gone that far yet.

Conclusion
I conclude with a research agenda, rather than a solution. The use of systems theory
helps us understand how reasoning systems become more powerful through mathe-
matics teaching. But we know that progress is not an automatic result. In order to be
certain that we are building more powerful reasoning systems in the classroom, we
must investigate which principles are essential for the system to work well, the
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variable mechanisms or tools that teachers can insert into the reasoning system, and
what type of changes we expect to accomplish. I suggest that in many cases we
should not be satisfied with the simplest changes, where the same principles are used
without the refinements that can result from the incorporation of new tools. If we are
able to understand the principles used by pupils in the organisation of their reaso-
ning, we should also be able to examine which refinements they need, and investi-
gate ways of promoting these refinements in the classroom.
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Assessing Students’ Knowledge –
Language in Mathematics Tests

Astrid Pettersson
Stockholm Institute of Education

The theme of this conference is mathematics and language. In my talk about the
national tests in mathematics for the compulsory school with a language
perspective, I will focus on three important concepts relevant to language and
assessment – authenticity, feedback and documentation. I will relate the concepts
to the old and to the new test systems for different school years.

Authenticity Old system New system Year 9
Feedback Old system New system Year 9
Documentation New system Students  Teachers    Test instructions

Authenticity – Are the tasks more authentic now, in comparison with the tasks in
the old system? What can be said about problem contexts and the formulation of
questions?

Feedback – What kind of feedback to the students and to the teachers is there in
the old system and in the new one? And in what way do we express the feedback
from the results of the national tests?

Documentation – How do the teachers document their students´ knowledge? In
this aspect – documentation – I give examples only from the new system. What
kind of words do teachers and constructors of tests use when they describe
different qualities in the students´ solutions?

So this is the agenda for this lecture. But let me first introduce the two different
test systems.

The old system
From the middle of the 1940s until the middle of the 1990s, the grading system
in Sweden was norm-referenced. At the beginning this was the case only for
school years 2, 4 and 6 in the compulsory school. Later there were compulsory
achievement tests in mathematics only in school year 9 and in year 3 for two of
the course programmes in the upper secondary school. The aim of the tests was
to get maximum uniformity in teachers’ grading, throughout the country. The
teacher should use the results of the test to obtain information about the average
level of the class as well as the distribution of individual grades in the class, all in
relation to classes across the country. The test gave information as to how many
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students in a class should have the different grades, but the test did not inform the
teacher which student should have a special grade. These achievement tests were
used for a group-referenced grading system, i.e. the knowledge and achievement
of all the students in the country who belonged to a particular category and
studied the same course were compared with each other. In this system it was
very important that the tests were objective in the sense that all teachers could
assess the students’ solutions in exactly the same way. The test items had to have
a high discrimination index and had to provide variation in difficulty. The result
of the test was the guiding factor for the teacher in the grading of the students.

The new system
A new national curriculum for compulsory school and for the upper secondary
school came into effect in the autumn of 1994. It defines the underlying values,
basic objectives and guidelines of the school system. In addition, there is a
nationally defined syllabus for each individual subject. The compulsory school
syllabi indicate the purpose, content and objectives for teaching in each
individual subject. These are of two kinds: those that must be achieved, and those
for which it is the duty of schools to give all students a reasonable chance of
achieving. Some examples of goals are the following:

The school should strive to ensure that all pupils

• develop a sense of curiosity and a desire to learn, develop their own individual way
of learning

• develop confidence in their own ability

• learn to listen, discuss, reason and use their knowledge as a tool to

− formulate and test assumptions as well as solve problems

− reflect on experience and

− critically examine and evaluate statements and relationships

• take personal responsibility for their studies …

• develop the ability to assess their results themselves and to place their own
assessment and that of others in relation to their own achievements and
circumstances

Examples of goals to attain in the compulsory school:

The school is responsible for ensuring that all pupils completing compulsory
school

• have mastered basic mathematical principles and can use these in everyday life

• can use information technology as a tool in their search for knowledge.

To coincide with the introduction of the new curriculum and syllabi, a new
grading system has come into effect. Under this system, grades are awarded on a
three-grade scale from the eighth year of schooling onwards. The grades are
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Pass, Pass with Distinction and Pass with Special Distinction. In the upper
secondary school the grade Failure is added and the students in upper secondary
school are graded after every course. The grading is goal-related; i.e. the grades
relate students’ knowledge and achievement to the goals set out in the syllabus.
Only the teacher awards grades.

At the end of school year 9 national tests are held in the three subjects
Swedish, English and mathematics in order to assess students’ level of
achievement. The tests provide support for teachers in awarding grades.  The
testing of mathematics for grade 9 consists of both traditional tasks and more
open ones. In one part of the test, calculators are not allowed. Depending on the
nature of the task some tasks are more atomistic and some are more holistic. The
holistic ones are assessed with the help of assessment matrices. Often we also
have an oral test for grade 9.

There are tests in these same subjects at the end of school year 5, but it is not
compulsory for the municipality to use them. The main purpose of the subject
test for school year 5 is not only to check that the students have achieved the
requirements of the curriculum and syllabus. They also have a diagnostic
purpose. In the test material there is also a scheme for self-assessment. The
teacher is advised to integrate the subject test within the ordinary teaching, the
intention being that both the ways in which the student has worked with the
problem as well as the answer will be taken into consideration. There are tasks
for both individual work and for group work. To help teachers to describe the
mathematical knowledge of the student they may use a proposed Competence
Profile. The teacher should then consider both their assessment of the student’s
work on the subject test as well as their overall assessment of the student’s
mathematical knowledge. Our hope is that the teachers can, with the help of the
profile, gain a more balanced picture of the student’s knowledge in mathematics.
For the test in school year 9 there is a similar profile, but only referring to the test
- a test profile.

The diagnostic materials in mathematics consist of two parts, one part for use
in pre-school and up to grade 6 and one part from grade 6 to grade 9. Each part
consists of a scheme for analysis and diagnostic tasks. The purpose of the
materials for analysis is to help teachers analyse and document the students’
knowledge in mathematics. The same scheme is to be used for students of
different ages. When using the scheme it will show the student’s development
over several years. Students are allowed to express their knowledge in different
ways: action, pictures, words and symbols. Three different areas are focussed
upon in the first scheme, Measuring and spatial sense, Sorting, Tables and
diagrams and Number sense. In the second scheme for grade 6-9 we focus on
Measuring, Spatial sense and geometrical relations, Statistics and probability,
Number sense and Patterns and relations.
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The following overview shows the different test materials for the compulsory
school in Sweden.

Diagnostic materials Pre-school and up to grade 6 A booklet for analysis
Not compulsory A booklet with tasks

From grade 6 up to grade 9 A booklet for analysis
A booklet with tasks

Subject test Grade 5 4-5 different parts +
Not compulsory group-tasks and self-

assessment

Subject test Grade 9 2-3 different parts +
Compulsory group-tasks and/or

oral test

The National Test is not meant to steer teachers in their grading but rather to help
them to assess whether and how well the individual student has reached the goals
for the subject. The starting point for the construction of a test is the view of
knowledge expressed in the curriculum and the view of the subject in the
syllabus as well as the criteria for the different grades. With the new test the
teacher cannot determine the level for his class as a whole compared with other
classes in the country. It is important to have tasks involving different content
areas of the subject. The problems in the material should be designed in such a
way that the student has the opportunity to show different competencies in
mathematics. The new national test works in a goal and knowledge context. It
has in part other demands than that of a norm-referenced test. The new national
test must consist of more varying tasks and the students must have opportunities
to show their competence in different ways. Mathematical competence is so
much more than merely knowing certain mathematical content and skills. It is
also essential to communicate knowledge and to present mathematics in written,
oral, visual and symbolic forms. In addition it is important to use mathematical
strategies, models and methods within one’s present knowledge and skills to
create new skills and methods utilising a range of facts, concepts and processes.

Authentic tasks – the old and the new system, year 9
In the old system we had a lot of short tasks but also different themes in one part
of the test. The themes could be

• Sri Lanka
• Traffic and Environment
• Sports Booth

In the new system we also have a lot of short tasks and different themes but also
more extensive tasks and tasks for pairs/groups, such as
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• Bus Frequency
• Inheritance
• Perimeter

My conclusion is that the contexts of the tasks are not more authentic now
compared with the tasks in the old system, but the way of posing questions is
more authentic in some tasks in the new system.

In the old system we asked things like

• How many …
• Compute…
• What is (the price)…
• How high….
• How much …
• When….
• Estimate…

In the new system we also have questions like

• Why
• Explain
• Investigate
• Describe

Some examples of tasks from the new system (school year 9):

Example 1: There are 11 people working in a company. Their monthly salaries
are:

15 000 13 000 47 000 15 000
13 000 55 000 15 000 13 000
16 000 16 000 13 000

Work out the average and the median monthly salary. Which measure –
average or median – best reflects the salaries of the group? State the reasons
for your choice and explain why you believe the other measurement is not
as good.

Example 2:  Perimeter

In this task you will be working with four different geometric figures. All figures
must have a perimeter of 12 cm.

You should work with the following geometric figures:

- a rectangle, where the length is twice as great as the width
- a square
- an equilateral triangle
- a circle.
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You should study and compare the areas of the figures. What conclusions can be
made?

When assessing your work, the teacher will take into account the following
• how clearly and correctly you have drawn the figures
• whether you have made the correct calculations
• how well you explain your workings and methods
• how well you have stated the reasons for your conclusions.

Example 3: Hassan says, ”An increase from 40 to 80 is a 100 % increase”.
Amir says, ”Then a decrease from 80 to 40 is a 100 % decrease”.
Who is right and who is wrong? Explain in both cases why it is
right or wrong.

Feedback of test results – the old and the new systems, year 9
We can illustrate the comparison of working in the old and the new systems in
the following way:

The old system The new system

1. Construction of the test 1. Construction of the test
2. The students work with the test 2. The limits for the three

    grades are established
3. The teachers assess and send results back3. The students work with the

     test for standardizing
4. The interval for grade 3 is established and 4. The teachers assess the
     sent to schools/teachers      students’ work.

In the new system the teachers can, if they so wish, give the students more
feedback about their knowledge than in the old system.

The main difference between the two systems is that the teachers receive the
grades together with the test, rather than after the students have worked with the
test. In the old system the teachers got feedback with a total sum and an interval
for school year 3, a mean and a standard deviation.  In the new system they get a
sum of different “Pass-points” and “Pass with distinctions-points” but also an
assessment matrix. With the assessment matrix the teacher can discuss with the
students how he/she has solved the tasks, the strengths and weaknesses in his/her
solution. (See Appendix)
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Feedback in the new system – year 5
Even for year 5 the teachers have the opportunity of giving students feedback by
means of a competence profile, where the teacher together with the student can
make notes.

Another way to get feedback for the teacher and the students is to let the
students assess their knowledge by themselves. Here are some questions from the
self-assessment scheme

How do you feel when doing
the following?

Very
sure

Pretty
sure

Unsure Very
unsure

Estimating approximately how long a bus is.

Looking in a newspaper to see how long a TV
programme is.

Working out  8 – ___ = 3

Deciding which number is greater
– 3.8 or 3.14.

Working on tasks other than those you are
used to.

Explaining to a classmate how you
solved a task.

Working with someone else.

Working on your own.

Another form of feedback is for the students to answer questions about mathema-
tics:

1. What do you think you are good at in mathematics?
2.      What do you think you need to practise more in mathematics?
3. Give examples of one or several tasks in the test, which you think were

good. Explain why.
4. When do you think you learn mathematics best?
5. Write more about yourself and mathematics.

Documentation in the old and the new system
As we have seen, teachers could document students’ results on the national tests
in the old system as a sum of points. In the new system, they can document the
results as different kinds of points but also by notes in an assessment matrix. In
the new system we also have diagnostic material. I would like to leave the tests
for a while and talk about the diagnostic materials. This material consists of two
different parts – an analysis scheme and a part with problem tasks. The two parts
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focus on different areas. Let’s look at the analysis scheme for measurement and
spatial sense.

Some examples of rubrics in the scheme:

Shows self-confidence in own ability
Shows pleasure, interest etc.
Takes responsibility for his/her learning
Deals with and solves problems
Uses ”Measurement and spatial sense”
Words in common usage, understands words like longer, heavy, greatest etc
Basic spatial sense
Maps and drawings
Geometrical objects
Patterns
Symmetry
Length
Volume
Mass (weight)
Area
Angles
Time

What kinds of words do teachers use in describing students’ knowledge? About
50 teachers from pre-school up to grade 8 in a municipality in Sweden have used
the scheme. Here is a summary of their documentation.

Shows self-confidence in own ability
Here the teachers often write adjectives, like “positive, interested-uninterested,
happy-unhappy, curious, engaged, immature, certain-uncertain, aktive-inactive”.
Other teachers use verbs such as “takes responsibility for his own work and for
group tasks, leads the group work, tries willingly, takes responsibility for
planning, wants to be noticed and recognized, wants to have a lot of help, does
homework, needs a lot of support”

In the other boxes we can have three different categories, the teachers who
describe “Know”, “Know and what”, “Know and where”:

”Know”: No problems, Yes, OK, recognise, have understanding, participate,
explain, compare, tell, describe, understand concepts, and understand hour and
half an hour
”Know and what”: gives correct names to triangle, rectangle, size buttons, uses
ruler
”Know and where”: making bread, doing woodwork and handicrafts

Some of the teachers also write what the students do not know: have difficulties
with, mixed different concepts etc.
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An example of a teacher’s documentation:

The student (9 years old) saw a pattern in the carpet. He calculates how many
squares the carpet consists of. He first uses his fingers to estimate the squares
and uses this measure to calculate how many squares the carpet consists of.

Conclusion
Language is important for assessment. It is important that we use the same words
for the same things, so we can understand each other. It is important that we
study what words and concepts the students use when they show their knowledge
and what words and concepts the teachers use when they assess the knowledge. It
is also important for how the student experiences the assessment.

Assessment can be stimulating and supportive for learning. Assessment is
not only a ”receipt” for knowledge displayed, but also influences an individual’s
learning, his/her self-esteem and confidence in his/her knowledge. Assessment, if
relevantly used, can provide a great potential for learning. But what does
assessment mean for the individual? The consequences of assessment can be
illustrated by the following figure:

An assessment that supports and stimulates learning means that a student’s
knowledge is analysed, evaluated and expressed in such a way that the student
progresses in his/her learning and feels self-confidence in his/her own ability (I
can, want to, dare to), instead of an assessment that leads to a judgement and
perhaps a condemnation (I cannot, do not want to, dare not).
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Appendix

Assessment matrix

Problem solving capability
Comprehension and method
The assessment concerns: To what degree the student shows an understanding of the
problem. What strategy/method the student chooses to solve the problem? To what
extent the student reflects upon, and analyses the chosen strategy and the result. The
quality of the student’s conclusions. What concepts and generalisations does the student
use?

Accomplishment
The assessment concerns: How complete and how well the student carries out the
chosen method, makes necessary calculations and explains and defends the reasoning in
the solutions.

Communication capability
Mathematical language and/or representation
The assessment concerns: How well the student uses mathematical language and
representation (symbolic language, graphs, illustrations, tables and diagrams).

Clarity of presentation
The assessment concerns: How clear, distinct and complete the work of the student is.
To what extent the solution is possible to follow.

Qualitative levels

Comprehension and
method

Shows some
understanding of the
problem, chooses a
strategy, which
functions only
partially.

Understands the
problem almost
completely, chooses
a strategy which
functions and shows
some reflective
thinking.

Understands the
problem, chooses if
a general strategy
possible and
analyses his/her own
solution.

Accomplishment Works through only
parts of the problem
or shows weaknesses
in procedures and
methods.

Shows knowledge
about methods but
may make minor
mistakes.

Uses relevant
methods correctly.

Mathematical
language and/or
representation

Poor and
occasionally wrong.

Acceptable but with
some deficiencies.

Correct and
appropriate.

Clarity of
presentation

Possible to follow in
parts or includes
only parts of the
problem.

Mostly clear and
distinct but might be
meagre.

Well structured,
complete and clear.
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Panel Discussion on

Mathematics and Language

Christer Bergsten, Håkan Lennerstad,
Norma Presmeg, Åse Streitlien

Introduction

Christer Bergsten, Linköpings universitet

When the theme Mathematics and Language was decided for this seminar it was
to recognise that there are many important, and some far from obvious ways that
language and mathematics go together but also to open up for new aspects of
using linguistic tools to study mathematics and mathematical thinking and
learning. The first critical issue is the one on definition - what do we mean when
we use the word language in connection to mathematics? When using the ex-
pression the language of mathematics it is often the algebraic (or symbolic) lan-
guage that is being referred to. To pinpoint this language aspect of mathematics
the term Mathematish was used at one of the paper presentations at this seminar:
Lennerstad & Mouwitz (this volume) claim that mathematical texts are bilingual
in its mixed use of natural language (such as English) and Mathematish. Being
imprisoned by language when analysing the use of language in mathematics, we
risk to get caught in the self-reference trap, like at the huge efforts at the begin-
ning of the last century to use logic to study the logical structure of mathematics.
In relating language to mathematics education, one path to follow is to study lan-
guage as a structure, another is to study the use of language. The latter will be in
focus when analysing communication in the classroom – this was the direction
taken by Åse Streitlien in her opening presentation at the plenary panel on dis-
course patterns in a primary mathematics class. To this the aspect of meaning
was added by Håkan Lennerstad, which led into the study of language also as a
structure –  why don’t we teach the grammar of Mathematish? In order to analyse
both the use and the structure of language in mathematics education, Norma
Presmeg gave some examples of how the ideas of semiotic chaining had helped
mathematics teachers to reflect on and develop their practice. The presentations
were followed up by questions from the audience, where only time gave the
limit, showing that language is an important and deep issue in mathematics edu-
cation. In the following the written versions of the introductory contributions of
the three panel members are presented.
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Remarks on Mathematics and Languages

Håkan Lennerstad, Blekinge tekniska högskola

Introduction
For students (and pupils), use of language in mathematics may have at least four
meanings:

1. Use of personal vocabulary, every day experiences, images and asso-
ciations to metaphorically handle mathematics problem solving and
expressing mathematics activity and meaning, including mathematical
dialogues.

2. Use of proper and logical natural language when writing solutions to
mathematical problems.

3. Use of the mathematical formal language (numbers, equations, formu-
las…), a language that we may call Mathematish (see the chapter
“Mathematish – a tacit knowledge of mathematics”, this volume).

4. Communication in mathematics with pupils with a different mother
tongue.

In these remarks, 2 and 4 are not commented. The connection in freedom and
confidence between 1 and 3 is focused.

In the aim of inviting students’ authentic thinking about mathematics, which
has its reflection in teachers displaying mathematical culture, we will be lead to a
fifth sense of language in mathematics. This one concerns teachers more than
pupils:

5. Teacher’s use of own personal vocabulary, every day experiences, im-
ages and associations to metaphorically handle mathematical problem
solving and expressing mathematical activity and meaning, including
mathematical dialogues, in communication with students.

Is students’ authentic questioning present in mathematics classes?
One may ask: in which way are students present in a mathematics class? Perhaps
the most common types of presence are listening to the teacher, calculation ac-
cording to the textbook, some mathematical dialogue, and various non-
mathematical dreaming or chatting.

Students’ authentic questioning about pieces of mathematical calculation is
probably relatively absent. How calculations can be done, why they are efficient,
what they mean, and comparisons to experiences and instances in other subjects
where they may be useful. This may be regarded as independent thinking from
personal perspectives. It can also be described as a philosophical attitude, that
may produce meaning and context, partly because of pieces of mathematical
culture that the teacher then may find relevant. Independent use of mathematical
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formal language is also uncommon by students, verbally or in writing, suggesting
a status as a foreign language that is not much internalised.

Some teachers manage to inspire such independent thinking. It appears to be
particularly absent in the subject of mathematics, being considered by many stu-
dents as an “alien subject”.

Mathematics as anyone’s toolbox
If we, conversely, regard mathematics as a way of thinking that is natural for
humans, mathematical formulas belong to everyone, and contain meanings that
also belong to everyone. This is inconsistent with the common view that
“mathematics is a subject you meet in school”. Contrarily, everyone meets
mathematics during the first years in life, and develop individual intuitions. In
school, most children for the first time meet the systematic and official language
of mathematics.

If students consider mathematical formulas and meanings as belonging to
everyone, it is natural to experiment and to question statements in the language
of mathematics. This contradicts a view of an “alien subject”. Such experi-
menting is of course naturally done using the mother tongue.

What is mathematics for mathematicians?
Mathematical formal language, Mathematish, has been developed and construc-
ted during the last few hundred years. This language has been a very powerful
tool in the development, and has come to be essential in many natural sciences
and technical areas. Mathematicians do not need much different descriptions of
mathematical ideas than in this specialized language.

However, this strong dominance of Mathematish is perhaps not effective for
everybody. Since the subject to a large extent still is described by its architects,
i.e. the mathematicians, we may presently live with a description of mathematics
that is not appropriate for many students.

However, like students, mathematicians struggle with mathematics. This
struggle produces images and drama, which sometimes take the form of a mathe-
matical culture. On the other hand, in the absence of mathematical culture, stu-
dents often regard the teacher’s perfection at the black board to be the appropri-
ate mathematical attitude. For students with that view, any struggle with mathe-
matics may be strongly disappointing.

Mathematics should be actively constructed by students and teachers
Thus, in terms of mathematical meaning, there is a common ground between stu-
dent’s authentic questioning, philosophy and mathematical culture. Note that
mathematicians have different opinions about meanings of formulas, they agree
only about the question of true or false. Students and the teacher in a class should
not feel dominated by the official mathematical description, but should consider
this as a resource and feel that they are allowed to construct appropriate mea-
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nings of mathematics and its activity, while doing it. Today’s official description
of mathematics is not enough.

The excluding Mathematish
It seems like a large part of this cultural problem lies in the extremely efficient
but sometimes excluding invention of mathematics: its language Mathematish. If
you feel unsafe in the language, much courage is needed to make any statement
whatsoever. This is a powerful and invisible barrier for dialogues with students.
Unfortunately, it is a natural invisibility in the sense that languages are, in a cer-
tain sense, naturally invisible. We are good at using our mother tongue, but not at
describing its rules. For languages learned later in life, typically the converse is
valid. Perhaps many students in mathematics feel that they meet a foreign lan-
guage they are supposed to understand but don’t know how to handle. In the ab-
sence of authentic dialogues, many students may see no alternative but to imitate
formal activities during the years in school.

Mathematical knowledge: calculation, ways of calculation, and meaning
One may describe mathematical knowledge as being of three kinds: to perform
correct calculations with numbers and formulas when ways of calculations are
given, to see possible ways of calculation in more open problems (essential for
mathematicians), and applications and interpretations of formulas and concepts.
Only the first of these can be efficiently programmed in computers. The last two
kinds cannot be formalized, but, being essential, should anyway be described
extensively. They are essential for the success and meaning of the Mathematish
practice (calculation).

The present dominating way of working mathematics education, to which to-
day’s teachers naturally belong, is very Mathematish-dominated, and neglects the
last two types, for which (at least for ways of calculation) there are mainly po-
etic, personal and metaphorical ways of expression. Today’s teachers have de-
veloped ways of calculation and ideas of meaning, which we may not need to
express in order to see meaning, since the symbols themselves for teaches carry
this meaning. The present educational situation can be expressed by a common
saying: “mathematics is easy to teach but difficult to learn”. This may be seen as
expressing the profound difficulty for teachers in reaching students’ mathema-
tical thinking in true dialogues – at least in a strongly Mathematish-dominated
practice.

Force of change: teacher’s courage in personal mathematical reflection
Central for students’ authentic questioning is teachers’ reflective practice, par-
tially breaking the present practice. Of course, children during life naturally de-
velop abilities to reflect and make choices. In the absence of teacher’s reflection,
children naturally conceive school not as a place to reflect, but to learn. There-
fore, teachers’ use of personal vocabulary, every day experiences, images and
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associations to handle mathematical problem solving and express mathematical
activity and meaning, may inspire and allow dialogue as well as similar activity
among students in mathematics classes.

Semiotics as a theoretical framework for mathematics and language

Norma Presmeg, Illinois State University

 “The reasoning of mathematicians will be found to turn chiefly upon the use of
likenesses, which are the very hinges of the gates of their science. The utility of
likenesses to mathematicians consists in their suggesting, in a very precise way,
new aspects of supposed states of things” (Peirce, 1998, p. 6).

Some of the originators of theories of semiotics were linguists. Ferdinand de
Saussure’s (1959) book, Course in General Linguistics, is a seminal work in this
area. And Charles Sanders Peirce, himself fluent in Latin, Greek, and several
other languages, makes it abundantly apparent in his writings (e.g., 1998, Vol. 2)
that semiotics under girds and illuminates the study of languages and their struc-
ture. Why, then, is semiotics, defined as the study of semiosis (activity with
signs), useful to mathematics educators? A hint of an answer to this question is
given in the initial quotation from Peirce, and in this paper I illustrate semiotic
aspects of metonymy and, in particular, metaphor, showing the relevance of  “the
use of likenesses” in the learning of mathematics. In a triadic model of nested
signs based on the formulation of Peirce, the categorization of signs as iconic,
indexical, or symbolic relates to the uses of metaphor and metonymy in semiosis.
I have found these constructs to be powerful lenses in my research, both on ways
of connecting home activities of students with formal mathematical concepts in
school and college (Presmeg 2002), and in understanding the ways that signs
support learning of mathematics at all levels. After an initial description of this
triadic nested model of signs and their uses, I illustrate how metaphor and me-
tonymy are implicated in the model, and its use in linking mathematics in and out
of school.

Pierce’s triadic model of semiosis, in the United States (Peirce, 1992), had its
counterpart in the Swiss structural approach of Saussure, who defined the sign as
a combination of a “signified” together with its “signifier” (Saussure, 1959;
Whitson, 1994, 1997). Lacan inverted Saussure’s model, which gave priority to
the signified over the signifier, to stress the signifier over the signified, and thus
to recognize “far ranging autonomy for a dynamic and continuously productive
play of signifiers that was not so easily recognized when it was assumed tacitly
that a signifier was somehow constrained under domination by the signified”
(Whitson, 1994, p. 40). This formulation allows for a chaining process in which a
signifier in a previous sign combination becomes the signified in a new sign
combination, and so on. An example from Hall’s (2000) dissertation research –
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which built on my initial work in this area – illustrates these processes. (For fur-
ther examples, see Cobb et al., 1997, 2000; Presmeg, 2002.)

An example of use of semiotic chaining in mathematics education
Using a semiotic chain, a sequence of abstractions is created while preserving the
important relationships from the everyday practices of the students. This chain
has at its final link some mathematical concept that is desirable for the students
to learn. Using this process, a teacher can use the chain as an instructional model
that develops a mathematical concept starting with an everyday situation and
linking the two. The example in figure 1 is a chain that was developed and used
with three practicing fourth grade teachers (Hall, 2000), for the purpose of ex-
posing them to this notion. In three phases, Hall gave the teachers increasing
autonomy to construct their own chains based on the experiential realities of their
students, and to use these chains in their classroom practice. The everyday prac-
tice in the figure 1 was chewing gum and the mathematical concept being devel-
oped was base five addition.

This chaining process involves metonymy - as indeed all signifiers are in a
sense metonymic in a semiotic model (Presmeg, 1998a), since they are “put for”
something else - and also reification, since each signified in turn is constructed as
a new object (Sfard, 1991) that is symbolized by the new signifier. Chaining thus
casts light on both processes as they are implicated in the construction of mathe-
matical objects. Changes in discourse in moving through the chain also exem-
plify the negotiation of mathematical meaning through social interaction that
Sfard (2000) and Dörfler (2000) both regard as central in “symbolizing mathe-
matical reality into being” (Sfard’s title).

Formal written expressions

Base 5 numbers             Changes in
 

Combining sets of blocks             discourse

Packaging gum (5 each
in packages& packs,
and single pieces)

         signifier 1     signifier2     signifier3
signified 1    signified2      signified3

Figure 1. An example of a semiotic chain used by Hall (2000).
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Chaining using this model proved to be a useful tool in enabling these elementary
school teachers to link activities from the lives of their students, in a series of
steps, with the mathematics of the classroom (Hall, 2000). Hall investigated the
process of constructing and using such chains in two modes. Firstly, one might
start with an everyday practice that is meaningful to the participants, and then see
what mathematical notions grow out of the chaining as it is developed. Secondly,
one might focus on a mathematical concept that is to be taught, and then search
for a starting point in the everyday practices of students that can lead to this con-
cept in several links of the chaining process. Not surprisingly, Hall’s teachers
found the second mode to be more suited to their classroom practice, giving them
more control over the syllabus. They were able to use the chaining process suc-
cessfully in their own classroom mathematical practices. Chains constructed by
the teachers were designated as either intercultural  - bridging two or more cul-
tures, or intracultural – having a chain that remained within a single culture. Ex-
amples of the first type involved number of children in students’ families, pizzas,
coins, measurement of students’ hands, linking in a series of steps with class-
room mathematical concepts. These are intercultural because the cultures and
discourse of students’ homes or activities are linked with the different discourse
and culture of classroom mathematics, for instance, the making of bar graphs.
Manipulatives were frequently used as intermediate links in these chains, as in
the following general model (Hall, 2000, p. 174).

Mathematical concept to represent the manipulative
Manipulative to represent the specific activity
Specific activity within the everyday activity

Everyday activity

Figure 2. A general model of an intercultural semiotic chain.

The second intracultural type, involving chains that were developed within the
culture of a single activity, was evidenced in a chain involving baseball team sta-
tistics. The movement along the chain could be summarized as follows:

Baseball game         Hits vs. At Bats         Success Fraction          Batting Average

It was not the activity that was preserved throughout the chain, but merely the
culture of baseball within which the chain was developed. Preliminary results
from a study by Cheryl Hunt Adayemi (in progress) suggest that the model is
also viable for use with pre-service elementary teachers, facilitating their use of
students’ own activities through chains that link with the school mathematics
curriculum.
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However, as in my previous research with graduate students in my Ethno-
mathematics class (Presmeg, 1998b), this conceptual model was not completely
adequate as an explanatory lens. Hall’s dissertation research grew from his par-
ticipation in this Ethnomathematics course and attempts in that course to use this
model of semiotic chaining to link cultural practices in a series of steps to formal,
abstract mathematics (the intercultural model described in the foregoing). But
when Hall (2000) in his dissertation research taught the elementary school teach-
ers to construct and use their own semiotic chains in their mathematics class-
rooms, starting from activities in which their students were engaged, it became
apparent in his analysis of the data that a more complex model would have pro-
vided a better lens for understanding the processes involved. In one instance
there was the phenomenon of a sign within another sign (two related and nested
signifiers for the same signified), which did not fit the pattern of the dyadic
chain. The lesson involved the children counting the number of boys and girls in
the class and constructing pictographs, using stick figures to stand for two chil-
dren each. Both the stick people and the pictograph could be thought of as signi-
fiers for the same signified, the students in the class. Hall (2000, p. 181) repre-
sented the situation as follows.

     signifier b   pictograph

    signifier a stick people
=

     signified     students

Figure 3. A signifier within another signifier.

The evident need to take not only this kind of nestedness but also the construc-
tion of meaning into account, resulted in further development of the theory, as
described in the next section.

A Peircean nested model of signs
Each of the rectangles in figure 4 represents a sign consisting of the triad of ob-
ject, representamen, and interpretant, corresponding roughly to signified, signi-
fier, and a third interpreted component, respectively. This interpretant involves
meaning-making: it is the result of trying to make sense of the relationship of the
other two components, the object and the representamen. Note that the entire first
sign with its three components constitutes the second object, and the entire sec-
ond sign constitutes the third object, which thus includes both the first and the
second signs. Like Russian nested dolls, sign 1 becomes an object in its own
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right (O2) and resides within the second sign; similarly sign 2 becomes an object
in its own right (O3) residing within the third sign. Each object may thus be
thought of as the reification of the processes in the previous sign. Once this reifi-
cation occurs, this new object may be represented and interpreted to inform the
creation of yet another object.

Key: O = Object (signified)
R = Representamen (signifier)
I = Interpretant

R3

-----    I3
O3

R2

-----            I2
O2

R1

 ------                  I1
O1

Figure 4. A Peircean representation of a nested chaining of three signifiers

In his writings, and as I have chosen to do in this model, Peirce sometimes re-
ferred to sign as the whole triad of object, representamen, and interpretant. But
more often in his published work, sign is the word he used when referring to the
representamen, the signifier. The meaning can usually be inferred from the con-
text, avoiding ambiguity. However, it is necessary to be aware of this double us-
age of the term. In Peirce’s “trichotomy of signs,” as he stated, there are three
kinds of signs (referring to the representamen):

Firstly, there are likenesses, or icons, which serve to convey ideas of the things
they represent simply by imitating them. Secondly, there are indications, or in-
dices, which show something about things, on account of their being physically
connected with them. Such is a guidepost, which points down the road to be
taken, or a relative pronoun, which is placed just after the name of the thing in-
tended to be denoted, … Thirdly, there are symbols, or general signs, which
have become associated with their meanings by usage. Such are most words,
and phrases, and speeches, and books, and libraries (Peirce 1998, p. 5; his em-
phasis).

It is the likenesses, or icons, which are metaphors. A metaphor implicitly com-
pares two domains of experience, giving meaning to elements of one of these
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domains by reference to structural similarities in the other. Peirce’s indices are
metonymies rather than metaphors. In a metonymy (e.g., “Washington is talking
with Moscow”) a representamen stands for an object in such a way that the con-
text is needed for its interpretation (e.g., not the cities, but the governments cen-
tered in those cities, are communicating). All metaphors and metonymies may
also partake, to a greater or a lesser extent, in being symbols in Peirce’s sense,
depending on the degree to which they depend on general usage or convention.
(For a fuller treatment of metaphors and metonymies, including examples, see
Presmeg, 1992 &1998a)

Patterns of interaction in mathematics classrooms

Åse Streitlien, Høgskolen i Telemark

I will concentrate my contribution on the social norms and patterns of interaction
in mathematics classrooms. Different ways the teacher asks and challenges her
students open up for different mathematical contributions from the students. The
students need to recognise both the mathematical demands as well as the social
demands in the discourse. Some of the rules and routines for participation are
openly expressed; others are more hidden or ambiguous and difficult for young
students to understand. A question I would like to raise is how social rules affect
what counts as knowledge in mathematics and what occurs as learning

The background for my reflection on this issue is my study of communication
in mathematics classrooms in primary school. Attending two classrooms as a
participant-observer over a year provided the opportunity to view the meanings
teachers and students constructed through formal and informal processes. Exten-
sive field notes and audiotapes of classroom talk captured the dialogue between
the teacher and her students and the activities going on. When I listened to my
tapes and read my transcripts, the social norms and rules of the classroom dis-
course became a dimension of vital interest. I became increasingly aware of the
children’s difficulties in interpreting the rules for participating in whole class
teaching.

Classroom discourse is a form of institutional talk, and as such has certain
characteristics. Firstly, it is oriented to pedagogical goals, and the participants are
interacting for the specific purpose of learning. Secondly, the participants take
the roles of “instructor” and “instructed”, and therefore have unequal rights of
participation. Finally, there is a certain amount of centrally focused attention with
basic rules of participation; either one person speaks at a time, or multiple speak-
ers say more or less the same thing. As a result of these characteristics it is gen-
erally the teacher who initiates the interaction, introduces the topic and decides
who can talk and when. Instruction is usually characterised by a three-part-
dialogue– often described as the IRF-structure: The teacher initiates (I), a student
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responds (R), whereby the teacher gives feedback, e.g. by evaluating the answer,
by “uptaking” the pupil’s answer in the instruction, or by inviting the students to
explain their solution. The IRF-structure was first identified by the socio-
linguists Sinclair and Coulthard (1975). Later on Mehan followed up with a study
in 1979. Mehan found that the students have the rights to take initiatives on their
own, but they have to recognise when such initiatives are welcome. For many
young students these unwritten rules of interaction are complicated to under-
stand.

Another study I would like to mention is Nystrand’s “Opening dialogue”
(1997). He and his co-researchers meant to identify two main types of instruction
described as monologically and dialogically organised instruction. Nystrand de-
scribes the differences between these two types of instruction when it comes to
epistemology, communication model, source of valued knowledge and texture of
the lesson. In the case of monologically organised instruction knowledge is
given, and its source is the teacher or the textbook, not the students. The teacher
prescribes and monitors the answers. The teacher initiates all topics of discussion
and determines what is worth knowing. Knowledge is treated as fixed, objective
and autonomous. Recitation involves interaction, but this is superficial and pro-
cedural prescribed by the teacher. In the case of dialogically organised instruc-
tion students’ interpretation and personal experience are included. Knowledge is
something generated and constructed. Both teacher and students participate in
this construction. Students figure out, not just remembering. Consequently, these
two types of instruction open up for quite different students’ positions in the
learning process.

One of the rules that run through most of the lessons is the rule of “raising
hands”. Raising hands in the classroom is a way of displaying to the teacher and
to other students that you know the answer. Mostly, the teacher can assume that
when a child is showing a hand, he also knows the answer. Thereby, there is less
risk for asking someone who does not know the answer. From the teacher’s per-
spective this is a way of distributing the talk in a fair way.

I will now give you a short cut of a transcribed dialogue from the mathemat-
ics classroom in grade two. The class is working with numbers between ten and
twenty. The teacher has drawn two columns on the blackboard where the tens
and units should be marked. These young children are extremely eager to partici-
pate. Each of them wishes so strongly that the teacher will choose her/him for
answering. Before the following episode takes place, the teacher has reminded
the students over and over again of raising hands and not saying anything before
they are invited.

Let us have a look at the excerpt1.

1 Pause < 2 secs. = /
Pause > 2 secs = //
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01. Teacher: How many squares do we need to colour on the other column in
order to get fifteen together?

02.  A pupil: Hh-mm!
03. T: How many squares do we have to colour here (POINTS AT COLUMN

NUMBER 2) / Per?
04. Per: Eh //
05. T: How many squares do we have to colour on the other column in order

to / it is fifteen we should get
06. Per: Is it / I think it is / five / five or something?
07. Tor: I know!
08. T: There is ten / here
09. Tor: I know!
10. T: Yes / that’s good / I can see that you have raised your hand // there are

many more besides // how many squares do I have to colour on the other
column in order to get fifteen? // Then we should listen to someone else /
Kari?

11. Kari: Ten and five
12. T: Ten and five / do you agree with Kari?
13. Students: Yes / yes / yes!

The teacher repeats the same question four times (01, 03, 05, 10) before she gets
the answer she wants. The question is linked to what the students are supposed to
learn in mathematics. However, in utterance number 10 this aim is mixed with
the expectation of social behaviour. On one hand, the students have to find the
right answer very quickly in competition with fellow students. They have, on the
other hand, to control their behaviour, raising hands and keeping quiet about
what they know.� � � � � � � � � � � � � � � 	 � 
 � � � � 	 � 
 � � � � 	 � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � � 	 � 	 � � � �

14. T: Yes / was this a little bit difficult?
15. Students: No / no!
16. Eva: Teacher / I did not get my turn in spite of putting up my hand con-

stantly!

This episode shows us that what seems obvious for adults is not always compre-
hensible for children. There is a complex relation between form and function in
the teacher’s use of language. Tor does not understand why his knowledge is not
valued. He is confused by the hidden rules. Why should not the teacher give turn
to him since Per seems so doubtful about his answer? In other situations Tor’s
initiative would be valued as a helping hand, but not so in classroom discourse.
When he says he knows, the teacher answers that many others also know. Tor
and Eva have raised their hands, but the underlying meaning is that raising hand
is no guarantee for being the chosen one. Eva has done exactly what the teacher
had asked her to do – but in spite of that, she never got the opportunity to answer.
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In the episode the social rules and routines seemed to disturb the mathematical
content in the discourse. So my last question is: How concerned should we be
with discourse patterns and structures in mathematics classrooms? The children I
have referred to in the example are young children, 6 and 7 years old. Their
school career is, so far, a short one. Nevertheless, their meeting with the dis-
course of mathematics in early school years will affect their attitudes and beliefs
of mathematics for years to come. If students have to struggle in concentrating on
the rules of participation, less attention will be given to the mathematical content.
If a student like Tor will gain several experiences of being rejected by the
teacher, it is reasonable to assume that he will stop taking initiatives.

The general emphases on the importance of good lesson planning and teacher
control tends to put pressure on follow lessons plan as closely as possible, and to
avoid any unplanned learning activities. Consequently, the discourse structure
becomes less flexible, and the teacher and the textbook are resources of knowl-
edge. The aim is to find the “right” answer. In this context there will be less time
for discussion and negotiation of meaning. This is in conflict with the view that
student initiative, participation and involvement in instruction represent an im-
portant aspect of learning processes. The young students need space and time for
expressing what they know and manage on their own. Greater variability in the
patterns of communication should create more opportunities for student partici-
pation in the learning process. One way to do this is to use learning opportunities
created by the students themselves, picking up topics introduced by the students,
let them reflect and figure out or allowing them to decide how to develop a par-
ticular activity. As Nystrand (1997) says:

When teachers ask questions about what students are thinking, and when they
ask questions about students previous answers, they promote fundamental ex-
pectations for learning by seriously treating students as thinkers, that is, by indi-
cating that what students think is important and worth examining (s. 28).
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Reflekterande samtal för pedagogisk utveckling
Lärare och specialpedagog i samverkan

om lärande i matematik

Ann Ahlberg, Jan-Åke Klasson, Elisabeth Nordevall
Göteborgs universitet

Studiens övergripande syfte var att studera hur specialpedagogen och lärare
arbetar tillsammans för att utveckla undervisningen i matematik. Forsknings-
intresset var riktat mot att studera handledningssamtalen mellan lärare och
specialpedagog med syftet att granska om samtalen skapar en gemensam refe-
rensram som ger lärarna verktyg att förstå, förklara och utveckla den egna
undervisningspraktiken. Vidare var syftet att beskriva eventuella förändringar i
lärarnas förståelse och förhållningssätt till den egna undervisningen och till
elever som har eller kan tänkas få behov av särskilt stöd i matematik.
Undersökningen har en explorativ karaktär där olika datainsamlingsmetoder
kommit till användning. Det empiriska materialet består av handledningssamtal,
intervjuer, informella samtal, deltagande observationer, lärares och elevers doku-
mentation samt officiella skoldokument. Resultaten visar att samtalen bidrar till
att starta processer, vilka hjälper lärarna att synliggöra sina ställningstaganden
och bli medvetna om sina värderingar. Samtalen underlättar för lärarna att
utveckla ett reflekterande förhållningssätt som ger dem handlingsberedskap och
kunskaper att bättre förstå och förändra den egna praktiken.

Bakgrund och forskningsanknytning
Studien handlar om hur två lärare tillsammans med en specialpedagog arbetar för
att utforma undervisningen i klassrummet för att främja alla elevers matematiska
lärande1. En central fråga i detta sammanhang är vad syftet med undervisningen
är och vilka kunskaper eleverna skall utveckla. Enligt kursplanen i matematik
(Skolverket, 2000) skall undervisningen karakteriseras av ett lärande som
innebär upptäckter och utveckling som att se mönster, relationer och samband.
Eleverna skall resonera och kommunicera, värdera och göra bedömningar samt
upptäcka och förhålla sig till matematiken i vardagslivet. Matematiken i skolan
har emellertid inte alltid denna inriktning. I undervisningen handlar det ofta om
att eleverna skall ge rätt svar, prestera bra på prov och arbeta i läroboken. De

1 Studien är genomförd inom projektet ”Matematik i en skola för alla” med forsknings-
anslag från Skolverket. Tidigare dokumentationer i projektet är ”På spaning efter en skola
för alla” (Ahlberg, 1999) och ”Lärande och delaktighet” (Ahlberg, 2001). Den aktuella
studien är dokumenterad i rapporten ”Reflekterande samtal för pedagogisk utveckling”
(Ahlberg, Klasson & Nordevall, 2002).
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elever som inte ”svarar rätt” får oftast träna ”mer av samma sort”. För att det
skall vara möjligt att uppfylla läroplanens mål borde perspektivet vidgas och
matematikens språkliga och sociala karaktär lyftas fram. Detta gäller också
elever i behov av särskilt stöd. Även dessa elever borde få tillfälle att möta
matematiken på olika sätt, få tillfälle att ”tala matematik” och upptäcka mönster,
relationer och samband (Ahlberg, 1999).

En stor del av den forskning som bidragit till kunskapsutvecklingen om
lärande och undervisning i matematik är grundad i konstruktivismen med rötter i
Piaget (1969). Det som utmärker en konstruktivistisk syn på kunskap och
lärande är att kunskap konstrueras aktivt av den lärande människan (Cobb och
Bauersfeld, 1995; Engström, 1997; von Glasersfeld, 1993; Jaworski, 1994).
Lärande i matematik tilldrar sig stort intresse även inom det sociokulturella
perspektivet (Lave, 1988; Wyndham 1993). Enligt Säljö (2000) är skolans
verksamhet inte primärt inriktad mot att utveckla ett matematiskt kunnande som
gör det möjligt för eleverna att klara av vardagens problem. Istället står abstrakt
reflektion och hantering av symboler i fokus. Skolan som institution utvecklar
egna perspektiv och normer för prioritering och bedömning. De förhållningssätt
som framträder i skolan skiljer sig därför från dem som utvecklas i vardagliga
situationer där ett matematiskt kunnande ingår på ett naturligt sätt.

Forskning om lärande och undervisning i matematik har även genomförts
inom den fenomenografiska forskningsinriktningens ram (Ekeblad, 1996;
Neuman 1987; Runesson, 1999). Som en plattform för den aktuella studien
tjänar några undersökningar av Ahlberg (1992, 1999, 2001). I dessa betonas
vikten av att variera undervisningskontexten. I en studie i skolår tre i grund-
skolan fick eleverna möta olika typer av matematiska problem som anknöt till
deras föreställningsvärld. Det matematiska innehållet presenterades på skilda sätt
och eleverna fick även tillfälle att variera sitt perspektiv på problemen genom att
använda skilda uttrycksmedel som att rita, tala, skriva och räkna. Problemen
kunde lösas på olika sätt och det fanns inte bara ett enda rätt svar. Eleverna
diskuterade med varandra hur de gått tillväga och fick på så sätt ta del av olika
sätt att tänka kring problemens lösningar. Resultaten av studien visar att
innehållet och utformningen av undervisningen befrämjar elevernas matematiska
lärande. Det framkom att elever utvecklade sin matematiska förståelse när läraren
målmedvetet lyfte fram matematikens sociala och språkliga karaktär och skapade
inlärningssituationer där olika aspekter av matematik synliggjordes. Samtliga
elever drog fördelar av arbetssättet, men framför allt utvecklade de låg-
presterande flickorna sin matematiska förståelse (Ahlberg, 1992).

Reflektion och specialpedagogik
För att utveckla skolan och lärares professionalitet är det betydelsefullt att skapa
arenor för lärares reflektion (Alexandersson, 1998). Specialpedagogens hand-
ledning med sina kollegor kan vara en sådan arena som skulle kunna bidra till att
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utveckla lärarnas matematikdidaktiska kompetens. Ett viktigt inslag i denna
kompetens är att läraren är medveten om de val hon gör och att det finns
alternativa vägar. Detta är särskilt betydelsefullt då det gäller undervisningen
med elever i behov av särskilt stöd. Persson (2001) visar att skolans sätt att
bemöta dessa elever ofta följer ett välkänt och inarbetat mönster som domineras
av organisatorisk differentiering eller stöd av en speciallärare/specialpedagog.

Det betonas mycket starkt i propositionen om den förnyade lärarut-
bildningen (Prop 1999/2000:135) att samtliga blivande lärare skall tillägna sig
special-pedagogiska kunskaper för att få beredskap att möta alla barns och
elevers behov. Ahlberg (2001) beskriver en rad aspekter som är betydelsefulla
för elevernas lärande och delaktighet. Det handlar om samhälls- och organisa-
tionsaspekter, demokrati- och likvärdighetsaspekter, sociokulturella aspekter,
kommunikativa och språkliga aspekter, socio-emotionella aspekter, kognitiva
och perceptuella aspekter, fysiska aspekter samt didaktiska aspekter. Ett
komplext samspel mellan dessa aspekter påverkar elevers lärande och det är
därför inte möjligt att med en enkelriktad orsaksmodell förklara varför en elev
lyckas eller misslyckas med matematiken.

Ett kommunikativt relationsinriktat perspektiv
Den genomförda studien är grundad i ett kommunikativt relationsinriktat
perspektiv där begrepp som delaktighet, kommunikation och lärande är centrala.
Perspektivet har starka influenser från vissa riktningar inom det sociokulturella
perspektivet och den fenomenografiska forskningsinriktningen. Liksom i det
sociokulturella perspektivet ses de som bundna till kultur, kontext och situation.
Människors kompetens och kunnande är beroende av den historiska, socio-
kulturella miljö som de är en del av. Trots gemensam kultur och sammanhang
förekommer dock individuella variationer i människors sätt att erfara världen.
Varje individ har sin särprägel. På grund av skiftande erfarenheter, olika
perspektiv och sammanhang, erfar, uppfattar och förstår människor saker och
ting på olika sätt, även om de ingår i en social praktik. Kunskapsbildning och
meningsskapande förläggs därför inte till människan eller till den praktik som
människan deltar i. Istället betonas relationen mellan människan och de
sammanhang i vilka hon ingår. Det handlar om att samtidigt se till individen, den
sociala praktiken och till strukturella aspekter som formar den enskildes
lärandemiljö (Ahlberg, 2001).

Studiens syfte
Studiens övergripande syfte är att studera hur specialpedagogen och lärare kan
arbeta tillsammans för att utveckla undervisningen i matematik. Forsknings-
intresset är riktat mot att studera handledningssamtalen mellan lärare och
specialpedagog för att granska om samtalen skapar en gemensam referensram
som ger lärarna verktyg att förstå, förklara och utveckla den egna verksamheten.
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Vidare är syftet att beskriva eventuella förändringar i lärarnas förståelse och
förhållningssätt till den egna undervisningen och till elever som har eller kan
tänkas få behov av särskilt stöd i matematik.

Metod och genomförande
Aktionsforskning har influerat studiens uppläggning. En huvudtanke i denna är
att kunskapen inom verksamheten ska genereras inifrån – från lärarna själva.
Detta utesluter inte extern hjälp av forskare och andra, men den placerar de
verksamma i centrum (Elliot, 1991; Mc Nieff, 1988).

I undersökningen etablerade två lärare, en specialpedagog och två forskare
ett samarbete för att stödja lärarnas reflektion och försök att utveckla den egna
verksamheten. Lärarnas och specialpedagogens arbete följdes under ett läsår.
De båda lärarna undervisade i var sin åldersblandad grupp med elever i skolår
fyra och fem. Sara, som är mellanstadielärare hade varit på skolan sedan den
startade för drygt tio år sedan. Emma är grundskollärare med inriktning mot
skolår 1-7 inom svenska och samhällsorienterande ämnen. Hon hade varit
anställd vid skolan ett år när studien genomfördes. Karin hade arbetat ett år som
specialpedagog vid skolan och är ursprungligen mellanstadielärare.

Det empiriska materialet
En mängd olika datainsamlingsmetoder utnyttjades för att dokumentera studien.
Handledningssamtalen med specialpedagogen och lärarna är centrala i
datamaterialet. Sammanlagt genomfördes 13 samtal. De spelades in på band och
transkriberades till skriven text. Samtalen varade i genomsnitt en timma. Vid
dessa samtal styrde lärarnas och specialpedagogens upplevelser och tankar
samtalens innehåll. Utgångspunkten vid samtalen var ofta olika dilemman som
lärarna ställdes inför i det dagliga arbetet. Under det läsår studien pågick
genomfördes 22 klassrumsobservationer i varje klass. Dessa hade till stor del
karaktären av deltagande observationer. Forskarens intresse riktades såväl mot
lärarnas som mot elevernas arbete med ett särskilt fokus på de elever som var i
behov av särskilt stöd. Även intervjuer och informella samtal med lärare,
specialpedagog, rektor och elever utgör ett väsentligt bidrag till det empiriska
materialet.

Analys och tolkning
Analysen och tolkningen har syftat till att försöka förstå och förklara lärarnas
och specialpedagogens ord och handlingar för att ge en sammanhängande bild
av handledningssamtalen och den dagliga praktiken. Intresset har varit inriktat
mot att studera hur lärarna och specialpedagogen reflekterar över sin under-
visning och om samtalen på något sätt visar spår i verksamheten. Vid analyserna
av handledningssamtalens innehåll och struktur används en modell av det
reflekterande samtalet som utvecklats i en tidigare studie (se Ahlberg 1999).
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Resultat
Resultatredovisningen inleds med en tematisk beskrivning av samtalens inne-
håll. Beskrivningen av lärarnas ord och handlingar har delats in i en inledande
fas, en fortlöpande fas och en avslutande fas. Avsikten är att rikta ljuset mot
såväl lärarna som specialpedagogen och belysa hur de erfar det vardagliga
arbetet med matematiken i skolan. Därefter ges en jämförande beskrivning av
lärarnas erfarande av praktiken i den inledande och den avslutande fasen.

Perspektiv och lärande i den inledande fasen
Lärarna menar att på grund av att skolans profil är riktad mot samhälls-
orienterande ämnen och svenska har utvecklingen av matematikundervisningen
vid skolan fått stå tillbaka. Det gemensamma arbetet i den inledande fasen
innebär att Karin i egenskap av specialpedagog ansvarar för ”sina” barn när
hon är i klassrummet. Både Sara och Emma följer i sin undervisning läroboken,
som de själva benämner som hastighetsindividualiserad. Karin talar också om
läroboken som hastighetsindividualiserad och tror att det är ett genomgående
drag för hela skolans matematikundervisning. ”Undervisningen är lättare när
barnen arbetar på sin nivå.” Det uppfattas således som mer arbetsamt för lärarna
att försöka variera och planera för olika innehåll vid lektionerna. Det kräver tid
och lärarna anser sig inte ha den tiden.

Karin har dock noterat att i synnerhet Sara ibland använder sig av egen-
händigt producerade matematikuppgifter. Hon har låtit eleverna arbeta med
matematik kring en klassfest, det politiska valet och matematikintegrering i temat
”katter”. Båda klasslärarna påtalar de nationella provens betydelse. Emma
känner sig stressad och orolig för en del elever och inför allt som skall läras till
dess. Både lärarna och specialpedagogen belyser tiden som en betydelsefull
faktor för vad man gör i klassrummet. Utifrån observationerna kan man ana en
viss stress hos Emma när hon väljer att låta eleverna arbeta med egenhändigt
producerade matematikuppgifter. Dels kan detta vara en följd av att hon har som
mål att alla elevers uppgifter skall presenteras och bearbetas gemensamt, dels
som en följd av att eleverna är ovana att arbeta med denna typ av matema-
tikuppgifter och en stund in på lektionen börjar visa oro. Även Emmas egen
bristande rutin vid denna typ av arbetssätt kan till viss del påverka skeendet.

Perspektiv och lärande i den fortlöpande fasen
Under den fortlöpande fasen påtalar alla tre lärarna att det är viktigt att vara
insatt i organisationsfrågor, såsom skolans resurser och dess fördelning. Behovet
blir mycket tydligt i och med ökade krav på måluppfyllelse, samtidigt som antalet
barn i behov av särskilt stöd ökar. Emma är bekymrad över de minskade
resurserna i skolan och frågar sig hur man skall lyckas med att fler elever når
målen. Hon ger som exempel att hon fått en ny elev i sin klass. Denna elev är i
stort behov av stöd, men det finns inte tillgång till något extra stöd. Hon berättar
också om Nina som hellre vill rita och läsa än att arbeta med matematik. Nina
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tycker att allting är svårt. När hon ska lösa ett problem använder hon genast
några tal i problemet för att göra en uträkning, utan minsta tanke på rimlighet.
Vid eget arbete väljer Nina aldrig matematik.

Om man inte är hos Nina direkt, då åker matteboken iväg eller ner i bänken och
hon tjurar. Innan hon har öppnat matteboken vet hon eller tar för givet, att hon inte
klarar den sidan. Hon är så bestämd. Det är jättesvårt. Men om man är i närheten
och ser att hon spänner sig i ryggen då kan man lirka. Men det är inte möjligt att
vara hos henne så ofta som man skulle behöva. (Emma)

I det enskilda samtalet kring matematik nämner Nina att matematik är ”tråkigt
och jobbigt”. Emma har haft samtal med föräldrarna. Nina skall få gå till Pia som
undervisar i svenska som andraspråk. Hon har för tillfället få elever och kan
därför ta emot henne. Denna lösning visar sig fungera bra, då det är lugnare där
och Nina har lättare att koncentrera sig i den lilla gruppen.

Emma och Karin har även svårt att hinna med Saida och funderar över hur
man kan förändra detta. Saida har svårigheter med mönster och begrepp, bl. a.
hälften och dubbelt. Vid det enskilda samtalet med Saida framkommer att hon
uteslutande ser matematik som proceduriell och kopplad till de fyra räknesätten.
Hon anser själv att hon är ”bra på plus och minus”. Hon behöver öva mer på att
”ställa upp – över tusen med plus och minus”.

Under läsårets gång har samarbetet mellan Emma och Karin kommit igång.
De konstaterar att det gemensamma reflekterandet kring elever och innehåll ger
en tydligare struktur, överblick och utveckling av klassrumsarbetet. Samtal kring
elever i svårigheter bidrar till att utveckla och förändra deras förhållningssätt. Ett
gemensamt ansvarstagande utvecklas, vilket blir särskilt tydligt hos Emma och
Karin i deras arbete kring eleven Saida. Emma menar att det är viktigt att Saida
får lära sig ty sig till andra än Karin och känna ”att ej alltid vara sist på skalan”.
Hon har axlat ett ansvar för en kamrat, som har det svårt med språket. Vid något
tillfälle hade hon yttrat till Sara, som har gruppen i engelska; ”Du förstår, hon
(Fatima) förstår inte när du pratar engelska hela tiden”. Enligt Emma hade Saida
vid ett annat tillfälle i ett samtal mellan Emma och Fatima, med en självklar
auktoritet tolkat till elevernas gemensamma hemspråk och sedan tillbaka till
svenska.

Det är ingen katastrof om hon kör fast i någon uppgift och får försöka flera
gånger. Hon fixar det ändå. Då tar hon det lugnt eller tar hjälp av kompisar.
(Emma)

Sara menar att det underlättar om Karin och hon kan utbyta tankar och idéer.
Hon nämner att hon kan se att en förändring har skett inom henne själv. Det har
blivit enklare att omsätta sina matematiska idéer till praktiska handlingar i
klassrummet.
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Jag har ofta vetat att så och så skall jag lägga upp mattearbetet. Det har dock tagit
alltför lång förberedelsetid. Nu har det fantastiska inträffat att det har blivit lättare
att snabbt passa varje tillfälle till matteprat, t ex när jag läste i högläsningsboken
och upptäckte matteproblem… diskuterade och räknade detta istället för att
diskutera händelseinnehållet. Det har blivit lättare och naturligare att hitta
matematiken i allt vi gör. (Sara)

Lärarna diskuterar även grupparbetets betydelse och menar att det har
betydelse för lärandet men att det också har en social dimension. De belyser
vikten av utbyte av matematiska strategier för att undvika att bokens lösnings-
modell blir den enda och riktiga. Samtidigt påtalar de att både elever och
föräldrar oftast fokuserar kvantitet och produkt. ”Var är de i matteboken?”
Lärarna är överens om att de vill ha mer utbyte av idéer mellan sig, avseende
litteratur, material och undervisning. De föreslår vidare att deras samtalsmodell
borde ges utrymme inom den egna organisationen för fler lärare, eftersom de
själva ser vad den ger.

Perspektiv och lärande i den avslutande fasen
Under den avslutande fasen har lärarnas uppmärksamhet i större utsträckning
riktats mot att variera matematikundervisningens innehåll och utformning. De
konstaterar att matematikämnet även inrymmer en social dimension, i vilken
eleverna kan mötas för ett utbyte av strategier och lärande av varandra. En
bidragande orsak till detta är enligt Karin att de i ökad utsträckning diskuterar
undervisningens innehåll i förhållande till elevernas behov. Därtill har Emmas
och Karins samarbete utvecklats till ett gemensamt ansvar kring elever i behov
av särskilt stöd. Karin har fungerat som direkt stöd i klassrummet och som stöd i
gemensamma pedagogiska diskussioner. Emma har förändrat sitt tänkande kring
detta. Från att i början ha varit tveksam till om det gemensamma reflekterandet
kunde leda till utveckling i klassrummet påtalar hon nu fördelarna med att få
arbeta i nära samarbete med specialpedagogen. I sitt arbete med elever i behov
av särskilt stöd ser Emma vilken påverkan hennes och Karins arbete haft för en
av eleverna. Flickan har ”blommat upp” socialt i klassen och visar på en egen
initiativförmåga i sitt kunskapande. Emma ser också en förändring hos sig själv i
förhållande till matematiken. Hon ”tänker oftare matematik” och hon drar
paralleller till språkutveckling och betonar betydelsen av elevers olikheter och
dess konsekvenser för undervisningen.

Emma ger uttryck för en viss besvikelse över att inte samarbetet med klass-
lärarkollegan kommit igång i den utsträckning som hon förväntat sig. Något som
bekräftas av Sara, som menar att hennes sjukdom hade lagt hinder i vägen. Hon
poängterar dock att det är viktigt att stötta och hjälpa varandra. Det är något
som hon vill utveckla, ”annars orkar man inte”.

Forskarnas närvaro och de pedagogiska diskussionerna under läsåret har
bidragit till att lärarna fokuserar matematikämnet i högre grad i olika undervis-
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ningssammanhang. Sara menar att det har hjälpt henne att naturligt integrera
matematiken i hennes totala undervisning. Karin menar att hon ser en förändring
i sitt samarbete med Sara och Emma. De samtalar och diskuterar i en helt annan
utsträckning än tidigare. Alla tre önskar att det reflekterande pedagogiska
samtalet ryms inom den ordinarie organisationen. Emma menar att det egna
arbetet underlättas om flera vuxna samtalar och upplever ”igenkännandets
gemenskap”.

Reflekterande samtal för pedagogisk utveckling
En slutsats som kan dras av studien är att samtalen kännetecknas av en riktning
mot problematisering och perspektivseende. Samtalen är inte riktade mot att
direkt finna ett svar på det diskuterade dilemmat. Istället är intentionen att
försöka förstå olika skeenden samt söka och pröva olika vägar för att komma
tillrätta med olika problematiska situationer. Handledningssamtalen har därmed
karaktären av reflekterande samtal.

Då lärare samtalar om sitt dagliga arbete refererar de enligt Ahlberg (1999)
på en övergripande nivå till lärande, skolan som social praktik samt skolans
mål och värdegrund. Lärarna talar även om elevens förutsättningar, kunskaper
och behov, undervisningens innehåll och organisering samt skolans orga-
nisation och kultur. Dessa referenser tas som utgångspunkt för en jämförande
analys mellan de två polerna ”den inledande fasen” och ”den avslutande
fasen” i det följande. En översikt ges i tabell 1 och 2. I varje modul beskrivs
kärnan i det sätt på vilket lärarna erfar sin praktik.

Referensområdena lärande, skolan som social praktik samt skolans mål och
värdegrund har berörts. I de samtal då något referensområde inte har behandlats
har forskarna ofta fört in detta och därmed vidgat samtalets rörelse. I första hand
gäller det skolans mål och värdegrund vilket forskarna, men även specialpeda-
gogen uppmärksammar i större utsträckning än lärarna. Samtalen har därmed
vidgats till att se lärande, skolans sociala praktik samt mål och värdegrund
genom flera nivåer inom skolans verksamhet.



Ahlberg, Klasson, Nordevall

67

Tabell 1. Lärarnas erfarande av praktiken i den inledande fasen

Referenser Elevens
förutsättningar,
kunskaper och behov

Undervisningens
innehåll
och organisering

Skolans organisation
och kultur2

Lärande Läroboken är
utgångspunkten i
undervisningen

Samtliga elever arbetar
enskilt i samma
lärobok. De arbetar i
sin egen takt på sin
egen nivå

Undervisningen
huvudsakligen
inriktad mot kvantitet

Specialpedagogen
förser klassläraren
med uppgifter för
elever i behov av
särskilt stöd

Skolans verksamhet
och intresse
huvudsakligen riktat
mot svenska och
samhällsorienterade
ämnen

Skolan som
social praktik

Specialpedagogen
arbetar individuellt
med elever. I klass-
rummet eller i
enskildhet

Bristande tid för
samplanering och
samverkan

Varierande uttrycks-
former och samverkan
mellan elever i
begränsad omfattning

Accepterande av
elevers olikheter

Bristande tid för
pedagogiska samtal
och reflektion

Mål och
värdegrund

Alla elever ska känna
samhörighet och
delaktighet i skolan

Specialpedagogen
stöder elever i svårig-
heter genom att arbeta
individuellt med dem

De nationella proven
och uppnåendemålen
styr undervisningen

Strävan mot att möta
alla elevers olikheter

Specialpedagogen har
det huvudsakliga
ansvaret för elever i
behov av särskilt stöd

Även i den avslutande fasen berörs samtliga referensområden. En beskriv-
ning av samtalens innehåll i den avslutande fasen ges i tabell 2.

2 Skolans organisation och kultur bedöms i denna undersökning med utgångspunkt från
vad som framkommer vid samtalen med klasslärare och specialpedagog samt vid intervjun
med rektorn.
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Tabell 2. Lärarnas erfarande av praktiken i den avslutande fasen

Referenser Elevens
förutsättningar,
kunskaper och behov

Undervisningens
innehåll
och organisering

Skolans organisation

och kultur

Lärande Läroboken är en av
många redskap för
eleverna att lära

Elevernas olika sätt att
tänka och resonera
uppmärksammas och
tas som utgångspunkt i
undervisningen

Balans mellan krav och
förmåga

Undervisningen i ökad
utsträckning inriktad
mot förståelse

Specialpedagogen
diskuterar med
klassläraren omkring
uppgifter för elever i
behov av särskilt stöd

Matematikens
kommunikativa och
sociala aspekter
fokuseras

Verksamhetens
intresse riktad mot
svenska och
samhällsorienterade
ämnen och matematik

Kopplingen mellan
skolämnena uppmärk-
sammas

Skolan som
social praktik

Organisering av
lärandemiljöer som
befrämjar den enskilde
elevens lärande

Varierande
uttrycksformer och
samverkan mellan
elever i ökad
utsträckning

Gruppen ses som en
tillgång i lärandet

Specialpedagogen
deltar i planering och
genomförande av
undervisningen

Uppmärksamheten
riktad mot elevernas
olikheter

Inriktning mot samtal
och samarbete

Mål och
värdegrund

Elever i svårigheter
deltar i den
sammanhållna
gruppen

Elevers olikheter ses
som en möjlighet

Elevers erfarenheter
tas som utgångspunkt
för undervisningen
och ses som
möjligheter

Medvetet arbete mot
att möta alla elevers
olikheter

Specialpedagog och
klasslärare tar gemen-
samt ansvar för elever i
behov av särskilt stöd

Vid en jämförelse mellan faserna framkommer att de samtal som förts om lärande,
social praktik och mål och värdegrund har lett till en förändring som är kopplad
till elevens förutsättningar, kunskaper och behov, undervisningens innehåll och
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organisering samt skolans organisation och kultur. Det handlar oftast om en
gradskillnad där vissa referensområden under studiens fortlöpande får en ökad
fokusering och uppmärksamhet 

Förändringar i verksamheten sker genom att lärarna reflekterar och införlivar
idéer och tankar i den egna erfarenhetsvärlden. Samtalen ger konsekvenser för
lärarnas tänkande och handlande och förändrar till viss del lärarnas syn och
förhållningssätt till ämnet matematik och matematikundervisningen. Studiens
resultat visar att handledningssamtal kan bidra till lärarens möjligheter att
distansera sig och utveckla ett kritiskt förhållningssätt till den egna undervis-
ningen. Samtalen verkar stödjande vid dilemman som uppkommer i det dagliga
arbetet, och bidrar dessutom till att skapa ett gemensamt språk och gemensamma
referensramar hos de deltagande lärarna. Lärarens förhållningssätt och förmåga
till flexibilitet i tänkande och inlevelse i elevens situation har avgörande
betydelse för hur en elevs skolsituation kommer att gestalta sig. Resultaten visar
att handledningen i vissa avseenden leder till en utveckling i den enskilde
lärarens tänkande som också lämnar avtryck i det dagliga arbetet.
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On Reasoning Characteristics in Upper
Secondary School Students’ Task Solving

Tomas Bergqvist, Johan Lithner, Lovisa Sumpter
Umeå universitet

Introduction
The background to this report is the concern that the Swedish school system
cannot help sufficiently many students to reach a desired level of mathematical
competence. One of the main purposes for mathematics at upper secondary
school in Sweden is students’ ability to analyse and solve problems. We decided
to focus on problem solving and students’ reasoning, a central component in
mathematics.

Our starting-point was the earlier research by Lithner (2000) that indicates
that undergraduate students in problematic situations tend to rely on their, often
mathematically superficial, experiences. In very few cases their strategies are
grounded in relevant mathematical concepts. In these cases, the reasoning is still
dominated by the individuals’ memory images and familiar routines. The purpose
here was to make a study similar to Lithner (2000), focusing on upper secondary
school students. We suspected that this kind of behaviour is also common at
that level.

We claimed that students in upper secondary school in Sweden spend a
large part of their time in class solving different types of mathematical tasks,
mainly textbook exercises (Bergqvist et al, 2003). In this activity, they often
meet problematic situations where it is not obvious how to proceed. When a
student is facing a problematic situation he or she must make a strategy choice
concerning what to do in order to solve the problem, and then implement this
strategy. In our study, we were interested in on what bases these choices and
implementations are made.

The general question was What makes students succeed or fail in a proble-
matic situation? We investigated this when students worked with mathematical
task in a test like situation: alone and without other aid than a calculator. When
students have other aids, for example peers or textbooks, the reasoning may be
radically different (Lithner, 2003).

Theoretical framework
In this study we used to a large extent the framework presented in Lithner
(2003). The first part of the framework is to structure the data by describing
problematic situations, using a four step reasoning structure:
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1. A problematic situation is met where it is not obvious how to
proceed.

2. Strategy choice: Try to choose (in a wide sense) a strategy that can
solve the problematic situation.

3. Strategy implementation.

4. Conclusion: A result is obtained.

In step two, a predictive argumentation can support the strategy choice and in
step three, a verifying argument can support the implementation of the strategy.
The argumentation is the most important part, since it makes it possible to
discuss why the student acts in a certain way.

The second part of the framework is to classify the argumentations con-
cerning the strategy choice and the conclusion. In the framework four different
reasoning types were presented. These types are results from analysis of
empirical data (Lithner, 2003). The types were:

• Plausible Reasoning (PR). Reasoning mainly based on intrinsic
mathematical properties without having to be complete or fully
correct.

• Reasoning based on Established Experiences (EE). Reasoning
based on previous experiences from the learning environment.

• Algorithmic Reasoning (AR). Recalling a certain algorithm that will
probably solve the problematic situation.

• Piloted Reasoning (PdR). Someone else controls all the strategy
choices that could have been problematic to the solver.

Here, reasoning had the same meaning as in Lithner (2003): “the line of thought,
the way of thinking, adopted to produce assertions and reach conclusions”. In
this definition, reasoning doesn’t necessarily have to be based on formal deduc-
tive logic, and it may even be incorrect. Mathematical reasoning is any type of
reasoning in mathematical task solving.

Due to the limited space we will not present the definitions of all concepts
involved, and we will not present all the details of the full framework. The
definitions can be found in Lithner (2003).

Research questions
This study was based on the following research questions:

Q1: In what ways do students manage or fail to engage in PR as a means of
making progress in solving tasks?

Q2: What are the roles of EE, AR, PdR or other types of reasoning in these
situations?

Method
Three different upper secondary school study programmes were represented in
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the study: the natural science programme (NV, the most mathematically intense
program), the social science programme (SP, also a programme meant to prepare
the students for higher studies just as the natural science programme, but not
focusing on mathematics) and the hotel, restaurant and catering programme
(HR), the latter a vocational programme and one of the least mathematically
intense. Five students from each programme participated, and the students were
in their eleventh school year (age 17 - 18 years). The sessions were video taped,
using a camera placed directly above a sheet of paper and each session was
limited to 40 minutes. The recordings showed the students’ written work and
use of a calculator. The students were asked to ‘think aloud’ and solve the task
in a ‘test-like’ situation. To each programme three to six mathematical tasks
were selected (Bergqvist et al, 2003). The tasks dealt with mathematics recently
covered by the teachers in each class and similar tasks could in most cases be
found in the students’ textbooks.

After each session we tried to interpret the students’ work. The goal was to
make a first description of what was taking place, and also to speculate why this
was happening and how the students were thinking. A second meeting with the
students took place three or four days after the first session. The aim was to
increase the reliability of the interpretations. The students were invited to com-
ment on their own performance and we also suggested possible reasons why
they were acting in a certain way. The impression we got was that the students
commented our suggestions in a clear and honest way. Seven out of approxi-
mately fifty task solving attempts were chosen for a more detailed analysis. The
choice was made to be a representative selection of all problematic situations.

A quick description of the students that participated in each programme
(Bergqvist et al, 2003):

• Natural science programme (NV): the students that participated tried
to a large extent to figure out or remember the appropriate method.
They were rather good in the carrying out of the attempted
procedures, but they had problems in reviewing their work.

• Social science programme (SP): the students from this programme
were very much focused on finding correct algorithms, but they all
had severe difficulties in analysing the mathematics involved in the
algorithms.

• Hotel, restaurant and catering programme (HP): The students we
studied from this programme had a tendency to guess what algorithm
should be used, but they seemed not to remember the algorithms very
well.

Results and discussion
In this study we analysed seven situations, but many other situations were also
considered. In many situations the students simply solved the task by applying a
correct algorithm. We picked problematic situations where it was not clear to the
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students how to proceed. In the data almost all students failed or had severe
difficulties, but many of the chosen students solved other tasks correctly. We
rejected tasks where the students didn't meet any problematic situations after
choosing an algorithm (Bergqvist et al, 2003).

In the analysis we found that six out of the seven students chose their
strategies on only or mainly surface property considerations, and they focused
on using more or less well-mastered algorithms (Bergqvist et al, 2003). It was a
high dependency on finding relevant complete algorithms, or at least algorithms
possible to use. In most situations, the choice of method was trying to remember
something related to the situation at hand. Sometimes, this may be a reasonable
strategy, but it is often insufficient when meeting different kinds of problematic
situations (Bergqvist et al, 2003).

When the students for some reason failed to carry out the chosen algorithm,
two main different approaches, often combined with questions or comments to
the interviewer, were found (Bergqvist et al, 2003):

• To quickly change to another algorithm chosen from a ‘toolbox’ of
possible alternatives, and the decision whether an algorithm was
appropriate or not was based on surface considerations.

• To simply stop working.

The questions or comments that the student proposed to the interviewer were
made in order to get some kind of hint or guidance about what to do next. There
were hardly any situations where the students made an attempt to do some kind
of evaluation of the chosen algorithm, or to reconstruct or modify the algorithm
to the situation at hand.

One important result from this study was the identification of a description
of a new reasoning type, a repeated AR that will be called Repeated Algorithmic
Reasoning (RAR), with the following definition:

Repeated Algorithmic Reasoning (RAR)
The reasoning in a task solution attempt will be called repeated algorithmic
reasoning (RAR) if the reasoning fulfils both of the following two conditions:

1. The general strategy choice is to repeatedly apply algorithms, where
each local strategy choice is founded on recalling that a certain
algorithm will (probably) solve a certain task type. The algorithms
are chosen from a set of (to the reasoner) available algorithms that
are (to the reasoner) related to the task type by surface properties
only.

2. The strategy implementation is carried through by following the
algorithms. No verifying argumentation is required. If an implemen-
ted algorithm is stalled or does not lead to a (to the reasoner)
reasonable conclusion, then the implementation is not evaluated but
simply terminated and a new algorithm is chosen.
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RAR does not differ from AR only in the sense that it is repeated. The main
difference between these two is that to be classified as RAR, the chosen
algorithms must be chosen on surface property considerations only.  It must be
stressed that, especially if the set of algorithms to choose from is small and each
one is relatively simple, RAR often works well.

Only one clear example of PR was found among the chosen situations
(Bergqvist et al, 2003). In several situations, a possible (and elementary relative
to the course taken) PR seemed close, for instance asking one self about the
appearance of a graph or the meaning of an equality sign. It was striking that
even a limited amount of reflection or afterthought could have led the students
to far more positive results (Bergqvist et al, 2003).

One purpose in our work was to make a study similar to Lithner (2000). We
made the following comparisons (Bergqvist et al, 2003):

• The same lack of PR was found, but when in Lithner’s study it was
replaced by EE (reasoning based on established experiences), it was
here replaced by AR (algorithmic reasoning) and RAR (repeated
algorithmic reasoning). One reason behind this difference might be
that AR and RAR are not effective choices in undergraduate
mathematics. Due to the much larger range of available algorithms
and procedures, some other means to guide the superficial strategies
must be found.

• In both studies there was a dominance of superficial reasoning
strategies. This was in both studies found to be one of the main
reasons behind the students' difficulties.

The research questions that served as a basis for the analysis were:

Q1: In what ways do students manage or fail to engage in PR as a means of
making progress in solving tasks?

Q2: What are the roles of EE, AR, PdR or other types of reasoning in these
situations?

To answer the questions we summarised and discussed the types of reasoning
that were found.

The students in the Social Science programme (SP) and the Hotel, Restau-
rant and Catering programme (HR) to a large extent used algorithmic reasoning
(AR) in their work. They tried to find a suitable algorithm, often by trying to
remember or on other superficial grounds. The algorithm was chosen because it
had something to do with the situation at hand, and (occasionally) that it
seemed possible that it would solve the task. The algorithm was then carried out,
step by step, mostly without attempts to verify or evaluate the algorithm or the
result. It is possible that AR is an effective method in school mathematics, at least
on lower levels (year 6 - 10), where the number of possible algorithms in each
area is very small. If there are two alternatives, the chance of picking the right
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one is rather good, especially if you take surface ̀keyword-like' characteristics
into consideration.

Repeated algorithmic reasoning (RAR), where new algorithms were chosen
on more or less surface considerations, was tested when no progress is experien-
ced. That type of reasoning was found in the work of a few students in the
Natural Science programme. They changed quickly between algorithms, and
appeared rather skilful in their work. The problem was that they rarely had any
intrinsic property considerations as a ground for their choices of algorithms, and
therefore the possible success depends on two things: if the chosen algorithm
will solve the task, and if the algorithm is mastered good enough by the student.
In the most clear example of RAR, one student tries four different algorithms in
only a few minutes. The first choice would have solved the task if she had
mastered the whole algorithm and not only the first part.

RAR might need a slightly higher level of understanding compared to AR,
since it requires some kind of evaluation of the algorithm at hand, even if this
evaluation can be made on very superficial grounds. If so, RAR would have had
a better chance of success than AR, since almost all available algorithms could
be tested. RAR should also be more valuable at upper secondary school (year
10 - 12) where each mathematical area contains several algorithms, and not only
two or three as in earlier years. The definition of RAR is a result of this study.

Among the situations where the students used algorithms that failed, the
most notable part was the almost total lack of attempts to understand why the
algorithm failed, or if it could be modified to the situation at hand. This lack also
seemed to be one major reason behind their difficulties.

There are also several situations, mainly in the Social Science programme
and in the Natural Science programme, where students rely heavily on their
interaction with the interviewer. This is classified as piloted reasoning (PdR),
since all important strategy choices are either made by the interviewer, or a result
of a question or a comment from the interviewer. Piloted reasoning is in line with
the concept of the didactical contract (Brousseau, 1997). The students listen
carefully to what the teacher says, and acts according to the conversation. For
the students, this is a way to get correct answers in a very large part of the tasks.
To the teacher, it means a quick and manageable way to guide almost a whole
class through the textbook. Brousseau (1997) claims that as long as both
teacher and student follow the didactical contract, no learning occurs. However,
piloted reasoning can also be something positive, a way to help a student to
reach understanding in an area. If the student is uncertain at a specific level, it is
possible for the teacher, by piloted work at a higher level, to help the student to
strengthen his or her understanding on the lower level. In that case, it is crucial
that the guidance is not too extensive so that the guider does not resolve all
problematic situations for the student.

One student in the Natural Science programme used PR in his work. He



Bergqvist, Lithner, Sumpter

77

analysed the shape of a graph and could from that decide where to find the
smallest value. Traces of PR was also found in a few situations with other
students. In several situations plausible reasoning seemed near at hand to the
students, but for various reasons, the students refrained from using it.

It appeared that sometimes students did not attempt to use PR, and
sometimes their conceptual understanding was not sufficient for PR. The two
competences conceptual understanding and PR ability are probably connected,
since PR requires basic conceptual understanding, and the latter may not be
possible to develop by only solving routine, non-PR, exercises where the main
goal is to practice algorithms (Lithner, 2003). It should be stressed that the
conceptual understanding that is indicated in the analyses as missing are quite
elementary relative to the courses the students have taken. Students who are
encouraged and able to use plausible reasoning in their mathematics learning,
will stand a better chance to avoid what Ross (1998) calls “a matter of
following a set of procedures and mimicking examples without thought as to
why they make sense”.
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Teachers’ Preparedness for
‘Modern Mathematics’ in Iceland

Kristín Bjarnadóttir
Iceland University of Education

Introduction
This study is concerned with how the Icelandic school system and, in particular,
teacher education, was prepared for the radical alteration of ‘modern’ mathema-
tics and its language in the 1960s and onwards. Four measures, taken or not
taken by the authorities, hindered the development of mathematics teaching in
Iceland:

• Mathematics was not among the main subjects in the single educa-
tion institution in Iceland, the Reykjavík Learned School/Gymnasium,
for four decades in 1877–1919, when there was no mathematics
department in the school.

• Admission to the Reykjavík Gymnasium was restricted for two
decades, 1928–1946, shortly after the establishment of its mathe-
matics department.

• Teaching of mathematics at the Teacher Education College, estab-
lished in 1908, decreased during four and a half decades in
1922–1967.

• The part of the education bill in 1946 about further education of
teachers was not adopted.

The study considers whether the compound effect of these four events influen-
ced the capacity of the Icelandic school system to cope with the modern mathe-
matics reform movement and its special emphasis on formal symbolic mathema-
tical language. Or did other circumstances, such as the Icelandic inheritance of
home- and self-education mend the situation?

The Learned School
The roots of the conditions of mathematics education for teachers in Iceland can
be traced back to the 19th century. At the beginning of the 19th century, Icelan-
dic students alone, graduating from the sole learned school in Iceland, were
exempt from requirements in mathematics at the University in Copenhagen,
Iceland being a colony of Denmark and Copenhagen thus its capital. However,
during 1822–1862 the Learned School, first situated in Bessasta_ir and later in
Reykjavík, enjoyed excellent teaching from Björn Gunnlaugsson, a mathema-
tician who had earned two gold medals for mathematics at the University in
Copenhagen. The students studied arithmetic, algebra, geometry, stereometry
and trigonometry. (Skólask_rsla, 1847–1862).
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Discussions about teaching modern languages in learned schools were intense
in Denmark and other European countries during the decade after Björn
Gunnlaugsson’s retirement. In 1871 the Danish parliament passed legislation on
division of Danish learned schools into two departments, a language and history
department and a mathematics and science department. In 1875, following
Iceland’s own constitution in 1874, a committee was appointed in Iceland to
prepare a regulation for the Icelandic school. In 1876 it presented a proposal
where three modern languages were introduced: French and English as
compulsory and German optional. Hebrew was eliminated, Greek and a couple
of other subjects were to be reduced while Latin and mathematics would keep
their previous status. (Álitsskjal, 1877). Letters from the governor of Iceland in
Reykjavík to the minister of Iceland in Copenhagen and from the minister to the
king of Denmark, found in the National Archives of Iceland, reveal interesting
intrigues resulting in the sacrifice of mathematics education in the last two
school-years for increased Danish education. (The National Archives of Iceland.
Íslenska stjórnardeildin. S. VI, 5. Skólamál. Isl. Journal 15, nr. 680. Skjalasafn
landshöf_ingja LhJ 1877, N nr. 621). The Reykjavík Learned School became a
language department school. Stereometry and trigonometry were dropped and
mathematics lost its place as a prestigious subject in the Icelandic school system
for a period of 40 years.

The problems dealt with during that time were possibly reflected in the
following final examination item from 1914 (Skólask_rsla, 1914):

The Danish school system was reformed in 1903, resulting in greater coherence.
In 1904 a new regulation about the Icelandic school was adopted, where it kept
its learned school’s characteristics to a larger extent than the Danish schools. It
remained as a 6-years language department school with Latin as the main
subject as before, and it did not have any direct connections to other schools
(Torleifsson, 1975, p. 70–72).

The primary teacher education
Following Iceland’s home rule in 1904, the first legislation on a public school
system was adopted in 1907. Children of ages 10–13 years were to be educated
in schools and 7–9 years old children should be educated at home upon the
responsibility of the homes under the supervision of communal authorities. 

From 1746 regulations had prescribed that the homes were responsible,
under the supervision of the parish priests, for children acquiring knowledge in
reading and Christendom. Only in 1880 was a similar regulation implemented for
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writing and arithmetic. The regulations were effective concerning reading and
even writing while arithmetic education was beyond the capacity of many
homes.

For this reason many of the first students attending the Teacher Education
College had not been to school before and had to be taught basic arithmetic
skills. The college was fortunate to have a doctorate mathematician, Ólafur Dan
Daníelsson, for its first decade (1908–1919) and mathematics had its due place as
a main subject. For most of the following 40 years, until the 1960s, the college
did not have a full-time tenured mathematics teacher. The mathematics’ share of
teaching hours decreased from 8% of the total teaching hours to 5%, while the
school was lengthened from three years to four. The syllabus, up to 1946, did
not reach introduction to algebra. Thus the graduated teachers were, by and
large, not familiar with the special symbolic language of advanced mathematics.
(Sk_rsla um Kennaraskólann 1908–1962).

As was the case in the single learned school/gymnasium in the country in
1805–1919 there was only one mathematics teacher in the Teacher Education
College in 1908–1967. The responsibility and the respect of the subject greatly
depended on whether there was a respected scholar at work, such as the gold
medalists Björn Gunnlaugsson and Ólafur Daníelsson, or persons deeply
engaged in other obligations or even having personal problems.

In 1946, following Iceland’s independence in 1944, new education legis-
lation was adopted, establishing a coherent school system from the age of 7 up
to university. Education from 7–15 years was now compulsory and a national
examination at the age of 16, held in many schools, opened the door to a four
years’ gymnasium.

A part of the 1946 legislation bill was aimed at ensuring further education of
teachers in the University of Iceland, established in 1911, i.e. to educate teachers
for the lower secondary level. However the University rejected the idea of
accepting students from the Teacher Education College and the bill was never
presented for final discussion in the parliament. The bill only allotted for one
new professor, in pedagogy and didactics, and the University seems to have
been expected to take over further education of teachers in Icelandic and
mathematics at no extra cost, neither in housing nor teaching. The University
referred to ‘another kind of preparation’. (Al_ingi. Dagbók 45–46. 615). The
Teacher Education College graduates would not have fitted into the mathema-
tics teaching for the engineer students with the preparation they had. The
Teacher Education College was therefore a dead end to the primary teacher
education until 1963. Teachers had to seek further education abroad, in teacher
university colleges in the Nordic countries, England and the United States,
which only a small fraction did.

Before 1946 teacher graduates only had had arithmetic but after 1946 they
were provided with first courses in algebra and classical geometry. Graduation
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from the college only provided rights to teach in the primary schools, including
the first year of the lower secondary school up to the age of 14 and possibly the
second year. However in the time of a great shortage of lower secondary school
teachers the entire period 1946–1977 until the basic school was established,
primary teachers were often appointed to teach in the lower secondary level,
though preferably not for the national examination. In 1957–1958 there were
760 tenured primary teachers in the country, whereof 604 had teacher educa-
tion, or 79 %. In the same year, tenured teachers at the lower secondary schools
were 275, whereof about 70 had primary teacher education, or 25 %
(Gunnarsson, 1958, p. 141).

The lower secondary teacher education
In 1919 a mathematics department was established at the gymnasium in Reykja-
vík and the mathematician Ólafur Dan Daníelsson was hired to teach there.
Shortly thereafter, in 1928, the minister of education concluded that the increa-
sing number of applicants to the Reykjavík gymnasium, (_orleifsson, 1975, p. 74)
which still was the only upper secondary school, would result in a too numerous
class of professional men and officials. The minister initiated the establishment of
a number of district schools in the following decade to educate young people to
become good farmers and housewives, which indeed increased greatly the
general education in the country, while, at the same time, he decided to restrict
the admission to the gymnasium. Even if Akureyri gymnasium was established in
the more sparsely populated Northern Iceland, the restriction resulted in that
only approximately 370 students graduated from the mathematics department in
Reykjavík Gymnasium (Skólask_rsla, 1919–1946), and a little over 100 in
Akureyri Gymnasium in the period 1919–1946 (Jónsson, 1981, p. 27–34).

According to the 1946 legislation the requirements for teachers at the lower
secondary level were 1–2 years of study in the respective subject and the
equivalent of a one year course in general pedagogy and didactics. However
there was no institute in the country to train mathematics teachers and the
Second World War had cut Iceland off from the university in Denmark.

As the Teacher Education College had had no algebra and mathematics was
first taught in the University of Iceland from 1941 to students in the newly
established engineering department, the only competent candidates for mathe-
matics teaching for the national examination were among the less than 500
students from the gymnasium in 1919–1945, most of whom had become
professional men and officials. 

A short survey of five teachers, born in the 1920s, renowned for being
‘good’ mathematics teachers, shows that all of them had graduated from one of
the gymnasiums’ mathematics department. Thereafter their background was
studies of engineering, medicine, law or economy for 1–3 years or else one year
in the Teacher Education College (Kennaratal).
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The University of Iceland established a BA-education programme for mathema-
tics teachers for the lower secondary level in 1952, mainly as a part of the
engineer training. Approximately 30 students graduated from the programme in
the period 1952–1972 (Árbók Háskóla Íslands, 1952–1972). Only 15 of these
ever taught at the lower secondary level (Kennaratal). As we shall see they
proved good servants to the education system. They were trained by dedicated
teachers, such as Gu_mundur Arnlaugsson, who shared with them their mathe-
matical skills. Most of the students themselves had begun teaching and there-
fore received the instruction with that in mind.

The ‘modern mathematics’ reform
Iceland was a founding member of OEEC, later OECD. However, probably for
the reasons of small population and relative isolation at that time, Iceland did not
participate in 1959 in the important OEEC seminar on ‘modern mathematics’
teaching in Royaumont, France, nor did it participate in the work of the NKMM,
the Nordic committee for modernizing mathematics teaching. During the next
few years, though, Icelandic educators participated in several follow-up mee-
tings about modern mathematics teaching, arranged by OECD, and in 1967, the
modernizing of mathematics teaching was in action at all school levels in
Iceland, mainly by the initiative of the university and gymnasium teacher
Gudmundur Arnlaugsson.

The situation in teacher education up to the mid 1960s when the ‘modern
mathematics’ reform a kind of swept over Iceland at all school levels has been
described. In addition to the lack of teachers with adequate education there was
lack of textbooks. Textbooks for the lower secondary level in arithmetic and
algebra were either written by Ólafur Daníelsson in the 1920s or based on his
books. Textbooks for the primary school were also written in the 1920s by one
of Ólafur Daníelsson’s student teachers. Impatience for innovation was in the
air.

Reform in the Lower Secondary Schools
In the lower secondary school the reform began with a textbook written by
Gu_mundur Arnlaugsson for the selective group heading for national entrance
examination into the gymnasium (Arnlaugsson, 1966). In 1968 all these pupils
were studying modern mathematics (Ministry of Education, 1968). In the early
1970s modern mathematics was introduced to all levels of the lower secondary
school.

Headmasters of the lower secondary schools, running the national exami-
nation all around the country, put their pride into finding ‘good persons’ from
the small group of eligible people, to take care of the mathematics. A small
survey shows how the national examination results in mathematics were
dependent on stability in the teacher force and the education of the teachers.
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The results in the national examination in 6 schools in the period 1967 to 1973
are shown in the graphs below. The red curve shows the general average of
grades in 9 subjects: Icelandic, Danish, English, history, geography, natural
sciences, physics and mathematics, while the blue curve shows the average for
mathematics (Ministry of Education, National Examination Board 1967–1973).

Schools A and P were situated in the capital area, School A was a selective
school, attended by especially able pupils.

Schools B and R were typical fishing town schools.
Schools D and S were boarding schools in rural areas.
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In 1967 several schools began teaching modern mathematics as a part of the
syllabus and in 1969 all schools had modern mathematics as a part of their
syllabus. In most years mathematics was 0,2 below the general average on a
scale 0–10, while in the years 1969 (year 3), possibly as all schools were now
obliged to take up the modern syllabus, and in 1971 (year 5) the average for
mathematics was considerably lower (0,6 and 0,8) than the general average. The
graphs have been corrected for this by adding the difference to the mathematics
grades.

In school A the mathematics teacher, a lawyer, was on leave in 1967 to 1969
while non-mathematics university students had taught mathematics. After the
lawyer came back and shared the mathematics teaching with a BA-educated
teacher the results became on equal terms with other subjects.

In school P a BA-educated mathematics teacher was on sickness leave in
1967 and 1969. Otherwise the results were above average. The headmaster said
(in 2002) that the results had been better earlier when the entrance to the
national examination had been restricted. The results with the present
mathematics teacher had been affected by his illness. He had not realized that
they were above the average.

In school B a BA-educated teacher taught the pupils for all three years of
lower secondary education and the results were by far the best in the country.
In 1969, when the mathematics average in the country was 0,6 below the
general average, it did not affect his pupils. The headmaster said (in December
2003) that he knew that the results in mathematics were better than in the
neighbourhood schools. However he believed that this had been the case in
most subjects in his school, as he had had excellent staff. The mathematics
teacher though had managed to motivate his pupils to work hard. The head-
master had not connected the results with the mathematics teacher education.

School R suffered from frequent changes of teachers. In 1968–1970 a BA-
educated teacher taught mathematics. The first year the results dropped while in
the second year the results were exceptionally good.

School D was a typical rural school with some changes of mathematics
teachers with no special training, even if they avidly attended in-service courses
in ‘modern mathematics’. The results were generally about 0,4–0,6 below
average.

School S was also a rural school where a BA-educated teacher died
suddenly in 1970. After that university students took over. The headmaster said
in a conversation (in 2002) that mathematics had been taken good care of in his
school and it always had had extra hours compared to the standard number
recommended by the ministry of education. The teacher had been an excellent
person while the headmaster did not connect the results in mathematics with his
special education in mathematics.



Bjarnadóttir

85

Before the survey only the exceptional results in school B were known. The
good results in school S were a surprise as was the one year in school R. They
show that a teacher with good education and teaching skills, given time, can
obtain good results. The sample of teachers is not typical for schools at that time
and by coincidence more schools with BA-educated teachers were chosen than
the average. The Reykjavík schools, with the majority of pupils taking the
national examination, were not included in the survey as the examination moved
between institutions within the national examination period 1946 – 1976.

The survey shows that in this period of ‘modern mathematics reform’ with
new and unfamiliar language the few BA-educated teachers seem to have had
an advantage of easier adaptation to new syllabus.

Reform in primary schools
In 1966 a set of textbooks by the Danish teacher Agnethe Bundgaard in
Frederiksberg, Copenhagen, (Bundgaard et al, 1966–1968) was chosen by the
initiative of Gu_mundur Arnlaugsson (Gíslason, 1978), and translated and tested
in six groups in the first grade of primary school. The following year, schools
and teachers could apply to join the test groups. Over 80 teachers applied and
began to teach the new material. In 1969 approximately 50% of the age cohort
of seven years old pupils in Iceland had the new material (Kristjánsdóttir, 1977).
A great number of in-service courses in mathematics, lasting a couple of weeks,
were held, a novelty for most teachers.

Soon after 1970 problems arose. From grade 3 the mathematical language
became increasingly formal. When new teachers, who were not familiar with the
extremely formal mathematics language in this set of textbooks, took over the
classes 4 to 6, problems arose. It became clear to parents and the public that
school mathematics teaching was changing radically. This aroused discussions
and reactions which are difficult to trace as very little is found in newspapers,
journals or letters to the ministry. One teacher dared to express his view in the
teacher journal that in no other country would it have been allowed to pour
such a new syllabus over the whole population (Sveinsson, 1972). The
problems, however, were mainly discussed within the teacher rooms in schools
and certainly the teacher consultants must have heard more than a rumour.

Teachers, interviewed now 30 years later, remember this time vividly, all of
them for hard work, some of them as an exciting and rewarding time while
others thought the syllabus too difficult, both for the teachers and the pupils. All
agreed that it was rather aimed at the more able pupils.

The ministry of education hurried to have a new set of textbooks written, a
kind of synthesis, with less emphasis on set theoretical language and notation,
yet a more varied coverage than the traditional material. This changed the lower
mathematics syllabus in Icelandic schools permanently from simple arithmetic to
a varied material with geometry, introductory statistics and number theory in
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addition to arithmetic. The arithmetic skills may never have reached the same
level as before the reform, but then one should keep in mind that a new era of
hand calculators was on its way.

Conclusions
‘Modern’ mathematics was a great challenge for both primary and secondary
school teachers. The tradition of mathematics education in Iceland was weak for
the four reasons cited in the introduction. They certainly influenced the capacity
of Icelandic teachers to cope with the ‘modern mathematics’ reform movement,
as only few teachers in compulsory schools could acquire adequate training in
mathematics in contemporary sense. Yet the reform opened up a whole new area
of previously unfamiliar mathematics for them. Icelandic education tradition was
self- and home-education, a tradition which may have helped many teachers
over the most difficult obstacles.

However, it was shown that it was easier for well educated lower secondary
teachers to guide their pupils to the core of the reform, deeper understanding,
while others may have looked at the new syllabus as just a set of a new type of
problems. Those primary teachers, who were inclined for mathematics, enjoyed
this opportunity for further education through this work, while others were
overwhelmed and gratefully accepted the synthesis syllabus, something they
might not have done without the previous experience.

Lastly it is remarkable to notice how the history of mathematics education in
Iceland depended on single individuals; first Björn Gunnlaugsson in the middle
of the 19th century, then Ólafur Dan Daníelsson in the first half of the 20th

century and thirdly Gu_mundur Arnlaugsson in the second half. They are
examples of how, in a small community as Iceland is, an individual can have a
strong influence on the whole community.
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Teachers and Assessment –
A Description and Interpretation of Teachers’ Actions

Connected with the Mathematics National Test
for School Year 5

Lisa Björklund
Lärarhögskolan i Stockholm

In Sweden there is no external examination of pupils’ knowledge - the class
teacher does all the assessment. To assist in this assessment there are National
Tests and diagnostic materials. In this paper I focus on the ways in which
teachers assess and describe pupils’ performances in mathematics. In our work
in PRIM-gruppen1 with the National Test for school year 5, we continuously
collect data from pupils and teachers from all of Sweden and this data is used for
the analyses in this paper. These inquiries then form a picture of teachers and
their assessment.

Theoretical perspective, purpose and questions
This paper is mainly based on the theoretical perspective entailed in pedagogical
assessment (Gipps, 1994). The purpose is to deepen our knowledge about how
teachers in school year 5 assess pupils’ knowledge achievement in mathematics.
The following questions are being discussed:

� Do teachers verbalise their observations and assessments of pupils’
knowledge achievement in the competency profile enclosed in the
National Test for year 5? What comments do they write about the
pupils’ competencies?

� How do teachers assess pupils’ work in one part of the test?

� What attitudes do teachers have towards the National Test in
mathematics and towards pedagogical assessment?

Background

Theories regarding assessment of knowledge
Pedagogical assessment in the 2000s must be based on contemporary know-
ledge about how learning takes place. We find ourselves now in a cultural
transition period, from a testing culture to an assessment culture (Gipps, 1994).
Shepard (2000) proposes a similar viewpoint and says that today we are largely
centred on constructivism and socio-cultural theory when dealing with theories

1 See www.lhs.se/prim
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of learning. If we intend that all students should be able to investigate, analyse,
reason and interpret, then our assessment must reflect this (Gipps, 1994). Also
Leder (1992) emphasises the relationship between teaching and assessment and
she states that assessment in mathematics does not always consist of the same
type of questions and tasks that the teaching of mathematics is expected to
have, that is, assessment will include tasks that give the pupil opportunities to
use general solutions and to use more unconventional thinking.

Leder also says that it is precisely this joint development of teaching in
collaboration with the development of assessment that will influence pupils’
learning of mathematics in a positive direction.

De Lange (1992) describes the following principles for the construction of
test items:

1.  Assessment should be an integrated part of the learning process, i.e.
the assessment should support pupils’ learning.

2.  Assessment should give the pupils the opportunity to demonstrate
what they can do rather than what they cannot do.

3.  Assessment should reflect and concretise all the course goals.

4.  The quality of an assessment does not primarily depend on how
objectively pupils' results can be assigned numerical scores.

5.  Assessment should fit well into the school environment and
programme.

Pettersson (2001) emphasises that assessment is characterized by considerable
flexibility. The pupils should be put in different situations so that they can
demonstrate their competence in various ways.

Gipps (1994) describes in summary a definition of pedagogical assessment
that includes the following points:

• Pedagogical assessment is based on the view that assessing per-
formances is not an exact science; and that the relationship between
student, task and context is complex.

• In pedagogical assessment clear goals/criteria are set up for the
pupils’ performances.

• Pedagogical assessment encourages pupils to think rather than listing
or “regurgitating” facts.

• Assessment that elicits the best possible performance of the pupil
requires tasks that are concrete and are experienced as being a
relevant part of the pupils’ world. The tasks are presented clearly and
the assessment situation must not be felt as threatening to the pupils.

• With regard to grading and/or scoring the assessor/teacher needs
guidance to ensure good comparability with other assessors. This can
be achieved by providing examples of assessments/evaluation.
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• In pedagogical assessment we should move away from evaluations in
the form of one single number/letter. Instead we ought to strive
towards other ways of describing the achievement of pupils that
include more comprehensive descriptions of their knowledge and
profiles of various types.

The National Test in Mathematics for school year 5
In Sweden the teacher has the exclusive responsibility of assessing the pupils’
knowledge throughout all school years, that is, there is no external examination.
To help the teachers in their assessment the National Agency of Education
provides national tests and diagnostic materials.

Every year, subject tests in English, Mathematics and Swedish are given in
school year 5. The national tests in mathematics are constructed by PRIM-
gruppen at The Stockholm Institute of Education. The test for school year 5 is a
service offered to the schools, but most municipalities have decreed that all
schools must participate in these assessments. The main purpose of the subject
test is to help the teachers to assess the development of knowledge in relation to
the goals stipulated for attainment by school year 5. Another aim is to enable the
identification of both the strong and weak points of the pupils. The test is
carried out during the major part of the spring term each year and is one
component in the entire assessment of the student's knowledge made by the
teacher. There are no fixed test dates, rather the teacher/school plans and
administers the test when it best suits the local conditions. The tests are intended
to be integrated into the ordinary teaching and each pupil is given sufficient
time to work on the various tasks in the test. Teachers are encouraged to
respond to a questionnaire and also to submit student solutions for students
born on a certain birth-date. The submitted material can be used for studies of
various kinds (Skolverket, 2000).

Not all the goals to be attained by school year 5 are tested by one single
test. Instead some specific areas are focused upon in one given year. These
mathematical areas are tested by means of tasks of various kinds, from short
individual questions to more comprehensive group tasks.

Besides test questions, the testing material also includes information for the
teachers to assist them in their assessment. An example of such information is the
provision of guiding norms for each question with examples of acceptable
answers and descriptions of misconceptions that students might show. The
teacher is expected to collate his/her assessment of the knowledge of a pupil in
various areas using a competency profile (see appendix). As a guide for this,
each part of the test contains a description of what knowledge the pupil ought
to demonstrate for each part. As a guideline for the assessment, various accep-
table answers that the pupil should have on each part are presented. When the
teacher fills in the competency profile table, consideration should also be given
to the pupils’ performance on other occasions besides the test situation itself.
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The subject test for school year 5 conforms well to the majority of the criteria
that characterize pedagogical assessment. The pupil has opportunities to
demonstrate knowledge in various situations, e.g. short answer questions, longer
questions and larger group tasks. In the assessment guidelines there is a clear
connection with the stipulated goals to be attained and goals to strive towards
and in the competency profile table the goals are clearly presented for the pupil.
There are also two different self-assessment parts in which the pupil is given the
opportunity to reflect upon his/her own ability (Björklund, 2004).

Method and implementation
The empirical work reported here includes qualitative and quantitative analysis
of about 200 competency profiles from the National Test in Mathematics for
year 2000, qualitative and quantitative analysis of 200 student solutions from
the National Test in Mathematics for year 2000, as well as an analysis of the
teachers’ answers to the teacher questionnaires. The data concerning the com-
petency profiles and student solutions consists of materials which include both
student solutions and competency profile. The test for school year 5 is not
compulsory, and it is not possible to draw any general conclusions from these
data. I still think that it is possible to get a hint about the general situation, as the
test is carried out in more than 90 % of the municipalities.

Results

How teachers fill in the competency profiles
It is not common for the teachers in the survey to make use of the opportunity
to comment on/describe verbally their assessments in the pupils’ competency
profile (see appendix).

In 66% of these profiles such comments are made in two or less of the
spaces provided. The percentage of the profiles in which teachers made no
comments is 45%. To a much greater extent the teachers make use of the option
of indicating using an “X” on the existing arrows. On 88% of the profiles 6, 7,
or 8 such marks were indicated. It is clear that the teachers prefer indicating their
evaluation using an X rather than describing it in words, when both methods
can be used. On the competency profiles where the teacher has filled in one or
more spaces, almost one third (31%) have only written a negative comment, e.g.
what the pupil is unable to do, general negative comments etc. Seventeen
percent describe only strong points. There is a difference between the goals to
be attained that are tested in the test for year 2000 and the other goals, in regard
to the number of filled-in spaces. Teachers verbalise their assessments for the
goals tested by the test to a much greater extent than for the other goals. The
same is true for the indication “X” at the arrows provided, but not quite as
significant as in the former case.
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How teachers assess each task
The test includes tasks of various kinds with respect to assessment. In this paper
I have analysed one section of the test. In one of the tasks, pupils are to choose
the missing puzzle piece. In this case there is only one correct answer. For
several questions there are two or more correct answers. The assessment guide-
lines give examples of different possible answers to these questions. For some
tasks there is a risk that the teacher makes a negative evaluation because of a
follow-up error. A follow-up error can arise when a pupil uses the result of a
previous question to solve a later one. If the answer to the earlier question is
wrong, but the solution of the later one is correct, the answer should be
considered correct. For such questions there is a description in the teacher's
guide to prevent the student suffering a deduction for such a follow-up error. In
some tasks, accuracy is an important aspect of the assessment. In one case the
teacher must use a ruler to check an answer. Teachers have followed the
assessment guidelines on all questions in 67 % of the student solutions. The
types of mistakes that teachers make in assessment agree in part with the
character of the tasks described earlier:

• Follow-up errors. The teacher looks blindly at the “correct” answer
given in the guidelines, not noticing that the pupil’s apparent error
depends on an error in an earlier question.

• Shortage of accuracy. In some cases a student’s solution is assessed
as correct though it was inadequate, and vice versa.

• Other errors. Sometimes it is difficult to understand why a teacher
makes the assessment he/she does. One such example is when the
pupils’ answer is judged as incorrect because the answer is not
located at the right place.

Teachers attitudes to assessment
Teachers are generally pleased with the structure and content of the test. They
think that the coverage on the national test is acceptable. Most of the comments
on the various parts of the test are positive. Teachers also appreciate the
competency profiles. The teachers feel that the test gives them support in
assessing the performances of the pupils and that the assessment guidelines
provide sufficient help. They also feel that the recommendations regarding what
pupils should be able to achieve are reasonable in relation to the goals to be
attained, as expressed in the study curriculum (Alm & Björklund, 2000).

The fact that the teachers are positively inclined towards the test in general
and that they are specifically positive towards the assessment guidelines, makes
it evident that they are also positive towards pedagogical assessment – at least
in connection with the National Test for School year 5.
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Conclusions
In summary, based on previously described analyses, I come to the following
conclusions:

• Most teachers in the survey do not verbalise their assessments of
pupils’ knowledge in the various areas of the subject. Many teachers
that in fact do make verbal comments on their assessment reports
tend to focus on weaknesses of the pupils.

• Most teachers in the survey, with the help of a subject test in school
year 5, have sufficient competence to assess pupils’ performance on
individual tasks in one section of the test. Some teachers make
mistakes in their assessment. This can be of consequence for some
groups of pupils.

• Most teachers are by and large positive towards assessment using the
test material. Thus I conclude that most teachers are positive towards
pedagogical assessment in connection with the National Test for
school year 5.

Discussion
Looking back at the findings presented in this paper, my dominating feeling
when it comes to the teachers is that they really want to do a good job in
assessing their pupils’ performances. They also want to document their assess-
ment in a professional way. Thus the first conclusion presented above (saying
that most teachers do not verbalise their assessment and that when they do, they
tend to focus on weaknesses) don’t come from the teachers being lazy or not
willing to be supportive to the pupils. When teachers do not verbalise their
assessment they probably find the marking with X on the arrows sufficient.
When they verbalise the weaknesses to a higher extent than the strengths they
probably want to focus on what the pupil has to learn. All this is from the
teachers’ point of view. From the pupils’ point of view it is better when the
teachers do verbalise their assessment and when they describe the pupils’
strengths. Black & Wiliam (2001) put it this way:

Feedback to any pupil should be about the particular qualities of his or her
work, with advice on what he or she can do to improve, and should avoid
comparisons with other pupils.

The Swedish model – how can it be improved?
In my opinion the Swedish model is mainly a good one and should be retained.
With the teacher as assessor the pupil has many opportunities both in the testing
situation and in teaching situations to demonstrate his/her abilities. But I also
think that teachers must get help to improve their competency in assessing. One
way towards this end is to provide more time for teachers to do assessment and
above all, time for discussions about assessment. It has been shown that the
quality of assessment is significantly enhanced if teachers discuss together
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assessment in concrete terms (Gipps, 1994). Black & Wiliam (2001) also empha-
sise the importance of the competence of teachers in formative assessment. They
state that this in addition leads to better achievement levels for the pupils. They
further state that they see no other measure that is so certain to increase the
level of performance of the pupils. In view of the findings of this paper,
professional development of teachers in the area of assessment would be a
desirable measure.
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On the Role of Problem Solving and
Assessment in Swedish Upper Secondary

School Mathematics in Finland

Lars Burman
Åbo Akademi, Vasa

In this article I will focus on teachers’ use of problem solving and of different
kinds of assessment in Swedish upper secondary school mathematics in Finland.
Information about the teachers’ use of problem solving and assessment methods
as well as possible signs of their willingness to change the instructional practice
in these respects are gathered as a part of a survey, directed to all the mathema-
tics teachers in Swedish upper secondary schools in Finland.

Problem solving as a part of instruction
My starting point for a conceptual understanding of problem solving is found in
Mason and Davis (1991), according to whom the Problem Solving Theme Group
report from the Fifth International Conference on Mathematics Education
(Burkhardt et al., 1988) “took as the salient characteristic of a problem that the
problem solvers face an unfamiliar task and they do not know an immediate path
to a solution”. They continue with pointing out important aspects of mathe-
matical thinking like specialising, generalising, conjecturing and convincing.
Furthermore, they find a supportive atmosphere in the classroom and challen-
ging questions important for problem solving instruction and state that “an
atmosphere of constant questioning and conjecturing is more likely to be effec-
tive than the occasional burst of problem solving within an otherwise formal
framework”.

To meet new challenges in work, school, and life, students will have to adapt
and extend whatever mathematics they know. Doing so effectively lies at the
heart of problem solving. A problem solving disposition includes the confidence
and willingness to take on new and difficult tasks. By learning problem solving
in Mathematics, students should acquire ways of thinking, habits of persistence
and curiosity, and confidence in unfamiliar situations that will serve them well
outside the mathematics classroom. (NCTM, 2000)

In Principles and Standards there is generally a strong emphasis on the
processes in mathematics instruction and these words tell us about the direction
of many American efforts in the area of problem solving in the last decades, also
stated by others, for instance Lambdin (1999). Earlier Schoenfeld (1985), having
performed a study of “heuristic training”, made the conclusion that problem
solving practice is not enough but explicit training is required, and that much
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work has to be done in order to find out an appropriate classroom instruction.
Two years earlier Frank Lester (1983) had summarised four basic principles

about problem solving and asserted them to have emerged from research
literature over about fifteen years:

• pupils must solve many problems in order to improve their problem-
solving ability

• problem solving ability develops slowly over a prolonged period of
time

• students must believe that their teacher thinks problem solving is
important in order for them to benefit from instruction

• most pupils benefit greatly from systematically planned problem
solving instruction

Lester’s conclusions will serve as my starting point as concerns problem solving
in this article. It should be said that although my text so far could have been
based on work from other parts of the world as well, the progress in the area of
problem solving and instruction in USA is quite outstanding, all the way from
Polya’s (1957) fundamental work (Black & Atkin, 1996).

My perspective on problem solving is to great extent that of the teacher,
which makes it quite natural to pose questions to teachers in a survey. The role
of problem solving in  mathematics instruction was discussed by Ernest (1998),
who made a classification in four perspectives. His third perspective is the
problem solving perspective, which has its origins in the work of Polya (1957).
In accordance with Ernest, Björkqvist (2001) has formulated that the
perspective is the problem-solving perspective when the most important to learn
is considered to be the acquisition of problem solving strategies and heuristics.

With at least partly a problem solving perspective, it is desirable to use the
concept problem solving in a wide sense. It could mean, for instance, an ability
to handle questions such as “Can you find a way to handle this task?” when
posing an almost but not quite familiar task to the pupils. It could also mean that
the pupils are expected to find a solution to a problem that is in a way similar to
what they have seen but requires another strategy, or that is not so similar at all
but can be solved by a known strategy. The tasks could also take more or less
time to solve, from some minutes to several hours, when talking about investiga-
tions or modelling projects. Modelling projects can also be related to Ernest’s
first perspective, which is the applications perspective. Björkqvist (2001) finds
Ernest’s first perspective to be near the origin of what is often called realistic
mathematics instruction, when sub-processes in the transfer between reality and
the abstract world of mathematics are formalized and a mathematical modelling
of phenomena in the real world is accomplished. Björkqvist also considers it
reasonable to regard mathematical modelling as the most profound kind of
problem solving in mathematics.
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Assessment as a part of instruction
Charles et al. (1987) state that problem solving has to be a regular and frequent
part of the instructional program if the students shall consider problem solving
to be important. They also think that assigning grades to progress in problem
solving makes problem solving more important for the students and they give
guidelines like “Advice students in advance that their work will be graded” and
“Use a grading system that considers the process used to solve problems, not
just the answer”.

In the Principles and Standards (NCTM, 2000), under the headline “The
Assessment Principle”, the authors make the following statement as concerns
the important purposes of assessment: “Assessment should be more than merely
a test at the end of instruction to see how students perform under special
conditions; rather, it should be an integral part of instruction that informs and
guides teachers as they make instructional decisions. Assessment should not
merely be done to the students; rather, it should also be done for the students, to
guide and enhance their learning.” They continue with several considerable
research-based statements about assessment enhancing the learning:

• research indicates that making assessment an integral part of
classroom practice is associated with improved student learning

• the tasks used in an assessment can convey a message to students
about what kinds of mathematical knowledge and performance are
valued

• feedback from assessment tasks can also help students in setting
goals, assuming responsibility for their own learning, and becoming
more independent learners

• a focus on self-assessment and peer-assessment has been found to
have a positive impact on students’ learning.

Assessment is also a valuable tool for making instructional decisions, and a wide
variety of assessment methods as well as purposes for assessment are indicated:

• assessment and instruction must be integrated so that assessment
becomes a routine part of the ongoing classroom activity rather than
an interruption

• in addition to formal assessments, such as tests and quizzes, teachers
should be continually gathering information about their students’
progress through informal means, such as asking questions during
the course of a lesson ...

• assessment … should focus on students’ understanding as well as
their procedural skills

• to make effective decisions, teachers should look for convergence of
evidence from different sources

• over-reliance on formal assessments may give an incomplete and
perhaps distorted picture of students’ performance
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• assessments should allow for multiple approaches

• although less straightforward than averaging scores on quizzes,
assembling evidence from a variety of sources is more likely to yield
an accurate picture of what each student knows and is able to do
(NCTM, 2000).

Problem solving and assessment in upper-secondary schools
Although Finland, in comparison to most other countries, gives less time to
Mathematics in the upper secondary school, the Finnish results in Third
International Mathematics and Science Study (TIMSS) have been widely
noticed. However, Näätänen (2001) points out that the results indicate that it
has not been paid enough attention to the fundaments of mathematics in
Finland. Especially the way of practicing problem solving is not sufficient to
build a systematic knowledge in mathematics and to develop abstract thinking.
In the bases for upper secondary school curricula (1994), however, it is in the
general part stressed that the pupils should learn to examine all information
critically and to apply their knowledge to different problems and practical
situations. Furthermore, in the part for mathematics it is strongly emphasized that
instruction should give the pupils abilities to make applications in problem
solving and also training to find solutions to mathematical problems. According
to Näätänen (2001), these statements may not necessarily give the right
inspiration to a sufficient instruction in problem solving.

As concerns assessment, students in upper secondary school in Finland can
get two marks in Mathematics, one given by the teachers in the school and an
optional one based on the result in the national matriculation examination (ME)
after completed upper secondary school. In the national test in mathematics
there are two tests, one based on the 10 compulsory courses in “long course”
and one based on the 6 compulsory courses in “short course”. In both tests
there are 10 tasks (chosen out of 15 tasks) that ought to be done in six hours.
The tasks in such an exam have a very strong impact on the teaching in the
upper secondary school (Burman, 2000). There are reasons to believe that the
teachers think they have no time to focus on anything but the important
content that is supposed to be assessed, in order to prepare their pupils for the
exam in the best possible way.

In addition, the whole system makes it hard to teach problem solving in
another way than with the kind of tasks that can be found in the final national
assessment. Moreover, when teachers feel that there is a considerable time
pressure, they stick to “good old methods” rather than to new and untried
ones. Of course, there is a considerable amount of applied tasks in the final exam,
but many of them are pseudo-realistic and have no close similarities with task
situations in life beyond school (Palm & Burman, 2002). When a low proportion
of the tasks include a relevant real-life question, students may get the feeling
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that solving applied tasks is a game, with rules not necessarily consistent to the
rules of real-life problem solving (Palm & Burman, 2002). In this respect an
alignment between curriculum, instruction and high-stakes assessment does not
occur. The consequence is a conflict and we are far from assessing the specific
skills of a mathematical modelling process.

Is it possible to find a way out of this conflict, at least as concerns the
students’ marks from the school? One possibility is to include tasks and even
projects that in a better way correspond to e.g. problem-solving abilities.
Another possibility is to use tests during the courses, which enables the inclu-
sion of more varied tasks. Of course, there is not much time for assessment in
mathematics in Finnish upper secondary schools, because there is not much time
for instruction. Consequently, there is a need for a kind of assessment that is
effective and takes as little time as possible. Therefore, one of the most interes-
ting aims with the survey is to get some answer to the question how the teach-
ers solve their almost insolvable time-equation under the pressure from the ME.

The research questions
On the theoretical base above and with respect to the Finnish situation, I have
formulated the object of my interest in four research questions, A–D. Each
question has given rise to statements and questions in the survey. The teachers
are supposed to give marks to the statements on a Likert scale, from 1 = “do not
agree at all” up to 5 = “totally agree”. In the questions, they are supposed to
give percentages between 0 and 100 to some alternatives. The four research
questions are:

A. To what extent do the teachers include problem solving in their
instruction?

B. Which methods do the teachers use when they assess their pupils?

C. To what extent do the teachers include problem solving in their
assessment?

D. Are the teachers satisfied with their present methods in problem
solving and assessment or are they willing to change their
instruction in these respects?

About the sample
The participants in the survey were, in November 2002, registered as members of
the Swedish Teachers’ Union in Finland (Finlands Svenska Lärarförbund, FSL)
and at that time also registered as mathematics teachers at the lower or upper
secondary school level. Finding the addresses through the FSL was considered
to be fast and reliable enough, as teachers belong to the teachers’ union with a
percentage close to 100%. The target group consisted of 223 teachers when
mathematics teachers at the teacher training school in Vasa as a pilot group for
the survey were excluded.
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In Januari 2003, questionnaires were sent out to 68 teachers in upper secondary
schools and 155 teachers in lower secondary schools. In the stipulated time 82
of them answered. After a follow-up letter and a reminder in the membership
paper of FSL, the answers reached the very satisfying number 132 (59%). Seven
questionnaires were empty, mostly because the respondent had recently left
teaching because of retirement or other duties. Of the remaining 125 respon-
dents I have picked out those 54, who had answered the questions for teachers
in upper secondary school. They were 44 teachers in upper-secondary school
and 10 other teachers, who had chosen to answer the questions of both levels,
although they might have had their main teaching in lower secondary school.

Results from the survey
Question A.  In the survey 89% of the responding teachers totally or partly
agreed that there are some important strategies in problem solving to focus on in
their instruction. When asked about the relation between problem solving and
assessment 92% totally or partly agreed that problem-solving ability should
have impact on the marks in mathematics, 98% totally or partly agreed that the
students should be good problem solvers in order to get a high mark and 83%
totally or partly agreed that students should be able to describe methods of
solving tasks for high marks. About project work in mathematics 45% of the
teachers totally or partly agreed to give projects an influence on the marks in
mathematics but only 17% totally and 13% partly agreed with the issue of
having at least one project in mathematics during the students’ time at upper
secondary school.

Question B.  About assessment methods the teachers agreed totally or partly
as follows:

- 55% to use tests during the courses as a part of their instruction
- 66% to usually construct at least one new task for a test in mathematics
- 77% to prefer tests with some kind of possibility to choose among the
given tasks
- 100% to want the students to take responsibility for their own learning
- 91% to try to make the student aware of their knowledge
- 51% to use tests during the courses as a complement to the course test.

The teachers estimated that they in the short course in mathematics chose 28%
of the tasks from previous tests, 32% from books or test banks, 16% from
previous tests in the Finnish matriculation examination and that 23% of the
tasks were home-made for the test. Corresponding percentages for long course
in mathematics were 24%, 40%, 15% and 16%.

Question C.  Most of the results as concerns including problem solving in
the teachers’ assessment have already been presented in A. In addition, less than
10% of the teachers said that they include tasks with new elements in their tests
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and the teachers estimated that 4% of the final marks in a course are based on
problem solving and 2% are based on projects in mathematics.

Question D. About the teachers’ willingness to make changes in their
instruction, there was a difference between answers for short course and
answers for long course in mathematics. As concerns short course, 65% of the
teachers were in favour of decreasing the weight of the course test for the marks
and 48% of increasing the weight on tests during the course, 42% of increasing
the weight on problem solving and 32% of increasing the weight on projects in
mathematics. The corresponding percentages for long course were 53%, 32%,
26% and 29%. On the whole, when willingness to make changes was indicated,
it was often with small steps. Half of the teachers that suggested changes had at
most a 10% change in the weights in assessment situations. Teachers, who were
over 50 years old, or 30 years old or younger, showed less interest in making
changes than the others. The percentages were, respectively, 33%, 44% and
80%. Finally, male teachers showed more interest for changes than female, as
with 32 male and 22 female teachers the result was 69% to 50%.

Concluding remarks
At first it has to be said that some teachers in the actual group of respondents
may know the author and the one who asks the questions as teacher educator
and perhaps try to give expected answers. Moreover, it is also possible that the
respondents have a different comprehension of concepts such as “test during
the courses”, “problem solving” and “projects in mathematics”. These facts are
reasons for having asked indirect questions in the survey and for making
conclusions with a certain margin for security, but they are not considered
strong enough to prevent from making conclusions. For instance, young
teachers did not use more problem solving or projects or show more interest for
making changes in their instruction than older teachers, as could have been a
consequence if there were many “expected answers”.

As concerns the results about problem solving, more than half of the
teachers seem to think that their present instruction is enough to prepare their
students in this respect without including any “explicit training”, as they agree
with considering problem solving important (several percentages about 90% in
A) but do not intend to change their instruction in this area (42% and 26% in
D). As only 30% of the teachers want to include more projects in mathematics,
several teachers may have their picture of projects from other subjects and
consider them to take much time and to give very little mathematical benefit. The
impact of matriculation examination was confirmed although not extremely
strong, as 51% of the teachers totally or partly agreed that national tests are
important for their instruction and 26% totally or partly disagreed.
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Hamper or Helper: The Role of Language
in Learning Mathematics

Bettina Dahl1

Norwegian Centre for Mathematics Education

Introduction
This paper reports a part of a study of how ten successful high school pupils
from Denmark and England explain that they learn a mathematical concept that
is new to them. It focuses on what the pupils tell about the role of language. The
analysis uses various theories of learning to get a greater understanding of the
pupils’ explanations.2

Methods
Metacognition can be understood both as knowledge about and regulation of
cognition. This knowledge develops with age and there is a positive correlation
between performance on many tasks and the degree of metacognition. In
relation to regulation of cognition, this is related to the planning of activities
prior to problem solving, the monitoring as one goes along, and the checking of
the outcome. The “presence of such behavior has a positive impact on intellec-
tual performance ... its absence can have a strong negative effect” (Schoenfeld,
1985, p. 138). One might therefore assume that successful pupils know how
they learn mathematics. I therefore asked five teachers to pick some of their best
pupils in the classes that studied mathematics at the highest high school level. In
Denmark it is Niveau A at the Gymnasium and in England it is the AS (Advanced
Subsidiary) Level Mathematics. I named the Danish pupils: Z, Æ, Ø, Å and the
English pupils: A, B, C, D, E, F. The Danish pupils were interviewed as one group
and the English pupils were interviewed in pairs. Pupils D, Z, Æ, Ø, Å were girls;
A, B, C, E, F were boys. The English pupils were given a sheet with some knot
theory to initiate a discussion, but otherwise all the interviews were explorative.

Theories of learning that focus on language
The opinions of the role of language are divided. To some, language is a
necessary thinking-tool; to others it obstructs thinking.

1 Full name: Bettina Dahl Søndergaard; alternative spelling: Soendergaard.
2 The study reports parts of a Ph.D. study (Dahl, 2002). Other findings are reported in Dahl
(2004).
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Language as helper
According to Hadamard, Polya said that “the decisive idea which brings the
solution of a problem is rather often connected with a well-turned word or
sentence. The word or the sentence enlightens the situation, gives things, as you
say, a physiognomy” (Hadamard, 1945, p. 84). Also Russell talked in a positive
way about language: “Language serves not only to express thoughts, but to
make possible thoughts which could not exist without it. … I hold that there
can be thought, and even true and false belief, without language. But however
that may be, it cannot be denied that all fairly elaborate thoughts require words”
(Russell, 1948, p. 74). I will call this a moderate positive view since it holds that
words not only express or “mirror” thoughts but also more actively helps
thinking. However, not all thoughts require words, only higher-order thinking.

Another positive view is seen in Muller who stated that “no thought is
possible without words” (Hadamard, 1945, p. 66). This view is connected with
Vygotsky’s description of language as the logical and analytical thinking-tool
(Vygotsky, 1962, p. viii) and that thoughts are not just expressed in words but
come into existence through the words (ibid., p. 125). Vygotsky also said that
“Language does not of necessity depend on sound” (ibid., p. 38), and that:
“Thought development is determined by language, i.e., by the linguistic tools of
thought and by the socio-cultural experience of the child” (ibid., p. 51). Thus, to
Vygotsky, thoughts develop from social interaction and what we learn is
inherently a product of human communication, and it would not exist for us if
we were not part of the human community. These strong positive arguments are
basically that no thought or learning can take place without the use of language
and that language is an indispensable thinking-tool that makes thoughts come
into existence.

Language as hamper
Berkeley argued that “words are the great impediment to thought” (Hadamard,
1945, p. 68). Galton explained that results can be perfectly clear to himself but
“when I try to express them in language I feel that I must begin by putting
myself upon quite another intellectual plane. I have to translate my thoughts
into a language that does not run very evenly with them” (Hadamard, 1945, p.
69). Hadamard stated that “thoughts die the moment they are embodied by
words” (Hadamard, 1945, p. 75), and that a thought “can be accompanied by
concrete representations other than words. Aristotle admitted that we cannot
think without images” (Hadamard, 1945, p. 71). Furthermore, “the more
complicated and difficult a question is, the more we distrust words, the more we
feel we must control that dangerous ally and its sometimes treacherous
precision” (Hadamard, 1945, p. 96). But Hadamard acknowledged that “signs
are necessary support of thought” (Hadamard, 1945, p. 96). Wittgenstein
argued that a main source in our lack of understanding is that we do not have
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an overview of the use of our words, the grammar is confusing. Philosophy is a
battle against the bewitchment of our mind by means of the language
(Wittgenstein, 1983, §109 & §122-126). The views quoted here all centres on
language as either obstructing or confusing thinking, that words are not always
necessary for thoughts, or that language is not always able to express thoughts.
Piaget (1970, pp. 18-19) stated that “This, in fact, is our hypothesis: that the
roots of logical thought are not to be found in language alone, even though
language coordinations are important, but are to be found more generally in the
coordination of actions, which are the basis of reflective abstraction”. Here
Piaget seemed to disagree with Vygotsky who stated that thoughts develop
from social interaction where the language is the thinking-tool. To Piaget,
knowing an object does not mean to copy it, but to act upon it: “Knowing
reality means constructing systems of transformations that correspond, more or
less adequately, to reality” (ibid., p. 15). An abstraction is “drawn not from the
object that is acted upon, but from the action itself. It seems to me that this is the
basis of logical and mathematical abstraction” (ibid., p. 16). Hence, actions
perform the basis of mathematical thinking, not language or interaction.

A dual nature of language
Vygotsky criticised Piaget around the concept of egocentrism3 and egocentric
speech.4 Vygotsky stated that egocentric speech is not just accompanying the
child’s activity but the child uses it as a means of expression and to release
tension, but it soon becomes an instrument of thought that the child uses to, for
instance, plan the problem-solving (Vygotsky, 1962, p. 16). Thus, to Vygotsky
egocentric speech, besides its communicative role, is an important thinking-tool
and as a tool to solve problems. “Egocentric speech emerges when the child
transfers social, collaborative forms of behavior to the sphere of inner-personal
psychic functions” (ibid., p. 19). Vygotsky then continued and stated that:
“Thus our schema of development - first social, then egocentric, then inner
speech5 - contrast both with the traditional behaviorist schema - vocal speech,
whisper, inner speech - and with Piaget’s sequence - from nonverbal autistic

3 The notion of egocentrism in Piaget’s work is “quite unrelated to the common meaning
of the term, hypertrophy of the consciousness of self. Cognitive egocentrism, as I have tried
to make clear, stems from a lack of differentiation between one’s own point of view and the
other possible ones, and not at all from an individualism that precedes relations with others”
(Piaget, 1962, p. 4).
4 Piaget stated that “I have never spoken of speech ‘not meant for others’; this would have
been misleading, for I have always recognized that the child thinks he is talking to others
and is making himself understood. My view is simply that in egocentric speech the child
talks for himself” (Piaget, 1962, pp. 7-8). This was Piaget’s response when Vygotsky wrote
that Piaget’s view was that “In egocentric speech, the child talks only about himself, takes
no interest in his interlocutor, does not try to communicate” (Vygotsky, 1962, pp. 14-15).
5 To Vygotsky, inner speech “is not the interior aspect of external speech - it is a function
in itself. It still remains speech, i.e., thought connected with words. But while in external
speech thought is embodied in words, in inner speech words die as they bring forth thought.
Inner speech is to a large extent thinking in pure meanings” (Vygotsky, 1962, p. 149).
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thought through egocentric thought and speech to socialized speech and
logical thinking” (ibid., p. 19-20). To Vygotsky, the order of the development of
thinking is from the social to the individual. This internalisation process has two
levels, the social and the individual: “first between people (interpsychological),
and then inside the child (intrapsychological)” (Vygotsky, 1978, pp. 56-57). As
a response to Vygotsky’s views and critique, Piaget referred to Vygotsky’s
propose that:

egocentric speech is the point of departure for the development of inner speech,
which is found at a later stage of development, and that this interiorised language
can serve both autistic ends and logical thinking. I find myself in complete
agreement with these hypotheses. On the other hand, what I think Vygotsky still
failed to appreciate fully is egocentrism itself as the main obstacle to the co-
ordination of viewpoints and to co-operation. ... In brief, when Vygotsky
concludes that the early function of language must be that of global
communication and that later speech becomes differentiated into egocentric and
communicative proper, I believe I agree with him. But when he maintains that
these two linguistic forms are equally socialized and differ only in function, I
cannot go along with him because the word socialization becomes ambiguous in
this context: if an individual A mistakenly believes that an individual B thinks the
way A does, and if he does not manage to understand the difference between the
two points of view, this is, to be sure, social behavior in the sense that there is
contact between the two, but I call such behavior unadapted from the point of view
of intellectual co-operation. (Piaget, 1962, pp. 7-8)

Vygotsky emphasises that language is not just a means of expression; it is also
an instrument of thought. Piaget agrees, but found that Vygotsky failed to
understand that egocentrism itself could be a main obstacle for reaching
understanding through the use of language.

Analysis
Below I will discuss three examples from the interviews.

Hamper AND helper
This example is from an interview with two English pupils, D and E. ‘They’
refers to the authors of the book about knot theory.
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E

I

D

E

D

I

D

I

E

D

Don’t use such big words, they are aiming to people who don’t understand it and use
basic. It’s the way they approach it, the language, it’s just too, people would struggling
with the language when they are suppose to be learning the maths.

So is there a diff, I mean, er, so maths has nothing to do with the language? Or, can
you learn maths without language.

Yea.

No, but you can use different language, simple language to convey a point.

Cause the maths in it is quite easy, I think, well, it’s not. It is nothing really difficult
what it is saying is this is what a knot is, this is (E: Yea) what a link is, and, OK, that
really really simplistic. It took me a long time to work out what they were trying (E:
Yea what they were explaining) whereas the fact as soon as I, kind of translated it, I
thought oh well, that’s what a knot is, find that’s easy.

What did you translated it.

Into simple language [laughs] er, it er.

You translate it before you understand it, er, so if you have understand, then, you don’t
need to translate it.

I think it here would be easier if the author translated (D: Yea [laughs]) rather than er
leaving the reader to do it, I mean.

You have to do the two together, you have to translate while you’re trying to
understand.

Pupil D and E seem to agree that language can be a hindrance to learning but at
the same time at least Pupil E argues that one cannot learn mathematics without
using language, but he finds that one can use different language, for instance
simple language. Pupil D seems to argue that one indeed can learn mathematics
without the use of language. Elsewhere in the interview she argues that one can
learn mathematics without language, at least when the mathematics is easy. She
explains that it took her a long time to understand what the authors wrote but it
was easy as soon as she translated it. It can therefore be interpreted that to Pupil
D, language can obstruct thinking, but it is also a necessary translation-tool, and
that simple language, after being translated from a difficult language, seems to be
a thinking-tool. Pupil E also expresses that the appropriate (for instance simple)
language is a thinking-tool. This might seem odd as they also state that
language/notation confuses the meaning, which could be an example of the
double nature of language that Piaget argued for. Pupil E does not himself
directly argue for a dual nature of language whereas Pupil D directly states that
one has to “do the two together, you have to translate while you’re trying to
understand”.
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Written language
This example is from an interview with two English boys, Pupil A and C.

A

I

C

I

A

C

A

If I am revising from my notes, I find that helps if I actually write the notes out again,
just copying them, out from you know [C coughs] the previously. Because, if you just
sort sit down to revise, you read through, even if you read it aloud, you pick up some
things, remember some things. But if you write it out, you sort of read again and then
write again (I: mmm) and it sort of reinforces it. And I definitely found er, if it is
something where I have to memorize [1 sec silence], you know sort of examples, sort
of methods, equations, how things work, I definitely find it easier if I write, er, as an
aid to memory [2 sec silence] (I: mmm) er, [1-2 sec silence] Yea.

Do you know other tricks or do you know other people have other tricks you know
about?

 [2-3 second where C and A talk at the same time].

Remembering or learning?

Er. Why is? Is there a difference between remembering and learning?

Yea, well [interrupted].

Memorizing something, then you need to know the [1 sec silence] set number of
points (I: mmm) so you need to write them out, and, you know, find some sort of
sequence, in to remember it. But if you are just learning, then it’s about understanding,
you don’t need to remember (A: Yea) the detail, just (I: mmm) need to know the
overall, you know, concept (I: mmm) [A tries to break in] you know, principals.

Yea, it’s important to understand how things (C: Before) how you GET the answer (C:
mmm). Because [2 sec silence] YEA, it is in math, it’s going back to the same thing.
It’s fairly easy to learn a general formula for loads of different things like
trigonometry and things like that, you can just LEARN the general formula (I: mmm),
and every time you get a question, you can just sit and use it and get the answer out.
But then if you come up against a problem which is SLIGHTLY different to the
general [inaudible] you’ve learnt, if you just memorized it and you don’t understand
how it’s got there, so you’ve got no change to work back, and work it out for yourself
(I: mmm) whereas if you understand it [1 sec silence], you can see where it’s comes
from and see where you need to change it to fit what you’ve got. (I: mmm) Got to try
and do.

Pupil A argues that written language is an aid to memory, which does not mean
that he sees written language as the thinking-tool. Vygotsky’s view was that
thoughts come into existence through the words after the learner has partici-
pated in a social interaction where he has internalised aspects of the knowledge.
To aid the memory is according to Pupil A not real learning. Real learning is to
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know the overall concepts and principles. Furthermore, elsewhere in the inter-
views there is a discussion about whether words come first or not, and here
Pupil A says that he is not sure but it probably depends on the problem. If it is a
visual problem where one has to think it through in 3D, he finds that it is
probably better to first have the picture or a graph, but with a linear algebra
problem, it might be better to have the words first and then the pictures to help
one understand, because he finds that it is the words one is trying to under-
stand. This means that although words and language have a great value they are
by no means the way to get to understand all branches of mathematics.

Ping-pong between language and images
Below are pieces from the interview with four Danish girls, here mainly
emphasising on Pupil Z’s explanations. The original Danish text can be found in
Dahl (2002, pp. 356, 359-361).

Z

...
Z

I

Z

I

Z

Z

Ø

If you for instance sit down and then say, all right, what is a triangle, and then line up
what kind of concepts we are working with, it is so very important to have the concepts
lined up. What is the problem really about, and what kind of area are we in, and then
you can begin to work with it. And I think that it is very important to have some terms
and have them worked through.
...
I am a pupil-teacher in mathematics and I have been sitting with a pupil who get so
caught in what is f, (Someone else: mmm) and it is idiotically to sit and wonder about
this, it is not what it is all about. I want to get to the point. But this is what is relevant
when one does not understand what it is that is really relevant (Someone else: mmm).
And where one is going.

Yes OK, this sounded like you talk about a kind of bricks built on top of each other
(someone else says yes yes). [Interrupted by Z]

It’s like the teacher speaks a different language than us (Someone else: mmm). It’s a
little like if you learn Italian through Danish then you would also sit and get stuck in
what the teacher said instead of the meaning of it, right (I: mmm). The teacher comes
with this big mathematics language and then we become so stuck with what the things
are called instead of what it means.

Can one find the meaning outside of language?

[A few seconds of silence].

This is perhaps a bit philosophical?

I think it is difficult. I think that it is very difficult.

I also think so. Then you would need a kind of flair for it, or a kind of feeling of in
what direction it goes. Because it is almost hopeless if you do not have the ehh basics
and then to understand what it is that you are suppose to reach (Someone else: mmm).
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...
Z

I

Z

...
It is also important, this motivation, which I also thinks lies in the confusing, there is a
kind of motivation there, right. One really WANTS to learn it. (I: mmm) And this you
need to have, because it does not help just sitting and learning this mathematics
LANGUAGE first does it. I also think that we [inaudible] have to stick to what you
[Ø] said, that perhaps a person has a kind of flair for it and is able to see this thing in
another way. And I also think that this is where the distinction is between starting to
see the thing FOR YOURSELF and creatively, in some kind of way, because if one
really has this flair [inaudible] one can just see this spatial geometry, one can see it
inside one’s head the moment one is told about it. And then one does not need all
these concepts, if one can see it for oneself. (Someone else: mmm), and then I think
that one begins to work in quite a different way with it (Someone else: yes) [a few
seconds silence]. One can also first [inaudible] concepts and examples.

Do you think perhaps that there is a ping-pong between that one in a way can see it
and then the language?

Yes.

Pupil Z explains that it is important to have some terms and have them worked
through. For instance in geometry it is very important to line up the concepts
one works with to be clear about what the problem is about. Pupil Z also
expresses that it is difficult (but she did not say impossible) to learn without the
language and as an example she mentions spatial geometry. She explains this
further by saying that if one knows the notation, it is simply logical. According
to her, one can perhaps learn mathematics even if one has not understood the
notation. The notation is what seems relevant when one does not understand
what it is that is really relevant as one becomes stocked with what the things are
called, the mathematics language, instead of what it means. Learning is ping-
pong between images and the language. She seems to argue that language/
notations are necessary tools in learning, but that they in themselves are not
mathematics and that an unsuitable use of language can block learning. Notions
can hamper learning if one does not know them, especially if one does not know
them in the beginning of the learning process. It may be possible to learn
mathematics even if one has not understood the notation. This seems to some
extent to contradict what Pupil Z says when she states that one cannot find
meaning without language, but it could also reflect that, to her, the (right)
language is necessary but not sufficient.

Discussion of typologies
The ten pupils fall into various groups. Pupils C, Æ, and Å do not seem to
express much here, but otherwise I will also include information about pupils not
quoted above. See Dahl (2002) for full transcriptions of all the interviews:



Papers

112

I:   Difficult to learn outside language {A, Z, Ø}.

II:  Language is the thinking-tool {B, D, E, F}.

III: Language can hamper learning but language can also help learning
     {B, D, Z}.

IV: Language can hamper learning {E, F, Ø}.

The main difference between Group I and II is whether learning is only
“difficult” outside language or if it is “impossible” without language. In Group
I, knowing the notation is essential to be able to learn the mathematics.
Language can function as a thinking-tool and it is difficult to find the meaning
outside the language. They do not, however, say that it is impossible to learn
outside of language. This seems similar to the moderate positive view of
language. Group II has a strong positive view of the nature of language.
Language is not just a means of translation, but language is a necessary
thinking-tool for learning. Different languages facilitate learning. Some pupils
argue that simple language is the best. In Group III the pupils describe in their
own words a dual nature of language in learning. This could be interpreted to be
in line with Piaget’s description of that language, due to egocentrism, can both
hamper and help learning. Members of Group IV have either a more “negative”
view of the role of language for learning or they elsewhere describe the dual
nature of language, but without themselves reflecting directly on this. They
merely at one place in the interview say one thing, at another place they say
something else.

Conclusions
There seem to be various views of language in relation to how the pupils explain
that they learn a mathematical concept that is new to them. Some pupils say that
language is the main thinking-tool, others that it hampers thinking, and again
others think that language has a dual nature as it both facilitates learning and
hampers learning. Some directly indicate this through expressions such as “you
have to do the two together” or agrees that there is a “ping-pong” between
language and images. This also depends on the kind of language, for instance
simple language or written language. The members of these groups are criss-
crossing nations and gender. Referring to Piaget’s critique of Vygotsky, Piaget
declared himself to be very much in line with Vygotsky about the positive role
of language, but Piaget also argued that Vygotsky failed to acknowledge the
obstacles language can give rise to. Thus, based on what the pupils here have
explained, Piaget seemed to be right in his critique. But the quotes shown here
do not reveal whether thoughts develop from social interaction and internali-
sation or from personal activities and construction. However, in Dahl (2004) it is
discussed that the pupils are divided on this issue. The pupils do, however, in the
quotes above seem to argue that thoughts (in line with Hadamard) can be
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accompanied by other representations than words, for instance images or, as
Pupil Z puts it, by having a “flair” for it. The latter might be connected with the
notion of inner speech which is thinking in pure meaning. They do not seem to
argue that language is not always able to express thoughts. Hence, the pupils
investigated here seem in various degrees to argue for a dual role of language,
namely as language both being a hamper and a helper.
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Deaf Children’s Concept Formation
in Mathematics

Elsa Foisack
Malmö University

The aim of the study is to illuminate deaf children’s concept formation in mathe-
matics by describing how some deaf children express themselves and act on
their way towards understanding two basic concepts, the concept of multipli-
cation with whole numbers and the concept of length.

Theories developed by Feuerstein (Feuerstein et al., 1979; 1988; 1991) are
used in order to describe how deaf children develop concepts, and to investi-
gate possibilities to help deaf children develop their cognitive potential in a
more effective and adequate way. Concept maps illustrate steps and pathways
taken by the pupils. The importance of language in concept formation, with a
focus on sign language is illuminated. 

The children in this study were pupils in a School for the Deaf, a bilingual
school with the languages Swedish Sign Language and Swedish. Seven 11-
year-old pupils, all the pupils in one group in grade 4, were studied. Video
recordings were made of pupil-teacher interactions in problem solving situations
in sign language only, with paper and pencil, with learning materials and with
real things.

A large variation in the pupils’ ability to solve the problems was found
depending on different factors identified by Feuerstein, e.g. self-confidence,
looking for meaning, search of challenge, intention to finish the work and use of
known facts. No difference was found concerning the steps towards compre-
hension of the concepts for the deaf pupils in the study compared to those of
hearing pupils. In accordance with earlier studies it was found that the deaf
pupils needed more time to learn mathematics than hearing pupils normally do.
As a consequence, they may learn certain concepts at a later age and the
pathways towards comprehension may vary compared to those of hearing
pupils. The structure of sign language and the lack of an established termino-
logy in mathematics are also of importance.

The bilingual situation for deaf pupils is a reason for developing methods of
teaching mathematics to deaf pupils, alternative to methods used today.

Introduction
This study (Foisack, 2003) is based on the question why deaf children have
difficulties in learning mathematics. International research (Frostad, 1996;
Magne, 1991; Moores, 2000) shows that deaf pupils achieve much lower results
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on tests in mathematics than hearing pupils do. On the other hand there is no
research available today showing that the cognitive potential of deaf pupils
differs from that of hearing pupils (Martin, 1991). If it is a fact that deaf pupils do
not use their cognitive potential to a full extent, it is of great importance to
investigate why this is so, and to find possible ways of improvement. Other
ways of assessing than by ordinary tests might show other results than those
referred to.

The children in this study were pupils in a Special School for the Deaf, a
bilingual school with the languages Swedish Sign Language and Swedish.
Going to school in a Special School for the Deaf is in some ways different from
going to a regular school. The sign language environment is crucial as well as
the bilingual approach with the two languages Swedish Sign Language and
Swedish in its written form as two separate subjects (Skolverket, 2000/2002).
The basic objectives are the same as in all schools in Sweden. In mathematics the
deaf pupils are taught on the basis of the same curriculum as all other pupils in
Sweden (Lpo94, 1994). Syllabi and grading criteria (Skolverket, 2000) are the
same. In the curriculum for compulsory schools in Sweden the aim of learning
mathematics is “to master basic mathematical thinking and be able to use it in
everyday life”.

As to communication, and particularly language, as an important tool for
developing thinking the importance of sign language for sign-language users in
learning mathematics is emphasized in this study. Deaf children learn sign
language in a natural way if they are exposed to it in a sign language environ-
ment. That is the case for most deaf children in Sweden today. Swedish is re-
garded as a second language for deaf people. Most deaf children learn Swedish
at the same time as they learn to read and many of them not until they start
school. Thus it is self-evident that mathematics is taught in sign language from
the beginning and that sign language is the language in which they develop
basic concepts. By the time the ability to read and write is developed, the pupils
can find new information on their own and express themselves in written
language, but there is still a need for direct communication in sign language. In
the syllabus for the schools for the deaf (Skolverket, 2000/2002) there is a
general text on bilingualism from which the following quotation is taken:

Learning occurs through both languages. Bilingualism is therefore important in
all school subjects, not only in the two subjects Swedish and Swedish Sign
Language. Every subject has its own subject-specific concepts and a terminology
that the pupils do not meet in other subjects. As a consequence it is every
teacher’s obligation to make sure that the pupil masters these concepts in both
languages.

Concerning mathematics there is a great amount of well defined subject-specific
concepts and related terminology in spoken/written languages that pupils in
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school need to master. The quotation above shows that there is a need for an
established terminology in Swedish Sign Language for mathematics. It does not
seem fair that tests used in national assessments should be available in written
Swedish only, the second language of deaf pupils. Most learning material is also
in written Swedish.

Aim
The aim of the study is to illuminate deaf children’s concept formation in
mathematics by describing how some deaf children express themselves and act
on their way towards understanding two basic concepts, the concept of
multiplication with whole numbers and the concept of length.

How deaf children achieve knowledge of basic mathematical concepts is
studied in order to find ways to meet the needs of deaf children learning
mathematics and to promote more effective and adequate teaching in general.
Questions of significance to the study are:

• How do deaf pupils, those who have already understood as well as
those who are on their way to understanding the concept in
question, express themselves and act when confronted with a
mathematical problem of this nature?

• Does the way deaf pupils express themselves in sign language
influence their concept formation?

From a mathematics education perspective the following questions are then
raised:

• What steps are needed for understanding the concept?

• Are the steps the same for deaf pupils the same as for hearing pupils?

In order to follow the development of the pupils on their way towards under-
standing the concept, learning situations are arranged on the basis of theories
developed by Feuerstein concerning mediated learning.

Theoretical framework
Two perspectives were used in the study, cognitive education and mathematics
education. The cognitive education perspective is based on theories developed
by Feuerstein (Feuerstein et al., 1991), Structural Cognitive Modifiability (SCM)
and Mediated Learning Experience (MLE). Feuerstein has a constructivist view
of learning in contrast to a behaviourist view. SCM is closely related to theories
by Piaget, but the uniqueness in Feuerstein’s theory is the connection with the
theory called Mediated Learning Experience (MLE). Feuerstein (Feuerstein et
al., 1988) has been influenced by Vygotsky (1978) as to how learning is
developed in a social context. The most important characteristics of MLE are
mediation of intention and reciprocity, mediation of transcendency and media-
tion of meaning. MLE is used in the method for assessing children’s cognitive
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potential developed by Feuerstein, called Dynamic Assessment (Feuerstein et al.,
1979) to reveal the learning potential of an individual. In dynamic assessment
interaction is crucial. How much mediation is used and of what kind is registered
for the purpose of the pupils to understand and solve problems on their own.

Mediation and dynamic assessment are used in this study to reveal the
process of learning how to form concepts in mathematics. The theories deve-
loped by Feuerstein are used in order to describe how deaf children learn, and to
investigate if it is possible to help deaf children to develop their cognitive
potential in a more effective and adequate way than is usually done.

From the mathematics education perspective insightful learning, problem
solving and communication are considered to be crucial in developing mathema-
tical knowledge (Verschaffel & De Corte, 1996). Conceptual knowledge in
interaction with procedural knowledge is of importance (Hiebert & Lefevre,
1986). Insight and understanding of how to solve a task must generally precede
the training of the calculating skill. According to Ahlberg (1992), children need
to learn to count and to solve problems. Automatised calculations are time-
saving, but they do not develop the ability to formulate, understand and solve
problems.

Steps children in general take on their pathways towards comprehension of
the concepts were searched for and are described in concept maps (Novak,
1998). In the concept map the concepts are hierarchically ordered and are
connected to each other in a network by linking words to build statements.
Concept maps were used in this study to give an overarching description of
mathematical concepts and their connections included in this study. Concept
maps illustrate steps and pathways taken by some of the pupils in the study in
forming concepts.

The importance of language in concept formation, with focus on sign
language, is illuminated in the study. Since the study is theoretically based on a
constructivistic view with concepts being developed in a sociocultural context,
a language for direct communication is crucial. Swedish Sign Language
(Bergman, 1979) is the language developed by deaf people in Sweden and is
used among people who do not hear.

The empirical study
The study is focusing on the process of learning basic mathematical concepts.
By choosing to concentrate on the concept multiplication with whole numbers
and the concept of length in two separate parts of the study, it was possible to
look into both arithmetic and geometry, since they represent different aspects of
mathematical knowledge and since both number and space are mentioned as
basic concepts in the current syllabus (Skolverket, 2000).

The children in the study were pupils in grade 4 in a Special School for the
Deaf. There were seven 11-year-old pupils in the study. They were all the pupils
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in one of two parallel groups in the fourth grade. All the seven pupils had been
taught in the same school since the first grade. The level of knowledge was not
considered when organizing the groups. None of the pupils in the study had
deaf parents. As many as half the number of the parents had another language
than Swedish as their first language.

Video recordings were made of pupil-teacher interactions in problem solving
situations. Communication was brought about in sign-language. The pupils met
the teacher one by one several times.

Problems to be solved were generated out of a given situation. The solution
of a problem presented was discussed in four different ways: in sign language
with no material available, with paper and pencil, with learning materials i.e.
Centimo and Cuisenaire-rods, and with real objects. In the assessment lesson it
was important to start in the most abstract way and let the most concrete way be
the last. To go from telling to acting was needed for the assessment of the
pupil’s level of abstraction. Later on the pupils were free to chose ways to solve
or to explain the problem.

In the multiplication study a problem was chosen and the difficulty of the
problem was increased by changing one of two factors. The problem was to find
out how many apples are needed if three/four children are to have three apples
each, if seven children are to have three apples each or if one-hundred-and-three
children are to have three apples each. The reason why I chose the numbers of
children to be 3 or 4, 7 and 103, was that they were numbers with a certain
meaning to the pupils. They were the number of children in groups they
belonged to themselves. There were 7 pupils in their class, there were 3 boys
and 4 girls in the class and there were 103 pupils in the school altogether at the
time, a matter that had recently been focused on in a speech by the principal of
the school.

In the length study the teacher and each of the pupils discussed the lengths
of shelves to be put on the wall in different places. It was a problem they were
familiar with from the subject of woodwork. Another reason was that we could
put real shelves in front of us on the table. We could talk about lengths in a
horizontal direction and the lengths could be kept shorter than one meter to
focus on working with measurements in centimetres only. The pupils were
challenged to estimate, measure and compare the lengths of different shelves.
Four different shelves were used.

The first lesson with each pupil and in each of the two parts of the study
was regarded as an assessment lesson. After the lesson a brief analysis was made
from the video recordings and an assessment was made of the pupil’s ability to
solve the problem presented and the level of understanding the concept in
question. Assessment was also made of what else the pupil might need to know
about how to learn and how to develop understanding of the concept. Dynamic
assessment was used by mediation if needed for the pupil to solve the problem
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and to develop better understanding of the concept. How much mediation was
needed and of what kind was registered.

With pupils who solved the problem on their own, attention was con-
centrated on how the pupil described his or her way of thinking in order to find
new ways of helping other pupils to solve the problem. With pupils who needed
help to solve the problem, analyses were made to find what was needed for the
pupil to solve the problem and to develop better understanding of the concept.
One or two lessons were consciously planned out of the needs of the pupil. The
goal for the teaching was for each pupil to understand the concept to the extent
it was presented in the study. The teacher interacted with the pupil using
mediation if needed for the pupil to solve the problem and to develop under-
standing of the concept.

A test was then given to the pupils in the study containing the same kind of
problems as in the lessons. The tests were presented in written Swedish and
were given to the pupils individually. After the pupil stopped working on the
test, the teacher initiated communication if needed for the pupil to understand
the solution of the problem. Video recordings were made to be used in the
analysis.

For each pupil an assessment was made of what mathematical steps he or
she mastered during the first lesson and in the test situation. The results from the
two occasions were compared.

Conclusion
When analysing the data from the cognitive education perspective I found a
large variety in the ability of the pupils to solve the problems depending on
factors defined by Feuerstein (Feuerstein et al., 1988) e.g. self-confidence,
looking for meaning and search of challenge, intention to finish the work and
use of known facts. They are all factors of importance to communicative
competence and to problem solving.

 When analysing the data from the mathematics education perspective I
found no difference in general concerning steps towards comprehension for the
pupils in the study compared to those of hearing pupils, as far as comparing
spoken Swedish for hearing pupils and signed Swedish for deaf pupils. In the
area of number sense, several pupils in the study did not master three-digit
numbers, an ability usually automatised at an earlier age by hearing pupils. In
accordance with earlier studies deaf pupils need more time to learn mathematics
than hearing pupils. As a consequence they may learn certain concepts at a later
age and the pathways towards comprehension may vary compared to those of
hearing pupils.

How deaf pupils’ way of expressing themselves in sign language influenced
their concept formation was studied. It was analysed out of the four charac-
teristics of sign language iconicity, simultaneity, movement and spatiality. It was



Papers

120

found that the structure of sign language could be of help but it could also be
an obstacle in mathematics. It was helpful when showing what something
looked like iconically and what happened. On the contrary arguments have
been raised whether the visual aspects of sign language may hamper concept
formation in mathematics. In this study the possibilities of using the pupils’
expressions in sign language to reveal their level of knowledge and to promote
their concept development have been focused on. In constructing one’s own
knowledge it is essential that all possibilities are taken advantage of.

The importance of teaching mathematics by problem solving and by commu-
nication to deaf pupils as well as to hearing pupils has been emphasized in this
study. For deaf pupils, a more developed terminology in sign language would
make learning subject-specific concepts of mathematics less dependent on
competence in spoken/written language. The pupils could then be offered better
conditions to reach a more abstract level at an earlier age. The bilingual situation
of deaf pupils is a reason for developing methods for teaching mathematics to
deaf pupils, approaches differing from or supplementing methods used today.
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Prospective Mathematics Teachers’
Learning in Geometry

Mikael Holmquist,
Göteborg University

Introduction
When discussing teacher qualifications in mathematics and education of future
teachers in mathematics, the branch of geometry is of course only a small part of
the science mathematics. Nevertheless, there exist reasons and arguments for
why we should try to observe and educate competencies for teachers in
mathematics with geometry in focus (Niss, 1998). This will include teachers’
views and knowledge of geometry as a mathematical topic as well as the kinds
of knowledge and views that they should have of the processes of learning
geometry. In Sweden, as well as in other countries, geometry was an essential
part of school mathematics during the period from the middle of the 19th century
to the end of the 1950s. Later on, there have been discussions (Kapadia, 1985)
whether the loss of geometry in the school mathematics may have caused a
drawback regarding student’s understanding of general concepts or not. As a
result, geometry and measuring has a more prominent position in mathematics
syllabi for the Swedish school today. The programmes for teacher education
seem to have followed the same patterns, only with a slight displacement in time.
Despite this, teachers of today are expected to fulfill the national curriculum and
ensure that their students reach proficiency in these areas.

Background
In recent years, there have been results reported based on research aimed at
prospective mathematics teachers’ formation of concepts in more well defined
fields of mathematics. The research results point out the necessity of the
teacher’s readiness to reconsider her or his own understanding. 

Investigations show that there are different ways for teachers to express their own
appreciation of a concept. Explicit expressions based on reasons seem to be most
effective. But future teachers must also learn to accept students’ evaluations as
expressions of their personality when they differ from their own appreciation of a
concept (Vollrath, 1994, p. 64).

In a situation where the teacher’s and the student’s appreciation of a mathema-
tical concept meet, demands will be raised for the teacher’s ability to support the
students’ conceptual development. The teacher has to have both sound know-
ledge and a broad view with respect to the concept in point. Aspects of geo-
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metrical concepts as conceived by prospective mathematics teachers have been
studied in several research studies during the last two decades. Setting out from
a hierarchical classification of such concepts, Lichevsky, Vinner and Karsenty
(1992) have reported their results. Hierarchical classification is a fundamental
thought process in Euclidian geometry and is required in many domains, not
only in mathematics. Their results show that the students’ conception of the
geometrical figures is global. The students relate only to the visual aspects of the
figures and not to their properties, the students’ conception lacks analytical
elements. The researchers consider this to be connected to the students’ ability
to make relations to other important aspects of geometry, such as definition and
proof.

Gutiérrez and Jaime (1999) presented the results of a test designed to
analyse pre-service primary teachers’ understanding of the concept of altitude
of a triangle. Their conclusions refer to the identification of the pre-service
teachers’ concept images and the way they make use of their concept images
and the mathematical definitions of altitude of a triangle in the resolution of
specific tasks, tasks similar to those they will find in the textbooks when they
begin their professional life. One of their conclusions is that prospective teachers
should be given the opportunity to present, explain, and defend their particular
conceptions of basic geometrical concepts. Any cognitive conflicts that arise
from different concept images could be considered and resolved in the light of
the formal definition.

The purpose of this study (Holmquist, 2003) is to describe prospective
teachers’ understanding of geometrical concepts, as it will be manifested by
their explanations, recorded in words and drawings. What are the prospective
mathematics teachers’ answers when they are asked to give their written
explanation to some basic geometrical concepts? Which are the most frequent
answers and what are the characteristics of a certain answer?

Theoretical framework
Research concerning our understanding of words, objects and concepts is of
great interest, not only in geometry or mathematics, and extends over a lot of
different areas. Commonly used are theories in psychology or theories in
linguistics and semantic structures. Theories from psychology and linguistics are
used in research dealing with our understanding of mathematical words and
concepts.

Our interest is in the frame of the epistemological interpretation of mathema-
tical knowledge and we ask ourselves the question; what is a concept? Accor-
ding to an encyclopedia (Nationalencyklopedin, NE, 1998) a concept is

the abstract content in a linguistic term unlike the term itself, as well as (concrete
or abstract) those objects represented by the term or those the term is applied to.
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This description of a concept is based on what is called the Ogden´s and
Richards´ semiotic triangle or the model of signs (Ogden & Richards, 1989/
1923). Steinbring (1994) uses the characterization of “meaning” as the “triad of
thoughts, words and things” as a base for what he calls the epistemological
triangle of mathematical knowledge, a model to be considered as non-static. This
more dynamical way to look upon the model will make the interpretation that a
concept could be understood in relation to other concepts possible.

With regard to this epistemological triangle of ”object,” ”sign,” and ”concept,”
it is not assumed that the relations between the “corners” of the triangle are fixed
a priori, but that they must continuously be developed, installed, and eventually
modified according to new prerequisites (Steinbring, 1994, p. 96).

The use of this model raises the question about demands for mathematical
concepts to be unambiguous and non-contradictory. This appears distinctly in
definitions of concepts made in mathematical theories and the character of
mathematical concepts therefor often differs from those used in everyday
communication. The role of the mathematical term in the epistemological inter-
pretation of mathematical knowledge is in the limelight for our interest.

This will lead us to take into account a three-dimensional model, a model
were the definition would give the epistemological triangle an additional dimen-
sion. The epistemological tetrahedron model is used to illustrate the mutual
relations between concept, referent, term, and definition (Spri, 1999). In figure 1
the model is used together with the mathematical concept diagonal.

          Concept

  diagonal    Term

                                                                                Referent

              Definition

A segment connecting two
     non adjacent vertices of
     a polygon (in the plane)

Figure 1. The epistemological tetrahedron model
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The dashed and the unbroken lines in figure 1 show how every connection
between terms and referents, terms and definitions, and definitions and referents
take place through the concept. If there is a term, a definition or a referent, there
will always be a concept. For the model, to have an epistemological function, it
should be possible for the referent to be not only an object but also a relation
between objects or a situation.

A theoretical model for analysis of students’ answers 
The well-known and discussed results in the area of conceptual understanding
are about how mathematics students at different educational levels express their
understanding of mathematical concepts. A theoretical structure for analysis and
description of that kind of results is based on the students’ concept images,
images commonly not identical with the concept definitions they face in their
instruction to become teachers. Vinner (1991) and Hershkowitz (1990) have
reported on both results and theories in this area. Because there is no final stage
of how a concept can be understood (Vollrath, 1994), there is no interest in the
discussion of the students’ explanations in terms of right or wrong. In relation to
an established meaning of a mathematical concept, different descriptions and
explanation will, of course, be found. In connection to this Vinner and Hersh-
kowitz (1983) and Vinner (1991) give a useful theoretical structure for analysis
and description of the students’ explanations of the geometrical concepts
included in the study. When we listen to or read the name of a more or less well
known concept, or when we are solving a mathematical problem, something can
be evoked in our mind. Usually, it is not the concept definition; even in the case
the concept does have a definition. Instead it is something non-verbal in our
mind associated with the concept name. It can be a collection of visual represen-
tations, pictures, characteristics, impressions or experiences. Such a collection of
elements associated with a concept name constitutes the concept image.

Vinner (1991) claims that a student’s experiences and those exemplifications
given for a concept, either in educational situations or in other contexts, are of
decisive importance for how the concept image is developed. During their time
in school students usually meet just a few examples of a certain geometrical
concept, examples with a common and specific visual character. Such an
example then becomes the prototypical example and the student uses it as the
frame for reference. This is called the prototype phenomenon and has been
described by Vinner and Hershkowitz (1983) and Herskowitz (1990).

The study
At Göteborg University, students preparing to become teachers of mathematics
and natural science for year 4 to 9 or for the gymnasium (year 10 to 12) take
courses in many different branches of mathematics. One such 5-credit point (5
weeks fulltime study) course is called Geometry and Mathematical Modeling.
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The students come to the course after having taken different courses in
mathematics where the content varies over time. Usually the students come with
courses in number theory, Euclidian geometry, linear algebra, and real analysis,
which approximately correspond to 30 weeks of full time studies. Beginning in
the spring of 1999, the students who came to the course were given a
questionnaire, which address questions regarding how the students conceive
concepts in geometry.

This study is based on written responses that have been collected from all
the entrance questionnaires on geometry administered during 8 consecutive
semesters, including the fall 2002 course. The students were given the question-
naire the first day of the course and there was no time limit for them working on
it, although up to now no student has used more than 80 minutes. At present,
213 students have responded to the questionnaire. The issue in focus is the
identification of the prospective teachers’ concept images and the way they
make use of their concept images and the mathematical definition of certain
concepts, geometrical concepts that they will find central when they begin their
professional life as mathematics teachers. The selection of questions in the
questionnaire is closely related to the national curriculum for the Swedish
comprehensive school and for the Swedish Gymnasium, to analysis of common
textbooks that are used in Swedish schools, and to the kind of geometrical
concepts that are used in national tests. The students were asked to give an
explanation to the following five concepts: diagonal, congruence, parabola,
rhomb, and cycloid:

Explain in short terms the following geometrical concepts; please use both
pictures and words. Even if your belief about the concept is vague, we appreciate
if you as clear as possible will try to give an explanation.

Different responses were classified according to the critical attributes of the
actual concept used by the students, but the reasons for the differences were
not analyzed. With just a total of 10 % falling off it is reasonable to say that the
students taking part in the study well represent the whole group of prospective
mathematics teachers during the actual time period.

Results
Most of the findings correspond to these described by Hershkowitz and Vinner
(Hershkowitz, 1990; Vinner, 1991). The concept image expressed by a student is
often only part of or may not coincide at all with the definition of the corre-
sponding mathematical concept. The prototype phenomenon was also observed
frequently in the students’ descriptions. There are reasons to separate the
students´ answers in a qualitative aspect, not only in ‘correct’ or ‘non correct’.
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Diagonal
Table 1 shows the result of the analysis and categorization of the students’
explanations of the concept diagonal.

The concept diagonal is a well-known concept among the students in the
study. The result shows that in the main part of the explanations, the students
make use of concept images in which the references are of strong visual nature.

The overall dominating example is a diagonal drawn in a square or a rectangle.
Those examples could be seen as prototypical examples, examples that are
attained first. Among those there are notable many in the category d5 (diagonal
5) Divides a square or a rectangle into two equal parts.

If a description of a certain concept is bounding its meaning to a specific
situation, it will constitute a concept negative example with strong irrelevant
attributes.

Congruence
Table 2 shows the result of the analysis and categorization of the students’
explanations of the concept congruence. The object for the concept of cong-
ruence is a relation between two geometrical objects and therefore this concept
is different compared to the other concepts in the questionnaire.

For explanations in the categories c1 (congruence 1) to c6 it is obvious that

Table 1. Distribution of student explanations of the concept diagonal  (N = 213)

1
Close to a

formal
mathe-
matical

definition

2
Definition
connected

to a
polygon

3
Definition
limited to
a quadri-
lateral

4
Definition
limited to
a certain
geometri-
cal object

(e.g. a
square)

5
Divides
a square

or a
rectangle
into two

equal
parts

6
Just a

drawing
(square

or
rectangle)

7
…from
one ver-
tex to

another
– result

of a
process

8
Relates

to a
circle

9
No

relevant
answer

10
No

answer

1% 2% 15% 16% 22% 17% 6% 11% 9% 1%

Table 2. Distribution of student explanations of the concept congruence (N = 213)

1
Close to a

formal
mathe-
matical

definition

2
Close to
a formal
definitio

n
without
certain
critical

attributes

3
Objects
exactly

covering
each
other
(lay

over)

4
Relates to
characte-

ristics about
geometrical

objects (equal
angels, equal

sides)

5
Simi-
larity

6
It is

about
simila-
rit ies

between
geome-
trical

objects

7
Relates

the
concept

to
number
theory

8
Relates the
concept to
conver-
gence

9
No

rele-
vant

answer

10
No

answer

10% 14% 3% 8% 19% 11% 1% 2% 19% 13%
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they are based on similarities between geometrical entities. In this case the
prototype example is closely related to an explanation where congruence is
described as something like similarity between triangles. The reason for the
students to chose an exemplification where triangles are included is most likely
to find in textbooks descriptions of the concept. Among all the students there
are no one using only a drawing to describe the concept congruence. On the
other hand, in the categories c1 to c6 there are 30 out of 138 explanations (22
%) built solely on a linguistic statement.

 Parabola
The concept parabola has its original definition in the geometry of conic
sections. Such geometry theories are no more in the syllabus for the Swedish
school system (year 1-12). Despite this, the concept parabola is used in an
analytic meaning as the name for the graph of a function like

€ 

f x ax( ) = 2, and the
graph is called “a graph of second degree”. The more everyday meanings of the
concept are related to physical phenomena like the parabolic motion of a ball
projected into the air or a parabolic shaped antenna. Table 3 shows the result of
the analysis and categorization of the students’ explanations of the concept
parabola.

With regard to the notably large amount of students’ explanations in the
categories p8 (parabola 8) No relevant answer and p9 No answer, the
prototype phenomenon for the concept parabola is not so obvious.  Despite this
it can be of interest to look upon the prototype examples among the concept
images in the remaining categories. Explanations in the categories p4, p5 and p6
are dominating and they are about a drawing of a graph in a coordinate system.
This is also the most common description in textbooks. In the case of the
concept parabola there are very few explanations based only on a linguistic
approach.

Rhombus
The concept rhombus serves as an example of how a concept can be part of an
inclusive relation, the set of rhombuses is included in the set of parallelograms,
which is included in the set of quadrilaterals. Table 4 shows the result of the
analysis and categorization of the students’ explanations of the concept
rhombus.

Table 3. Distribution of student explanations of the concept parabola (N = 213)

1
Close to a

mathe-
matical

definition

2
The graph

of an
equation of
the second

degree

3
Examples
built on
relevant

attributes

4
A graph
of the

second
degree

(x2-graph)

5
A

graph

6
Just a

drawing
of a

graph

7
Relates to
a physical

pheno-
menon

8
No relevant

answer

9
No

answer

0,5% 9% 2% 3% 13,5% 8% 4% 20% 40%
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The students’ explanations of the concept rhombus show that this is a fairly
well-known concept. Besides this a relatively high amount of explanations are
in category r1 (rhombus 1) Close to a formal mathematical definition, the
highest amount in relation to other concepts in the study. The square is used as
a referent in many of the students’ concept images, which may connect to the
fact that the rhombus is part of an inclusive relation. In this case the prototype
example is characterized by an explanation where the square is processed to
become a rhombus. They are given by the explanations in category r3 Oblique
Square. The strong visual character of the square as an equilateral object, often
standing on one of its sides, can lead to explanations were the relation between
the rhombus and the square is somewhat contradictory.

Sr9 A square “standing” on one corner.
A rhombus has not necessarily right angles.

Like in explanations of other concepts in the questionnaire, there are instances
where the relation between the picture and the text is contradictory.

Sr8 An equilateral parallelogram

Cycloid
The reason for the concept cycloid to be included in the questionnaire is quite
different from what is the case for the other concepts. The concept is not dealt
with in school mathematics and it is reasonable to say that it has a limited
meaning in everyday language. Nevertheless, the concept is included in the
terminology of mathematics and also included in the Swedish language. The
concept is part of the questionnaire to make it possible to evaluate how students
react on more uncommon concepts. Such an evaluation will give an indication
of the students’ willingness to give an explanation whether they think they
have a relevant concept image or not. Table 5 shows the result of the analysis
and categorization of the students’ explanations of the concept cycloid.

Table 4. Distribution of student explanations of the concept  rhombus (N = 213)

1
Close to a

formal
mathe-
matical

definition

2
Definition

without
certain
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attributes
(concept
negative

examples)

3
Oblique
square

4
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with
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not 90
degrees

5
Quadri-
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6
Just a

drawing

7
Polygon
(more
than 4

vertices)

8
A  solid
geome-
trical
object
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epiped)

9
No rele-

vant
answer

10
No

answer

23,5% 11% 21% 5% 5% 7% 2% 5% 13,5% 7%
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The students’ explanations in category c5 (cycloid 5) are very interesting. They
give arguments for the conclusion that the students usually indicate when they
have no relevant concept image to present. In the case where the students offer
an explanation they believe that they have a relevant concept image.

Discussion
The results mainly correspond with the results presented by Hershkowitz and
Vinner (Hershkowitz, 1990). This is above all true for the prototype pheno-
menon, which frequently appeared in the students’ explanations. Among the
concepts used in this study, the concept of diagonal showed the strongest
prototypical concept image, a diagonal traced out in a square or a rectangle. In
addition the concept of diagonal generated explanations built on specific
referents whose character hardly can be transferred to a more general situation.
Using the vocabulary of Hershkowitz (1990), they are concept negative
examples with strong irrelevant attributes.

For the students in this study the results revealed that a concept image more
rarely refers to the corresponding mathematical concept definition. With the
exception of some parts of the results presented for the concept rhombus, the
students’ concept images were mainly based on referents with weak connec-
tions to the concept definition. In other words, when asked to give a written
explanation to a geometrical concept, the students in this study rarely consulted
the concept definition. This can be schematically shown by a modification of the
epistemological tetrahedron model (figure 2). The dashed line between a
concept definition and the concept image in the student indicates the weak
connection; in some cases it is questionable if the connection were at all
established. It is worth noticing that the etymological aspect of the name of the
concept played a subordinate role and seems to have had almost no influence
on the concept images presented by the students.

Table 5. Distribution of students explanations of the concept cycloid (N = 213)

1
Definition
related to a

circle,
rotating on a
straight l ine

2
Relates to a
cyclic course

(iteration)

3
Relates to a

circle

4
No relevant

answer

5
Comment on
one’s own
ignorance

(No answer)

6
No answer

2% 4% 4% 16% 25% 49%
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Usually a concept in school mathematics is synonymous with its definition. To
understand a concept is then to know and be able to express the corresponding
definition. This is also how the content of mathematics is presented and
organized in many textbooks for school mathematics. The textbooks analyzed
in this study are in general no exceptions from that.

In the light of these results, it is relevant to believe that the importance of
concept images when developing understanding of a concept is underestimated
in mathematics education. At the same time, as the descriptions in textbooks,
education is mainly based on concept definitions which do not support wanted
results. This is not, in my opinion, to say that we have to exclude the definitions.
Metaphorically speaking; to reach good understanding of a concept we have to
find different ways in the epistemological tetrahedron model.

In this study the visual aspect played a fundamental role in the students’
way to present their explanations. Concepts whose referents have strong visual
characteristic may lead to explanations were the visual objects are contradictory
to the written linguistic expressions used. Geometry is with naturalness associa-
ted with drawings, which sometimes lead to negative consequences. According
to Hershkowitz (1990), the ontological status of geometrical entities is a philo-
sophical problem. The question is whether the geometrical entities are part of the
physical world and if not, what are they? It is also relevant to discuss the
meaning the answer of that question has for an object to be regarded as con-
crete or abstract.

These aspects are of particular importance when a teacher uses his or her
explanations to meet and support students in their learning of geometrical
concepts. It is also about the teacher’s assessment and validation of students’
written answers and reports, a frequent activity in school mathematics. What
kind of referents and criteria are the bases for the teacher’s standpoint? What

Prospective mathematics
teachers’ – concepts

           ?
                     Terms

                                                                     Referents

                      Defi nitions

Figure 2. Modified epistemological tetrahedron model .



Papers

132

kind of concept definitions and concept images are on the teacher’s repertoire?
The presented models may be used as a starting point for how a teacher can
analyse a student’s written production as an expression for understanding of
mathematical content.

The results emerging from the described study will form the basis for deeper
studies of what these prospective mathematics teachers learned in geometry and
how their understanding of the theoretical mathematical content later on was
expressed in their teacher practice.
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KULT-projektet –
Matematikundervisning i Sverige

i internationell belysning

Johan Häggström
Göteborgs universitet

Klassrumsstudier innebär alltid svårigheter med att tolka de skeenden som
dokumenteras. Inom KULT-projektet har ett mycket omfattande datamaterial
samlats in. Med utgångspunkt i en inspelad sekvens, där läraren diskuterar
lösningen av en uppgift med en elev vid dennes bänk, görs ett försök att visa
hur tillgången till detta datamaterial, samt möjligheter till internationella jäm-
förelser kan bidra till en preliminär analys.

Om ’The Learner’s Perspective Study’
KULT-projektet, Svensk skolkultur – klassrumspraktik i komparativ belysning
(KULT, 2003), syftar till att beskriva svensk matematikundervisning och göra
internationella jämförelser. Projektet ingår i en större internationell studie, ‘The
Learner’s Perspective Study’, (LPS study, 2003) där för närvarande 10 länder
medverkar. Utifrån en gemensam design (Clark, 2000) insamlas empiri genom
avancerade videoinspelningar av matematiklektioner i årskurs 8 kombinerat med
uppföljande intervjuer med elever och lärare. Det som utmärker LPS studien,
jämfört med andra internationella studier där videodokumentation av matematik-
undervisning gjorts, är att samma klass följs i minst 10 matematiklektioner efter
varandra samt att tre kameror används vid inspelningarna. En rörlig kamera
följer läraren som är utrustad med en trådlös mikrofon (mygga). En kamera med
vidare objektiv dokumenterar hela klassrummet och en tredje kamera fokuserar
en mindre grupp elever (2–4) som sitter intill varandra. På de bänkar där dessa
fokuserade elever sitter finns också ett par små mikrofoner placerade så att
konversationen kan fångas upp vid inspelningen. I det svenska projektet har en
portabel inspelningsstudio byggts upp, vilket möjliggör digitala inspelningar
direkt på hårddisk. En av de stora fördelarna vid fältarbetet har varit att elev-
intervjuer kunnat genomföras i direkt anslutning till de inspelade lektionerna.
Vid dessa intervjuer har intervjuaren och eleven tittat på och kommenterat en
film där fokuseleverna kan följas samtidigt som inspelningen av läraren syns i en
mindre ruta uppe i ena hörnet. Den digitala tekniken möjliggör en mycket snabb
synkronisering av de båda inspelningarna till en mixad film, vilket varit
värdefullt.

I vart och ett av de medverkande länderna, som förutom Sverige är Austra-
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lien, Filippinerna, Hong Kong, Israel, Japan, Kina, Sydafrika, Tyskland och USA,
görs inspelningar av minst 10 lektioner i följd i tre åttondeklasser. Varje lektion
följs upp med intervjuer av minst två av fokuseleverna. Dessutom intervjuas lära-
ren några gånger under inspelningsperioden. Eleverna svarar på enkäter om
matematikundervisning samt gör ett allmänt matematiktest.

Fältarbetet i Sverige är avslutat och totalt har 48 lektioner i tre klasser
spelats in. Eftersom varje lektion filmats med tre kameror innebär det totalt 144
lektionsfilmer. Därutöver finns också 75 elevintervjuer och 12 lärarintervjuer, om
vardera 40–80 minuter, dokumenterade på videofilm. Av de lektioner som följts
kommer data från 10 sammanhängande lektioner i varje klass att organiseras
enligt de krav som ställs inom det internationella projektet. Det innebär bl.a. att
all konversation ska transkriberas på ett standardiserat sätt och dessutom
översättas till engelska. Allt ska sedan tidskodas och infogas i ett speciellt format
så att man i en löpande textremsa kan följa med i det som sägs på respektive film.
På det här viset skapas ett datapaket från varje klass, med videofilmer från
lektionerna och intervjuerna, alla transkriptioner, inskannat elevmaterial, svar på
enkäter och test, utdrag från läromedel mm. Vid University of Melbourne har
inrättats ett internationellt centrum för klassrumsstudier, ICCR - the International
Centre for Classroom Research, där allt material kommer att samlas och vara
tillgängligt för besökande forskare.

LPS-studien avser att studera matematikundervisning på ett mer uttöm-
mande sätt än andra liknande internationella studier. Genom den design man
valt är detta möjligt. Dokumentationen av inte bara läraren utan också hela
klassrummet samt en mindre grupp elever, som efteråt ges möjlighet att kommen-
tera vad som händer under lektionen, genererar ett mycket informationsrikt
datamaterial. Det går att både följa och studera skeenden under lektionen och
att beakta flera av de medverkandes tolkningar, förståelse och uppfattningar av
det som sker, så som de ger uttryck för detta i de efterföljande intervjuerna.

KULT-projektet
Det svenska KULT-projektet bedrivs i samarbete mellan forskargrupper från
Uppsala universitet och Göteborgs universitet. Analyserna kommer därvid i det
första skedet att ske med metoder som är etablerade i och tidigare använda av
respektive forskargrupp. I den ena traditionen studeras interaktionsmönster i
klassrummet och i den andra hur det matematiska innehållet behandlas och
förstås. En ambition inom det svenska projektet är dessutom att de båda
teoretiska perspektiven ska relateras till och berika varandra.

Ett av syftena med det svenska projektet är att studera relationen mellan
undervisning och lärande av matematik. Frågor som hur matematikinnehållet
hanteras i undervisningen och hur eleverna förstår detta innehåll, kommer att
belysas. Analyserna kommer bl.a. att göras utifrån ett variationsteoretiskt
perspektiv (Marton & Booth, 1997; Runesson & Marton, 2002).
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När detta skrivs har endast preliminära analyser kunnat göras. Fältarbetet har
nyligen avslutats och organiseringen av det omfattande datamaterialet är
mycket tidskrävande. De första internationella jämförelserna har dock påbörjats
mellan en av de svenska skolorna och en skola från USA, där samma matematik-
innehåll (elementära linjära funktioner) är föremål för undervisning. En poäng
med dessa jämförelser är att synliggöra aspekter på undervisningen i det svenska
klassrummet, som annars lätt kan tas för givna av svenska forskare.

Preliminära resultat
Den först inspelade svenska klassen, SW1, följdes under 16 konsekutiva
matematiklektioner. Det matematiska innehållet som behandlades under dessa
lektioner var Linjära ekvationer med en obekant, Förenkling av uttryck,
Koordinatsystem och Samband. Vid lektion 11 har man kommit in i det sist-
nämnda avsnittet. Lektionen inleds med en lärarledd genomgång som behandlar
linjära funktioner och dess grafer, samt avläsning och konstruktion av diagram
som beskriver ”verkliga händelser” t.ex. kostnad–antal–diagram och
väg–tid–diagram. Vid den lärarledda inledningen på lektionen diskuteras
begreppet ”lutning” hos en linje utifrån en OH-bild (se appendix 2). I
Emanuelsson m.fl. (2003a) presenteras preliminära resultat från de inledande
analyserna av denna lärargenomgång samt av en ”bänksekvens” lite senare
samma lektion, där läraren och en av eleverna diskuterar en uppgift i läroboken.
De preliminära analyserna pekar på att det som behandlades under genom-
gången inte var tillräckligt för att ge eleven möjlighet att lösa uppgiften i
läroboken.

Vid en jämförelse av lektionssekvenserna från SW1 och US2 (den andra
skolan från USA) på makronivå framträder tydliga skillnader. I SW1 ges eleverna
stort utrymme att interagera med läraren och delta i konstituerandet av det
matematiska innehållet. Läraren i SW1 har på det viset mycket mindre
”kontroll” över innehållet än läraren i US2. I Emanuelsson m.fl. (2003b) pekar
man också på skillnader i det språk som används. I SW1 används till stor del ett
vardagsspråk och ”krångliga” matematiska termer undviks till skillnad från US2,
där stor vikt läggs vid att korrekt matematisk terminologi används. En liknande
skillnad är också tydlig beträffande de uppgifter man arbetar med. Uppgifterna i
SW1 handlar alla om något som eleverna kan relatera till, t.ex. cykelturer i form
av väg–tid–diagram och liknande. Uppgifterna i US2 är däremot helt och hållet
”inom-matematiska” – algebraiska uttryck på formen y = f(x), värdetabeller och
grafer – och gör sällan anspråk på att beskriva något verkligt förlopp eller
liknande. I en första analys av bänksekvenser med elev-elev interaktion visas att
detta kan få konsekvenser för hur grafer tolkas. I Emanuelsson, Sahlström &
Liljestrand (2003) beskrivs hur den ”realistiska” kontexten i en uppgift, där en
cykeltur beskrivs i ett diagram, kan bidra till att grafen tolkas som att ”hon
cyklar upp” och ”hon cyklar ner”. I den amerikanska klassen finns exempel på
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hur eleverna tillsammans skapar en egen terminologi för att beskriva egenskaper
hos olika kurvor.

Förutom de lärarledda delarna av lektionerna arbetar eleverna enskilt med
(oftast olika) uppgifter i läroboken i SW1, medan de i US2 arbetar i grupper om
ca 4 elever med en gemensam uppgift. Uppgifternas karaktär är också olika.
Uppgifterna i de svenska läroböckerna är till stor del ”korta” i den meningen att
de inte ska ta så lång tid och att eleverna förväntas göra ett flertal varje lektion. I
US2 arbetar man med samma ”långa” uppgift under flera lektioner. Slutligen är
det matematiska innehållet tydligt sekvenserat i SW1, både beträffande lärarens
genomgångar och elevuppgifterna. Exempelvis behandlas först olika lutning
(koefficienten k i linjens ekvation y = kx + m), sedan skärningen med y–axeln
(koefficienten m i ekvationen). Innehållet i de amerikanska lektionerna präglas
av en större samtidighet – både lutning och skärning med y–axeln hanteras vid
samma tillfälle. De preliminära resultaten från denna mer övergripande analys
sammanfattas kortfattat i tabell 1.

Tabell 1. Preliminär jämförelse av SW1 och US2 på makronivå.

SW1 US2

Vardagligt språk Matematisk terminologi

Realistisk kontext Matematisk kontext

Elevmedverkan Lärarkontroll

Enskilt arbete Arbetet i grupp

Korta uppgifter Långa uppgifter

Sekvensering Samtidighet

SW1 – Lektion 11 – Uppgift 37
På matematiklektioner i Sverige används en stor del av tiden till att eleverna
arbetar med uppgifter i läroboken och läraren handleder en eller ett par elever i
taget. Nedan beskrivs ett sådant tillfälle och ett försök till analys. Handled-
ningen äger rum under lektion 11 i SW1 och varar i ungefär två och en halv
minut (appendix 1). Både läraren och eleven verkar ha en uppriktig vilja att
komma till rätta med svårigheterna och läraren lämnar inte eleven förrän denne
säger att han förstått.

Lektionen inleds med en diskussion kring ett ”disco” som eleverna arran-
gerat. Efter ca 7 minuter börjar en lärarledd genomgång utifrån en OH-bild (se
appendix 2). Lutningen hos två linjer, samt relationen till motsvarande formel (K
= kx) diskuteras. I intervju beskriver läraren målet som att eleverna ska kunna
”se lutningen på formeln”. Ungefär 32 minuter in på lektionen avslutas genom-
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gången och eleverna börjar arbeta med uppgifter i läroboken. Efter ytterligare
några minuter kommer läraren till eleven Faros bänk. Faro har kört fast på
uppgift 37.

37. I diagrammet finns 3 olika linjer.
Vilken av linjerna visar sambandet
a) K = 125+ 3x
b) K = 4x
c) K = 175 + 2x

Figur 1. Uppgift 37.

Faro börjar med att referera till något läraren sagt under genomgången (samtalet
finns i sin helhet i appendix 1), nämligen att man ska ”kunna se” linjens
utseende på uttrycket.

1. FARO:Kolla … a. [pekar med pennan på uppg. 37a som lyder: ”a) K=125 +
3x”]

2. L: //Aaa..
3. FARO://Vil- … vilken av linjerna visar sambandet?
4. L: Ja just //det.
5. FARO://Du sa du sa att man kunde se lin-//kurvan av bara den här.
6. L. //Ja … a den här-
7. L: Ja just det den där lutar mest, den lutar lite mindre, å den lutar minst. [pekar

på de tre funktionsuttrycken i uppgiften]
8. FARO:Mm..
9. L: Men här [L pekar eventuellt på ”175” i 37c] har dom ju slängt in en grej

framför också, vad betyder det här … om X är noll … då blir det där noll va
… men då börjar den på hundrasjuttifem. [visar i diagrammet]

10.FARO:Mhm..
11.L: Så det är den där [pekar i diagrammet] … C … det är den där … K fyra X

den börjar från origo //och går rätt upp … den där börjar på hundratjugofem
där har vi hundratjugofem … ( //Och där har vi hundrasjuttifem) (…)

12.FARO://Ja.
13. [Här reser sig läraren upp och tittar irriterat ut över klassen]
14.FARO:Är B noll här … är det den B [L tittar ned mot FARO igen] … nej B

är den största eller hur?
15. L: Ja de- de- den lutar mest … titta den här lutar ju brantare än den och än den

… [L sätter pennan mot ”b) K=4x” i boken] … men sen börjar dom här på
lite olika … //värden. [L pekar ut kurvorna]
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Läraren verka tolka Faros uttalande om att B (K = 4x) är den största, som att B
svarar mot den linje som har störst lutning. Det är osäkert om det är vad Faro
avser med att B är den största. Han verkar först låta linje F vara uttryck B (B är
noll), för att sedan ändra sig (nej B är den största). En möjlig tolkning är att när
Faro använder störst har det betydelsen ligger överst eller högst upp i
diagrammet i det här fallet. Alltså att uttrycket B inte svarar mot linje F som ju
”ligger underst”.

16.FARO:Men alltså är det här fyra X. [FARO pekar på linjen ”F” i grafen]
17.L: Va vad är det du ska- den där är fyra X ja [L pekar på linjen ”F”] … aa …

mm för no- om du sätter in noll där … så //blir kostnaden noll.
18.FARO://Alltså kan jag skita i dom här som är framför?
19.L: Nej för dom gör ju att du börjar där … det har vi inte gått //igenom än.
20.FARO://Aha do- do- dom visar var jag börjar.
21.L: Precis … och här står det egentligen noll plus.
22.FARO:Men vad //visar dom här då //förutom att de- denna visar vilken som är

//störst och minst?
23.L: //Lut- … (aa) lutar [L lägger pennan längs linje i diagram] den visar hur de

lutar och //hur mycket varje sak kostar.
24. FARO://Men jag kan- jag kan inte bara se bara så här.

Det verkar som att Faro har svårt att skilja på de olika betydelser koefficienterna
125 och 3 har i ett uttryck som K=125 + 3x.

25.L: Joo. [till FARO] [L reser sig]
26.FARO:Jamen om inte dom här två skulle finnas så skulle ja aldrig kunna ha

vetat vilken- vilken tre X är av dom här. [pekar på linjerna i diagrammet]
27.L: Nej fast du kan veta vilken hundratjugofem plus tre X är.
28.FARO:Hur //gör man det då? [till L]
29.L: //För- för att den börjar på Y-axelns på hundratjugofem.
30.FARO:Aa den börjar på hundratjugofem sen tre X, var ska jag hitta det då?
31.L: Jo och det är för varje sån steg du går där så ökar den tre … så hade du gått

tio ut så kommer den å öka tretti. [pekar i diagrammet]
32.FARO:… Aa
33.L: Hängde du med?
34.FARO:Nej.
35.L: Den här [pekar på OH] tvåan sa vi d//en ökar på varje steg du går på X-

axeln.
36.FARO://Mm..
37.FARO:Mm..
38.L: Så får du Y två.
39.FARO:Aa..
40.L: Och ett till då ökar vi Y med två till.
41.FARO:Aa okej.
42.L: Den där den är ju- ökar för varje steg där … tre steg. [L ser mot FARO och

illustrerar en trappa i luften]
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43.FARO:… Aha … jag tror jag fattar … det är som en trappa. [FARO tecknar
själv en trappa]

44. L: Ja det blir det. [L på väg bort från FAROs bänk]

Hur är det möjligt att förstå Faros svårigheter med uppgiften? Även efter att ha
tittat igenom den här videosekvensen ett stort antal gånger är det inte lätt att
reda ut på vilket sätt Faro uppfattar uppgiften och vad han egentligen behöver
hjälp med. Ännu svårare är det naturligtvis för en lärare att snabbt (helst direkt)
komma fram till hur man på bästa sätt kan hjälpa en elev i svårigheter.

I rad 19 konstaterar Läraren att de inte gått igenom uttryck av typen
y = kx + m (m ≠ 0). Den lärarledda genomgången under första delen av lektio-
nen behandlade endast uttryck av typen y = kx. Faro har därmed endast haft
möjlighet att erfara en möjlig variation när linjer med olika lutning behandlats,
men inte att linjernas skärningspunkt med y-axeln kan variera. Detta i
kombination med den hastighetsindividualisering som förekommer, gör att den
sekvensering som läraren kan ha planerat för innehållet – att först behandla
uttryck av typen y = kx, där betydelsen av parameter k tas upp, följt av uttryck
av typen y = kx + m, där m hanteras – omintetgörs då Faro ”kommit längre” i
boken och möter uppgifter som han inte är förberedd på (se även Emanuelsson
m.fl., 2003a). Faros uttalanden i rad 18 och 22 kan möjligen styrka tolkningen
av att han inte vet hur han kan hantera uttryck med flera parametrar givna.

I den lärarledda inledningen om relationen mellan uttrycken K = 15x,
K =10x och K = 2x och respektive grafs utseende (se figur 8 i appendix 2)
försöker läraren ett flertal gånger poängtera relationen mellan koefficienterna 15,
10 och 2 och lutningen på respektive linje. Eleverna uttrycker sig inte lika
tydligt om lutningen utan använder formuleringar som ”ligger högre” och
”ligger lägre”. Vid några tillfällen under genomgången accepterar läraren detta
sätt att beskriva förhållandet mellan de tre linjerna. Ett exempel på det är i slutet
av genomgången då själva poängen ska sammanfattas.

T //Va kan man alltså utläsa av den termen eller den- den siffra som
står i samband med X i en sån här formel?

[…]
T Vi har tre stycken formler [börjar peka ut formlerna på OH-bilden]
[…]
T Vad kan man alltså säga om femton tio två direkt när ni får en sån

där formel då kan ni säga nåt om dom här i alla fall hur dom är
inbördes?

S Eh
Martina Vilken ordning dom är eller?
T Ja- nej inte vilken ordning men hur dom lutar [börjar luta sin linjal

snett i luften]
Johan Hög låg eller eh … mitt emellan
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T visst … om du får tre kurvor … så här … vi säger att du får den och
så har vi inte några siffror eller nåt på axlarna men vi har dom här
tre- tre l- linjerna … kan ni säga vilken ekvation som hör till vilken
lin//je då?

[…]
Annette //Den högsta är högst och den lägsta är lägst [mycket sorl]
T Aa … ssh ssh aa
Martina Men du ser ju det
T Ja hur ser du de då?
Martina Jo för de-
Annette Den högsta är högst och den lägs//ta är lägst
Martina //Ja precis
T Visst de //här [pekar mot ”K=2x” på OH-bilden]… den eh het-

den har ett namn den kallas lutningskoefficient
Martina //(De-)
S Ååh
Veronica [Smackar irriterat] ååh [lägger huvudet på bänken]
T Men- men de spelar ingen roll men- de- det som är viktigt är … vi

vet hur mycket dom lutar [pekar på alla funktioner snabbt stegvis]

Uttalandet, ”den högsta är högst och den lägsta är lägst” accepteras till sist av
läraren som en korrekt beskrivning av sambandet mellan formel och graf. En
möjlig tolkning av vad eleven egentligen menar är att ”den formel som har den
högsta koefficienten svarar mot den högsta linjen i koordinatsystemet”. Så
länge man endast jämför proportionaliteter, som under denna lärarledda
genomgång, blir skillnaden mellan ”lutar mest/är brantast” och ”är högst/ligger
överst” inte märkbar då man avser samma linje med båda sätten att uttrycka sig.
I Uppgift 37 blir däremot skillnaden betydlig, linjen F som ”lutar mest” är den
som ”ligger underst”. Faro verkar ha svårt att hålla isär lutningen och
placeringen (y-led) och det kan möjligen förklara hans osäkerhet i rad 14.

SW1 – Lektion 11 – Elevintervju
Under intervjun efter lektion 11 framkommer det att Faros förståelse av de
algebraiska uttrycken är oklar. Efter att Faro tittat på sekvensen där han och
läraren diskuterar uppgift 37 stoppas bandet.

Int Du fattar du detta? … förklarar han bra här?
FARO Nej sådär
Int Sådär?
FARO Ja … jag fattar fortfarande inte varför man har X och massa grejer

där det är onödigt tycker jag
Int X blir problemet
FARO Ja

[…]
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Int Vad står det här för någonting? K är lika med 125 plus tre X vad-
vad- vad- vad betyder det här? … har du någon idé om vad det
betyder?

FARO Nej
[…]

Int Ja … men X blir lite knepigt
FARO Mm
Int Vad är det då?
FARO Någonting säger han. X är någonting // man vet inte vad det är
Int // X är … någonting [skrattar]
FARO Ja någonting säger han
Int Någonting precis vad som helst?
FARO Någonting
Int Atomer eller spöken eller?
FARO Ja
Int Nej det kan det väl inte vara?
FARO Nej men någonting säger han- något tal man vet inte vad det är
Int Aha
FARO Det sa han i alla fall på al- algebran

Innebörden i variabeln x är inte klar för Faro utan ställer till besvär, ” x är
onödigt”. Faro tolkar i bästa fall x som ett okänt tal, vilket är den betydelse x
haft i avsnittet om ekvationer och ekvationslösning som man arbetat med någon
vecka tidigare. För att kunna förstå formler och hur de är relaterade till grafer
räcker dock inte den uppfattningen till. Nu kan vi bättre förstå de svårigheter
Faro har med Uppgift 37. Både vid diskussionen om uppgiften och vid lärarens
genomgång krävs att x förstås som en variabel, en symbol för en hel uppsättning
tal på samma gång. Med den begränsade uppfattning av x som Faro har måste
en stor del av diskussionen vara utomordentligt svårbegriplig.

Vid den lärarledda genomgången växlar man dessutom perspektiv på ett
annat sätt ett flertal gånger. Ibland betraktas hela uttrycket/formeln som eget
objekt som är relaterat till en ”hel linje” i diagrammet, ibland betraktas uttrycket
för ett x-värde i taget och en punkt i taget på linjen. Liknande skifte i perspektiv
gör läraren obehindrat under ”bänksekvensen”. I rad 7 (se transkript) betraktas
hela linjer och dess lutning, i rad 9 ett enda värde på x. I rad 31 börjar läraren låta
variabeln x anta flera olika värden, ett i taget. Att Faro inte hänger med i det
resonemanget förstår vi lättare efter att ha tagit del av hans uppfattning om vad
bokstaven x kan ha för betydelse.

Sammanfattning
En design där matematikundervisning dokumenteras på ett omfattande sätt med
flera kameror under en lång följd av lektioner och med videoinspelning av
uppföljande intervjuer i snar anslutning till respektive lektion, där elever och
lärare kommenterar lektionsförloppet, ger stora möjligheter till en djupare
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förståelse av den studerade undervisningen och relationen mellan undervisning
och lärande. Dessutom kan internationella jämförelser bidra till att synliggöra
karakteristiska drag i undervisningen på makronivå, vilket underlättar analysen
av förlopp på mikronivå. De mycket preliminära tolkningar av ”bänk-
sekvensen” som presenterats här hade varit svåra att göra utan den stora
tillgången på data som insamlats på många olika sätt. Trots det är det svårt att
dra några säkra slutsatser om något så komplext som lärande och undervisning i
matematik.
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Appendix 1

SW1-L11 [39:40 – 42:15]

FARO Kolla … A [pekar med pennan på uppg. 37a som lyder: ”a) K=125 + 3x”]
T //Jaa..
FARO //Vil- … vilken av linjerna visar sambandet?
T Ja just //det.
FARO //Du sa du sa att man kunde se lin-//kurvan av bara den här.
T //Ja … a den här-
T Ja just det, den där lutar mest, den lutar lite mindre, och den lutar minst. [pekar på

de tre funktionuttrycken i uppgiften]
FARO Mm..
T Men här [T pekar eventuellt på ”175” i 37c] har dom ju slängt in en grej framför

också vad betyder det här … om X är noll … då blir det där noll va … men då
börjar den på hundrasjuttifem. [visar i diagrammet]

FARO Mhm..
T Så de är den där [pekar i diagrammet] … C … det är den där … K fyra X den

börjar från origo //och går rätt upp … den där börjar på hundratjugofem där har vi
hundratjugofem … ( //och där har vi hundrasjuttifem) (…) [T reser sig upp och
tittar irriterat ut över klassen]

FARO //Ja.
Jessica//John när får vi byta platser? [till T]
FARO Är B noll här … Är det den B [T tittar ned mot FARO igen] … när B är den

största eller hur?
T Ja de- de- den lutar mest … titta den här lutar ju brantare än den och än den … [T

sätter pennan mot ”b) K=4x” i boken] … men sen börjar dom här på lite olika
… //värden. [T pekar ut kurvorna] [Bänkgranne Alva vänder sig mot FARO och
T]

Rodi //John! [ropar på T]
FARO Men alltså är det här fyra X. [FARO pekar på linjen ”F” i grafen]
T Va vad är det du ska- den där är fyra X ja … aa … mm. [T pekar på linjen ”F”]
ALVA John jag behöver hjälp! [till T]
T För no- om du sätter in noll där … så //blir kostnaden noll.
FARO //Alltså kan jag skita i dom här som är framför?
T Nej för dom gör ju att du börjar där … de har vi inte gått //igenom än.
FARO //Aha do- do- dom visar var jag börjar.
T Precis … och här står det egentligen noll plus.
FARO Men vad //visar dom här då //förutom att de- denna visar vilken som är //störst och

minst?
Hannes//Miraz … här (   ) är det femton … kilometer. [åsyftar uppg 24 sid 178, pratar till

Miraz som kommer in i klassrummet]
T //Lut- … (aa) lutar [T lägger pennan längs linje i diagram] den visar hur det lutar

och //hur mycket varje sak kostar.
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FARO //Me jag kan- jag kan inte bara se bara så här.
T Joo! [till FARO] [T reser sig]
FARO Jamen om inte dom här två skulle finnas så skulle ja aldrig kunna ha veta vilken-

vilken tre X är av dom här. [pekar på linjerna i diagrammet]
T Nej, fast du kan veta vilken hundratjugofem plus tre X är. [till FARO]
FARO Hur //gör man det då? [till T]
T //För- för att den börjar på Y-axelns på hundratjugofem. [till FARO]
FARO Ja den börjar på hundratjugofem sen tre X var ska jag hitta det då? [till T]
T Jo och det är för varje sån steg du går där så ökar den tre … så hade du gått tio ut

så kommer den att öka tretti. [pekar i diagrammet]
FARO … ja..
T Hängde du med?
FARO Nej.
T Den här [pekar på OH] tvåan sa vi d//en ökar på varje steg du går på X-axeln.
FARO //Mm..
FARO Mm..
T Så får du Y två.
FARO Ja.
T Och ett till då ökar vi Y med två till.
FARO Ja okej.
T Den där den är ju- ökar för varje steg där … tre steg. [T ser mot FARO och

illustrerar en trappa i luften]
FARO … aha … jag tror jag fattar … det ärsom en trappa. [FARO tecknar själv en

trappa]
T Ja det blir det. [T på väg bort från FAROs bänk]
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Appendix 2
Grafer som visas med OH under den lärarledda inledningen av lektionen.
Läraren börjar med figur 1 och kompletterar den successivt till figur 8.
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Limits of Functions –
How Students Solve Tasks

Kristina Juter
Kristianstad University College

Introduction and questions
This study was conducted to reveal how students at university level justify their
solutions to tasks with various degrees of difficulty. The study is part of a larger
study of students’ concept formation of limits of functions. The study was
carried out at a Swedish university at the first level of mathematics. Two groups
of students taking the same course in successive semesters have been solving
tasks. Their solutions are here categorised and analysed to create a picture of
how students reason about limits.

The questions are: How do students solve problems with limits? How do
they explain their solutions?

Theoretical background

About problem solving in general
Mathematics is often expressed with symbols operated by certain rules. The
rules have to be known to an individual engaged in mathematical activity and
they can be memorised. This is not enough, though, if he or she wants to
understand mathematics. Instead of only memorising formulas and procedures,
the individual needs to have an exploring attitude to problem solving
(Schoenfeld, 1992). Pólya (1945) describes a way to go about it in terms of
decomposing and recombining. The problem is at first considered as a whole.
Then details are examined to give more information for the solution process. The
details are combined in different ways and this may give a new perspective to
the problem as a whole.

Students learn new and improved methods for problem solving as they take
courses in mathematics. This means that they eventually can have quite a few
methods to choose from, both new and old ones. When an individual encoun-
ters a problem he or she might not fetch the optimum solution method from the
mind (Davis & Vinner, 1986; Pólya, 1945). This is not the same as saying that the
student can’t solve the problem in a better way. We can’t know what strategies
are available in an individual’s mind, but we can see the chosen method. The
students’ actions are shaped by their abilities (Star, 2000). However effective
and numerous methods a person has in his or her mind, if they are unreachable at
the time they are needed they are of no use.
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A concept image is the total cognitive representation of a notion that an indi-
vidual has in his or her mind (Tall & Vinner, 1981). It might be partially evoked
and different parts can be active in different situations leading to possible
inconsistencies. An individual’s concept image might differ from the formal
concept definition or the concept image in itself can be confusing or incoherent.

Lithner (2003) has studied students solving tasks at university level. His
study showed that almost all the time the students spent on mathematics at
home was devoted to exercises. The students’ preferred way to reason was:
look for surface properties in other solutions or theorems and use the same
method in the new problem. The students compared the problems with solutions
in the textbook to the problems they should solve and used the strategy from
the textbook. One problem for the students was to identify for them useful
surface properties to select the correct procedure for the solution.

About problems related to limits
Infinity is a notion that can cause trouble. It is something an individual has one
or several intuitive representations of (Tall, 1980). If there are multiple different
representations evoked simultaneously the result might be erroneous. When
dealing with limits of functions one has no specific method or algorithm as one
has, for example, for Diophantine equations. The limit process appears poten-
tially infinite and students can get the impression that there is no end to it (Tall,
2001). It can be hard for them to work with items that are confusing in identity.
Is it an object or a process?

A common error in students’ concept interpretations of limits of functions is
that functions do not attain their limit values (Cornu, 1991; Tall, 1993; Tall, 2001;
Szydlik, 2000). There is also a possible mix-up of f(a) and 

€ 

lim ( )
x a

f x
→

 (Davis &

Vinner, 1986). These two flaws combined can totally block students in their
struggle with tasks that could easily be solved, for instance, with an equation.

When students meet the concept of limits at universities for the first time,
they have already been working with functions and their graphs. The goals in
the curriculum for upper secondary school in Sweden do not mention limits
explicitly, but the students are expected to learn about derivatives and integrals
(Skolverket, 2003). This implies that limits of functions are discussed in some
form. The students at universities therefore have an existing concept image of
limits of functions that has been satisfactory in the contexts they have been in
so far. Hence there is no need to learn the formal limit concept to be able to
analyse functions (Williams, 1991). The students have to experience the need for
further sophistication in their mathematical development to adjust their existing
mental representations of limits.

The definition of the limit concept often causes difficulties for the students
(Cornu, 1991; Juter, 2003; Vinner, 1991). The students’ concept definitions are
not always compatible with the formal concept definition and that can cause an
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incoherent concept image with different rules for different situations. If a
problem is stated in a manner that is not specifically represented in the students’
concept images, there can be more than one representation evoked in the effort
to solve the problem. This can make the students confused and unable to
proceed.

There are many things that can disturb the solving process. The goal of this
study is to find out more about the students’ solution strategies when solving
problems involving limits of functions and the justifications of their choices.

The study and the students
The students in this study were enrolled in a ten weeks full time course in
mathematics. They were learning analysis and algebra at basic university level.

In the spring semester of 2002 111 students solved Task 1 to Task 3
described below. They had treated limits of functions in the course and it was
nothing new for them. 11 days later they got Task 4 and Task 5. 87 students
participated in that session. The last set of tasks provided solutions that could be
wrong or incomplete. This was stated on the sheet with the tasks and the
students were to give a complete and correct solution to each task. The
solutions were given to provoke the students to either agree or find the errors
instead of just leaving the tasks or giving a brief answer.

A new group of students got the same tasks the following semester (autumn
of 2002). They got all the five tasks at the same time, after the notion of limits of
functions had been dealt with. 78 students took part in this study. They were
fewer than the previous semester and one reason is that the students who had
biology or chemistry as main subject were offered another course more suitable
for them and this was not an option for the students in the spring study.

In both cases the tasks were part of three questionnaires with questions
about limits and attitudes towards mathematics in general. Two interviews with
each of 18 of the students were conducted in the autumn study (Juter, 2003).

The first three tasks in this presentation were slightly altered in the second
study since many of the students misinterpreted or did not understand what the
tasks were about. The change was from “Can the function f(x) = 

€ 

2 3x +  attain
the limit value?” to “Can the function f(x) = 

€ 

2 3x +  attain the limit value in 1a?”
with respective functions in Task 1 to Task 3 below.

 All students in both groups got the questionnaires, so no selection was
done.

Method
The tasks were constructed to focus on different aspects of the limit concept.
The difficulty varied in order to identify the level the students could handle. I
explained what I wanted the students to do at each session they responded to
the questionnaires to make sure that it was clear to them.
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 The collected data has been rewritten and categorised with the aid of the
computer program NUD*IST (N6, 2003). The categories were decided from the
raw material. I did not create them in advance other than that the right and
wrong answers made different categories. There were subcategories in each of
them based on the students’ justifications of their responses. They were chosen
from the different reasons the students used for their solutions. This process led
to a number of categories. Categories with similar types of reasoning were
merged together to make the presentation more accessible. Some solutions are in
more than one category since some students gave more than one solution or
solutions that fitted more than one category for other reasons. This way to work
with the data gave different types of category systems for the different tasks.

Empirical data
Examples of typical student answers are provided in a table after each task. The
tables also include the number of students from each semester in each category.
The numbers within brackets are percentages of participating students in each
class. (R) indicates that the answer is right and (W) denotes a wrong answer.

Task 1: a) Decide the limit: 

€ 

lim( )
x

x
→

+
3

2 3 .

b) Explanation.
          c) Can the function f(x) = 

€ 

2 3x +  attain the limit value in 1a?
d) Why?

The first two parts of the task were solved mainly in two ways. The students’
either just replaced x with 3 or they solved the task by letting x tend to 3 and
state that the function gets close to 9. Almost all students answered correctly.
The last two parts of the task resulted in a more varied set of solutions presented
in Table 1.

Table 1. Typical student answers in the different categories for Task 1c – d.
  Number of students (% of the students).

Category 1c 1d Spring
2002

Autumn
2002

Theory (R) Yes The function is continuous at the point22 (20) 23 (29)

Replace x by 3 (R) Yes 2x+3=9 for x=3 22 (20) 21 (27)

No explanation (R) Yes - 15 (14) 8 (10)

Limits not attainable

(W)

No A function does not attain the limit
value, it only comes very close, it is in
the definition

9 (8.1) 10 (13)

No reason (W) No - 3 (2.7) 3 (3.8)

Empty or
misinterpretation

The answer has no connection to
the question or is missing

40 (36) 16 (21)



Papers

150

Task 2: a) Decide the limit: 

€ 

lim
x

x

x→∞

−
+

3

3

2
1

.

b) Explanation.

             c) Can the function f(x) = 

€ 

x

x

3

3

2
1

−
+

 attain the limit value in 2a?

d) Why?

Most students solved this task by locating the dominant terms and either just
reason about what happens to the function as x tends to infinity or go through
algebraic calculations to find the limit value. About 15 percent of the students
were unable to perform the algebraic calculations. The results of parts c and d
are presented in Table 2.

Table 2. Typical student answers in the different categories for Task 2c – d.
  Number of students (% of the students).

Category 2c 2d Spring
2002

Autumn
2002

€ 

x x3 32 1− ≠ +  (R) No

€ 

x3 2− can never be equal to

€ 

x3 1+  for the same value of x

7 (6.3) 17 (22)

-2 & 1 (R) No terms –2 and 1 will always remain7 (6.3) 5 (6.4)

No explanation (R) No - 18 (16) 8 (10)

Infinity reason (W) No Since x never attains the value 

€ 

∞ 16 (14) 21 (27)

Theory (W) No The function tends to the limit
value, it does not attain it

7 (6.3) 6 (7.7)

No reason (W) Yes - 15 (14) 7 (9.0)

Empty or
misinterpretation

The answer has no connection
to the question or is missing

42 (38) 17 (22)

Task 3:  a) Decide the limit: 

€ 

lim
x x

x
→∞

5

2
.

b) Explanation.

             c) Can the function f(x) =

€ 

x
x

5

2
 attain the limit value in 3a?

d) Why?

Almost all students were able to solve parts a and b of this task using standard
limit values. A few students got it backwards. The following parts are described
in Table 3.
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Table 3. Typical student answers in the different categories for Task 3c – d.
  Number of students (% of the students).

Category 3c 3d Spring
2002

Autumn
2002

x=0 (R) Yes
For x=0 

€ 

→ f(0) = 

€ 

0
1

 = 0
15 (14) 16 (21)

No explanation (R) Yes - 5 (5) 6 (7.7)

Does not reach limit (W) No We can only get infinitely close 14 (13) 16 (21)

€ 

x5 0≠  or 

€ 

0
0

 (W)
No Then the numerator has to be

zero and it never is
22 (20) 12 (15)

Right for wrong reason (W)Yes Because the denominator attains
a much larger number for large x

5 (5) 16 (21)

Empty or misinterpretation The answer has no connection
to the question or is missing

47 (42) 12 (15)

Task 4: Problem: Decide the following limit value: 

€ 

lim
x

x x

x→

+
−1

2

2 1
.

The students were given the following:

             Solution: 

€ 

x x

x

x x

x x

x

x

2

2 1
1

1 1 1
+
−

= +
− +

=
−

→ ∞( )
( )( )

 when 

€ 

x →1.

The task was for the students to decide the proper adjustments to make
the solution correct:

             Adjustments (What changes or complements are needed and why):

Table 4. Typical student answers in the different categories for Task 4.
      Number of students (% of the students).

Category 4 Spring
2002

Autumn
2002

Both sides (R)

€ 

x →1 from minus or plus 18 (21) 28 (36)

One side (R) Incomplete As 

€ 

x →1 the denominator becomes
negative

10 (11) 5 (6.4)

Dominant factor (W)

€ 

x
x

x
x

2

2
2

1
1

1
1

1 1
1 1

+






−






→ +
−

→ ∞

15 (17) 12 (15)

Reasoning (W) x tends to 1 hence it can not be infinite 14 (16) 18 (23)

No change (W) It is entirely correct!! 8 (9.2) 4 (5.1)

Empty or unclear The answer is missing or does not
make any sense

24 (28) 17 (22)
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Task 5: Problem: Decide the following limit value: 

€ 

lim sin
x

x
x→∞







2
.

The students were given the following:

Solution: 

€ 

x
x

x

x

sin
sin

2
2

1






=







. We know that 

€ 

2
0

x
→  when 

€ 

x → ∞ and

€ 

1
0

x
→  when 

€ 

x → ∞.

              The limit value 

€ 

lim
sin

x

x

x→
=

0
1 implies that  

€ 

sin
2

1
1x

x





 →  when 

€ 

x → ∞.

The task was for the students to decide the proper adjustments to make
the solution correct:

              Adjustments (What changes or complements are needed and why):

Table 5. Typical student answers in the different categories for Task 5.
     Number of students (% of the students).

Category 5 Spring
2002

Autumn
2002

All right (R)

€ 

sin sin
2

1

2

2
2 2x

x

x

x





 =





 ⋅ →

10 (11) 16 (21)

Part right (R)

Incomplete

€ 

2
x

 is not the same thing as 

€ 

1
x

 therefore

you can not use limit values on limit values

9 (10) 11 (14)

Reasoning (W)

€ 

1
0

x
→  when 

€ 

x → ∞ so the denominator has

to go 

€ 

→ 0 and the expression

€ 

→ ∞

31 (36) 18 (23)

No change (W) Nothing 4 (4.6) 1 (1.3)

Empty or unclear The answer is missing or does not make
any sense

33 (38) 32 (41)

Analysis
The students’ solutions to Task 1a-b are mainly correct. The correct solutions
were divided into categories, with most responses falling into two categories.
The second category explicitly suggests that the limit value is attainable and a
large part of the students have chosen this way to solve the task. An even larger
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part of the students solves the task in words of approaching the limit value. The
idea that limits are not attainable comes again in Task 1c-d, where students use it
as an argument for the function not to attain the value 9. It is a documented fact
that some students have this misinterpretation of the limit value definition
(Cornu, 1991; Tall, 1991). Some students do not separate the part with the limit
value from the part with the function, that is they mix up f(a) and  

€ 

lim ( )
x a

f x
→

 as

Davis and Vinner (1986) describe. If the students have the conviction that limits
are unattainable, there might be problems analysing the function. This is
something that follows through Task 1 to Task 3. A large part of the students
did not answer or answered Task 1c-d in a way that did not make any sense.
Some wrote that it depends on what x tends to and this is the reason for the
additional words in the formulation of the task in the autumn of 2002. The result
of the change is that this category contained a smaller number of students the
second semester. This applies for all the c-d questions.

Task 2 is harder for the students to handle and one serious problem is
algebra. There are several students who think that 

€ 

x3 in the numerator and the
denominator are cancelling out in a way that erases the terms and leaves only
the constants or that 

€ 

x3 can be replaced by 1 with a similar reasoning. There are
more students in the autumn study using algebra in a correct manner to solve
the task than in the spring study. The majority of the students are unable to
solve Task 2c-d. One problem is attainability as discussed above. Only some
students regard this problem as an equation to solve and this is obvious in Task
3c-d as well. 22% of the students in the autumn study solved Task 2c-d with an
equation in a correct way, whereas the corresponding figure in the spring study
is 6.3%.

Task 3a-b is a standard limit value that is well known to the students apart
from about 10% who got it backwards (“Infinity or no limit (W)”). There are
fewer categories for this task since over 70% of all the students used the
standard limit value reasoning. The problems come in Task 3c-d where the mix
up of limits and functions is clear. Students claim that x is never zero since x
tends to infinity, but this has nothing to do with the functions ability to attain
the value 0. Algebra is a problem for some students here too.

Task 4 offers a challenge for many students. 46 of the 165 students were
able to solve the task completely. One mistake many made was to use the
dominant factor and divide, but that is not solving the problem with left and
right limit value. This method is often used when x tends to infinity and the
students seem to just go through the motions without considering the
characteristics of the task they are involved in.

 Task 5 is apparently the most demanding one since only 26 of all the
students managed to solve it properly. The 20 students in the “Part right (R)
Incomplete” category were also correct but they did not give the limit value,
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they only pointed at the inaccuracy, and thus they might or might not be able to
carry out the calculations. The vast majority of the students either left the task
unsolved or reasoned incorrectly.

Discussion
The tables show that the students’ explanations of choices of solutions vary.
The students’ problems seem to come when the tasks are a bit different from
what the students are used to. Parts c and d are not mathematically more
demanding than the other parts of Task 1 to Task 3 but there is something that
troubles the students. The outcome might have been different if the parts were
not presented together. The students were in the context of limits when they
were asked to examine the functions for attainability. The effect was that the
functions were only considered locally in some cases, and the misconception
that limits are unattainable (Cornu, 1991; Tall, 1993; Szydlik, 2000) made some
students claim that the function could not attain the value even if it obviously
could (Task 1 and Task 3). The confusion of functions with limits of functions is
a problem that indicates a lack of relations between the concepts. If the students
were more confident about the properties and possibilities of the notions they
would have a better chance to solve problems correctly. An insufficient mathe-
matical base to work from can cause constraints on the individual in that he or
she is not sure what operations are allowed and how to carry them out. This
uncertainty can be the reason for the many empty answers.

Infinity is obviously an element that can cause confusion (Tall, 1980). All
tasks revealed problems with infinity in different degrees. One thing that is
connected with infinity is the notion of local limits in a wider context. Table 5
indicates this by the categories “Reasoning (W)” and “No change (W)”. Many

students are reasoning about the local limits for the functions 

€ 

2
x

 and 

€ 

1
x

separately or dissect the given function in other ways and locally consider limits.
The students follow part of Pólya’s (1945) model with decomposing and
recombining, but the recombining to check at the whole again is overlooked.
There appears to be a lack of parts in the mental web that represents this fraction
of the concept image (Tall & Vinner, 1981), since they do not have access to the
essential information about the properties of the limit process and functions.

Table 4 shows an example of students using surface properties (Lithner,
2003) as the students in the category “Dominant factor (W)” use a solving
technique that is usually effective on rational functions as x tends to infinity.
Here the students recognise the rational function but they do not consider what
x tends to.

The choices of methods seem to be triggered by first sight resemblances in
other cases too. There are comparisons with standard limit values. Sometimes the
method is working, as it did for most students’ solutions to Task 3a-b. Other
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times it does not work, as for some suggested solutions to Task 5. The students
do not appear to have a global view of the important characteristics of the
mathematics at hand. The effect of this can be that critical features are over-
looked and the solution is beyond the possibility to reach for the students.

Table 2 and Table 3 show examples of solutions with correct answer and
wrong explanation. This is something that students must be confronted with to
be able to repair. The textbook only gives the answer and not a full solution to
the tasks so the first confrontation is in the worst scenario at the exam. If the
students have used the wrong arguments for a long time, an adjustment can be
hard to make. The students represented in Table 2 who have answered correctly
with no explanation, can also belong to the category of students with correct
answer for the wrong reasons, since we do not know why they answered the
way they did.

The students have to become aware of their problems before they feel a
need to alter anything, and if the errors are not discovered nothing will happen.
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Learning to Communicate –
Communicating to Learn

in Mathematics Classrooms

Sinikka Kaartinen
 University of Jyväskylä

The aim of this paper is to investigate the practices of classroom learning com-
munities whose pedagogy in the learning of mathematics draws on the socio-
cultural perspective (Kaartinen, 2003). This pedagogical framework views
learning as a collective process of meaning making situated in cultural contexts
(Cole, 1996; Vygotsky,1962, 1978; Wertsch, 1991; Wertsch, del Rio, & Alvarez,
1995). Methodologically the paper is concerned with unravelling the dynamics
of collaborative reasoning and how they give rise to the construction of diverse
voices during participation in cultural activities (Kaartinen & Kumpulainen,
2001; Kumpulainen & Kaartinen, 2003). The empirical findings discussed here
are derived from an in-service teacher education course.

Introduction
This study emphasizes the role of in-service teacher education for enhancing
teacher participation in culturally organized activities and the development of
their pedagogical thinking. The need for large-scale educational reform is
currently being discussed (Kwakman, 2003; Sfard, 2001) at all levels of educa-
tion. New skills addressing social and technological competencies are being em-
bedded into curriculum in addition to traditional domain specific understanding
(Kwakman, 2003), but we lack, however, research based evidence of teachers’
readiness in fulfilling their new role as facilitators of students’ learning processes
for life-long learning. The sufficiency of traditional professional development
activities such as attending courses, training, conferences and reading pro-
fessional journals to refresh and update teachers’ pedagogical approach, has
been widely debated (Bransford, Brown, & Cocking, 1999; Darling-Hammond,
1998). Although the limitations of the traditional professional knowledge have
been recognized, teachers lack the necessary support and tools to modernize
their pedagogical thinking. This paper applies the concept of a “community of
learners” (Rogoff, Matusov, & White, 1996) for enhancing teachers’ readiness
to respond to the challenges that modern society poses for mathematics edu-
cation. The theoretical stance of a community of learners approach highlights
transformation of participation in a collaborative endeavour (Goos, Galbright, &
Renshaw, 1999). In this process, the participants build on each other’s initia-
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tions and develop a joint solution for the problem. Therefore the focus of the
paper is to investigate how mathematics teachers negotiate their role in joint
problem solving. Specific attention will be paid to the adopted stance during
problem solving and the nature of participation in the communicative activity.

Theoretical framework
In recent years cognitively-oriented approaches to education have been
challenged by socio-cultural theories. The former have approached learning as
an acquisition process which takes place as a result of the individual’s active
reconstruction of domain specific knowledge. Since the acquisition approach
conceptualises knowledge as a kind of property that can be transmitted, the
goal of learning is seen as the individual enrichment of domain specific concepts
and procedures (cf. Sfard, 1998). The socio-cultural learning theories approach
learning by examining teacher learning in its culturally situated context (Cole,
1996; Vygotsky, 1962; 1978; Wertsch, 1991; Wertsch, del Rio, & Alvarez, 1995),
and hence define the learner as a cultural and historical subject embedded
within, and constituted by, a network of social relationships and interactions.
Learning and development, then, is explained by the changing nature of these
relationships and types of participation in cultural activities (Goos, Galbraith, &
Renshaw, 1999). From this perspective, teacher learning can be seen as an open-
ended process with the possibility of diverse ways of acting, feeling and
thinking (Renshaw & Brown, 1998). See also Kaartinen & Kumpulainen (2001;
in press).

Pedagogical challenges to mathematics learning and instruction
While theoretical grounding for learning and development is being discussed
(Lave & Wenger, 1991; Wertsch, 1991; Wenger, 1998), there is also a growing
interest in a sociocultural approach to mathematics education (Sfard, 2002;
Hoyles, 2002). The key constructs in defining the application of the socio-
cultural framework to mathematics pedagogy in this paper are the communica-
tive approach to cognition (Sfard, 2002) and the mediational role of semiotic
tools (Säljö, 1995) in the collaborative meaning making of the participants of the
domain in question. The theoretical constructs represented by socio-culturalists
challenge the traditional views of mathematics learning and instruction where
pre-organised pieces of mathematical knowledge are being transmitted to
consumers. The task of instructional design in mathematics education from the
socio-cultural perspective is to give to participants the possibilities to use mathe-
matics in structuring and re-structuring their experiences in social practices
where mediational tools are put to use for specific purposes (Säljö, 1995). The
adopted stance in this paper holds that promoting participatory student learning
in mathematics requires also the teacher to go through participatory processes in
similar types of activities. The communicative approach to cognition (Sfard,
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2002) stresses the role of language in the collaborative meaning making of
participants. In this paper Halliday´s (1978, p.2) formulation of  “language as a
social semiotic” is applied to interpret language within a socio-cultural context
in which the culture itself is interpreted in semiotic terms. In the analysis of this
study, the language took a specific meaning in communal discourse and was
further interpreted to construct cultural meanings across contexts. The role of
language for collaborative inquiry is also reflected in the writing of Järvilehto
(2000), who stresses the importance of the development of joint language as a
tool for collaboration and the importance of the development of consciousness
in the evaluation of collaborative action.

The Study

Research goals
The goal of this study was to investigate mathematical problem solving pro-
cesses in a collaborative learning situation with in-service teachers. An analytic
tool for highlighting the mechanisms of collaborative problem solving was
applied (Kaartinen & Kumpulainen, 2001) and further developed. The specific
research goals for this study are:

• To develop an appropriate analytic tool to highlight collaborative
problem solving processes in the learning of mathematics.

• To investigate the role of cultural tools in the collaborative learning
of mathematics teachers.

• To investigate the processes of teacher participation in the colla-
borative learning of mathematics pedagogy.

Participants
The data for the study was collected from two in-service teacher education
courses carried out at the Department of Educational Sciences and Teacher
Education, Oulu University, Finland, during the years 2000 and 2003. Alto-
gether twenty in-service teachers, who represented either early childhood
education (10) or primary education (10), participated in this study.

Description of the professional activities
The activities presented in this study are part of a teacher education course with
the aim of giving the participants tools to anchor their instruction around the
collaborative application of cultural tools. The cultural tools selected for the
activities were geo-boards, algebra tiles and Cuisenaire rods. The selection of
these tools was due to their ability to mediate the core domain of the mathema-
tical curriculum, such as number sense, geometry and algebra. The specific
activities were: The Application of geo-boards in mathematics instruction, To
Model the computational algorithms of fractions with Cuisenaire rods, and To
Model the algebraic expressions of polynomies with the help of algebra tiles. All
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the activities involved collaborative inquiry and experimentation. During the
course, the in-service teachers worked in self-selected small groups. The average
size of the mixed-gender groups was four to five participants. The whole group
of twenty teachers worked simultaneously in the same classroom, carrying out
their research designs for executing the activities. In this paper, the empirical
example of the usage of algebra tiles will be discussed.

Data Collection
The primary data for the study consist of videotaped and transcribed episodes of
social interaction in collaborative problem solving situations. In the investigated
activity, the role of cultural tools, such as geo-boards, Cuisenaire rods and
algebra tiles, is investigated in collaborative learning activities. Specific research
questions posed for the study are the following: “How are cultural tools
applied for instruction building in primary mathematics?” and “What is the
mediational role of cultural artefacts for algebraic/arithmetic computations
in collaborative meaning making?”

Data analysis
This paper applies discourse analysis (Kaartinen & Kumpulainen, 2001, 2002) in
the investigation of collaborative interactions within mathematics learning
situations. The discourse analysis procedure applied in the paper draws on the
ethnographically grounded approach (Gee & Green, 1998). The analysis method
and its specific categories were grounded in the discourse data of the study. In
the analysis procedure, the collaborative interaction is approached from two
dimensions, namely from the viewpoint of discourse moves and from the
viewpoint of cultural focus. The analysis of discourse moves highlights the
nature of conversational exchanges between the members of the learning
community, and consequently sheds light onto the participatory roles of the
group members in communal activity. Moreover, the analysis of discourse moves
supports content analysis by highlighting thematic patterns emerging in joint
problem solving.  Discourse moves identified in the discourse data are initiating,
continuing, extending, organising, agreeing, evaluating, tutoring, thinking
aloud and concluding. To highlight the interplay between problem solving
elements in the collaborative activity of in-service teachers, the second dimen-
sion in the analysis method investigates the cultural focus of the social
interaction on a moment-by-moment basis. The cultural focus of the interaction
data consisted of the procedural, identity, material and semiotic modes. Table 1
summarises the analytic frames and categories of the analysis method.



Kaartinen

161

Table 1. The analytic method for analysing collaborative problem solving in
         mathematics

Discourse
moves

Description Example

Initiating Begins a new thematic interaction
episode

this is x squared

Continuing Elaborates either own or colleagues’
reasoning

umm and these equal four x

Extending Bringing in new perspectives yes, should we draw

Agreeing Accepts the ideas or explanations
proposed in the previous
conversational turn

okay, clear

Evaluating Evaluates reasoning so there it is

Tutoring Tutors the colleagues in reasoning may I still advise, we had this
x squared four x and three as
given

Organising Organises the working space should we move this, so they
don’t hinder us

Thinking aloud Makes reasoning explicit this was one, two, three,
four x

Concluding Draws together explanation building
processes

Cultural
focus

Description Example

Procedural
mode

Focuses on procedural elements, such as
negotiating working strategies for joint
investigation

so we should organise this
with the help of one tile, four
rods and three ones

Identity mode Highlights the evaluation of prior
learning experiences in the light of new
experiences through the processes of
reflection, dialogue and collaborative
inquiry

I am totally unfamiliar with
these

Material mode Concentrates on physical features of the
learning situation

should we move this, so they
don’t hinder

Semiotic mode Highlights the visibility of meaning
making via mediational tools

so this colour connected with
ordering these pieces carries
out the meaning

Results
The results of this study are discussed via case-based description derived from
one teacher group, to highlight joint reasoning and the application of cultural
tools in collaborative learning of mathematics pedagogy.
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A case-based description
This case-based description highlights the collaborative processes of one
teacher group when factoring polynomials with the help of algebra tiles. The
extract characterises the teachers’ discourse as they negotiate and apply the
usage of algebra tiles in collaborative problem solving. Table 2 shows the dis-
course data of the teacher group. The extract consists of 24 conversational turns
in total, from a 2-minute continuous working period. The data presented in Table
2 will be discussed here by firstly summarising the findings from the analyses of
the teachers’ social interaction within the group. Special attention will be paid
to the identification of problem solving episodes in the teachers’ discourse. This
is followed by a micro-level investigation of three interaction episodes in the
teachers’ discourse. The analysis of the teachers’ discourse reveals altogether
three thematic episodes in the construction of an application for the usage of
algebraic tiles. The themes for episodes are problem solving with the help of
algebra tiles (Episode 1), clarification through mathematising (Episode 2), and
clarification through hands-on activities (Episode 3). The analysis of discourse
moves shows that the thematic episodes started from the initiation, questioning
and tutoring moves, leading to several conversational turns which took the form
of problem solving elements such as, questioning, extending, evaluating and
tutoring. The analysis of the cultural focus of the teacher participation reveals
the interplay of procedural, identity and semiotic modes of interaction. In the
procedural mode of interaction, the mathematical activity included problem
solving and problem posing, and the symbolic nature of the interaction was
grounded in the pictorial and procedural application of algebraic tiles. In the
identity mode of interaction, the prior learning experiences were reflected upon
through the application of new cultural tools. In the semiotic mode of inter-
action the problem was clarified by negotiating the nature and meaning of
algebra tiles and the mathematical activity was approached through mathema-
tising the situation either verbally, symbolically or pictorially. The material mode
of interaction was seldom present and it was used for organising the working
space.
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Table 2: Teacher participation (Task: Factor the expression x2 + 4x + 3 with the
     help of algebra tiles)

No Name Transcribed
discourse

Discourse
moves

Cultural focus

Episode 1: Problem solving

1 Maritta so we should organise
this with the help of one
tile, four rods and three
ones

initiating procedural problem posing

2 Annikki I am totally unfamiliar
with these

evaluating identity evaluation of
one’s learning
history

3 Maritta should we move this, so
they don’t hinder us

organising material organising
working space

4 Liisa so this colour
connected with ordering
these pieces carries out
the meaning

extending semiotic clarifies the
problem

5 Maritta yes agreeing

6 Karra this questioning procedural problem solving

7 Maritta that is how I would
imagine

agreeing

8 Maritta this is x squared initiating semiotic mathematising

9 Liisa umm and these equal
four x

continuing

10 Karra so there it is evaluating

11 Maritta so there it is evaluating

Episode 2: Clarification through mathematising

12 Liisa but also I don’t
understand this

questioning identity evaluation
of one’s
understanding

13 Maritta but the length of this
equals x and this one
and this three

tutoring semiotic the meaning of
algebra tiles

14 Liisa yes, should we draw extending procedural symbolic pictorial

No Name Transcribed discourse Discourse
moves

Cultural
focus

15 Karra x plus one continuing semiotic mathematising
symbolic algebraic

16 Maritta multiplies three x plus
three

continuing

17 Annikki I fell off the wagon evaluating identity evaluation of
one’s
understanding
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No Name Transcribed
discourse

Discourse
moves

Cultural focus

Episode 3: Clarification through hands on activities

18 Maritta may I still advise, we
had this x squared four
x and three as given

Tutoring procedural Starting
information of the
problem

19 Annikki yes okay but this
handicraft carried out
the important meaning

questioning procedural clarifying the
meaning of action

20 Maritta The handicraft was to
collect these pieces into
a connected region in a
way that there are no
holes

Tutoring semiotic the meaning of the
action

21 Annikki yes okay agreeing

22 Annikki this was one, two, three,
four x

thinking aloud semiotic the meaning of
cultural tools

23 Maritta and now edge
multiplied by edge

tutoring semiotic the mathematical
meaning of the
action

24 Annikki okay, clear agreeing identity understanding the
meaning of the
action

Episode 1
In Episode 1 the teacher group started the activity by posing the problem. The
episode suggests that the usage of algebra tiles was new to all of the partici-
pants. Maritta was eager ( 6 turns of 11) in participating and tutoring the others.
Annikki (turn 2) expressed here unfamiliarity with the usage of cultural tools
and Maritta and Liisa made their thinking visible in their turns so that Annikki
had the possibility to follow the joint problem solving. Karra was mainly silent
but when participating (turns 6 and 10) he supported the group’s problem
solving by questioning and evaluating. In this episode the group reached the
solution to the problem.

Episode 2
This Episode 2 nicely highlights how the group of teachers deepened their
understanding of the situation. Liisa starts the episode by saying “but also I
don’t understand this” referring to the mathematical meaning of algebra tiles.
This turn (turn 12) raises the semiotic nature of interaction. In her turn (turn 13)
Maritta explains the meaning of algebra tiles by tutoring “but the length of this
equals x and this one and this three” Liisa (turn 14) extends the joint reasoning
by suggesting the modelling of the solution by drawing. This leads Karra (turn
15) to join the discourse by writing the expression “ x plus one” and Maritta
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(turn 16) continues “multiplies three x plus three”. The mathematical modelling
of the situation doesn’t help Annikki who in her turn (turn 17) says “I fell off
the wagon”.

Episode 3
This Episode 3 starts with Maritta’s (turn 18) reaction to Annikki’s comment by
tutoring “may I still advise, we had this x squared for x and three as given”. In
doing so Maritta refers back to the starting information of the problem situation.
In her turn (turn 19) Annikki expresses that she couldn’t connect the bridge
between the mathematical meaning of the situation and the hands-on activities
with algebra tiles. Maritta’s tutoring turns (turns 20 and 23) connected with
Annikki’s agreeing and thinking aloud turns nicely highlights the interaction
pattern where concrete activity was connected with the abstract nature of
mathematical reasoning.

Discussion and Conclusions
In this study, the interplay between the two dimensions of the analysis
procedure in collaborative problem solving of mathematics teachers nicely
highlights the nature of communicative meaning making of mathematics
teachers. The analysis of discourse moves makes visible the nature of reasoning
from the viewpoint of participation in social activity. Four different participant
roles emerged in the analysis of discourse moves. These roles were the tutor,
clarifier, questioner and silent supporter. From a mathematical point of view, the
communicative problem solving consisted of procedural, identity, material and
semiotic modes of interaction. The patterns of interaction were constructed
around these modes when groups of teachers negotiated the mediational
meaning of cultural tools. The analysis of these patterns revealed diverse thema-
tic episodes in collaborative meaning making, such as problem posing, problem
solving, clarification through mathematising and clarification through hands-on
activities. The study suggests the power of mediational tools to make visible the
abstract nature of mathematical ideas behind the computational rules of
algebraic procedures. Furthermore, the analysis of the data revealed that the
usage of cultural tools in collaborative problem solving of mathematics teachers
aided them in elaborating their conceptual understanding of mathematical ideas.
On the whole, the study yields useful information about teacher learning and
development from both the social and the mathematical point of view, and
provides educators and researchers with tools to develop curriculum as well as
instructional solutions for mathematics classrooms, both at the school and at the
teacher education level.
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Mathematish –
a Tacit Knowledge of Mathematics

Håkan Lennerstad, Blekinge tekniska högskola
Lars Mouwitz , Göteborgs universitet

Purpose and method
The purpose of this paper is to highlight the symbolic notations of mathematics
and to present some hypotheses. We will stress the language aspect of the sym-
bolic notation system, and therefore we call it “Mathematish”. This definition is
of course rather vague, but we try to specify our use of the term in Section 2.

There is already a lot of research done about mathematics representations in
mathematics education, also using linguistic tools. A short overview is presented
in Brown (2001). Also in Nordic mathematics education some research is done in
the semiotic field (e.g. Bergsten, 1999; Engström, 2002) and (Winsløv, submit-
ted). Despite this our hope is that our approach to consider mathematics symbol-
ism as a fully developed language could create some fruitful hypotheses for this
field.

Our method is a rather speculative reasoning, but with some empirical under-
pinnings from the history of mathematics, from our teacher experience, and from
findings in mathematics education research. Some of our arguments are sup-
ported by references to the philosophical and linguistic fields of knowledge.

In Section 1 the historical evolution of Mathematish is described briefly.
Section 2 is devoted to the various properties of Mathematish as a language, by
reference to semiotics and linguistics and by comparisons to natural languages.
Section 3 describes aspects of mathematics content and ways that content and
Mathematish interact in learning situations.

Background and need for articulation
Mathematish is a very young language compared to other languages. Many re-
searchers have contributed to Mathematish in the form of different shorthand
notations replacing expressions of natural languages. Thus Mathematish initially
inherited some structure from natural languages. Mathematicians and philoso-
phers like Leibniz and Descartes have promoted the idea of a full-blown formal
language, and Mathematish has henceforth grown by further linguistic innova-
tions by researchers fuelled by its sheer efficiency. The success for Mathematish
in research and technical applications is overwhelming. This has reshaped mathe-
matics into a subject of formal calculation. Interpretations, typical of rhetoric
mathematics are often omitted, which moves “content” to the background.
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David Hilbert and the formalists attempted to formalize all mathematics – for
them mathematics is formal calculation. One central ambition of the formalists
was to axiomatize mathematics, i.e. to investigate the formal foundations in order
to make calculations as reliable as possible (Davis & Hersh, 1980). A special
feature of Mathematish is therefore that its grammar is designed to make it possi-
ble to deduce true statements without involving content during the deduction
process (see Kline, 1980; Davis & Hersh, 1980).

In 1931 Kurt Gödel demonstrated a limit of axiomatization for mathematics
in his incompleteness theorem. A conclusion is that relevant parts of mathematics
cannot be formalized. Nevertheless, as symbolic mathematics evolved, the domi-
nance of formalized mathematics increased. The role of relevance or meaning of
mathematical concepts and goals of mathematics research in research papers de-
creased, as well as explicit texts about how to construct proofs in Mathematish.
In textbooks proofs often were ready-made, and intuitive and strategic aspects
not expressed. It may be considered as a main part of mathematical content –
strategies, ideas and methods of how to use the rules. Note that such questions
cannot be answered or described in Mathematish; the symbolic notations are not
constructed to have themselves as references. Mathematical content of this kind
occurs today mostly verbally among researchers and experienced teachers.

The success of Mathematish has inevitably reshaped school mathematics. In-
dustry has posed a need for engineers who can read and handle the mathematical
formalism, perhaps underestimating the notion that a successful use of mathe-
matics requires also reflection about content. The needs of mathematics research-
ers have formed the dominant description of mathematics today.

In this paper we focus on the Mathematish issue to develop alternative de-
scriptions. Initially we unfold the idea that Mathematish is a language of its own,
and thereby we obtain the possibility to use analogies with natural languages and
tools from semiotics and the philosophy of language.

Purposes of Mathematish articulation
By Mathematish articulation we mean descriptions where the immediate purpose
is not to provide understanding of mathematical concepts, but on mathematical
symbols and their use. This includes general and specific rules and habits in the
grammar of Mathematish, and how ways of writing in Mathematish correspond
to mathematical ideas.

Firstly, if we regard mathematics as a natural human capability which can be
expressed in many individual ways, while Mathematish is the official language, it
is very natural that children when starting school do not meet mathematics for the
first time in their mathematics class – they merely meet the Mathematish formu-
lation of mathematics for the first time. Furthermore, it is well known that many
people in practical occupations with no higher education are able to solve
mathematical problems that occur in their occupation. Perhaps these solutions
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may not be regarded as mathematics since Mathematish is not used (Löthman,
1992). Sometimes the incultivation in Mathematish seems to decrease adult stu-
dents´ capabilities to solve problems (Alexandersson, 1985). Mathematish ar-
ticulation may help people to recognize their mathematical capabilities. This re-
quires mutual translations between academic mathematics culture and informal
mathematical knowledge embedded in practice.

Secondly, the lack of articulation could be a reflection of Mathematish as be-
ing an unknown foreign language for many students. Of course there is a con-
stant struggling to learn Mathematish in the mathematics classroom, but the
shortcomings may depend on that the teachers themselves have not thoroughly
recognized its grammar, especially not compared its grammar to grammars in
natural languages. This may depend on that mathematics teachers not so often are
trained in linguistic methods. Here we can also see a mother tongue teaching
paradox: the more fluently the teacher speaks the language, the more invisible
(and unnecessary!) the grammar structure tends to be for him.

Thirdly, in mathematics research there is an intricate interplay between
Mathematish formulation and development of both proof ideas and new con-
cepts. Mathematish articulation may clarify this interplay. The history of mathe-
matics gives us many examples of how Mathematish can enforce an introduction
of a new concept.  The mathematicians will rather stay to the symbolic manipu-
lation rules, the grammar, and gradually accept for instance negative and imagi-
nary number than alter these rules (Kline, 1980). Of course it is sometimes also
the other way around; a new concept enforces an introduction of a new symbol
and how to handle it. A historical example is the introduction of symbols in dif-
ferential calculus made by Newton and Leibniz. This dynamic interplay between
grammar and thought gives interesting perspectives on the history of mathemat-
ics and also on learning situations.

Fourthly, articulation of Mathematish may play a role when discussing the
nature of mathematics in general. This is important in its own because of the
central position of mathematics in science and society. Other properties of
mathematics may become visible by means of the Mathematish-content point of
view. One important aspect is the interplay between language and culture, ana-
lyzed by structuralists and poststructuralists (de Saussure, 1916; Derrida, 1976).

Properties of Mathematish

Mathematical texts are bilingual
The perspective and focus of this paper is mathematics as a subject having two
sides that relate in complicated ways: its general and abstract concepts, and its
special symbolic language. This is reflected in the fact that mathematical texts
are bilingual. By this we mean that some parts are written in natural language,
extended with a mathematical terminology, and some parts are written in the
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mathematical symbolic language, typical for arithmetic, algebra, and analysis. As
a simple example we choose the following text line:

A linear equation is one that can be written ax + by + c = 0.

The first part is following ordinary language grammar and the very signs used are
symbols for phonemes, representing the spoken language. The whole structure of
the signs used is therefore phoneme based. Words, concept representing clusters
of signs in ordinary language, are organized along ordinary language grammar,
and the word structure is following ordinary spoken language.

The second part of the line is using other signs, not representing phonemes
but mathematical concepts. The “grammar”, the rules for ordering these signs, is
very different from the grammar of an ordinary language. The structure of the
symbols used is following rules of mathematics, a “grammar”, especially con-
structed for this purpose.

Knowledge of Mathematish is knowledge of its grammar: to recognize cor-
rect formulas and correct rules to change formulas. Mathematish knowledge is
knowledge in “pure formalistic manipulation”. We consider neither purposes,
goals nor meanings of the manipulations as parts of Mathematish knowledge –
this is content.

The idea that mathematics texts are bilingual is not new, for instance is this
idea very important in Wittgenstein’s philosophy of mathematics, here cited in
Waismann (1979):

... what is caused to disappear by (a critique of foundations) are names and
allusions that occur in the calculus, hence what I wish to call prose. It is
very important to distinguish as strictly as possible between the calculus and
this kind of prose. (p. 149)

With the term “calculus” Wittgenstein included both arithmetic and algebra. We
will not follow Wittgenstein all the way to his rather extreme position that “cal-
culus” (Kalkul) is the real mathematics, and that “prose” (Prosa) is merely con-
fusing and blurring (Marion,1998), but we find his distinction fruitful. Narrative
natural language (rhetoric) as occurring in a mathematics text, extended with
mathematical terminology, we will call mathematical prose.

Of course mathematics also has other types of representations, for instance
pictures, graphs and schemas, but in this paper we focus on the two languages
mentioned above, and especially on Mathematish. One reason for this focus is
that both mathematical prose and Mathematish are established vehicles crucial
for problem solving and proof activities in both school mathematics and mathe-
matics research, and both have a language character.
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The main purpose and aim of this paper is to discuss the following question: Is it
fruitful for mathematics education and mathematics research to study Mathe-
matish with similar linguistic tools that are used to study natural languages; could
analogies with natural languages create interesting hypotheses?

Mathematics terminology versus Mathematish
Physics, literature, mathematics - most sciences have a terminology of its own.
Specialized texts in these subjects may be unreadable for laymen. The special-
ized terminology is an extension of the vocabulary and is used within the gram-
mar of the natural language. Such a specialized text may be unreadable by lay-
men also because of unknown figures of thoughts or unknown references. How-
ever, if the grammar is different, a person needs to learn not only new words and
their meanings, but also new rules of the language. There are certainly many
other specialized languages than Mathematish, such as musical notation, mo-
lecular notation in chemistry and the Labanotation in dance.

There is a mathematics terminology with is not a part of Mathematish: words
such as “addition”, “real number”, “continuous”, “differential equation”, etc. But
texts with no formulas, i.e. with no Mathematish, are normally not considered as
mathematics texts. Conversely, mathematics texts do not consist of Mathematish
only, and no natural language. They are bilingual, and switches from one lan-
guage to the other are frequent and often unannounced. Some statements can be
made in any of the two: Mathematish or English. Some mathematics authors use
this possibility to explain Mathematish. However, in a mathematics text the two
languages are mostly used for different purposes. While Mathematish is used to
specify and manipulate quantitative relations, English is mainly used to describe
the logic in the argument, as well as purposes, connections to other results,
analogies, images, examples and applications.

Comparisons of Mathematish and English
The sentence “1 + 1 = 2” is a true statement, “1 + 1 = 3” is a false statement, and
“1 + 1 = +%” is no statement at all, it is meaningless. The first two follows the
grammar of Mathematish, and are either true or false. The third does not follow
the grammar. Then it is not a statement and can not be assigned a truth value. It is
only a sequence of signs. Note that this grammar is tacit: it is not easy to say
which rule is violated. A rule need to be constructed, such as: “on both sides of
an equal sign there has to be symbols for numbers or variables”.

This is similar to the sentences “A frog has four legs”, “A frog has seven
legs” and “A frog legs”. The first two follow the grammar of English, and we can
(in principle) decide if it is true or false. The third “sentence” is meaningless.

It is important to observe that the truth of “A frog has four legs” or “A frog
has seven legs” cannot be decided within the language itself. In this case one
must import knowledge of biology to decide the truth/falsity. A natural language
does not contain truths which they describe, with the exception of analytic truth
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(rhetoric logic). Note that this grammar is not tacit. “A frog legs” is no sentence
since it has no verb. Someone who has English as mother tongue can probably
formulate such a rule, even no explicit rule is needed to say that “A frog legs” is
no sentence.

The grammar of a natural language does not follow the very structure of the
empirical world, and indeed our views of that structure are changing over time.
Therefore you cannot deduce new truths (except analytical) about the empirical
world with natural language.  Mathematish, on the other hand, has a specially
constructed grammar following the structure of mathematics, which is mostly
numerical and logical. If you start with true premises it is possible to deduce true
mathematical sentences within Mathematish without “checking” with mathe-
matics on an outside concept or idea level. This is for instance crucial when you
are trying to prove a conjecture. In an ordinary proof, conceptions, intuition and
metaphors are (afterwards) “cleaned out” and replaced by Mathematish. An im-
portant attendant question is therefore to what degree Mathematish in fact is con-
stituting the mathematical world of concepts and theories. Could it also be fruit-
ful to analyze the claim for using Mathematish when proving as an act of power
from the established mathematical discourse, in the meaning of Foucault? See
(Foucault,1961).

You could talk about “good Mathematish” in the same way as “good Eng-
lish”. Both good and bad Mathematish are following the grammatical rules, but
good Mathematish presupposes a “cultural” knowledge and a feeling for the
context. An example is that it is “better” to write ax + by + c = 0 instead of xa +
yb + z = 0 for representing a line. Another example is to know that the parenthe-
ses in f(x + h) and in a(b + c) probably have different roles, even if you do not
know the actual contexts embedding the expressions. How much do teachers take
it for granted that students master not only Mathematish but also “good Mathe-
matish” in the classroom?

You can even identify “dialects” in Mathematish; small differences in how to
use symbols and following rules. This is very apparent when comparing text-
books from different countries. Is there a learning problematic with dialectal
Mathematish in translated books, or for students not sharing the teachers dialect?

Mathematish – a typical language?
The theoretical background underpinning our question on the role of Mathe-
matish in mathematics, is that the strictly regulated system of arithmetic and for-
mula handling that has emerged in mathematics in many ways has the features of
a language: it is using a special set of signs, the use of the signs is regulated by a
grammar (syntax), and it is possible to produce, interpret and translate proposi-
tions designed with these signs and grammar. Mathematish also has one of the
most powerful “design features” typical for a language; the double articulation
(or duality of patterning), see (Hjelmslev, 1961). This double articulation enables
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a semiotic code to form an infinite number of meaningful combinations using a
small number of low-level units, which in themselves are meaningless. For in-
stance is the use of x, y and z as signs for variables a mere convention started by
Descartes when he chose the letters at the end of the alphabet for variable signifi-
cation.

All these language features open for using methods and perspectives from
well elaborated discourses in linguistics, semiotics and the philosophy of lan-
guage. Our conjecture is therefore that it is fruitful to identify Mathematish as
mentioned above, not only as representations but as a language of its own.

Tacitness of Mathematish
There is a risk that teachers, well incultivated in Mathematish, will focus merely
on content presupposing that the students already master the language. As a re-
sult, the structure and the rules of Mathematish will remain largely tacit.

We use the concept “tacit” with the same meaning as in Polanyi (1967), that
the knowledge is not formulated but perhaps possible to formulate. Some tacit
knowledge is possible and also relevant to formulate by language, but other parts
are better to show in practice.  We can also imagine that there could be a kind of
knowledge that is neither possible to formulate nor to show, but it is not clear if
this should be called knowledge. For an elaborated analysis of tacit knowledge,
see (Molander, 1996). Molander identifies a third kind of tacit knowledge, a
knowledge that is suppressed to silence. A rather common experience in adults
education is that adults’ informal knowledge is suppressed by for instance a
teacher’s claim for Mathematish representation (Nunes et al, 1993).

Another relevant distinction named already in Ryle (1949) is knowledge-how
and knowledge-that, both could be tacit but the latter more easy to formulate:
even if you know the rules of a game (knowledge-that) it is not sure that you are
an expert in playing the game (knowledge-how), and it could be hard to express
this expert knowledge in words. A strong remark is made by Wittgenstein
(1983), that there cannot be a rule that also includes how to use the rule.

Mathematish and mother tongues
A good knowledge of formula manipulations can be compared to knowledge of a
mother tongue; it is used without any explicit translating processes. It is well
known that the structure of a mother tongue is naturally tacit for the user. It is
“tacit” in the meaning that it is not expressed or reflected upon, and perhaps
some parts are not even expressible. If mathematics teachers use Mathematish
similar to a mother tongue, they may mistakenly see the translation problem
merely as a concept understanding problem.

Despite the tacitness of Mathematish, the main part of mathematics teaching
is by tradition calculation with formulas. The learners are heavily confronted
with a “foreign” language in the mathematics classroom. Many learners perceive
mathematics as a large set of fragments with an almost non-existing larger pic-
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ture about adults mathematics memories of their school time (Lindenskov, 2001).
This is a natural consequence when a general description of the language Mathe-
matish is absent. Such a general description, showing similarities between iso-
lated calculations, constitute a grammar. Furthermore, learners often feel unfa-
miliar with the very symbols they use when calculating – the alphabet of Mathe-
matish. Rather than courses in Mathematish grammar, teacher-learner dialogues
could be a good tool for formulating the relevant aspects of Mathematish. In a
dialogue you can “play” the language game and detect the rules in social interac-
tion (Wittgenstein, 1967).

Learning of foreign languages
The grammars of foreign languages that are learned later in life than a mother
tongue are usually not tacit. Then the learning is done with the grammar of the
language, which therefore is conscious. It is known that a language learned later
in life is represented differently in the human brain than a mother tongue. Fur-
thermore, Mathematish seems to be represented in the brain differently than natu-
ral languages (Butterworth, 1999). In an example, one person, after a brain da-
mage, could not read “54” but could read “cinque quattro”, which is Italian for
“five four”. Sometimes it is the other way around; one patient with brain damage
could not read the phoneme based words signifying a specific number, but could
read (and understand) the digits signifying the same number (ibid.).

The development of Mathematish started to a large extent as a short hand for
mathematics expressed by natural language. An example is the Italian mathema-
ticians who started in the fifteenth century to replace standard words such as cosa
(the unknown thing), censo (square), and radice (root) with the abbreviations c,
ce and R.  Luca Pacioli replaced pio (plus) and meno (minus) with p and m with
small horizontal lines above them (Katz, 1998). Another typical example of this
change is the following cite from Robert Recorde in his introduction of the
equality sign (Kaplan, 1960):

And to avoide the tediouse repetition of these woordes ‘is equalle to’ I will
sette as I doe often in woorke use, a paire of paralleles, or Gemowe [twin]
lines if one lengthe, thus = because noe .2. thynges, can be moare equalle.

Unlike natural languages, Mathematish has been written from the start. Being
born as a shorthand for natural languages, it naturally inherits some grammatical
elements from natural languages, for instance logical variables. However, due to
the specific use of Mathematish, which is quantitative calculations, it has a de-
velopment which differs strongly from the development of natural languages.

Mathematish is usually encountered in elementary school, however most hu-
mans develop mathematical intuition earlier in life (Clements & Sarama, 2004;
Heiberg Solem & Lie Reikerås, 2004). If mathematics intuition and Mathematish
connect or stay separate for students is a central question for didactics of mathe-
matics.
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It appears as if Mathematish becomes intuitive and effective as a mother tongue
for a rather small minority in the population. A basic educational problem for
mathematics is that mathematics teachers often come from this group, while
many of the students do not. Then many learners may have problems in mathe-
matics of a kind that represent tacit knowledge for many teachers. We regard this
as a problem that must be recognized fully in the entire mathematical commu-
nity. This is particularly serious in the mathematics teacher education. An exam-
ple of the present weak Mathematish awareness is that there is no general agree-
ment about a very basic language question: what is a word in Mathematish?

Mathematish and computer programming
Mathematish has symbols that are concept based, as is the case of Chinese, and
not phoneme based, as in the case of English. As a result, symbols and “words”
may be pronounced differently in different parts of the world, however written
essentially the same way. Hence there is no need for translating the symbols, a
fact that facilitates communication and mathematics development. However, a
demand for translation would force clarification of the structure of Mathematish
and diminish its tacitness, as has been the case for natural languages.

Computers have been constructed with mathematics and logic as its basic
structure. Computer programming languages have been developed which provide
alternative ways of expressing mathematical ideas, algorithms and facts. The
grammar is often similar to that of Mathematish. Some computer programming
languages can partially be considered as dialects of Mathematish. This allows
computers to effectuate formal mathematical calculation with no regard to
meaning. It appears as if mathematics content cannot be expressed by computers,
in the sense that the formal calculations appear to be very inefficient once there
are no clear rules for how to calculate. This can be considered as a late endorse-
ment by computer technology of Wittgenstein’s claim that there cannot be rules
for using rules in the same language.

The term “vernacular” is used for a native spoken tongue as opposed to con-
structed or official ones. The term “mathematical vernacular” was introduced by
de Bruin in 1987 in a computer science context (de Bruin, 1987). The term has
been established for a formal language for writing mathematical proofs that re-
sembles the natural language from mathematical texts. There exist several such
systems today, such as Hyperproof and Mizar. These are attempts to construct
new languages or representation systems for increased consistency or efficiency,
while Mathematish represents the present factual use of mathematical notations
and symbols.
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Mathematish-content interplay in mathematics

Two kinds of mathematical knowledge
In the previous example equation, ax + by + c = 0, five “unknowns” (letters) are
present. Most mathematics teachers probably think of x and y as parameters, and
a, b and c as constants, and a mental image of a straight line given by the values
of the constants a, b and c may appear. This is not at all given by the equation
itself. The geometric interpretation is an example of “mathematics content”. You
could also for instance interpret the equation merely as a relation between num-
bers. Such a concept of content is strongly culturally dependent and often per-
sonal. It is not easily formalized or defined, since it by definition is not formulas.
As regards the meaning of mathematical content as knowledge that cannot be
written in Mathematish, we may talk about content of two different kinds:

1. Mathematical meanings as the target of the symbols and expressions of
Mathematish

2. Mathematical knowledge that cannot be expressed in Mathematish.

Examples of the first kind are applications of mathematics and geometrical fig-
ures that may be represented by formulas, where some may be rather personal.
Further examples are concepts such as “oneness”, “twoness”, and so on, as prop-
erties of certain sets, represented by the symbols “1” and “2”, and so on.

Examples of the second kind are strategies for problem solving, ideas of
proofs and calculations, and evaluation of models and results (Ernest, 1999).

Very often mathematical equations are starting points of mathematical think-
ing, and mental “anchors” for various considerations of mathematically active
persons. Many of these considerations are essential for successful mathematical
work, however non-formalisable and partially personal. We consider also this as
part of mathematics content of the second kind.

Semiotic approaches to Mathematish
As mentioned above our perspective opens for the use of methods from dis-
courses like linguistics and semiotics, and we will use some terms and ideas from
for instance de Saussure and Peirce, and their followers often named post-
structuralists and neo-pragmatists.

From de Saussure we borrow the idea that a “sign” has two parts; the signifier
and the signified. Saussure himself stressed that both signifier and signified were
on a mental level, but in accordance with many post-Saussurians we stress the
signifier as a material entity, for instance the ink doodles constituting a text in a
book. The signified, though, we claim is a concept or a kind of mental picture.
Although the signifier is treated by its users as “standing for” the signified, Saus-
sure emphasizes that there is no necessary, intrinsic, direct or inevitable relation-
ship between the signifier and the signified. The link between them is quite arbi-
trary: “the signs used in writing are arbitrary, the letter t, for instance, has no
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connection with the sound it denotes” (Saussure 1916/1983). The links, when
culturally established, become parts of a structure, and the meaning of the signs
is regulated by this structure and systematic relations between the signs. No sign
makes sense on its own; the meaning of “tree” is related to other signs, for in-
stance “bush”. Saussure uses an analogy with chess, noting that the value of each
piece depends on its position on the chessboard. While signification (what is sig-
nified) clearly depends on the relationship between the two parts of the sign, the
value of a sign is determined by the relationships between the sign and other
signs within the system as a whole (Saussure, 1983). The signifiers reflect differ-
ences that are important for the language users; the meaning of a sign is about
what it is not, rather then what it is.

From Peirce we use the idea that the sense-making of a sign requires an act of
interpretation and therefore an interpreter. The interpreter produces his own
“sign” of the external sign in his mind, and this sign must also be interpreted.
This model is sometimes called “the semiotic triangle” with the three parts sign
vehicle, sense and referent.

The process of interpretation, the semiosis, could be ongoing in several steps,
in principle ad infinitum. A very familiar situation where the signified also could
play the role of signifier is when you are using a dictionary; sometimes also some
terms in the defining text must be defined. The semiosis could take a dialogic
form in one person’s mind or between persons. While Saussure emphasizes
structure in a synchronic way, Peirce emphasizes diachronical aspects. Peirce ar-
gued that “all thinking is dialogic in form. Your self of one instant appeals to
your deeper self for his assent” (Peirce 1931-58). The same idea of dialogical
understanding is elaborated more deeply in Bakhtin (1981).

Peirce also made a typology of signifiers, depending on the grade of their ar-
bitrariness. Symbols are quite conventional and have to be learned, icons are in
some way resembling the signified, and indices are directly connected, like pho-
tographs, measuring instruments, and indexical words (that, this, here, there).

The Saussurian concepts stress Mathematish as a ready-made cultural phe-
nomenon with a given structure, while the Peircian concepts stress Mathematish
learning and understanding as a subjective interpreting activity, both aspects of
importance for our analysis. We will also use Wittgensteins concept of language
game (Sprachspiel) to highlight the social aspect of Mathematish, and that “un-
derstanding” is to do the right thing in this “game”, see (Wittgenstein, 1967).

There is also an ontological question about Mathematish that has bearing for
the philosophy of mathematics. Umberto Eco says “a symbol is a lie” (Eco,
1976), i.e. it stands for something else, but what? This is one way to answer:

 “For example...the expression 

€ 

x y2 2 1+ =   can be seen as mixture of numbers
and letters with no particular significance, as an algebraic equation, as a repre-
sentation of a circle, or as a circle” (Brown, 2001, p. 193).
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What is Mathematish about? Is it about objective existing concepts now labelled,
is it about constructed objects now labelled, is it the “real” mathematics, is it a
template for economizing thought, or is it perhaps just a sometimes useful game?

As we have seen in the history of mathematics, and also in our teaching prac-
tice, sometimes the notation creates the concept, and sometimes the other way
around. This is also a theme in mathematic education research. For instance,
Sfard describes how mathematical discourse and mathematical objects are creat-
ing each other in the learning process (Sfard, 2000), and how template-driven
activities create concepts.

Content - beyond the concept
There are many forms of mathematical content. The content closest to Mathe-
matish is the set of truths, i.e. the true statements that mathematicians consider to
be true in the sense of being consequences of the axioms. This kind of content
can appear almost indistinguishable from its Mathematish formulation (see amal-
gamation below), partially since Mathematish calculation is the dominant way
that is used for checking its validity. This content is defined by Mathematish cal-
culation.

Another part of mathematical content is images and associations connected to
abstract entities. It is quite possible to give a strict definition of the number 2. But
the digit “2” will also have personal connotations for a student. Part of this
meaning is related to experiences of this particular quantity (“2”), perhaps from a
multitude of examples (two apples, two ideas, two hands,…), and from a more
intrinsic mathematical direction: from knowledge of even numbers and factori-
zation of integers. This may be parts of a content “behind” the strict concept of
number 2. A mathematical sign is therefore in practice signifying not only a strict
mathematical concept but also (or instead!) a big amount of personal conceptions
and memories, typical for the person reading or using the sign. This is usually
referred to as concept image (Tall & Vinner, 1981).

Concept construction
The notion of Mathematish is useful when analysing the process of students’
concept construction in cultural and cognitive aspects. As an example we chose
the introduction of different kinds of numbers in school mathematics. We will
analyse three aspects of this; existence forcing, amalgamation and translation.
The analysis reflects the theory that a discourse constructs its objects and “real-
ity” by introducing signifiers, and relates to Derrida (1976) and the elaborated
ideas in Sfard (2000).

In everyday language a name like “table” could be introduced ostensibly
(“look, this is a table”); you point at the signified object. Many aspects of lan-
guage could be shown in practice and in interaction between language and action.
In mathematics this is not possible, since visible objects are at most approxima-
tive examples of objects. Even in geometry the visible object is just a representa-
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tion of the mathematical object: it is for instance hard to draw a line with no
thickness. To discuss the nature of these objects is beyond the scope of this pa-
per, but it is indeed an interesting ontological question. The pointing procedure
must be substituted by something else. Also the handling of objects is invisible,
and you cannot ostensibly show how to handle mathematical objects. You must
use material signifiers for these purposes, for instance hands-on materials or the
signifiers in Mathematish. Often operations with Mathematish are used to present
and motivate new kinds of “names”, for instance signifiers for numbers. In the
following examples different kinds of numbers are presented by referring to
Mathematish operations:

 “We have that 8 – 5 = 3 but what about 5 – 8?

 “We have that 

€ 

15
3

5=  but what about 

€ 

3
15

?

 “We have that 

€ 

x2 4=  has the roots 

€ 

x x= = −2 2  or  , but what about 

€ 

x2 3= ?

 “We have that  

€ 

x2 4 0− =   has the roots 

€ 

x x= = −2 2  or  , but what about

€ 

x2 4 0+ = ?

In all these cases the operators used grammatically correct will provoke new
kinds of results, and these results will in turn become signifiers for new objects.
The result is transformed to a “name”. Often you could still trace the operator in
the signifier, for instance 3/7, a fact that is sometimes confusing for the learner:
how could 3/7 and 9/21 be “the same number”? When using Mathematish gram-
matically correct new types of objects are forced into existence, often without a
pre-existing learner intuition (if you are a Platonist this is of course not what is
happening; instead Mathematish helps to “remember” the object). The construc-
tion of new concepts is not a process started in the learner’s mind, on the con-
trary the language structure initiates and constructs the concepts. The concepts
are not firstly existing, and than “baptized”, on the contrary the names exist be-
fore the concepts (Wittgenstein, 1983). The same situation can be seen in the
history of mathematics. For example, firstly the mathematicians constructed
complex numbers by Mathematish rules, and later claimed that these should be
seen as signifiers for a new kind of number (Katz, 1998).

A common tool in textbooks is to use the “number line” and put signifiers in a
row along a line. Often textbooks say that “the negative numbers” are on this
line, but in fact they are not. You could only see the ink doodles. Also in this
case the very presentation of “names” will force objects into existence, according
to Sfard. She points out that the introduction of new names and new signifiers is
the beginning rather than the end of the story (Sfard, 2003). She demonstrates
how the new signifiers for negative numbers appear from the very beginning: at
the same time as the description of the new concepts.
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A common problem in this existence forcing process is that the concepts desired
never will start to exist in the learner’s mind. Instead the signifier and the signi-
fied amalgamate; the signifier is the mathematical object, the object is the ink
doodle. Mathematish may then for the learner appear as a “meaningless” proce-
dural game with no relevance for intuitive thinking or outside school. Transla-
tions to mathematical prose and other types of representations are here very im-
portant to “help the object into existence”. Pictures, analogies, metaphors and
schemas can in a dialectical way interact with Mathematish results in order to
strengthen the learner’s intuition and creativity. Following Peirce, an interpreta-
tion of a signifier is an ongoing process, as a dialogue, and this dialogue is
necessary also between Mathematish and mathematical prose.

A problem with many textbooks is that they are in fact encouraging amalga-
mation:  “the line 

€ 

y x= +3 4”, “the function 

€ 

y x x= +2 3 ” and so on.  These ex-
pressions in Mathematish are not presented as special representations of mathe-
matical objects, but as the very objects themselves.

Interesting questions are for instance what the difference is between a
mathematical fantasy, or “lie”, and a mathematical concept forced into existence,
and why students believe (or should believe) in these concepts.

Mathematics produces Mathematish rules – and vice versa
Mathematish consists of pure conventions, and of rules of calculations. Examples
of pure conventions are the choice of symbols, such as “=” for equality instead of
“#” or “EQ”, or choices of notation such as writing an for n factors of a, and not
na, a_n or pow(a,n) (e.g. Bergsten, 1990; Pimm, 1987).

Logic and other truths are often formalized into rules of calculation: a calcu-
lus. These rules may then be used without any regard to their meaning. Examples
are 

€ 

x y z xy xz( )+ = +   (i.e. replacing 

€ 

x y z xy xz( )+ +  by   is OK), 

€ 

0 3 3= − ,

€ 

sin(arcsin )x x= . Which rule is meaningful at a particular instance depends en-
tirely on the goal and purpose of the calculations; hence on the mathematics
content. Such rules of calculation take the form of grammatical rules. A counter-
part in English is the statement “The horse pulls the car” that can be replaced by
“The car is pulled by the horse. Hence, developments in mathematics give new
Mathematish rules to use.

But sometimes it is the other way around; a calculation with mere Mathe-
matish creates an unexpected result that afterwards has to be interpreted. This
holds both for school mathematics and research.

Mathematical intuition – a human trait
A part of becoming human is learning to handle quantity, size, space and order –
practical forms of mathematics that often are not formulated in Mathematish. The
process of learning to walk is strongly driven by instinct, but also involves and
develops the mind. Simultaneously, consciousness of the body and of three-
dimensional geometry develops. One may say that every human develops mathe-
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matical intuition from the first years in life, which is formulated more or less
verbally. When beginning school, this intuition meets the official language of
mathematics: Mathematish.

During the first years in school, mathematics only concerns the symbols +, =,
–, ·, / and the ten numerals. These symbols are certainly abstract. The abstraction
lies in the generality: the same symbols are used for counting or measuring any-
thing. This generality can be seen as the most basic property of the nature of
mathematics: a separate formulation for calculation that is independent of appli-
cation areas, and effective for all of them. It also represents the main leap of
thought that challenges pupils.

Philosophy and practice
The identification of a special mathematics language may seem to be a rather
philosophical endeavour, but in this paper we have tried to show that philosophy
and classroom practice go hand in hand. The basis of observations about stu-
dents’ relations to Mathematish is our teaching practice, the teaching practice of
our colleagues, and findings in mathematics education. We have described
mathematics as a personal mathematics intuitive content that is both expressed
and shaped by elaborated mathematics notations, called “Mathematish”. We hope
that our perspective, that Mathematish is a complete language, could create fruit-
ful analogies with other languages.
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The Linguistic Side of Mathematics

Thomas Lingefjärd
Göteborg University

Introduction
Any discussion about different aspects of mathematics ought to start with a
discussion or maybe a declaration about mathematics itself. Despite the fact that
the mathematics education community often declares that mathematics is much
more than just figures and calculations, most courses in teacher programmes for
prospective teachers of mathematics are mainly traditional in the sense that they
address calculation techniques more than other aspects of mathematics. If we on
the other hand search through sources concerned with what mathematics
strictly speaking is, we find very little about calculation. Courant & Robbins
(1941) write in the foreword to What is mathematics the following:

Mathematics as an expression of the human mind reflects the active will, the
contemplative reason, and the desire for aesthetic perfection. Its basic elements are
logic and intuition, analysis and construction, generality and individuality.
Though different traditions may emphasize different aspects, it is only the inter-
play of these antithetic forces and the struggle for their synthesis that constitute
the life, usefulness, and supreme value of mathematical science.
(Courant & Robbins, 1941, foreword)

In this statement it is difficult to see the foundation for all the computation we
normally connect to the subject mathematics. Traditional philosophies, such as
Platonism or intuitionism, assume that mathematics expresses eternal relation-
ships between objects that are intuitive as well as objective. Diverging from
these perspectives, philosophers, such as Lakatos (1976) and Wittgenstein
(1956), considered mathematics to be also a product of social processes. 

Lakatos used classroom discussions to illustrate how mathematical concepts
are changed or stabilized over time through processes of agreement and refuta-
tion. From this philosophical point of view, the truth of mathematical statements
is not absolute. The statements are mainly justified conjectures, which very well
can fail in the future when new problems are created and new solutions are
produced. Wittgenstein (1956, p. 99) described this inevitableness by his con-
cept of a language game:

The indelible nature of numbers and figures and the certainty of proving
procedures are not expressions of the ideal existence of mathematical objects nor
of the absolute validity of procedures. Because we needed such a rigid language
game for various purposes, we invented it along with its grammar and its
dovetailing with practice. The mathematician is an inventor, not a discoverer.
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Reuben Hersh (1994) discusses mathematics as a social-cultural-historical con-
struct, one that has been and is continuously constructed in social, cultural, and
historical contexts, and consists of “truths” in those contexts. Hersh defines
mathematics this way:

The study of lawful predictable parts of the physical world has a name; the name
is “physics”. The study of lawful predictable parts of the social world has a
name; the name is “mathematics”. (Hersh, 1994, p. 19)

The debate is old, is mathematics invented and human-made, or is it discovered
and pre-given? It seems to be both important and helpful to make distinctions
between different components of mathematics. Rényi (1967) offered a distinc-
tion – the mathematician invents concepts and discovers theorems. He also com-
pared the mathematical researcher with a seafarer who discovers unknown
islands:

If a seafarer intends to sail into a region into which nobody before has sailed he
has to be an inventor. The seafarer has to construct a ship that is more storm
proof than the ship of predecessors. I would like to say that the new concepts
which a mathematician puts forward are like ships of a new type. These ships take
the seafarer who is out for discoveries faster and faster over the stormy sea into
new regions. (Rényi, 1991, p. 28)

Regardless if it is hard to find a comprehensive statement of what mathematics
really is, the fact that mathematics is much more than just figures and calcula-
tions is a certainty that hopefully is well adopted by mathematicians, mathema-
tics educators, and teachers of mathematics. Even a cursory glance at school
mathematics will show that mathematics is not just about numbers. It is a system
made up of letters as well as numerals, which relate to each other by operations,
processes, laws and theorems. Regarded like this, mathematics is an array of
symbols and laws. It is a highly symbolic art and for many students that is also
where the problem of understanding mathematics begins.

A growing consensus regarding the need of a deep understanding of the
language used in mathematical classrooms seems to be well founded in the
mathematics education community. Many researchers have investigated the fact
that students at different levels of the educational system have difficulties to
understand the language of mathematics. For instance Cocking and Chipman
(1988) examined the mathematical ability of language minority - particularly
bilingual - students, attempting to identify linguistic and cultural variables that
might explain why their mathematical ability falls increasingly behind that of
students who speak English as their primary language ("majority students").
They also investigated the competencies the mathematics teachers had and
stressed the importance of the educational quality.
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Math achievement is heavily dependent upon school instruction..., and it is not
likely that math achievement would be related strongly to family background
variables tied to socioeconomic status. Occupational expectations and information
associated with socioeconomic status may affect the value assigned to mathe-
matics study and achievement. (p. 32)

In an article in the Swedish anthology Mathematics – a communication subject,
there is a constructed dialogue between two researchers, one mathematics
educator and one language educator, where the language educator claims that
our language is our mental thumb. In the same way as our thumb allows us to
get a grip around a tool of some sort, our language can allow us to get a grip
around abstractions, like mathematics. He suggests further that theoretical or
abstract knowledge of any kind hardly can exist beyond or without the
individual’s language (Emanuelsson et al., 1996, p. 59).

As soon as we start thinking about linguistic ability, it is inevitable to touch
on the notion of communication competence.  The basic idea behind a language
is to be able to communicate and the general notion of communication compe-
tence entails knowing how to use language to communicate in various social
situations – to use language appropriate to context. Normally we judge
language without meaning as useless and we automatically strive to find
meaning in for instance infants’ prattle. 

During 2003, a debate between two Swedish mathematicians regarding the
language of mathematics occurred in articles and in two public meetings. Håkan
Lennerstad and Ulf Persson, both well-known mathematicians in Sweden,
debated about the possibility to see a comprehensible difference between the
content of mathematics and the language of mathematics. And if so, what
meaning would this view have for how we should teach mathematics? The two
different perspectives, on one hand the importance of letting students at
different levels translate the symbolic language of mathematics to Swedish (or
any other native language) and on the other hand the fact that the language of
mathematics in an imprecise and vague term, came out from the oral and written
debates.  My interpretation of the debate is, however, that the two debaters as
well as the audience considered the language of mathematics as an important
concept, something proven by the theme of this conference (Lennerstad &
Persson, 2003).

Teacher education in general does not explicitly stress the importance of
developing a mathematical language competence as a student teacher. There are
in general no courses labeled “Mathematics and language” or “The correct
way to address and teach mathematical objects” or something equivalent in
their teacher programs. The courses are mainly well-established courses in
different branches of mathematics where the matter of mathematics as language
falls far behind computational and conceptual skills.
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It is a fact that students’ difficulties with algebra and algebraic expressions are
common, not only when students are first introduced to algebra in compulsory
school, but also when they are presumed to have mastered the subject and
moved on to study mathematics at the university level. All languages have
grammar and meanings, syntactic and semantic components. There are mathema-
ticians and mathematics educators who claim that many students’ difficulties in
algebra depend more on their struggle with the language “mathematics” than
on their procedural shortcomings.  

Every language has a semantic component or descriptive aspect, which is
the part of the language that carries meanings – as well as a syntactic or gram-
matical component. In the case of the language algebra, there is an asymmetry
between the semantic and syntactic component, which is well worth explicit
mentioning. The language of elementary algebra, defined as being a shortened
version of our natural language, borrows meaning from the natural language’s
semantics. The semantics of algebra is however not fixed; d might mean
“distance” or be a parameter in a polynomial expression, or a vertex in a quadri-
lateral. Nevertheless, whatever special meaning we assign to d will be a meaning
defined in our natural language.

To teach mathematics with a focus on language
In an algebra course I gave to prospective middle school teachers in mathema-
tics at Jönköping University almost a year ago, I claimed that the algebra course,
which was labeled ”Mathematics as language” instead of “Introductory alge-
bra for Middle school teachers”, indeed carried an appropriate name, since
algebra can be considered a language in many ways. The students were asked
to monitor and record the growing language difficulty they experienced as we
proceeded towards deeper algebraic understanding, and they were also asked to
do a field study where they should record and analyse the language used in
classrooms they visited as part of their student teacher training.

The main question for the field study was: “How do students and teachers
handle the language of mathematics and how do they change back and forth
between common language and the language of mathematics.”

The results from the field study were quite homogeneous, although the
students visited a broad variety of schools, covering the whole range of K–12.
One common finding was that the concept of “language” was not explicitly
addressed or even mentioned by the teacher they followed. The students in the
class were not aware of the fact that they in general used quite many words
from a common mathematical language, like for instance probability, graph,
percent, and median. Nevertheless, some students did find children of early age
who expressed that “you have to know the mathematical language in quite
many professions, and therefore you should learn it.” One young girl even
claimed that ”it is easier to communicate with people around me when I express



Lingefjärd

189

myself in mathematical terms.” The observed and interviewed teachers - in
contrast - saw themselves mainly as teachers of mathematical methods and not
as “mathematical language” teachers.

The difference between a natural, descriptive language and a normative,
precise science language like mathematics is huge. Normally, we do not correct
natural language the same precise way as we do with mathematical language.  In
fact, some of our natural language is not even considered to be correctable.
Steven Pinker, a language and cognition researcher, claims that language is
innate and that humans have a common "universal grammar".

Imagine that you are watching a nature documentary. The video shows the usual
gorgeous footage of animals in their natural habitats. But the voiceover reports
some troubling facts. Dolphins do not execute their swimming strokes properly.
White-crowned sparrows carelessly debase their calls. Chickadees’ nests are
incorrectly constructed, pandas hold bamboo in the wrong paw, the song of the
humpback whale contains several well-known errors, and monkeys’ cries have
been in a state of chaos and degeneration for hundreds of years. Your reaction
would probably be, What on earth could it mean for the song of the humpback
whale to contain an “error”? Isn’t the song of the humpback whale whatever the
humpback whale decides to sing?  (Pinker, 1994, p. 370)

Many students do of course not see algebra as a language, a view that is not
unreasonable. Very few would call a system of symbols a language, if it had no
semantic component. No real language is used only to manipulate its own
words. The power of a language lies not just in the words themselves, but more
in the use we can make of them when communicating with each other. The
words of our language support communication since they are symbols, pointing
beyond themselves to things we experience in our world. To be real, a language
has to be about something.    

As for the prospective teachers own learning of the language algebra, quite
a few of the students in the course admitted that they experienced it easier to
learn algebra when it was looked upon as both a new language and as an array
of laws and symbols. Another important aspect I emphasized was the impor-
tance of different language syntax in mathematics. They were asked to look at
the following different ways to present the same mathematical problem.

a) Try to find the two numbers, which add up to 78 and where the product is
1296.

b) Solve

€ 

x y

x y

+ =
⋅ =





78

1296

c) Draw the graphs of x + y = 78 and x · y = 1296 in the same coordinate system
and determine the intersections. (adapted from Polya, 1957, p. 175)

Clearly, all the three different ways to present this same problem do actually lead
us to implicit or explicit ways of moving between our natural language and the
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formalistic language of mathematics.  If we take a), it is obvious that we will try
to express the situation in formalistic language like in case b). If we are
presented to case b), we are likely to try to interpret the meaning of our task in
language like case a). When solving it like case c) we probably will express
ourselves in both formalistic and natural language.

The view of mathematics as a language is not unproblematic and any
attempt in that direction is likely to narrow the broader view of mathematics,
which I advocated for in the beginning of this paper. I do not claim that mathe-
matics should be taught as a language, more so that the language part of
mathematics should be recognized and accounted for. It has frequently been
pointed out that mathematics itself is a formalised language and it has been
suggested that it should be taught as such. Such statements possess a degree of
validity, but would appear to be somewhat dangerous and potentially confu-
sing. Mathematics is not a language – a means of communication – but an activi-
ty and a treasure house of knowledge acquired over many centuries. (Austin &
Howson, 1979, p. 176)

 In order to more strongly advocate for the necessity of thinking about the
linguistic aspect of the mathematics you study to become a teacher of mathema-
tics, the following exam question was given to a group of prospective middle
school teachers at the university of Gothenburg in the fall 2003.
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Exactly the same statement was discussed in a lecture some 4 weeks before the
exam.  It was given as one example of how the mathematical language becomes
more and more precise and consequently at the same time becomes more difficult
to interpret and hard to connect to daily language. We also discussed in what
way we could define if there is anything missing in a mathematical statement as
the one above, as we ordinarily can in a sentence expressed in our mother
tongue. The students were in their first year of academic studies in mathematics,
and had all graduated from the natural science program in the Swedish gymna-
sium.

It was quite a surprise to us that the vast majority of the students had major
difficulties with this question in particular. Only one student out of a group of
ten managed to give a full and well developed description of the statement and
some examples. Many of the other students did not manage to give correct
examples of for instance the summation part of the statement. Expressions like
“

€ 

1n is always smaller than 

€ 

nn and therefore 

€ 

1n nn< “ were common, just as
mixing the meaning of i and n.  
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The main difficulties in translating the theorem into common language seem to
be divided into the following categories:

• The order of symbols and their semantic meaning. Student’s descrip-
tions of the meaning revealed confusion about what the symbolic
form says about what to do first, second, third and so on.

• What is included in the summation and what is not, i.e. should 

€ 

nn

also be summarized?

• The meaning of the symbol “for all n”.

Since so many students failed to translate the symbolic statement into common
language, we gave them the following statement in the re-exam:

Describe the following statement in a ”common language” and give an
example of what the statement actually says or means:

Even though we had had a sincere and long discussion after the first exam, the
students to a large extent failed to translate this statement too. To translate from
algebraic language to “common language” disclosed much more difficulties
than we had anticipated. Students, who very well may master the algebraic
handicraft in these two examples, demonstrated huge difficulties when trying to
explain what they actually mean in a common language. These examples illumi-
nate the difficulties we have to develop and maintain a well structured and well
balanced teacher education for teachers of mathematics. As prospective teachers
of mathematics, it is crucial that they are skilful in their use of the language of
mathematics together with other necessary competencies. In what way should
courses be changed or developed so that students, who study mathematics in
order to become qualified and competent teachers of mathematics, also develop
and cultivate their own mathematical language?

A couple of students claimed, that since no other courses in mathematics
requires that they should be able to translate or even speak about symbolic
statements, they had never thought about the vast importance of being able to
speak correctly when being a mathematics teacher. Even though they com-
plained about our way of extorting their weakness in understanding the
meaning of mathematical statements, they welcomed the fact that we had set
their eyes on an important competence for their future profession.

Student 1: It’s a true shame that we can manage to pass exams in courses about
abstract algebra, calculus, discrete mathematics, and so on… and yet we are not
able to explain what the symbols actually means when they are put together in a
statement.  It’s a shame!
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Student 2:Why don’t courses in mathematics start with for instance a list over
the symbols we should use and a deep and throughout explanation and
discussion about the many different meanings of the symbols?  Imagine how a
language teachers would start with any new language, why not do so with
university teaching in mathematics (at least for prospective teachers) too?

Student 3:In my mind, I sense that the sigma symbols is stored as a picture and I
normally never attach any real meaning to it – its’ just there in my memory.
When there are other symbols connected to it, above, under and together with
each other, it becomes just like Chinese or any other inconceivable language – a
blurred scatter of images.  It just doesn’t make any sense to me.

Davis (1984) argued that mathematical knowledge stored in our memories is not
just coded in any native language’s words or sentences. He asserted the
following three possible positions:

I. Knowledge is stored in the human memory in the form of ordinary native
language words and statements.

II. Knowledge is stored in the human memory in the form of pictures.

III. Knowledge is stored in the human memory in a form, which is neither
words and statements, nor pictures. (p. 189)

Davis acknowledged that the three positions did not need to be mutually
contradictory nor mutually exclusive. It is quite possible that more than one
single form of coding is used.

We want to argue that coding mechanism II – pictures – is not used, although
something close to it certainly is. (Indeed, many mathematics students would be
better of if they could learn to make more use of quasi-pictorial representa-
tions.) Coding mechanism I – Words and statement – may be used to a modest
extent (we all know some quotations, or poems or slogans form memory,
verbatim), but does not have the dominant role that one might naïvely suppose.
The main mechanism for mathematics, and probably for many other things, is
coding mechanism III, which is not verbal, and is not pictorial. (p. 189)

Some of the students obviously view themselves as owners of mental objects, in
some way corresponding to mathematical objects. Apparently we all have
mental objects like for instance a circle that we easily can get from where it is
stored in order to handle the circle is some way. The language has labelled it
circle (or “cirkel” in Swedish), but what is actually stored in our mind? Accor-
ding to Davis it is something significantly more than a picture or image, some-
thing more like a representation of a mathematical object. Our mental circle must
have the same properties and act the same as the mathematical definition of a
circle. So for a sufficient understanding of mathematics the students have to
construct the mental objects corresponding to the mathematical objects she or
he is studying. The construction must be of such a dignity, that there is an iso-
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morphism that holds between the two worlds in where the two different
constructions exist. And the isomorphism is proven valid or unacceptable
through our language.  

It is important to explain that not all mathematical objects can have a true or
correct mental representation; we mean an infinite line when we draw a finite
line and we most likely store a finite line in our mental representation. Still we
can talk about an infinite line and use our mental representation, our mental
object, to support our presentation. The language consequently becomes a
necessary tool for connecting our mental object with the corresponding mathe-
matical object, when helping someone else to construct his or her mental object,
or in order to help us better understand what we are observing when studying
mathematics. Consequently, there are many more arguments for teaching the
language of mathematics than just the fact that prospective teachers should
have a language competence as teachers. All students who study mathematics
should be taught the importance of the language of mathematics in order to
better understand the subject.
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Kategorisering av små gruppers handlingar

Stefan Njord, Gunilla Svingby, Malmö högskola
Barbro Grevholm, Högskolen i Agder

Inledning
I dagens svenska gymnasieskola är det många elever som inte klarar av matema-
tikkurserna. Enligt statistik från Skolverket var det 15 procent av eleverna på
det nationella programmet som inte uppfyllde målen på kurs A i matematik på
höstens kursprov 2002, medan motsvarande andel på vårens kursprov 2003 var
25 procent. När det gäller kurs B i matematik var det drygt 25 procent
(Skolverket, 2004) .

Det finns många sammanhängande orsaker till att eleverna inte klarar av
matematiken. En orsak kan vara hur undervisningen bedrivs och vad detta för
med sig. Flera undersökningar har visat att det är svårt för skolor att hitta
fungerande arbetssätt och arbetsformer som tar hänsyn till varje elevs förut-
sättningar och behov (Skolverket, 2003b). Det har också visat sig att matematik-
ämnet är det ämne där undervisningen präglas av enskilt arbete och att läro-
boken är styrande (Skolverket, 2003a). Att arbeta enskilt innebär att elevens
egna frågor och funderingar inte diskuteras och blir bemötta. Det innebär också
att eleverna går miste om att lyssna på andra elever och kunna bemöta deras
påståenden och argument.

Denna artikel presenterar en del i en studie som tar fasta på elevens möj-
lighet till att delta i dialoger och att använda en artefakt som stöd för lärandet.
Studien som helhet har som syfte att kartlägga hur en liten grupp elever, 4
stycken, samtalar i ämnet matematik utan lärares närvaro och hur eleverna
använder en artefakt, i detta fall TI InterActive1 under samtalet.

Studien som redovisas i denna rapport har två syften:

1. Att studera hur en mindre grupp elever utan lärares närvaro samar-
betar för att lösa de experiment som gruppen enats om.

2. Att studera hur gruppen utnyttjar artefakten.

Teoretisk bakgrund
Forskningen här har beröring med flera olika teoretiska och empiriska fält. Dessa
är samspel i grupper, användandet av artefakter och det matematikdidaktiska
fältet. Det sociala samspelet ses som den process som är bärande för elevernas
utveckling och ökande förståelse för matematiken. En viktig fråga är hur en
undervisning ska organiseras och genomföras för att eleverna ska utveckla en

1 TI InterActive är en interaktivt programvara.
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förmåga att kommunicera med matematikens språk och symboler. Någon
entydigt formulerad teori för denna undervisning finns inte. Däremot kan man
försöka hitta en balans mellan en individuell undervisning och en undervisning
som bygger på samspel (Dysthe, 2003). I denna studie betraktas samspelet
mellan elever och artefakten när eleverna diskuterar det matematiska begreppet
räta linjen.

Den lärosyn som ligger till grund för den större studien har sina rötter i
Vygotskys teorier. I denna teori ses inte bara språket och kommunikationen som
ett medel för lärandet utan det är själva grundvillkoret för att ett lärande och ett
tänkande skall kunna ske (Säljö, 2000).

Man kan ofta förundras över hur kort innehållet i en elevs replik är med
avseende på ord och speciellt innehåll av fackuttryck. Men även om detta är
fallet i många repliker uttrycks ändå en position hos den talande. En position
som någon annan elev kan svara på och förhålla sig till (Bakhtin, 1997).
Bakhtins tonvikt på dialogen är ett viktigt komplement (Wells, 1999) till
Vygotskys ”The zone of proximal development” (Vygotsky, 1978). Det är
Bakhtins tredje grunddrag för ett yttrande som är av intresse för denna studie
och lärandeprocessen (Bakhtin, 1986). Detta innebär att ett yttrande inte bara
påverkar mottagaren utan kommer också att påverka tillbaka till den som fällde
yttrandet. När en elev uppfattar och förstår en annan elevs yttrande har denne
lyssnat aktivt. Om så skett kommer eleven förr eller senare att respondera på den
förra elevens yttrande. Detta innebär att elevens yttrande kommer att påverka
tillbaka, vilket är en viktig ingrediens i lärandeprocessen.

Frågeställningar
I anslutning till de två syftena att studera hur en mindre grupp elever utan
lärares närvaro samarbetar för att lösa de experiment som gruppen enats om och
hur gruppen utnyttjar artefakten har följande frågor preciserats.

1. Hur kan man på en detaljerad nivå, kopplat till det matematiska inne-
håll som grupperna diskuterar, beskriva hur gruppen samarbetar för
att lösa de experiment som man enats om?

2. Hur kommer artefakten in som en del i samarbetet?

Den övergripande studien
Den studie som beskrivs i den här artikeln är en del av en större studie. För den
större studien har Stefan Njord följt samma elever under en längre tid (4
månader) i ämnet matematik (kurs B på gymnasiet). Den större studien bygger
på klassobservationer av eleverna i helklass samt videofilmning av mindre
grupper (4 elever) utan lärares närvaro. Data till denna rapport är från delar av
den videofilmning som gjorts i grupp utan lärare. Innan eleverna arbetade i små
grupper gjordes en enkätundersökning om elevernas attityder till skolan,
matematiken, lärandet med mera. Under studien av eleverna genomfördes tre



Papers

196

skrivningar i anslutning till deras kurs i matematik, varav en av skrivningarna var
det nationella provet. Efter det att videofilmningen var slutförd gjordes en
enkätundersökning om elevernas attityder kring att arbeta i grupp och hur man
såg på datorns betydelse för gruppens arbete.

Studiens uppläggning
Samspelet är en viktig förutsättning enligt vår teoretiska utgångspunkt. I
studien fokuseras samspelet i mindre grupper. Med mindre grupper i denna
studie menas grupper om 4 elever. Grupperna studeras enskilt i ett eget
grupprum utan närvaro av elevernas lärare. Varje grupp hade tillgång till en
dator kopplad till en OH-kanon. OH-kanonen projicerade bildskärmen på
väggen i ett format på cirka 2·1,5 meter. Detta innebar att det som gjordes via
datorn blev synligt för alla i gruppen. På datorn fanns matematikprogrammet TI
InterActive installerat. Gruppen videofilmades i 30 minuter. Totalt filmades 4
grupper om vardera 30 minuter.

Eleverna i studien läste matematik kurs B på gymnasiet och arbetade i
helklass med begreppet räta linjen. I anslutning till detta skulle grupperna
diskutera något man redan gjort i helklass. Valet blev hur man med utgångs-
punkt från två punkter och deras koordinater kan bestämma ekvationen för den
räta linje som går genom dessa punkter. Uppgiften utgår inte ifrån givna punkter
utan dessa väljs av eleverna. Detta innebär att eleverna själva kan styra de olika
perspektiv på den räta linjen som man vill diskutera.

Eleverna i studien hade inte före studien kommit i kontakt med pogram-
varan TI InterActive. Valet av program motiveras med att 1) den har ett gräns-
snitt som i många avseenden påminner om elevernas miniräknare och de data-
program som eleverna varit i kontakt med under sin skoltid och 2) att de
funktioner som eleverna fick använda under studien inte gav den matematiska
lösningen via en knapptryckning. Valet av dataprogrammet och möjligheten att
via programmet få en koppling mellan symboler och grafiska representationer
var en viktig del i upplägget. Eftersom eleverna inte använt programmet innan
var det också viktigt att eleverna lätt skulle kunna lära sig programmet genom
en kort demonstration och inse fördelar och nackdelar med att använda
programmet.

Urval
Eleverna som medverkade i studien gick på det naturvetenskapliga programmet.
Samtliga elever hade betyget godkänt från matematikkursen, kurs A. Under
studiens utförande läste eleverna kursen, Matematik B. Totalt deltog 16 elever i
studien, varav 4 var flickor och 12 var pojkar. Med utgångspunkt från elevernas
förkunskaper definierades sedan vad som skulle diskuteras i grupperna.
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Instruktion till gruppen
Gruppen informerades om att syftet med deras experiment var att gruppen skulle
ha som mål att

1. alla i gruppen med utgångspunkt från två punkters koordinater
skulle kunna bestämma den räta linje på formen y = kx + m som går
genom de två punkterna och

2. att samtliga i gruppen skulle förstå det som diskuterades.

Gruppen valde själva vilka två punkter man ville utgå ifrån. Gruppen valde
också hur många gånger man behövde titta på olika punkter innan man ansåg
att gruppen nått de två uppsatta målen. En förutsättning var att gruppen skulle
avsluta sitt arbete efter 30 minuter.

Dataprogrammet introducerades genom att vi visade eleverna hur man via
dialogrutan ”Draw line” kan ange två punkters koordinater och att programmet
därefter automatiskt visar punkternas representation i ett koordinatsystem. I
grafen visas också en streckad rät linje som går genom de två punkterna. Via
grafen är det sedan möjligt att med hjälp av muspekaren flytta punkterna och de
nya koordinaterna visas automatiskt i dialogrutan ”Draw line”. Vi visade också
eleverna att man via dialogrutan ”Functions” kan ange en funktion på formen
y = kx + m och automatiskt få denna representerad i samma koordinatsystem
som punkterna. Eleverna informerades om att via dessa två dialogrutor kan man
se en koppling mellan de två punkter man väljer och den räta linje på formen    
y = kx + m som man kommer fram till.

En förutsättning var att de punkter som valdes skulle anges i programmet, så
att alla såg kopplingen mellan punkterna och den grafiska representationen av
dessa. Därefter fanns det inget krav på att gruppen måste använda datorn i
diskussionerna. Gruppen informerades om att någon värdering eller kommentar
till vad gruppen gjort inte kommer att presenteras efteråt. Hela arbetet video-
filmades och avslutades efter 30 minuter.

Analys
Analysen av studien är gjord med utgångspunkt från den videofilmning som
gjordes av gruppernas arbete. Filmningen har registrerat det som eleverna gör
med datorn genom att även dataskärmen filmas. Även det som eleverna skriver
på sina papper har filmats. Som stöd för analysen har i vissa fall elevernas samtal
transkriberats. Även utskrifter av elevernas filmade papper har gjorts. Genom att
titta igenom videofilmerna ett antal gånger har analysen gjorts i tre steg:

1. Att försöka hitta beskrivande kategorier för det som sker.

2. Att försöka formulera och därmed skapa kategorier som beskriver de
handlingar som respektive grupper gör (=handlingskategorier).

3. Att försöka spåra mönster för hur grupperna kombinerar de olika
kategorierna.
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Resultat
Analysen har resulterat i 4 handlingskategorier som mer eller mindre beskriver
gruppernas process mot att lösa de föreliggande experimenten. De 4 hand-
lingskategorierna benämns 1) tolkning via graf, 2) verifikation, 3) trial and
error och 4) formelräkning. De tre första kategorierna är kopplade till använd-
ning av artefakten. Handlingskategorierna beskrivs nedan.

Tolkning via graf (T)
Via dialogrutan ”Draw line” kan gruppen ange koordinaterna för de två
punkter man vill studera. När gruppen angett punkternas koordinater gene-
rerade dataprogrammet automatiskt punkterna i ett koordinatsystem. I koordi-
natsystemet visades inte bara punkterna automatiskt, utan även en streckad linje
genom punkterna, det vill säga den räta linje vars ekvation gruppen skulle
bestämma. Denna grafiska bild var hela tiden under gruppens diskussioner
synlig för gruppen. Vid analysen av videomaterialet framgick att grupperna vid
ett flertal tillfällen använde sig av denna grafiska representation för att tolka och
resonera kring. Via analysen kan ses att grupperna använder sig av denna graf
framför allt för att bestämma m-värdet ur grafen och/eller för att bestämma
riktningskoefficienten (k-värdet) ur grafen. Grafen var en central utgångspunkt
vid ett flertal diskussioner och uttalanden. Handlingskategorin tolkning via graf
innebär att eleverna använder sig av denna graf vid diskussionen eller vid ett
enskilt uttalande för att bestämma k- och/eller m-värdet.

Verifikation (V)
Som nämnts ovan skapar dataprogrammet automatiskt med utgångspunkt från
att man anger två punkters koordinater i dialogruten ”Draw line” en grafisk
representation av de två punkterna och den räta linje som går genom punkterna.
Via dialogrutan ”Functions” är det möjligt att ange den räta linjens ekvation på
formen y = kx + m. När man anger en rät linje i dialogrutan ”Functions”
genererar dataprogrammet automatiskt dess grafiska representation i samma
koordinatsystem som skapats via dialogrutan ”Draw line”. Detta innebär att
gruppen får en visuell koppling mellan de två punkter man har valt att utgå ifrån
och de förslag på k- och m-värden som gruppen kommer fram till. Handlings-
kategorin verifikation definieras som att gruppen har uttalat en teori/er eller
hypotes/er som grund för ett angivet k- och/eller m-värde. Därefter använder sig
gruppen av möjligheten att via dialogrutan ”Functions” kunna bedöma rimlig-
heten i det angivna k- och/eller m-värdet.

Trial and error (U)
Handlingskategorin Trial and error beskriver samma förfarande som handlings-
kategorin verifiera med den skillnaden att gruppen inte uttalat någon teori/er
eller egna hypoteser när man använder sig av dialogrutan ”Functions”. Hand-
lingen tolkas mera som om att gruppen chansar på olika k- och m-värden och
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därefter försöker dra slutsatser om chansningen med hjälp av den graf som
automatisk genereras av dataprogrammet.

Formelräkning (F)
Den fjärde handlingskategorin, formelräkning innebär att gruppen arbetar med
papper och penna och använder sig av matematiska symboler och formler.

Hur grupperna kombinerar handlingskategorierna
Processen från det att gruppen valt två punkter tills man bestämt ekvationen för
den räta linje som går genom punkterna benämnes experiment. I studien visade
det sig att grupperna gjorde mellan 3 och 6 experiment per grupp. I tabell 1 har
de 4 handlingskategorierna använts för att beskriva den eller de strategier
grupperna använde sig av för att diskutera sig fram till en lösning för sitt
experiment. Till höger om varje experiment anges den totaltid som experimentet
tog att genomföra. Handlingarna symboliseras i tabellen av T:m som betyder
”Tolkning av m-värdet via graf”, T:k betyder ”Tolkning av k-värdet via graf”,
V:m betyder ”Verifierar m-värdet”, V:k betyder ”Verifierar k-värdet”, V:k&m
betyder ”Verifierar k- och m-värdet samtidigt”,  U:k betyder ”Trial and error [k-
värdet]”, U:m betyder ”Trial and error [m-värdet]”, U:k&m betyder ”Trial and
error [k- och m-värdet samtidigt]”, F:k betyder ”Formelräkning för att beräkna
k-värdet” och F:m betyder ”Formelräkning för att beräkna m-värdet”.

Tabell 1: Sammanställning av respektive grupp och respektive experiment med hjälp av de
   fyra handlingskategorierna.
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Via tabellen kan man se att grupp A utför 5 experiment, grupp B utför 6
experiment, grupp C utför 4 experiment och grupp D utför 3 experiment. Grupp
A löser sitt första experiment genom att utföra handlingarna i ordningen; en
tolkning av m-värdet (T:m), en verifikation av m-värdet (V:m) och slutligen en
trial and error för att hitta k-värdet (U:k).

Grupp A
Gruppen använder sig uteslutande av att diskutera fram lösningen genom att
göra tolkningar via grafen (T:m eller T:k), för att därefter verifiera (V:m, V:k eller
V:k&m) tolkningarna. I samtliga fyra första experimenten visade gruppen att
man är säker på att avläsa m-värdet ur grafen. I två experiment, experiment 3 och
4 läste man utan problem av såväl k- och m-värdena grafiskt och verifierade
dessa. Gruppen hittar här en strategi för att genomföra experimenten (T:k. T:m
och V:k&m). I det sista experimentet, experiment 5 använde gruppen papper
och penna för att försöka beräkna k- och m-värdet. Gruppen vet vilka formler
man ska använda, men gör en felaktig beräkning som innebär att varken k- eller
m-värdet blir rätt. Gruppen har inga problem med att bestämma k- och m-värdet
grafiskt, däremot har man svårt att hitta det fel man gör vid beräkningarna med
hjälp av papper och penna. Något stöd för att hitta de fel man gjort i beräk-
ningen med papper och penna ger inte datorprogrammet.

Grupp B
Gruppen hittar en tydlig handlingsstruktur för att genomföra sina experiment:

beräkna k-värdet med hjälp av formeln 

€ 

k
y y

x x
= −

−
2 1

2 1

 (F:k), beräkna därefter m-

värdet med hjälp av formeln 

€ 

y k x m1 1= ⋅ +  (F:m) och avsluta med att verifiera att
beräkningarna verkar överensstämma (V:k&m). Gruppen använder i stort sett
beräkning via formel som verktyg för att bestämma k- respektive m-värdet. För
att sedan utvärdera rimligheten i det svar man fått via beräkningarna använder
man sig av datorprogrammet.

Grupp C
Gruppen visade att man visste hur man skall beräkna k-värdet (F:k) och hur man
kan avläsa såväl k- som m-värde ur grafen (T:k och T:m). Däremot gjorde man
felaktiga beräkningar när man använde formlerna som i experiment 2. Man insåg
dock via tolkningar av grafen att man gjort fel i beräkningarna. Att hitta felet
eller felen gav dock inte datorprogrammet något stöd för, precis som för grupp
A. I sista experimentet beräknade man k-värdet (F:k), tolkade m-värdet (T:m) och
verifierade slutligen formeln (V:k&m). Därefter beräknade man m-värdet (F:m)
och avslutade med att verifiera att man hade det rätta k- och m-värdet (V:k&m). 

Grupp D
I första experimentet tar det lång tid för gruppen att lösa uppgiften då man
lägger ned mycket tid på att samtliga i gruppen skall förstå hur man beräknar
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såväl k- som m-värdet. Metoden som gruppen använder för att beräkna upp-
gifterna är samma strategi som grupp B (F:k, F:m och V:k&m). Vi kan precis som
för grupp B se att en grupp kan använda formelrepresentationerna av den räta
linjen och därefter använda datorprogrammet för att verifiera svaren. Dator-
programmet som ett verktyg för att verifiera beräkningarna verkar vara ett
viktigt moment för utvärderingen.

En sammanställning av hur många gånger respektive grupp utförde de 4
handlingarna visar på att trial and error används mycket lite i förhållande till
tolkningar, verifieringar och formelräkningar.

Tabell 2: Fördelningen mellan de fyra handlingskategorierna och de fyra grupperna.

Sammanfattning
Resultatet visar hur man med hjälp av att skapa handlingskategorier kan på en
detaljerad nivå, kopplat till det matematiska innehåll som grupperna diskuterar,
beskriva hur eleverna i gruppen samarbetar för att lösa de experiment som man
enats om. En av dessa handlingar (formelräkning) är kopplad till att gruppen
använde sig av matematiska formler och papper och penna. De tre andra
handlingarna (tolkning, verifiering och trial and error) är kopplade till att
gruppen använde sig av artefakten och den inbyggda möjligheten att koppla
samman matematiska begrepp med motsvarande grafiska representationer.

Totalt genomförde grupperna 18 experiment. 11 av dessa experiment
avslutades genom att gruppen via artefakten verifierade att deras slutliga
lösningsförslag överensstämde med den räta linje som gick genom de två valda
punkterna. Endast 3 experiment avslutades med beräkningar. Inte i något av de
18 experimenten avslutade eleverna med att konstatera att man inte kunde
komma fram till en gemensam lösning.

Samarbetet inom grupperna kan beskrivas med två strategier. Den första
bygger på att gruppen inte använder papper och penna utan diskuterar sig fram
till det k- och m-värde som man tror beskriver den räta linjens ekvation. Som
utgångspunkt för diskussionen använder gruppen sig av den graf som
genererats via artefakten. När gruppen slutligen enats om ett k- och m-värde
låter man artefakten med utgångspunkt från sina k- och m-värden generera
grafen av uttrycket y = kx + m. Genom att sedan studera grafen drar man
slutsats om rimligheten i k- och m-värdet. Den andra strategin är att eleverna via
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formler och papper och penna bestämmer k- respektive m-värdet. Därefter an-
vänder man artefakten för att studera den grafiska representation som genereras
av artefakten med utgångspunkt från formeln y = kx + m, och kan därmed
avgöra rimligheten i beräkningarna.

Artefaktens roll i samarbetet kan beskrivas ur två perspektiv. Det första är
artefaktens möjlighet att direkt när gruppen valt startpunkter ge gruppen en
grafisk bild som representerar såväl punkterna som den tänkta räta linje som går
genom punkterna. Denna graf får en central betydelse för två grupper (A, C)
genom att många tolkningar görs av grupperna med utgångspunkt från denna
graf. Det andra perspektivet är artefaktens möjlighet att via den räta linjens
ekvation y = kx + m automatiskt skapa dess grafiska representation. Denna
möjlighet använder sig samtliga grupper av i diskussionerna.

För att få en större förståelse för den undervisningssituation som undersöks i
denna studie är nästa steg att koppla handlingarna och gruppernas strategier till
vad eleverna uttrycker i dialogerna.
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A Theoretical Framework for Analysis of
Teaching – Learning Processes in Algebra

Constanta Olteanu, Barbro Grevholm, Torgny Ottosson
Högskolan Kristianstad

Introduction
In this article we focus on describing a theoretical framework, which can be
applied to analyse the teaching and learning processes that occur in the class-
rooms as seen from the student’s and the teacher’s point of view. This theoreti-
cal framework can be used to analyse teaching and learning processes in
general, but we will apply it to teaching and learning processes in algebra. More
specifically, we use it to analyse the quadratic functions and equations as an
object of learning and the way in which the forming of this object of learning
during classroom lessons influences the students’ learning.

Historical context
The history of algebra shows that algebra in some form or other has been taught
explicitly for some 1000 years, and implicitly for perhaps 3000 years. Diophan-
tus of Alexandria wrote the first treatise on algebra in the 3rd century, and since
then algebra in different forms has been developing. Eves (1990) and Burton
(1991) describe three stages in the development of algebraic notation. In the first
stage, rhetorical algebra, no symbols are used at all, and all equations and
problems are posed and solved completely in prose form. This type of algebra
was used in Europe until approximately the sixteenth century when syncopated
algebra (the second stage), became standard. Diophantus is generally credited
with the introduction of this algebra form that is characterized by the use of
some abbreviations for the frequently recurring quantities and operations, in 240
AD. The third stage in the development of algebra is symbolic algebra, which is
the algebra we use today. Symbolic algebra was developed through contribu-
tions by Francois Viète (1540-1603) and René Descartes (1596-1650), among
others, and gained widespread use by the middle of the seventeenth century.
With symbolic algebra, the symbols became objects of manipulation in their own
right, rather than simply shorthand for describing computational procedures. The
mathematical symbols were developed in parallel with the development of
algebra, and in this development we can distinguish three important kinds of
symbols. Symbols for numbers, quantities, variables, or objects, for example,
symbols used for trigonometric functions, powers, roots and logarithms, their
indices and exponents, and symbols used for variables; symbols of operation,
which describe things to be performed, for example, symbols indicating addition,
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subtraction, multiplication, division, and their attendant grouping symbols; sym-
bols of relation, which describe things established, for example, symbols of
equality and inequality.

Sfard (1995) describes the impact of symbolic algebra as follows:

Employing letters as givens, together with the subsequent symbolism for
operations and relations, condensed and reified the whole of existing algebraic
knowledge in a way that made it possible to handle it almost effortlessly, and thus
to use it as a convenient basis for entirely new layers of mathematics. In algebra
itself, symbolically represented equations soon turned into objects of investi-
gation in their own right and the purely operational method of solving problems
by reverse calculations was replaced by formal manipulations on prepositional
formulas. (p. 24)

Important research findings
Research on teaching and especially research on mathematics teaching and
learning has a long history (see, e.g., a number of “Handbooks”, which address
issues of teaching or learning, such as Bishop et al., 1996; Richardsson, 2001;
Wittrock, 1986). Trends today dominating the field of research on learning and
teaching are constructivism, situationism and collaborative learning. More speci-
fically, we can say that in modern education students are encouraged to con-
struct their own knowledge, in realistic situations, together with others. Many
researchers have been concerned with the move from arithmetic to algebra and
in particular the cognitive gap that exists between the two (e.g. Bednarz et al.,
1992). They have understandably focused on particular aspects of algebra such
as the models used when solving word problems (e.g. MacGregor & Stacey,
1993, 1998), the understanding of the equality sign (e.g. Kieran, 1981), the
translation from tabular form to symbolic form (e.g. Ryan & Williams, 1998), the
solution of linear equations (e.g. Linchevski & Herscovics, 1994; MacGregor &
Stacey, 1995), and functions and graphs (e.g. Herscovics, 1989).

Anna Sfard has outlined a theoretical framework for describing the develop-
ment of understanding in algebra (Sfard, 1991, 1994, 1995; Sfard & Linchevski,
1994). This framework is based on the theory that the development of algebraic
understanding in the individual student follows the same steps that can be
observed in the historical development of algebra. Sfard’s theory is that the
historical development of algebra from rhetorical to symbolic must be repro-
duced in the individual to achieve understanding of algebra. More specifically,
Sfard (1991, 1995) describes three stages that characterize the development of
mathematical understanding in any area of mathematics, not just algebra. In the
first stage, interiorization, some process is performed on a familiar mathematical
object. In rhetorical algebra, for example, numbers are effectively manipulated
and those manipulations are described in prose. In the second stage, conden-
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sation, the process is refined and made more manageable, as in syncopated
algebra. In the third stage, reification, a giant ontological leap is taken: "Reifica-
tion is an act of turning computational operations into permanent object-like
entities" (Sfard, 1994).

Researchers (e.g., Herscovics, 1989; Kieran, 1989, 1992; Sfard, 1991, 1994)
describe a number of obstacles that can be connected directly to the difficulty in
reification as described by Sfard. For example, children usually have difficulty in
accepting an algebraic expression as an answer; they see an answer as a specific
number, a numerical product of a computational operation. The equality sign is
usually interpreted as requiring some action rather than signifying equivalence
between two expressions. Kieran (1992) proposed that the problem with
modern algebra is that we impose symbolic algebra on students without taking
them through the stages of rhetorical and syncopated algebra. Thus, as many
educators and students have observed, students often emerge from algebra with
a feeling that they have been taught an abstract system of operations on letters
and numbers with no meaning. Herscovics (1989) describes the situation by
stating that the students have been taught the syntax of a language without the
semantics; in other words, they know all the rules of grammar, but do not
understand the meaning of the words. Sfard and Kieran would very logically
argue that this situation has resulted from jumping to symbolic algebra without
exploring rhetorical and syncopated algebra.

Because the students still have problems with learning algebra in school, we
need to find new theoretical perspectives to understand this complicated pheno-
menon.

Theoretical framework
A central question around which recent research on learning and teaching
revolves is how social interaction mediates the construction of knowledge in
classrooms. There is research that has explored the construction of knowledge
in classrooms and the ways in which meanings are socially constructed in
classroom interaction (e.g. Bergqvist & Säljö, 1995; Edwards, 1993). In the light
of current research it is clear that classroom interaction is seen as a valuable tool
for learning, which should be studied from different perspectives in order to
deepen our understanding of the practice of learning in and through social
interaction.  

In examining the difficulties students encounter in algebra it is necessary to
study the teaching and learning that occur in the classroom. Students’ opportu-
nities to learn algebra during classroom lessons can be influenced by a variety of
factors, including the knowledge and skills they already posses, as well as the
activities in which they engage during the lesson. Teaching contributes to the
students’ learning, to the development of knowledge, but it is only one of the
means by which the students develop knowledge (Marton et al., 2003).
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Teaching can be analysed from many perspectives. The approach taken in this
paper is to focus on features of teaching, and the way these features influence
the learning opportunities for students. The way in which algebraic content is
worked on during the lesson may add important information about the learning
opportunities for students. In order to analyse the phenomena of the teaching
and learning processes in the classroom, a tentative theoretical model was
developed. We will now explain the structure of the model (see figure below)
and some of its key concepts.
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Observations of many different classes consistently show that teachers typically
do between half and three quarters of the talking in classrooms. Talk is one of
the major ways in which teachers convey information to students, and it is also
one of the primary means of controlling students’ behavior. Since the teachers
do so much talking, it is important to analyze what they are talking about
(Ottosson, 2000; Sfard, 1998; Sfard & Kieran, 2001), which means to understand
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the discursive construction of mathematical objects as accounting practices
(Säljö, 1997). The word discourse is defined by Sfard (2002) as any specific act
of communication, whether verbal or not, whether with others or with oneself,
whether synchronic (like in a face-to-face conversation) or asynchronous (like
reading a book). The word communication denotes an activity in which one is
trying to make an interlocutor (possibly oneself) act or feel in a certain way.

The historical development of algebra shows that the development of
algebraic notations and symbol use was a long and difficult process that was
based on verbal descriptions that precede syncopated and symbolic notations.
For this reason it is important to understand how the discourse that occurs in the
classroom on both the collective and individual level, can generate different
ways of making sense of different phenomena (e.g. sign system, algebra code,
concepts) as a component of the object of learning (Marton et al., 2003;
Ottosson, 2000). The object of learning is formed in the classroom between the
teacher and the students and is something that can be identified from an
observer’s perspective. The term “ways of making sense” can be used for the
way sense is made in a discourse as well as the way one is making sense for
oneself, that is, in thinking (Ottosson, 2000). If we see thinking as commu-
nicating, the term discourse may be substituted for knowledge, and the notion of
learning can be redefined to denote the activity of becoming a skilful participant
of a certain specialised type of discourse (Sfard, 2002).

To investigate the variation in the different ways of making sense of the
object of learning, it is necessary to study the effectiveness of verbal communi-
cation. The communication is effective if it fulfils its communicative purpose, that
is, the different utterances of the interlocutors evoke responses that are in tune
with the speakers’ meta-discursive expectations (Sfard & Kieran, 2001). The
most fundamental meta-discursive expectation of a speaker is that the conversa-
tion is coherent; that is, the respondent refers in his or her response to the same
thing as the speaker has been talking about. In other words the effectiveness of
verbal communication is seen as a function of the quality of its focus.  Because
the term focus is an interpretative concept and because it is up to an interpreter
to decide what should count as a focus of a given utterance, Sfard introduced
the term discursive focus with the help of three discursive components that are
indispensable for effective communication: a pronounced focus, an attended
focus and an intended focus (Sfard, 2002).

By understanding the effectiveness of the classroom communications, we
can understand the possibilities that are given to the student so that he or she
can “see algebraic expressions as objects” (Sfard, 1994). The possibilities that
are offered in the classroom can be understood in terms of space of learning, and
in this space we can identify the words used by an interlocutor to signal what
he or she is talking about which is called the pronounced focus. The attended
focus refers to what and how we are attending, looking at, listening to and so
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forth, when speaking. Finally the intended focus is the interlocutor’s interpre-
tation of the pronounced and attended foci and must be considered along with
them. The pronounced focus marks the public (anything that is perceptually
accessible), the intended focus is predominantly private (anything that is expe-
rienced), and the attended focus mediates between the two.

With the help of the three focal components, Sfard built the focal analysis,
which we can use to get a detailed picture of the student’s conversation (with
another student or with the teacher) on the level of its immediate mathematical
content. This should make it possible to understand the effectiveness of commu-
nication. The effectiveness of verbal communication is dependent upon the
degree of clarity of the discursive focus. The focal analysis is complemented by
preoccupational analysis, which is directed at meta-messages and examines the
participant’s engagement in the conversation, thus possibly highlighting at least
some of the reasons for communication failures (Sfard, 2002).

In a real classroom situation the teacher observes the lived object of
learning, that is, the way students see, understand, and make sense of the object
of learning when the lesson ends and beyond. The students, as well as the
researcher, observe the enacted object of learning, that is, what it is possible to
learn in a situation from the point of view of what is meant to be learned. The
enacted object of learning is the space of variation/learning constituted in the
classroom. From the teacher’s perspective, the object of learning is the same as
the intended object of learning and it is somehow realized in the classroom in
the form of a particular space of learning. This space of learning contains any
number of dimensions of variation and denotes the aspects of a situation, or the
phenomena embedded in that situation. From the student’s perspective, the
forming of the enacted object of learning should open up new ways of making
sense of the presented concepts. This may be reflected in the way in which the
student works with the exercises and the questions that the student asks the
teacher. The notion of concept is defined by Säljö (1999, p. 81) as “repositories
of human sense-making capacities and activities, they are sediments of human
experiences and simultaneously tools for action.”

By using the discourse defined by Sfard (2002), the teacher must, as an
observer, be able to identify how the students’ discourse changes. If the teacher
deems that the change in the student’s discourse is developing in an undesired
direction, he or she must be able to present the enacted object of learning so that
it can open up new possibilities to apply different ways of making sense of the
discourse to the student. Varying the presentation of concepts in algebra on the
basis of the three historical phases of the evolution of algebra, by changing the
discourse and focusing on an effective communication, could create such new
possibilities. 
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Concluding remarks
Even though the ontological or epistemological assumptions of the presented
perspectives may differ in some ways, these perspectives can, from our point of
view, be applied to understand the connection between teaching and learning
algebra that occurs in the classroom. Ottosson’s (2000) suggestion to change
the term “ways of experiencing” to “ways of making sense” opens the possi-
bility to analyse teaching and learning processes on both the collective and the
individual level. The theoretical approach of variations may be used to empiri-
cally identify different ways in which the symbolic algebra is enacted in the
classroom. In this way we can better understand the difficulties that the students
encounter in the reification processes. Sfard’s focal analysis and the reification
theory can be applied to analyse the effectiveness of the communication
between teacher and student in terms of reification process, that is, to study how
the discourse focus levels the algebra from an operational to a structural level.

For teachers, to sustain a mathematical discourse of algebra in the classroom,
the domain of algebra must be reflected in ways that allow students to make
sense of the object of learning, see underlying patterns, and develop their own
discourse.
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Artefacts – Instruments – Computers

Rudolf Strässer
Luleå University of Technology

A definition of artefacts
At present, the international discussion on artefacts most often concentrates on
one major type of artefact, ‘artefact’ is used to simply denote information and
communication technology (‘ICT’), sometimes it is even reduced to computers
and (hopefully appropriate) software. I will try not to follow this reductionist
approach - even if the discussion in (mathematics) education and didactics often
takes ‘artefact’ in this restricted sense. In contrast to this, the paper starts from
the broader definition given by Wartofsky: In the introduction to a book
presenting his work, he defines ‘artefact’ as “…anything which human beings
create by the transformation of nature and of themselves: thus also language,
forms of social organisation and interaction, techniques of production, skills”;
(see Wartofsky 1979, p. xiii). Taken as wide a definition as cited, artefacts related
to teaching and learning mathematics can be the mathematical symbolism, ruler
and compass, a probability distribution, the derivative or integral of a function,
(scientific) journals, grades like “licentiate” or “phd-thesis”, curricula to control
the teaching of mathematics in classrooms, tests to grade students, but also
institutions like Skolverket and Institutionen för matematik.

In his text, Wartofsky offers an additional classification of artefacts into
three levels, which basically rests upon different uses of artefacts. He dis-
tinguishes ‘primary’ artefacts (those which are “directly used in the produc-
tion”) from ‘secondary’ artefacts (“used in the preservation and transmission of
the acquired skills or modes of action or praxis by which this production is
carried out”) and ‘tertiary’ artefacts (those artefacts, which “constitute a
domain in which there is a free construction in the imagination of rules and
operations different from those adopted for ordinary ‘this-wordly’ praxis”; see
Wartofsky, p. 202/209). Didactics (of mathematics) is mainly concerned with the
analysis of ‘secondary’ artefacts, while mathematics (as a discipline) sometimes
seems to produce ‘tertiary’ artefacts.

The artefact which is most used in Swedish schools is the ‘secondary
artefact’ textbook (meant to be “… used in the preservation and transmission of
the acquired skills or modes of action or praxis by which this production is
carried out”). Present-day ‘information and communication technology (ICT)’ -
like hand-held calculators, computers, software, internet - is another important
example of artefacts, with the whole range of levels from primary artefacts like
Computer Aided Design (CAD) to secondary artefacts like Dynamical Geometry
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Software (“DGS”) and tertiary artefacts like computer games.  ICT is normally
taken as the ’standard’ example of artefacts, sometimes only ICT is discussed as
’artefacts’. To give some more recent examples of ICT-artefacts related to
teaching and learning, one should mention learning in ICT-based networks, the
internet and distributed learning communities.

From artefacts to instruments
The row of artefacts by Wartofsky (primary/secondary/tertiary) classifies
according to different purposes of the tools. In line with this broad approach
and from an ergonomic and didactical research question (“How do human
beings learn to use machines?”), the French researcher Rabardel came up with
an additional and helpful distinction: For an analysis of (learning with) artefacts,
it is necessary to distinguish the artefact (the tool itself) from an ‘instrument’, “ a
mixed entity made up of both artefact-type components and schematic
components that we call utilization schemes. This mixed entity is born of both
the subject and the object” (Rabardel & Samurcay, 2001; Rabardel &
Bourmand, 2003; see also graphics below).

The process, in which artefacts come to be used by human beings is called
‘instrumental genesis’. It is normally starting with the development of ‘utiliza-
tion schemes’ (ways to use the artefact) when new users begin to handle a new
artefact (from the artefact to the user, this is called ‘instrumentalisation’ of the
artefact), while ‘instrumentation’ is the process where persons develop new
utilization schemes for given artefacts, which may not even been thought of by
the creators of the artefact.

Using the mathematics textbook as an example of a widely used artefact in
teaching and learning mathematics, reading a textbook problem, then solving it,
then controlling the solution with the ’facit’ at the end of the textbook is a
good example of such an instrumentalisation, while reading a textbook problem,
then deciding not to solve it, but looking up the answer in the ’facit’ to impress
the teacher might be an excellent example of an instrumentation of the
textbook. Skolverket in its report “Lusten att lära” has offered detailed informa-
tion on the normal utilisation schemes textbooks are used in Swedish classrooms
(see Skolverket 2003, pp. 18f). The section on “Grundskolans senare år” gives
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the details: “Modellen utgörs av genomgång ibland, enskilt arbete i boken och
diagnos, alternativt prov. Läraren går runt och hjälper eleverna individuellt”1

(loc.cit., p. 20). The text not only shows the utmost importance of the textbook
in Swedish classrooms, it also identifies the basic utilisation scheme of
textbooks.

In line with the idea of secondary artefacts, a whole variety of instruments
was and still is developed to facilitate teaching and learning mathematics. Arte-
facts together with utilization schemes are created to ‘represent’ mathematics, to
study these representations (instruments) and to learn about mathematics.

Information and communication technology “ICT”
More recently, a new type of ’artefact’ appeared: computers and (sometimes
appropriate) software. This new type of artefact can be taken as a dynamical
add-on or a real alternative to textbooks – it is the type of tool most widely
discussed and researched in the didactics of mathematics. If one does not only
look into the features, which are offered by the computer and the software, but
also in the way, this tool is used, this entity fits into the concept of ‘instrument’.
To put it the other way round: For a didactical analysis, there is one general
lesson to be learned immediately from our understanding of instruments: For a
didactical analysis, one has to look into the software and its use in order to fully
understand the instrument ICT.

If I follow a recent phd-thesis (Samuelsson, 2003), in Sweden, ’övning’-
software seems to be the predominant instrument to deliver existing knowledge,
especially by using ’drill & practice’ programs. Nowadays in Sweden, ICT seems
not to be used innovatively. It is often simply used as a means to support an
existing way of ‘individualised’ teaching and learning.

To illustrate my point on artefacts, I will now concentrate on Dynamical
Geometry Software (often called DGS2). This type of software, these artefacts,
can be characterised by three features, namely drag-mode, macros and locus of
points. I will only look into the drag-mode (for research on macros see Kadunz,
2002; for research on locus of points see Jahn, 2002), so I first give a standard
example for this DGS-feature, using a well-known geometrical statement: If you
construct the midpoints E, F, G and H of the sides of a quadrilateral ABCD and
join them to an “inner” quadrilateral EFGH (the ‘Varignon’-quadrilateral), you
will see that this inner quadrilateral is a parallelogram. Is this correct for every
quadrilateral?

1 “This teaching model consists of sometimes a presentation, then individual work with the
textbook, and a diagnosis or a test. The teacher is helping the students individually.”
(editors’ translation).
2 For examples see ‘Cabri-géomètre’ at http://www.cabri.com/ or ‘Geometer’s Sketchpad’ at
http://www.keypress.com/catalog/products/software/Prod_GSP.html
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Dragging the point A in a DGS, you soon get the idea, that the Varignon-
quadrilateral is always a parallelogram, even if ABCD is not convex, even if two
opposite sides of it intersect (see drawings further down).

I will not add a proof of this geometrical statement, but hope to have illustrated
the drag-mode as the most salient feature of DGS: the drag-mode preserves the
geometrical relations used in the construction (here: E, F, G, and H being
midpoints of the respective segments of quadrilateral ABCD) – even when an
initial point of the construction is changed by moving it around (here: moving
point A, which remains an extremity of the quadrilateral). Research on teaching
and learning geometry took the ‘drag-mode’ as a most helpful learning tool in
geometry. It is often even taken as the characteristic feature of Dynamical
Geometry Software (DGS), as a characteristic feature of the artefact DGS.

Arzarello and his colleagues in a detailed analysis presented a whole
classification of different utilization schemes of this software feature (see
Arzarello, 2002, p. 67). They identify six utilisation schemes (“wandering drag-
ging”, “guided dragging”, “dummy locus dragging”, “line dragging”, “linked
dragging” and the “dragging test”), give descriptions (for examples see below)
and illustrate often used ‘utilization schemes’ of DGS by a detailed analysis of
tasks.

The following task and its solution was presented by the same group and
analysed in a different publication (Arzarello et al., 1998).

Task:
a) Draw a quadrilateral ABCD and the mid-perpendiculars of its sides!
b) Try to find out, if it is possible to make the four mid-perpendiculars meet in one
point!
c) If this is possible, find out when and why!

Task a) would be easily solved by the drawing on the left above. Dragging of
point B soon shows that task b) has a positive answer – and the drawing on the
right (using the ‘trace’ feature of the software) indicates, how point B has to be
dragged to preserve the uniqueness of the intersections.
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Arzarello and colleagues describe this prototypical solution process in more
detail, showing us typical utilization schemes of DGS: At first, the students use
“wandering dragging” to find out about an answer to the task b). They are
“moving the basic points on the screen randomly, without a plan, in order to
discover interesting configurations or regularities in the drawings” (Arzarello et
al., 2002, p. 67). This is a ‘utilisation scheme’, which from the very start of DGS
was mentioned by the software designers of DGS. It was the basic pedagogical
legitimisation for the use of DGS in teaching and learning geometry – and it can
be illustrated by the move from the first to the second drawing above.

The move from the second to the third drawing has a different quality: Here,
the users develop an innovative ‘utilization scheme’, which the software
designers never had planned: They are “moving a basic point so that the
drawing keeps a discovered property; the point which is moved follows a path,
even if the users do not realise this: the locus is not visible and does not 'speak'
to the students, who do not always realise that they are dragging along a
locus”, they are using ‘dummy locus dragging’ (for the citation and the name
‘dummy locus dragging’ see again Arzarello et al., 2002, p. 67).

Following Arzarello et al., the users ‘normally’ seem to add a third ‘utiliza-
tion scheme’ called “dragging test” (“moving dragable … points in order to see
whether the drawing keeps the initial properties. If so, then the figure passes the
test; if not, the drawing was not constructed according to the geometric
properties you wanted it to have”; description loc.cit.). This often is preceded
by “linked dragging”, where the dragging point is linked to an object, which is
thought to conserve the wanted quality (in our example: linking the point B to
an appropriate circle).

In the text of Arzarello et al., the different utilisation schemes, the different
drag modes seem often to be applied in a clear order: wandering dragging is
followed by dummy locus dragging, which hopefully leads to a dragging test.
With this standard chain of utilisation schemata, we see a more general utiliza-
tion scheme for the exploration and argumentation emerge (wandering dragging
– dummy locus dragging – dragging test), which can be helpful in construction
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and proof tasks in geometry when Dynamical Geometry Software (DGS) is
available. The above-mentioned texts  (Jahn 2002 and Kadunz 2002) can also
be read as research on (possible) utilisation schemes of macros and locus of
points when Dynamical Geometry Software is available – thus showing how
helpful the idea of studying ‘instruments’ is. Heavily using the ‘instrument’
concept, Artigue (2002) describes research on Computer Algebra Systems
(CAS) and gives details on utilisation schemes observed in French classrooms
using CAS.

Conclusion
What has been presented can be condensed into two basic messages:

• From the concept of ‘instrument’, we can learn that – for research
into information and communication technology – it is not enough to
study the features of the tool. Only research into the ways the tool is
used, a study of the ‘utilization schemes’ will fully inform the
didactician. The cry for user studies often heard when new software
for computer use is introduced somehow simpler represents the same
need. To state this more general: researching instruments for teaching
and learning mathematics – like information technology or textbooks
– should include the identification and study of utilisation schemes
to fully understand the role of the instrument under study.

• For an individual piece of software or a generic type of software,
such user studies will bring to light utilisation schemes which in
general have not been foreseen by the software developer. The
‘instrumental genesis’ will create innovative ways to use the tool
(computer and software), which can be very helpful in teaching and
learning mathematics. The utilisation schemes found by empirical
studies can enrich the picture, which the didactician, the researcher,
has of the process of teaching and learning mathematics.
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What Mathematical Ideas Do Pupils and
Teachers Use when Solving a Rich Problem?

Eva Taflin, Kerstin Hagland, Rolf Hedrén
Högskolan Dalarna

This report is a part of a bigger study where pupils and teachers are working
with rich problems. In this article, built on a social constructivist theory of
learning, we will present what mathematical ideas pupils and teachers use when
solving a mathematically rich problem. We will also show how teachers
influence their pupils with their own mathematical ideas and how teachers
follow up their pupils' ideas. The data consists of videotaped lessons and
interviews, and of pupils' solutions. As a result from our study, we have found
that

• The teachers' own mathematical ideas and solution methods direct
their pupils

• The teachers sometimes have difficulties producing feedback
building on their pupils' solutions.

• The teachers seldom make generalisations out of their pupils'
solutions.

Background of the project

Social constructivism
The thoughts and expressed in this paper are, to a great extent, based on social
constructivism, which has characterised the latest Swedish syllabi (see Hedrén,
2000). Especially, the theory that Jaworski (1994) creates by the help of
grounded theory (the teaching triad) points to the teacher's three fields of
responsibility in creating a mathematical classroom: the management of learning,
the sensitivity to pupils and the mathematical challenge.

Problem solving
In the latest Swedish syllabus for mathematics in the compulsory school
(Skolverket, 2000), it is written among other things: "To make the pupil able to
practice mathematics, a balance between creative, problem solving activities and
knowledge about mathematical concepts, methods, and forms of representation
are called for." (Ibid. p.2, our translation.) In both the national and international
research pupils' strategies in mathematical problem solving, and their ability to
cope with mathematical problems, have been a rich field of research for quite a
long time. In our opinion, however, the mathematical ideas that teachers and
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pupils are working with in problem solving activities and the occasions when
the pupils seem to learn, have been much less researched.

We have used other researchers’ ideas and our own experiences to define
some criteria for a problem to be, in our opinion, classified as a rich problem.
These criteria can be found e. g. in Taflin (2003).

Mathematical idea
The mathematical idea in a problem as an essential factor in problem solving is
stressed both by Schoenfeld (1991) and by Silver & Cai (1996). Schoenfeld
discusses resources as one of four important parts of knowledge for success in
problem solving. As resources he assigns intuitive and informal knowledge in
the actual field, facts, algorithmic procedures, routine procedures that are no
algorithms, and understanding of special rules in force in the problem domain.
We see these as examples of essential mathematical ideas.

Aim and questions
In this study we will try to describe some of the mathematical ideas that four
teachers and their pupils are working with and giving expression to in their
work with a rich problem. Our questions are:

• What mathematical ideas do teachers and pupils use when working
with a mathematically rich problem?

• How do teachers' mathematical ideas influence their pupils?

• How do teachers follow up their pupils' mathematical ideas?

Method
This study is a part of a project called RIMA. We are following four classes from
two schools and their four teachers during the school years 7, 8, and 9. During
these three years, the pupils work with ten rich problems in all. The problems
have been chosen in co-operation with the participating teachers. The teachers
have been informed about the concept rich problems and are acquainted with
our criteria for these problems. Researchers and teachers meet before and after
each problem solving session to exchange experiences and observations made
during the problem solving process and to discuss the next problem. The
teachers independently design their teaching with the rich problems. On all
occasions, they have chosen to use at least one lesson for the problem.

Methods to gather data
The teachers were interviewed before and after the lesson. The problem solving
session was video- and audiotape recorded. The teachers carried a tape-recorder
with a small microphone during the lesson. The pupils were interviewed
individually in one school and in groups in the other school. These interviews
were video- and audiotape recorded. The pupils’ solutions were collected and
examined in both schools. The problem tiles are shown below.
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You lay a pattern with the help of quadratic tiles, dark and pale.
The pattern looks like this:

Figure 1 Figure 2 Figure 3

a) How many tiles are there in figure 5?
How many of them are pale and how many dark?

b) How many dark and pale tiles respectively are there in figure 15?
c) How many dark and pale tiles respectively are there in figure 100?
d) How many dark and pale tiles respectively are there in figure n?
e) Make a similar problem. Solve it.

(The problem has been shortened a little here.)

The problem is a pattern problem, a type of problems leading to an inductive reaso-
ning, an attempt to generalise (often expressed as a formula where n is included).
The solution is based on observations that should lead to the discovery of mathe-
matical patterns.

Result with comments
In this section, we account for pupils’ solutions and conversations between the
pupils and their teachers during the lesson, as well as interviews after the lesson
when the pupils recalled how they have been working with the problem together
with their peers and their teachers.

Short account of the lessons
In the introduction of the lesson, the teachers introduced the problem to their pupils.
Three of the four teachers told their pupils what mathematical ideas they should
work with. They also gave clues to strategies that their pupils could use to solve the
problem. The fourth teacher did not discuss what mathematics her pupils could use
or learn in any way, she did not give any clues in this phase.

- Teacher 1 placed n and x on a par and gave her pupils the clue to think
how they have been taught to think, when there is an x in their books.
Teacher 2 told his pupils to look for patterns. He gave his pupils the clue
to examine how the figures developed, figure by figure, and try to find a
pattern that they could use.
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-  Teacher 3 connected to the problem in algebra, which his pupils had
been engaged in, and mentioned that it could be useful when they
solved the problem.

-  Teacher 4 gave no information about the included mathematics and
no clues.

During the problem solving process the pupils struggled with the problem and
solved it fully or partly, and discussed it with each other in small groups or with
their teacher. All teachers gave individual guidance, and when they worked
with their pupils they made the suggestion to make a table. On some occasions,
the teacher used the blackboard to give information to all pupils at the same
time.

The lessons sometimes finished with an account of pupils' solutions at the
blackboard, in some cases with the teacher's comments.

Mathematical ideas
In this study we have started from mathematical ideas as procedures and
concepts in different mathematical fields and sorted the pupils' solutions with
this in mind.

Count Squares
Example 1
Pupil I cut out such squares that we counted afterwards … These are

 great!
Teacher Well, you can count afterwards then. How did you do it then? …
 Which one are you working on?

Example 2
Pupil We need a bigger paper if we'll be able to paint figure 100.
Teacher Will you paint it?
Pupil Yes, we painted figure 15, didn't we?

Comments: In example 1, the pupils have drawn the figures and cut out all
squares and counted them afterwards. In example 2 they have found a method
(to paint) which works and which they want to repeat. The pupils do not
account for a solution to the problem.

Recursion
Example 3
Pupil Then it increases on the white ones, and then the black ones you

add four each time.
Teacher From what you had before?
Pupil Yes.
Teacher So to solve figure fifteen you must know the result of figure

fourteen?
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Pupil I don't know, we were counting, weren't we!
Teacher But if you add four all the time, it means to be able to calculate to

fifteen you have to know what fourteen is because you have to
know where you add four to, don't you?
Thus to calculate figure one hundred you need to know what is
the calculation to ninetynine. Then you have to calculate all of the
time to ninetynine.

Pupil That’s the only way I know.

Example 4

 (Text in the figure: * Dark tiles increase with 4 per figure. * The number of tiles. Because
there are 9 tiles in figure 1 you add 7 to get as many as in figure 2.)

Comments: In example 3, the pupil counted ahead figure by figure and had to
know the number of tiles in the preceding figure to find out how many there are
in the next one. In example 4, the pupil has made a complete table and shows
the connection between the numbers.

Mathematical patterns found with the help of area
Here we found solutions building on a picture, visualisations where the pupils
form associations with the concept of area. Some pupils have done this by first
calculating the number of pale tiles, the inner square. They have then calculated
the number of dark tiles as a frame around the inner square. In their computa-
tions, they have often used multiplication. It has been done in different ways:

a) They have calculated tile by tile without partitioning the sides.
b) They have calculated four times the side of the inner square and then

added the four tiles in the corners.
c) They have calculated four times one tile more than the side of the

inner square.
d) They have calculated two sides as long as the side of the inner square

and two sides as two tiles longer than the side of the inner square.
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e) They have calculated one side two tiles longer than the side of the
inner square, two sides one tile longer than the side of the inner
square and one side as long as the side of the inner square.

Example 5
Pupil Dark ones you can take … if it is figure 100 you add 2 on the

upper edge and 101 plus 101 plus 100, 102 plus 101 plus 101 plus
100.

Comments: The pupils have used two main types of area computation to find
out the number of dark tiles. Either they have seen that the dark tiles make up a
frame around the pale ones, or they have calculated the number of dark tiles as
the difference between the total amount of tiles and the pale ones. They have
used the operations addition and multiplication.

Mathematical patterns found with the help of a table
During the problem solving phase, all the teachers gave their pupils the hint to
make a table.

Example 6
Pupil 1 Then she [the teacher] made up such a table, at the blackboard

that we should draw, fill in and continue.
Interviewer Mm. Did it help you in some way?
All three Yes.
Pupil 2 It did.
Interviewer Mm. You had not made a table yourselves?
Pupil 2 [Shakes her head]

Algebraic Expressions with x and n
What n might stand for caused many pupils a lot of trouble. Many pupils tried to
find a formula for the pale tiles, n ×  n.  They could also approach a formula for
the total amount of tiles, (n + 2) ×  (n + 2).

Example 7
Pupil Thus, n as an equation.
Teacher Or as an algebraic expression. That is to say that you can express it

in words, too, if you ask me to take the digit of the figure, is it that
one.

Pupil Can you write the number as n then?
Teacher That's what I mean, because it's the digit of the figure.
Pupil Then you can write an equation like this, you know, n – 2.
Teacher But it was not – 2, was it?
Pupil n  + 2 …
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Example 8
Teacher No, you have a formula that you can calculate mainly what figure

you want to. Then you exchange the digit for n. Instead of
calculating the 58th figure, you calculate the nth figure.

Pupil The nth?
Teacher The nth figure, the nth figure is mathematical and it means any

figure.
Pupil Then we shall only use that one?
Teacher No, you write n. Then mathematicians know that then they can

use this formula for any figure they want to.
Pupil Then you have to know a little.

Example 9
Pupil What do you mean, n?
Teacher Whichever, any figure.
Pupil Then we use it, then we use 0!

Example 10
Pupil Er, er, yes, but, thus, we started with to, to calculate like this, so to

say, the pale ones first and call them x, and the dark ones were
only as many as they were. /…/
The x stands for that the pale tiles, or, how many the pale tiles are.

Comments: In example 7, the pupil connects n with the concept of equation, but
still he seems to think in general terms. In example 8 the teacher explains that
the number is exchanged for n which means the nth figure and that n and
formula go together. In example 9 the teacher lets the pupils choose n at will,
and then they choose to put n equal to 0. In example 10, x is used as a mark, as a
unit, 4x + 12 means 4 pale and 12 dark tiles, which is a wrong theory, if you are
searching for a general expression.

Discussion

What mathematical ideas do pupils make use of?
The mathematical concept that the pupils were mainly working with was
pattern. During their search for connections between the amount of tiles and the
number of the figure, the pupils made use of many different strategies.

The pupils that drew figures and cut as in examples 1 and 2, were working
with a strategy that was not very successful. The pupils wanted to continue
with their strategy to work out all figures. Because they had worked out 15,
they would also work out 100. The strategy guided the work.

There are many different variants of how the pupils worked with recursion
methods when they found out the number of tiles in all figures preceding the
figure asked for. In example 3 the pupils conducted a line of argument, and in
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example 4 they used a table as a strategy. None of the cases accounted for leads
up to a general expression. The pupil who had arranged a table found several
connections, among others that the number of dark tiles increases with four for
every increase in figure number.

Some pupils looked upon the connection between the total amount of tiles
and the amount of pale tiles as areas and could then find the connection with
the number of the figure. Other pupils saw the amount of pale tiles as area and
the amount of tiles in the frame as a surrounding area. In this study, we found
five different variants of the calculation of frame area. This strategy, to think
geometrically to find an arithmetic connection, was a successful strategy for the
pupils. Many pupils also found a general expression with this strategy.

In this study, the symbol n was unknown to many pupils, for instance in
examples 7, 8, 9, and 10. In this case, the problem might function as an intro-
duction to algebra and to different ways to use letters as symbols. The pupils
can see how to use n and x in different ways.

In this problem, the pupils were mainly working with arithmetic, and some
got on to algebraic expressions. The pupils that used the area concept to
calculate the number of tiles also arrived at general expressions. Many pupils
showed an instance of conceptual knowledge as well as of procedural know-
ledge, as Hiebert (1986) describes mathematical ideas. The pupils also showed if
they could execute routine procedures and use special concepts like area, as
described by Schoenfeld (1985). The problem turned out to hold a lot of diffe-
rent mathematical ideas that teachers and pupils could discover and work out.

What mathematical ideas do teachers use when working with a mathema-
tically rich problem, and how do the teachers' ideas influence their pupils?
Already in the introduction of the lesson, the teachers gave clues that allowed
their pupils into fixed solution strategies. It would have been more interesting to
understand how their pupils would have worked if they had not been piloted.
This behaviour cannot be characterised as mathematically challenging in the
way Jaworski (1994) and Lester (1985) call attention to as the teacher’s task.

When the pupils were supposed to interpret and understand the problem,
most of the teachers chose to give suggestions of how to solve the problem as
well. The teachers' suggestions are repeated in the pupils' solutions when they
arrange tables and calculate with recursion. According to Lester (1985), the
teacher ought to answer their pupils' questions and only make sure that the
pupils have understood what to do. We cannot judge if the pupils themselves
had obtained the idea to make a table, if they had not been given that piece of
advice from their teachers.

The pupils that solved the problem with the help of the area concept did not
seem to have obtained the idea as a suggestion from their teachers.
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All teachers suggested that their pupils should arrange a table, three of them did
so in the introduction of the problem, and the fourth did so when walking
around during the lesson. The pupils in example 6 told us that they obtained
that idea from their teacher who drew the table on the blackboard. The pupils
were helped in the right phase according to Lester's suggestion (1985). We can
also hear how the pupils are constructing their own knowledge with the help of
the language and their peers in accordance with the learning theories that social
constructivism describes.

One teacher suggested how the pupils should think when calculating with
x.  For pupils working with equations, where x is a fixed number, it might cause
confusion, when they see that it is about exchanging x for different integers, i. e.
to look upon x as a variable. In their textbook, the introductory algebra with
equations focuses on what the sign of equality stands for, and every x has a
fixed value.

One teacher asked the pupils to think about algebra that they had just been
working with. It might be a clue, but it might also mislead the pupils if the
algebra tasks in the book only focus on working with letters as fixed integers.

One teacher turned his pupils on to thinking about patterns and finding
connections. In our results, we found that pupils find patterns both with the
help of tables and the area concept. 

How do teachers follow up her/his pupils’ mathematical ideas?
At the follow-up of her pupils’ ideas, the teacher has a possibility to challenge
her pupils mathematically as Jaworski describes it in her triad. In examples 1 and
2 the pupils show how they get stuck in slow and long-winded methods, which
do not lead to general expressions. The teacher observes how her pupils are
working but lets them continue.

In example 7, the teacher follows up her pupils’ own thoughts, and the
pupils themselves advance towards the general expressions. We conclude this
dialogue as good examples of mathematical challenges, as described by Jaworski
(1994).
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Mathematism and the Irrelevance
of the Research Industry

A Postmodern LIB-free LAB-based Approach
to Our Language of Prediction

 Allan Tarp
 Grenaa International Baccalaureate

Mathematics education research increases together with the problems it studies.
This irrelevance-paradox can be solved by using a postmodern sceptical LAB-
research to weed out LIB-based mathematism coming from the library in order to
reconstruct a LAB-based mathematics coming from the laboratory. Replacing
indoctrination in modern set-based mathematism with education in Kronecker-
Russell multiplicity-based mathematics turns out to be a genuine ‘Cinderella-
difference’ making a difference in the classroom.

The irrelevance paradox
All over the world there seems to be a crisis in mathematics education:

There are strong indications of increasing justification and enrolment problems
concerning mathematics and physics education, as a rather international
phenomenon. During recent years, reports of a significant decline in enrolments
to tertiary level education involving mathematics and physics have appeared from
many parts of the world, including many countries in Europe, the US, Australia,
and Japan. Also at the primary and secondary school levels mathematics and
physics in many countries now seem to be receiving less interest and motivation
than before amongst many categories of pupils. (Jensen et al, 1998, p. 15)

In Japan Yukihiko Namikawa asks ‘can college mathematics in Japan survive?’

Actually the total education system in Japan is in crisis, and so is the case of
mathematics education at universities. (..) we are facing a remarkable decline of
mathematical knowledge and ability of fresh students. (..) In April 1994, we
established a working group in the Mathematical Society of Japan to overcome
this crisis. (..) So far we made several investigations to clarify the situations. The
results were much more disastrous than imagined before start and still the
problems are aggravating. (Namikawa in ICME9, 2000, p. 94)

In Denmark proposals have been made to remove pre-calculus as a compulsory
subject: In their suggestions for a reform of the Danish upper secondary Prepara-
tion High School the teacher union writes that Danish must be strengthened to
improve the student’s ability to write and read; that English must be compulsory
and so must a second foreign language; and that all students must have a basic
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competence in mathematics, but not all students need to take an exam in
mathematics. Mogens Niss has formulated a ‘relevance paradox’

The discrepancy between the objective social significance of mathematics and its
subjective invisibility constitutes one form of what the author often calls the
relevance paradox formed by the simultaneous objective relevance and subjective
irrelevance of mathematics. (Niss in Biehler et al, 1994, p. 371).

The 10th International Congress on Mathematical Education in 2004 shows that
research in mathematics education has been going on for almost half a century.
On this background I would like to supplement this ‘relevance paradox’ with
an ‘irrelevance paradox’ or ‘inflation paradox’: ‘the output of mathematics edu-
cation research increases together with the problems it studies - indicating that
the research in mathematics education is irrelevant to mathematics education’.

A methodology:
Institutional scepticism, sceptical LIB-free LAB-research
To get an answer to the ‘irrelevance paradox’ we obviously have to use a
counter-methodology. Historically research originated as bottom-up ’LAB-LIB
research’ where the LIB-statements of the library are induced from and
validated by reliable LAB-data from the laboratory. However the word-based
‘LIB-research’ has created a ‘LIB-LAB war’ or ‘science-war’ exemplified by
‘Sokal’s bluff’ or by the ‘number&word-paradox’: Placed between a ruler and
a dictionary a thing can point to a number but not to a word, so a thing can
falsify a number-statement in the laboratory but not a word-statement in the
library; thus numbers are reliable LAB-data able to carry research, whereas
words carry interpretations, which presented as research becomes seduction - to
be lifted by the counter-seduction of sceptical LIB-free LAB-research replacing
LIB-words with LAB-words being validated by being, not ‘truth’, but
‘Cinderella-differences’ making a difference. (Tarp, 2003)

The inflation in today’s LIB-research comes from library cells inhabited by
persons with little or no practical classroom experience, which reminds of the
production of scholastic scriptures in medieval monasteries. So a proper counter-
methodology could be inspired by counter-scholasticism as e.g. the institutional
scepticism of the enlightenment as it was implemented in its two democracies,
the American in the form of pragmatism, symbolic interactionism and grounded
theory, and the French in the form of post-structuralism and post-modernism.  In
America Blumer talks about practical experience, symbolic interactionism and
research:

I merely wish to reassert here that current designs of ‘proper’ research procedure
do not encourage or provide for the development of firsthand acquaintance with
the sphere of life under study. Moreover, the scholar who lacks that firsthand
familiarity is highly unlikely to recognize that he is missing anything. Not being
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aware of the knowledge that would come from firsthand acquaintance, he does not
know that he is missing that knowledge. (..) Respect the nature of the empirical
world and organize a methodological stance to reflect that respect. This is what I
think symbolic interactionism strives to do. (..) Sociological thought rarely
recognizes or treats human societies as composed of individuals who have selves.
Instead they assume human beings to be merely organisms with some kind of
organization, responding to forces which play upon them. (Blumer, 1998, pp. 37-
38, 60, 83)

America still has its first republic whereas France now has its fifth republic. The
American settlers emigrated to avoid the feudal institutions of Europe and to
install ‘freedom under God’. So what Foucault calls ‘pastoral power’ was not
present in America; but very much present both inside France and around it, and
several revolutions had to be fought forcing the French republic to organise the
state as a military camp where French philosophers has developed a special
sensitivity towards any attempt to overthrow the democracy of ‘la Republique’.

Thus the French institutional scepticism is quite different from the American
by turning the question of representation upside down and focusing upon, not
how outside structure installs internal concepts, but how internal concepts
install outside structure; and how words can be used as counter-enlightenment
to patronise and ‘clientify’ people by installing pastoral power.

Derrida calls the belief that words represent the world for ‘logocentrism’.
Lyotard defines modern as ‘any science that legitimates itself with reference to a
metadiscourse’; and postmodern as ‘incredulity towards metanarratives’
(Lyotard, 1984, pp. xxiii-xxiv). Foucault describes pastoral power:

The modern Western state has integrated in a new political shape, an old power
technique which originated in Christian institutions. We call this power technique
the pastoral power. (..) It was no longer a question of leading people to their
salvation in the next world, but rather ensuring it in this world. And in this
context, the word salvation takes on different meanings: health, well-being (..)
And this implies that power of pastoral type, which over centuries (..) had been
linked to a defined religious institution, suddenly spread out into the whole social
body; it found support in a multitude of institutions (..) those of the family,
medicine, psychiatry, education, and employers. (Foucault in Dreyfus et al, 1982,
pp. 213, 215)

In this way Foucault opens our eyes to the salvation promise of the generalised
church: ‘You are un-saved, un-educated, un-social, un-healthy! But do not fear,
for we the saved, educated, social, healthy will cure you. All you have to do is:
repent and come to our institution, i.e. the church, the school, the correction
centre, the hospital, and do exactly what we tell you’.

So according to Foucault pastoral power comes from words installing an
abnormality and a normalizing institution to cure this abnormality through new
words installing a new abnormality etc. (Foucault 1995). Thus the pastoral word
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‘educate’ installs the ‘un-educated’ to be ‘cured’ by the institution ‘educa-
tion’; failing its ‘cure’ it is ‘cured’ by the institution ‘research’ installing new
‘scientific’ words as ‘competence’ installing the ‘in-competent’ to be ‘cured’
by the institution ‘competence development’; failing its ‘cure’ it is again being
‘cured’ by new ‘research’ installing new ‘scientific’ words etc.

Thus pastoral power is installed by a self-supporting top-down LIB-LAB-
industry of research and education using self-created LAB-problems to invent
new ‘scientific’ LIB-words that are exported to the LAB through master
educated inspectors creating new problems funding new research etc.

To increase its productivity the LIB has replaced verb-based words as
‘educate’ with words that are not verb-based such as ‘competence’. So where
the ‘clients’ themselves knew when they were ‘educating’ themselves or
others, they do not know when they are ‘competencing’ themselves or others,
only the pastors know – in full accordance with the view of the inventor of
pastoral power, Plato, arguing that the democracy of the sophists should be
replaced by the autocracy of the ‘philo-sopists’ educated at Plato’s academy.

By its distinction between words and numbers sceptical LIB-free LAB-
research is inspired by the French postmodern scepticism by saying that
‘postmodernism means institutional scepticism towards the pastoral power of
words’; and by the ancient Greek sophists always distinguishing between
necessity and choice, between natural and political correctness, between logos
and nomos, according to the two prerequisites of democratic decisions: informa-
tion and debate. Thus Plato’s half brother the sophist Antifon writes:

Correctness means not breaking any law in your own country. So the most
advantageous way to be correct is to follow the correct laws in the presence of
witnesses, and to follow nature’s laws when alone. For the command of the law
follows from arbitrariness, and the command of nature follows from necessity.
The command of the law is only a decision without roots in nature, whereas the
command of nature has grown from nature itself not depending on any decisions.
(Antifon in Haastrup et al 1984: 82, my tranlation).

By transforming seduction back into interpretation scepticism transforms the
library from a hall of fact to a hall of fiction to draw inspiration from, especially
from the tales that have been validated by surviving through countless genera-
tions, the fairy tales. Hence the preferred interpretation genre in institutional
scepticism is the fairytale. Grounded theory uses categorised LAB-data for axial
‘fairytale-coding’. Sceptical LIB-free LAB-research looks into institutional
LAB-texts to replace opponent LIB-words with proponent LAB-words found
by discovering forgotten or unnoticed alternatives at different times and places
inspired by the genealogy and archaeology of Foucault; and by inventing
alternatives using sociological imagination inspired by Mills (1959).
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The aim of sceptical LIB-free LAB-research is not to extend the existing seduc-
tion of the library, so no systematic reference to the existing ‘research’ literature
takes place. The aim is to solve LAB-problems by searching for hidden
Cinderella-differences in the LAB, i.e. by 1) identifying the pastoral LIB-word
installing the problem 2) renaming the LIB-word to a LAB-word through
discovery and imagination, 3) testing the LAB-word to see if it is a Cinderella-
differences making a difference, and 4) publish the alternative so the problem
can be decreased instead of increased.

Mathematics and mathematism
Mathematics education is an institution instituted to cure ‘mathematical
uneducated-ness’. Not being verb-based ‘mathematics’ is a LIB-word to be
translated into a verb-based LAB-word by observing what goes on in the
laboratory of mathematics education, the classroom. The first day of secondary
school we witness a ‘fraction test’ as e.g.:

The teacher The students

Welcome to secondary School!
What is 1/2 + 2/3?

1/2 + 2/3 = (1+2)/(2+3) = 3/5

No. The correct answer is:
1/2 + 2/3 = 3/6 + 4/6 = 7/6

But 1/2 of 2 cokes + 2/3 of 3 cokes is
3/5 of 5 cokes! How can it be 7 cokes
out of 6 cokes?

If you want to pass the exam then
1/2 + 2/3 = 7/6!

Apparently we have a ‘fraction-paradox’ in the mathematics classroom:

Inside the classroom 20/100
=
20%

+ 10/100
=
+ 10%  

= 30/100
=
= 30%

Outside the classroom
e.g. in the laboratory

20% + 10%     
or

= 32% in the case of compound interest
= b% (10<b<20) in the case of the
   total average

20% of 300 + 10% of 300 = (20%+10%) of 300 = 30% of 300 since the
common total 300 can be put outside a parenthesis. But the fraction-paradox
shows that this is not always the case. So 20/100 = 20%, but no general rule says that
20%+10% = 30% or 20/100+10/100 = 30/100.

Since a part of mathematics cannot be validated outside the classroom we
can distinguish between ‘mathematics’, which is a science that can be validated
in the laboratory, and ‘mathematism’, which is a doctrine, an ideology, a
scholasticism, that cannot be validated in the laboratory.
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This gives a possible answer to the irrelevance paradox: What is disguised as
‘education in mathematics’ is really indoctrination in ‘mathematism’ teaching
‘killer-mathematics’ only existing inside classrooms, where it kills the relevance
of mathematics.

As validation a killer-free LIB-free LAB-mathematics must be uncovered
through a combination of concept archaeology and imagination and tested in
the laboratory of learning, i.e. the classroom.

Fractions and sets - LIB-words or LAB-words?
In the laboratory we talk about ‘fractions of’ as e.g. 2/3 of 6. The textbook
however talks about plain ‘fractions’ as e.g. 2/3. To see if this is a LIB-word or a
LAB-word we look at its definition:

The set Q of rational numbers is defined as a set of equivalence sets in a product
set of two sets of [sets of equivalence sets in a product set of two sets of [sets of
equivalence sets in a product set of two sets of [Peano-numbers]]]; such that the
number (a,b) is equivalent to the number (c,d) if a*d = b*c, which makes e.g.
(2,4) and (3,6) represent then same rational number. (See any textbook in modern
mathematics, e.g. Griffith et al., 1970)

Since fractions are defined as examples of ‘sets’ the question is whether ‘set’ is
a LIB-word or a LAB-word. To separate LIB-math from LAB-math we travel
back in time in the mathematics laboratory. As to the prospects for the en-
lightenment eighteenth century, Morris Kline writes:

The enormous seventeenth-century advances in algebra, analytic geometry, and
the calculus; the heavy involvement of mathematics in science, which provided
deep and intriguing problems; the excitement generated by Newton's astonishing
successes in celestial mechanics; and the improvement in communications
provided by the academies and journals all pointed to additional major develop-
ments and served to create immense exuberance about the future of mathematics.
(..) The enthusiasm of the mathematicians was almost unbounded. They had
glimpses of a promised land and were eager to push forward. They were,
moreover, able to work in an atmosphere far more suitable for creation than at any
time since 300 B.C. Classical Greek geometry had not only imposed restrictions
on the domain of mathematics but had impressed a level of rigor for acceptable
mathematics that hampered creativity. Progress in mathematics almost demands a
complete disregard of logical scruples; and, fortunately, the mathematicians now
dared to place their confidence in intuitions and physical insights. (Kline, 1972,
pp. 398-399)

So the enormous creativity in seventeenth-century mathematics was a result of
neglecting the LIB-restrictions of classical Greek geometry by practising ‘a
complete disregard of logical scruples’ and instead being inspired by the labora-
tory’s ‘physical insight’ and ‘confidence of intuition’.
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If the seventeenth century has correctly been called the century of genius, then the
eighteenth may be called the century of the ingenious. Though both centuries
were prolific, the eighteenth-century men, without introducing any concept as
original and as fundamental as the calculus, but by exercising virtuosity in
technique, exploited and advanced the power of the calculus to produce what are
now major branches (..) Far more than in any other century the mathematical
work of the eighteenth was directly inspired by physical problems. In fact one
could say that the goal of the work was not mathematics, but rather the solution of
physical problems. (..) The physical meaning of the mathematics guided the
mathematical steps and often supplied partial arguments to fill in nonmathematical
steps. The reasoning was in essence no different from a proof of a theorem of
geometry, wherein some facts entirely obvious in the figure are used even though
no axiom or theorem supports them. Finally, the physical correctness of the
conclusions gave assurance that the mathematics must be correct. (..) Lagrange
wrote to d'Alembert on September 21, 1781, ‘It appears to me also that the mine
[of mathematics] is already very deep and that unless one discovers new veins it
will be necessary sooner or later to abandon it. Physics and chemistry now offer
the most brilliant riches and easier exploitation; also our century's taste appears to
be entirely in this direction and it is not impossible that the chairs of geometry in
the Academy will one day become what the chairs of Arabic presently are in the
universities’. (..)This fear was expressed even as early as 1754 by Diderot in
Thoughts on the Interpretation of Nature: ‘ I dare say that in less than a century
we shall not have three great geometers [mathematicians] left in Europe. This
science will very soon come to a standstill (..) We shall not go beyond this point.’
(Ibid., pp. 614, 616, 617, 623)

The seventeenth century saw the arrival of the last form of calculations, calculus,
and the eighteenth century developed the many LAB-applications of calculus
within physics. Only little new mathematics was added; and around 1800
mathematicians felt that there was no more mathematics to develop as expresses
by Diderot. However LIB-mathematics soon came back. In spite of the fact that
calculus and its applications had been developed without it logical scruples now
were reintroduced arguing that both calculus and the real numbers needed a
rigorous foundation. These LIB-scruples lead to the introduction of ‘set’. So as
numbers were introduced to distinguish between different degrees of multipli-
city having 1 as its unit, sets were introduced to distinguish between different
degrees of infinity having the natural numbers as a unit. However changing
infinity from a quality to a quantity involves the question of actual and potential
infinity:

The central difficulty in the theory of sets is the very concept of an infinite set.
Such sets had naturally come to the attention of mathematicians and philosophers
from Greek times onward, and their very nature and seemingly contradictory
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properties had thwarted any progress in understanding them. Zeno's paradoxes
are perhaps the first indication of the difficulties. Neither the infinite divisibility of
the straight line nor the line as an infinite set of discrete points seemed to permit
rational conclusions about motion. Aristotle considered infinite sets, such as the
set of whole numbers, and denied the existence of an infinite set of objects as a
fixed entity. For him, sets could be only potentially infinite. (..) Cauchy, like
others before him, denied the existence of infinite sets because the fact that a part
can be put into one-to-one correspondence with the whole seemed contradictory
to him. The polemics on the various problems involving sets were endless (Ibid.,
pp. 992-993)

Kronecker objected to set theory and Russell objected to talking about sets of
sets:

A radically different approach to mathematics has been undertaken by a group of
mathematicians called intuitionists. As in the case of logicism, the intuitionist
philosophy was inaugurated during the late nineteenth century when the rigori-
zation of the number system and geometry was a major activity. The discovery of
the paradoxes stimulated its further development. The first intuitionist was
Kronecker, who expressed his views in the 1870s and 80s. To Kronecker, Weier-
strass's rigor involved unacceptable concepts, and Cantor's work on transfinite
numbers and set theory was not mathematics but mysticism. Kronecker was
willing to accept the whole numbers because these are clear to the intuition. These
‘were the work of God.’ All else was the work of man and suspect. (..) after the
paradoxes were discovered, intuitionism were revived and became a widespread
and serious movement. The next strong advocate was Poincaré. (..) He agreed
with Russell that the source of the paradoxes was the definition of collections of
sets that included the object itself. Thus the set A of all set contains A. But A
cannot be defined until each member of A is defined, and if A is one member the
definition is circular. (..) This idea that the whole numbers derive from the
intuition of time has been maintained by Kant, William R. Hamilton in his
‘algebra as a Science of Time,’ and the philosopher Arthur Schopenhauer. (Ibid.,
pp. 1197-1200).

As to the paradoxes in set-theory even Cantor saw problems asking Dedekind
in 1899 whether the set of all cardinal numbers is itself a set; because if it is, it
would have a cardinal number larger than any other cardinal (1003). Another
paradox is the Russell paradox showing that self-reference leads to contra-
diction, as in the classical liar-paradox ‘this sentence is false’, when talking
about sets of sets as e.g. the set M of all sets that are not a member of them-
selves:

If     M = A: A∉A)     then     M∈M ⇔ M∉M.

Russell solves this paradox by introducing a type-theory stating that a given
type can only be a member of (i.e. described by) types from a higher level. Since
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fractions are defined as sets of sets of numbers they cannot be considered
numbers themselves making the addition ‘2+3/4’ meaningless. Not wanting a
fraction-problem modern LIB-mathematics has chosen to neglect Russell’s type-
theory until computer language, needing to avoid syntax errors, has brought a
renaissance to Russell’s type-theory.

To avoid the type-theory Zermelo and Fraenkel invented an axiom system
making self-reference legal by not distinguishing between an element of a set
and the set itself, which removes the distinction between examples and
abstractions and between different abstraction levels thus hiding that
mathematics historically developed through layers of abstractions; and hiding
the difference between an object and its predicate or interpretation means
subscribing to the logocentrism criticised by poststructuralist thinking and by
the number&word-paradox.

So ‘set’ is a LIB-word derived from axioms and not abstracted from the
LAB. Since the definitions of modern mathematics are based upon the concepts
set, this ‘LIB-virus’ makes all definitions LIB-words different from the LAB-
words of the historical LAB-definitions. Thus we can name modern LIB-based
mathematics ‘meta-matics’ to distinguish it from historical LAB-based ‘mathe-
matics’.

The difference between LIB-based meta-matics, LIB-MATH, and LAB-
based mathe-matics, LAB-MATH, can be seen in the word ‘function’ defined by
modern meta-matics as ‘an example of a set of ordered pairs where first-
component identity implies second-component identity’; and defined by Euler
in 1748 as a common name for calculations with a variable quantity:

A function of a variable quantity is an analytic expression composed in any way
whatsoever of the variable quantity and numbers or constant quantities. (Euler,
1988, p. 3)

Bringing LAB-based mathematics to a LIB-based academy
A LAB-based mathematics should respect two fundamental principles: A
Kronecker-principle saying that only the natural numbers can be taken for
granted. And a Russell-principle saying that we cannot use self-reference and
talk about sets of sets. The appendix shows an example of a Kronecker-Russell
mathematics based on the LAB-words ‘repetition in time’ and ‘multiplicity in
space’ creating a LIB-free, set-free, fraction-free and function-free ‘Count
&Add-laboratory’ where addition predicts counting-results making mathematics
our language of prediction.i

This multiplicity-based mathematics makes a difference in the Danish pre-
calculus classroom (Tarp, 2003), in teacher education in Eastern Europe
(Zybartas et al., 2001) and in Africa (Tarp, 2002). Thus the irrelevance paradox
can be solved if set-based mathematism is replaced by multiplicity-based mathe-



Papers

238

matics. But as a pastoral power LIB-based research is interested in, not solving,
but guarding the fundraising irrelevance paradox by continuing to research the
indoctrination of mathematism instead of researching the education of mathe-
matics.

To test this hypothesis I applied for a job at a LIB-based academy. The
verdict of the committeeii shows that challenging LIB-based meta-matics with
LAB-based mathematics is not considered an asset; you are only admitted to a
LIB-based academy if you are loyal to its interpretation and willing and able to
expand it even if it is seduction and irrelevant to the field it studies. Hence to
solve the irrelevance paradox an alternative sceptical LAB-based academy has
to be installed.

The MATHeCADEMY and PYRAMIDeDUCATION� � � � � � � � � � � 	 
 � �
 is an example of an alternative sceptical LAB-based

academy building on the sophist distinction between choice and necessity; and
solving the irrelevance paradox by introducing a count&add laboratory posing
the educational questions: ‘How to count and predict multiplicity in bundles
and stacks? How to unite stacks and per-numbers?’; thus respecting that ‘re-
uniting’ is the original meaning of the Arabic word ‘algebra’.

At the
� � � � � � � � � � �

 Primary school mathematics is learned through
educational sentence-free meetings with the sentence-subject developing tacit
competences and individual sentences coming from abstractions and validations
in the laboratory, i.e. through automatic ‘grasp-to-grasp’ learning.

Secondary school mathematics is learned through educational sentence-
loaded fairy tales abstracted from and validated in the laboratory, i.e. through
automatic ‘gossip-learning’.

In 
 � � � � � � � � � � � � � � �
8 student teachers are organised in 2 teams of 4

students choosing 3 pairs and 2 instructors by turn. The coach coaches the
instructors instructing the rest of their team. Each pair works together to solve
count&add problems and routine problems; and to carry out an educational task
to be reported in an essay rich on observations of examples of cognition, both
re-cognition and new cognition, i.e. both assimilation and accommodation. The
coach assists the instructors in correcting the count&add assignments. In each
pair each student corrects the other student’s routine-assignment. Each pair is
the opponent on the essay of another pair. Each student pays for the education
by coaching a new group of 8 students.

1 coach

2 instructors

3 pairs

8 students in
2 teams
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In this way multiplicity-based mathematics will multiply as a self-reproducing
virus on the Internet, until it can surface in ten years when half of the mathema-
tics teachers have retired unable to reproduce by failing to make set-based
mathematism relevant to the mathematics students.
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Appendix I. A Kronecker-Russell Multiplicity-Based Mathematics
1. Repetition in time exists and can be experienced by putting a finger to the throat.

2. Repetition in time has a 1-1 correspondence with multiplicity in space (1 beat <->1 stroke).

3. Multiplicity in space can be bundled in icons with 4 stokes in the icon 4 etc.: IIII -> 4

4. Multiplicity can be counted in icons producing a stack of e.g. T = 3 4s = 3*4. The process ‘from T

take away 4’ can by iconised as ‘T-4’. The repeated process ‘from T take away 4s’ can by iconised as

‘T/4’, a ‘per-number’. So the count&stack calculation T = (T/4)*4 is a prediction of the result when

counting T in 4s to be tested by performing the counting and stacking.

5. A calculation T=3*4 = 12 is a prediction of the result when recounting 3 4s in tens and ones.

6. Multiplicity can be re-counted: If 2 kg = 6 litres = 100 % = 5 $ then what is 7 kg? The result can be

predicted through a calculation recounting 7 in 2s:

T = 7 kg

= (7/2)*2kg

= (7/2)*6 litres

= 21 litres

T = 7 kg

= (7/2)*2kg

= (7/2)*100 %

= 350 %

T = 7 kg

= (7/2)*2kg

= (7/2)*5 $

= 17.50 $

7. A stack is divided into triangles by its diagonal. The diagonal’s length is predicted by the Pythagorean

theorem a^2+b^2=c^2, and its angles are predicted by re-counting the sides in diagonals: a = a/c*c =

sinA*c, and b = b/c*c = cosA*c.

8. Diameters divide a circle in triangles with bases adding op to the circle circumference:

C = diameter * n * sin(180/n) -> diameter * � .

9. Stacks can be added by removing overloads:

T = 38 + 29 = 3ten 8 + 2ten 9 = 5ten 17 = 5ten 1ten 7 = (5+1)ten 7 = 6ten 7 = 67

10. Per-numbers can be added after being transformed to stacks. Thus the $/day-number ‘a’ is multiplied

with the day-number ‘b’ before being added to the total $-number T: T2 = T1 + a*b.

2days @ 6$/day + 3days @ 8$/day = 5days @ (2*6+3*8)/(2+3)$/day = 5days @ 7.2$/day

1/2 of 2 cans + 2/3 of 3 cans = (1/2*2+2/3*3)/(2+3) of 5 cans = 3/5 of 5 cans

Repeated addition of per-numbers -> integration Reversed addition of per-numbers -> differentiation

 T2  = T1 + a*b

 T2 - T1 = + a*b

 ∆T  = ∑ a*b

 ∆T  = ∫ a*db

 T2     = T1 + a*b

 (T2-T1)/b = a

 ∆T/∆b     = a

 dT/db     = a

Only in the case of adding constant per-numbers, as a constant interest of e.g. 5%, the per-numbers can be

added directly by repeated multiplication of the interest multipliers: 4 years @ 5 % /year = 21.6% , since

105%*105%*105%*105% = 105%^4 = 121,6%

Conclusion. A Kronecker-Russel multiplicity-based mathematics can be summarised as a ‘count&add-

laboratory’ adding to predict the result of counting totals and per-numbers, in accordance with the original

meaning of the Arabic word ‘algebra’, reuniting:

Constant Variable

Totals

m, s, kg, $

T = a*b

T/b = a

T2 = T1 + a*b

T2-T1 = a*b

Per-numbers

m/s, $/kg, $/100$ = %

T = a^b
b√T = a           logaT = b

T2 = T1 + ∫a*db

dT/db = a



The Count&Add-Laboratory

i Through his successor-principle Peano is forcing an additive structure upon the natural

numbers seducing us to believe that 2+2 = 4. However this is an example of killer-

mathematics, since outside the classroom we meet many examples where 2+2 is not 4:

2*meter + 2*cm = 202*cm, 2*week + 2*day = 14*day, 2*ten + 2*one = 22*one etc.

As we can see the numbers here are per-numbers and should be added accordingly, as the

integration formula ‘T2 = T1 + ∫a*dx’ tells us. I.e. they have to be transformed to totals

first; then they can be added, but only inside a parenthesis securing that the units are the

same: T= 2 3s + 4 5s= 2*3 + 4*5= 6*1 + 20*1= (6 + 20)*1= 26*1= 26/3*3= 8 2/3*3=

26/5*5= 5 1/5*5. So in this case 2+4 can give both 26, 8 2/3 and 5 1/5. Thus 2 3s + 4 5s is

not 6 8s; whereas 2 3rds + 4 5ths = 6 8ths in the case of e.g. 3 and 5 bottles: 2/3*3+4/5*5 =

2+4 = 6 = 6/8*8.

Hence there is a need for a ‘Peano II’ giving the natural numbers a multiplicative structure

so they will represent directly what they describe, i.e. stacks. And so that mathematical

knowledge can grow out of the count&add-laboratory, where rules are generalised through

induction and validated by counting the deduced predictions. This leads to a new kind of

natural numbers, stack-numbers always having the form T = a*b = (a,b). A relation can be

set up identifying stacks with identical totals by saying that the stacks (a,b) and (c,d) are

identical if a*b*1 = c*d*1 as e.g. (2,6) and (3,4).

Thus a natural number becomes an equivalence class in the set of stacks where n = (a,b) if n

= a*b*1 as e.g. 8 = (2,4) since 8 = 2*4*1. The natural numbers then becomes the total

‘area’ of a stack; identical numbers occur though a re-bundling of their stacks; and prime

numbers are stacks that cannot be rebundled. This stack-representation of the natural

numbers is what Kuhn calls a new paradigm. It remains to be seen if number theory will

look different within this stack-paradigm, and whether special problems as Fermat’s last

theorem will be easier to solve within this stack-paradigm.

Reformulated as stacks the Fermat theorem a^n + b^n = c^n becomes a^n = c^n – b^n.

Here a^n is an n-dimensional stack, an n-stack. And c^n – b^n is a binomial that, to become

an n-stack, has to factorised as a combination of n basic binomials of the form (c-b) or

(c+b). For n=2 the 2 basic polynomials can contain different signs, making it possible to

reduce the product of two binomials, normally having four terms, to two terms: (c+b)*(c-b)

= c^2 – b^2. But with three binomials, or more, one of the signs is repeated thus creating a

trinomial, which then has to be reduced to a binomial by being multiplied with a binomial.

ii ‘The applicant presents, on a normative basis referring only to sociology, an original new

formulation of the specific mathematically content. However the distance is far too big to

the reality and the problems that on a practical level can be connected to the teaching of

mathematics. No publications show direct signs of cooperation with other research with a

deviating and a more general accepted starting point, which will be a central part of the work

of the applicant. On this basis the committee does not find the applicant qualified for the

job’.
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