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IProceedings of Madif 12

Preface

This volume contains the proceedings of MADIF 12, the twelfth Swedish  
mathematics education research seminar, held in Växjö, January 14–15, 2020. 
The theme for this seminar was Sustainable mathematics education in a digi-
talized world. The MADIF seminars are organised by the Swedish society for 
research in mathematics education (SMDF). MADIF aims to enhance the 
opportunities for discussion of research and exchange of perspectives, amongst 
junior researchers and between junior and senior researchers in the field. The 
first seminar took place in January 1999 at Lärarhögskolan in Stockholm and 
included the constitution of the SMDF. The list shows all MADIF seminars.

MADIF 1, 1999, Stockholm
MADIF 2, 2000, Gothenburg
MADIF 3, 2002, Norrköping
MADIF 4, 2004, Malmö
MADIF 5, 2006, Malmö
MADIF 6, 2008, Stockholm
MADIF 7, 2010, Stockholm
MADIF 8, 2012, Umeå
MADIF 9, 2014, Umeå
MADIF 10, 2016, Karlstad
MADIF 11, 2018, Karlstad
MADIF 12, 2020, Växjö

Printed proceedings of the seminars are available for all but the very first 
meeting. This volume and the proceedings from MADIF 9, 10 and 11 are also 
available digitally.

The members of the MADIF 12 programme committee were Yvonne 
Liljekvist (Karlstad University), Johan Häggström (University of Gothen-
burg), Hanna Palmér (Linnaeus University), Linda Mattsson (Blekinge Insti-
tute of Technology), Lisa Björklund Boistrup (Malmö University), and Oduor 
Olande (Linnaeus University). The local organisers were Hanna Palmér and 
Miguel Perez (Linnaeus University). The programme committee was, during 
the autumn, extended with three extra editors from the SMDF board: Anette 
Bagger (Örebro University), Cecilia Kilhamn (University of Gothenburg), and 
Maria Johansson (Luleå University of Technology), to handle the large amount 
of contributions to the seminar.
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The programme of MADIF 12 included two plenary lectures by invited  
speakers: Professor Dame Celia Hoyles, University College in London, held a 
talk titled Programming and mathematics: insights from research in England, 
and Professor Paul Drijvers, Freudenthal Institute, Utrecht University and HU 
University of Applied Sciences in Utrecht, held a talk titled Computational 
thinking in the mathematics classroom. As before, MADIF works with a format 
of full ten page papers and with short presentations. This year the number of 
full papers was 27 which is nine more than in MADIF 11, the number of short 
presentations were 23, which is twice as much as in MADIF 11. The seminar 
also had two symposia, where three papers on a common theme were presented 
and discussed. As the research seminars intend to offer formats for presentation 
that enhance feedback and exchange, the paper presentations are organised as 
discussion sessions based on points raised by an invited reactor. The organising 
committee would like to thank the following colleagues for their commitment to 
the task of being reactors and moderators: Andreas Borg, Anna Teledahl, Anna 
Ida Säfström, Anna Wernberg, Anneli Dyrvold, Ann-Marie Pendrill, Camilla 
Björklund, Eva Norén, Ewa Bergqvist, Helena Grundén, Helén Sterner, Iben 
Christiansen, Johanna Pejlare, Jonas Bergman Ärlebäck, Jorryt van Bommel, 
Jöran Petersson, Laura Fainsilber, Linda Marie Ahl, Lisa Östling, Maria  
Fahlgren, Maria Johansson, Ola Helenius, Olov Viirman, Per Nilsson and 
Robert Gunnarsson.

This volume comprises 24 research reports (papers) and one symposium 
report. Furthermore, the volume also contains abstracts that present three 
research reports, one symposium and 23 short reports. In a rigorous two-
step review process for presentation and publication, all papers were peer-
reviewed by three researchers. Short presentation contributions were reviewed 
by members of the programme committee. Since 2010, the MADIF Proceed-
ings have been designated scientific level 1 in the Norwegian list of authorised  
publication channels available at http://dbh.nsd.uib.no/kanaler/

The editors would like to express their gratitude to the following colleagues 
for reviewing submitted reports: Alexandra Hjelte, Allen Leung, Andreas 
Borg, Andreas Eckert, Anna Ida Säfström, Anna Lind Panzare, Anna Teledahl, 
Anneli Dyrvold, Anette Hessen Bjerke, Antti Viholainen, Arne Engström, 
Camilla Björklund, Carina Zindel, Cecilie Carlsen Bach, Charlotta Andersson, 
Christina Svensson, Daniel Clarke Orey, Ester Levenston, Eva Jablonka, Eva 
Norén, Ewa Bergqvist, Frithiof Theens, Frode Rønning, Hanna Fredriksdot-
ter, Hanan Innabi, Hanna Viitala, Helena Johansson, Helena Roos, Iben Chris-
tiansen, Ida Bergvall, Ingela Bjursjö,  Ingi Heinesen Højsted, Jan Olsson, Jane 
Tuominen, Jannika Lindvall, Johan Lithner, Johanna Pejlare, Jonas Bergman 
Ärlebäck, Jonas Dahl, Jonas Emanuelsson, Judy Sayers, Jöran Petersson, Karen 
Givvin, Kajsa Bråting, Kirsti Hemmi, Kristina Juter, Laura Caligari, Linda 
Marie Ahl, Lennart Rolandsson, Lui Albaek Thomsen, Magnus Österholm,  
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Malin Albinsson, Malin Gardesten, Maria Fahlgren, Maria Alessandra  
Mariotti, Martin Nyman, Mats Brunström, Miguel Perez, Mirela Vinerean 
Bernhoff, Morten Elkjaer, Morten Misfeldt, Natalia Karlsson, Nils Buchholtz, 
Ola Helenius, Ove Gunnar Drageset, Per Nilsson, Peter Frejd, Peter Markkanen, 
Peter Nyström, Petra Svensson Kjällberg, Ray Pörn, Reidar Mosvold, Rickard 
Wester, Robert Gunnarsson, Sara Engvall, Sikunder Ali, Suela Kacerja, Tamsin 
Meaney, Timo Tossavainen, Thomas Hillman, Tomas Bergqvist, Troels Lange, 
Uffe Thomas Jankvist, Ulla Runesson Kempe and Ulrika Ryan.

The organising committee and the editors would like to express their grati-
tude to the organisers of Matematikbiennalen 2020 for financially support-
ing the seminar. Finally, we would like to thank all participants of MADIF 
12 for their engagement in an intense scholarly activity during the seminar 
with its tight timetable, and for contributing to an open, positive and friendly  
atmosphere.

The Program comittee 
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Designing a tool for exploring toddlers’ 
numerical competencies in preschool

Camilla Björklund and Hanna Palmér

There is a growing consensus in research that children’s numerical competencies start 
to develop at a very early age. However, less is known how toddlers (1–3-yearolds) 
learn about numbers and few tools are developed to make their progress in learn-
ing visible and researchable. In this methodological paper, we present the process of 
designing such a tool to be used in a combined research-development project. The 
focus of the paper is on the process of designing the tool that is based on theoretical 
principles, founded in the preschool traditions and attract young children’s attention. 

In this paper, we present the process of designing a tool for exploring numerical 
competencies among young children. The expedience of the tool is important to 
discuss, since its’ purpose is to reveal how children develop their ways of experi-
encing numbers. Research has given us a quite good idea of what numerical and 
arithmetical skills to expect from preschool children. Far less is however known 
about how toddlers (1–3-yearolds) learn the complex meaning of numbers and 
how they learn to use numbers in basic arithmetical problem solving. To address 
this lack in knowledge we conduct a combined research-development project 
DUTTA (Educational studies of toddlers’ number sense and emerging arith-
metic skills, funded by the Swedish Institute for Educational Research, grant 
no. 2018-00014), in which we explore the numerical development and emerg-
ing arithmetic skills among toddlers at three preschools over a period of three 
semesters. The project is conducted in close collaboration between research-
ers and three preschool teachers in Sweden, aiming to empirically investigate 
what constitutes toddlers’ learning of numbers and emergent arithmetic skills 
and to elaborate on how preschool education can facilitate this development. 

Contemporary pedagogies emphasize the importance of taking the perspec-
tive of the learners when attempting to facilitate learning. Further, education 
should commence from where the learners stand in their knowledge develop-
ment emphasizing the learners as autonomous and intellectual individuals (van 
Oers, 2018). This requires ways to establish the learner’s perspective and com-
petence. In Swedish preschools, this establishment is made both spontaneously  

Camilla Björklund, University of Gothenburg  
Hanna Palmér, Linnaeus University
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in everyday activities and more systematically based on local templates. 
However, to establish internal and external validity in our research-develop-
ment project we needed to develop a joint tool to be used for exploring par-
ticipating toddlers’ numerical competencies at the involved preschools. In this 
methodological paper we present and discuss the process of designing this tool 
aimed at making numerical competencies and development among toddlers 
both visible and researchable. The specific methodological question is whether 
the tool makes possible to explore how aspects of numbers and arithmetics are 
discerned by the toddlers at different times of the project. 

First in this paper we make a short review of the theoretical foundations of 
the tool. After that, we report on the development of the tool and how we have 
strived for reliability as well as internal, ecological and external validity of the 
included tasks. This process is illustrated by analyzing one of the tasks and 
how children may respond to the task. In the paper, preliminary insights that 
will serve as a basis for further development and fine-tuning of the instrument 
are presented.

Necessary aspects for number knowledge
As for now, there is in research support for four fundamental aspects of numbers 
that are necessary for children to learn about in order to develop their numerical 
understanding and arithmetic skills: representations, cardinality, ordinality and 
part-whole relations (Baroody & Purpura, 2017; Carpenter et al., 1982). These 
aspects of number have in a large body of research proven to be essential for 
successful use of numbers in arithmetic problem solving (Baroody & Purpura, 
2017; Carpenter et al., 1982; Fuson, 1992). Further, interventions directed par-
ticularly at these four aspects of numbers have been found to be successful with 
older (4–5-yearolds) preschool children (Björklund et al., 2021; Kullberg et al., 
2020). Thus, it seems reasonable to focus on these four aspects as a basis for 
numerical development among young children:

Representations (including number words and finger patterns): As numbers 
are abstract to their nature they have to be represented in some way (Goldin & 
Shteingold, 2001). Children are often seen using fingers to illustrate a number, 
which in turn can be either iconical (seeing the full hand as an image that is 
called ”five”) or symbolical (the whole hand has the meaning of five, e.g. as an 
answer to the question ”how many”). 

Ordinality (the relation between objects in a sequence): Ordinality is directed 
towards single entities within a set, which means that every item, situation or 
number word has its exclusive position in a sequence and is thus related to the 
other ones in the same sequence (Fuson, 1988). Most preschool children learn 
to recite the counting rhyme up to 20 or higher and thus experience numbers 
as an ordered sequence of words, but relating ordered entities to each other is 
however a more advanced knowledge of ordinality.
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Cardinality (numbers seen as one set of units): Cardinality is generally defined 
as numbers referring to comprehensive sets of units. ”The cardinal word prin-
ciple” means that the last uttered number word in a counting act includes all 
the counted items (Gelman & Gallistel, 1978). This relies on counting on the 
sequence to determine the cardinality of a set, while studies on subitizing (recog-
nizing small sets without counting; see Wynn, 1998), indicate that cardinality 
must not rely on counting, but on a perception of numbers as a composite set. 

Part-whole relations (for example, 3 and 5 are parts of 8; 8 objects can be rear-
ranged as 4 + 4 or 6 + 2): Learning to understand arithmetical principles is based 
on the child’s ability to handle the part-whole relations of numbers (Piaget, 
1952; Starkey & Gelman, 1982). Children’s understanding of such structural 
relationships allows them to develop ideas about addition and subtraction, not 
as strategies but as units to operate on. Such an awareness of basic and general 
relationships among numbers will eventually allow the child to recognize and 
make use of more general mathematical relationships, such as decomposition, 
commutativity or the compensation principle (Venkat et al., 2019). 

In previous studies, these four aspects have mainly been studied as sepa-
rate skills or knowledge domains. In our project, the intention is instead to 
integrate all four aspects as one construct. Further, there is a broad spectrum 
of research on cognitive abilities and arithmetic strategies conducted during 
the last 40 years (see Carpenter et al., 1982; Baroody & Purpura, 2017 for 
overviews). However, our focus is not on children’s cognitive abilities or their 
use of strategies per se, but instead  on how the mathematical content is expe-
rienced and understood by the toddlers in terms of which aspects of numbers 
they experience in a given situation and how these experiences constitute their  
numerical competencies. 

Exploring early mathematical knowledge and development
There seems to be a consensus in research on early mathematical development 
that number knowledge is a complex construct. However, how to investigate 
young children’s learning of this complex phenomenon and skill varies. Most 
tools developed are directed towards children older than three years, and studies 
who include toddlers are either very limited or broad in their scope. This as there 
are certain challenges in exploring young children’s numerical competencies 
as verbal utterances cannot be taken as the primary source for  understanding. 
Instead, observations of children’s acts have been used in some tools directed 
at the youngest preschoolers (e.g. MIO, see Davidsen et al., 2008). However, 
some of these tools suffer from ceiling effects (Reikerås & Salomonsen, 2019) 
or provide mixed results due to differences in methods for conducting the  
observations (Tudge et al., 2008). 

In experimental studies children’s competencies are studied in isolation 
and in controlled forms (e.g., Sarnecka et al. 2017). Such studies as well as  
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observations of children’s spontaneous numerical interactions (Davidsen et al., 
2008) have indeed given valuable knowledge about numerical skills among todd- 
lers. However, how toddlers’ learn the complex construct of numbers cannot 
be studied comprehensively within experimental designs (Donaldson, 1983) 
but asks for a more complex task situation that reminds of naturalistic set-
tings, yet still used within a systematic design with theoretical underpinnings 
to ensure validity and consistency in the findings. Another critique addressed 
by Donaldson (1983) is that children seem to show different skills depending 
on the context. Thus, results from experimental studies may have low external 
and ecological validity, not necessarily transferable to educational settings. 
Further, many studies on early mathematical competencies and development 
focus on one specific ability, most often a cognitive ability, such as comparing 
set cardinality (Sarnecka & Carey, 2008), arithmetic expectations (Wynn, 1998) 
or children’s dispositions towards certain features, such as SFON tendencies 
(Spontaneous Focusing on Numerosity, see Hannula, 2005), with or without 
making connections to later mathematical achievements. 

A consequence of the few and often limited studies (in range, reliability and 
validity) on toddlers is that the current knowledge of their numerical competen-
cies is fragmented and seldom include longitudinal dimensions and/or atten-
tion to individual differences. Individual differences is however of importance 
since the variation in mathematical experiences within the age span 1–3 years 
is very broad (Doverborg & Pramling Samuelsson, 2009). At the same time as 
research has provided us knowledge of children’s competencies and general 
learning trajectories (Sarama & Clements, 2009), the methodologies for how 
to explore toddlers’ numerical competencies and development are still in need 
of advancement. We know, from the earlier studies and discussion above that 
when developing a tool aimed at establishing the perspective and competencies 
of children, the contexts ought to be familiar to the children at the same time as 
reducing interference of irrelevant elements.

Also, in the DUTTA project we need a tool making it possible to explore how 
children develop one way of understanding numbers to more advanced ways 
of understanding and using numbers. Developing such a tool is a theoretical as 
well as a methodological question.

Theoretical framework
Our theoretical framework when developing the tool is Variation theory of 
learning (VT) which implies an interest in children’s different ways of expe-
riencing numbers (Marton, 2015). According to VT, children need to ”see” or 
expe-rience several necessary aspects of a phenomenon simultaneously to be 
able to understand and handle the phenomenon in a prosperous way. In our 
study this means that if the child experiences the above mentioned four aspects 
of numbers simultaneously, it is possible to learn to use arithmetic strategies  
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successfully and with flexibility (Björklund et al., 2021). For example, a child 
needs to ”see” the meaning of numbers as cardinal values as well as their ordi-
nality in order to add units in a counting task, thus coordinating the cardinality 
and ordinality properties of numbers. Discerning more aspects of numbers, libe-
rates the child to see numerical tasks in new ways that allows more advanced 
strategies to be used. In our study, how a child handles and responds to a situa-
tion involving numbers is interpreted as expressions of certain aspects being 
discerned and some perhaps are not yet discerned. When considering number 
knowledge as a complex construct of several aspects, VT provides a framework 
to describe this construct as constituting necessary aspects and particularly  
the relation between these aspects as fundamental for number learning.

The tool developed within the DUTTA-project
In the development of the tool we directed specific attention to enable children 
to express different ways of experiencing numbers. The tool consists of seven 
tasks. In this context, the notion of task does not imply a written assignment to 
be solved by the children, but are instead play and games that the children are 
invited to participate in. Based on previous research and the theoretical founda-
tion (VT) the tasks were designed in accordance with the following three prin-
ciples: 1) children of a very young age ought to be able to relate to and reason 
about the content based on their previous experiences, 2) necessary aspects for 
developing numerical competencies and basic arithmetic skills are covered, and 
3) children can express different ways of understanding, allowing both a variety 
of experiences between children and within the same child over the prolonged 
period of time to be studied. Thus, each task has five levels of difficulty to avoid 
ceiling effects. Further, even though one task has a specific aspect of numbers 
foregrounded, they are not mutually exclusive to a certain aspect. When design-
ing the tasks the intention was also to provide the best possible conditions for the 
children to express their numerical competencies, but without losing internal 
and external validity. When exploring the toddlers’ numerical competencies 
and development we do not expect them to act and reason in one specific way 
but instead a variation of actions and reasoning is expected. 

Trying out the tool
The project, including development of tools and methods has been approved 
by the Swedish ethical review authority (Dnr: 2019-01037). Each task has been 
tested in authentic situations with 13 children between 18 and 41 months. The 
pilot-testing was conducted by the children’s preschool teachers who before 
were trained in the art of conducting task-based interviews with very young 
children. The interviews are designed as a situation where the preschool teacher 
invites the child to take part in play and games framing the seven tasks. The 
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interviews were all video-recorded with the children’s legal representatives’ 
written consent. The expedience of the tool was evaluated based on the video-
recordings, according to the three principles described above. Specific conside-
ration was given to the materials and manipulatives, in that earlier research has 
shown critical differences in what the children perceive in a task, depending on 
the materials at hand (Björklund, 2014).

Below we illustrate the two basic levels of the seventh task in the tool and 
thereafter discuss how the responses given by children comply with the three 
principles for designing the tool (bold text is what the teacher says, in brackets 
how the teacher is supposed to act).
1. The kitties (3) are playing hide-and-seek. Can you count while they are 

hiding? (three identical toy cats are first shown to the child and then put in a box 
where the child cannot see them)

 Here is a kitty (the teacher takes one cat out of the box, showing it to the child) 
 Are there any left in the box? How many are left? (the teacher takes another cat 

out of the box) 
 Are there any left? How many are left in the box? (the teacher takes the last cat 

out of the box) 
 Are there any left? How many are left? (the teacher and child check to see that 

the box is empty)

2. (check that the box is empty). The kitties (3) are hiding once more in the box. 
(the teacher hides the toy cats in the box) 

 Here is a kitty (the teacher takes one cat out of the box) 
 Are there any left? How many are left? Another kitty comes out. (the teacher 

now shows two cats) 
 Are there any left? How many are left? One kitty is hiding again (the teacher 

puts one back into the box) 
 How many are in the box now? Here comes a kitty out again (the teacher takes 

one cat out again) 
 Are there any left in the box? How many? Another kitty comes out (the teacher 

takes out the third cat from the box) 
 Are there any left in the box? How many? (the teacher and child check to see that 

the box is empty)
The first principle stated that children of a very young age ought to be able to 
relate to the content of the task and to reason based on their previous experi-
ences. This task was framed as ”hide-and-seek” that many children have experi-
ences of. Also children without such experience often find ”hiding” to be thrill-
ing. Kitty the cat is part of all tasks, only differing in sizes. In the hide-and-seek 
play the three smaller cats are used as players. The choice to use identical toys 
is based on the theoretical conjecture (VT) that what varies against an invariant 

Figure 1. The toy cats
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surrounding is what can be discerned (Marton, 2015). That is, in order to afford 
the children to discern the numerical relations and how they alter throughout 
the play, the toys are kept invariant to reduce attention to individual features. 
In an early version of the task, different toy animals were used. This however 
attracted the children’s attention to the kind of animals, asking for instance for 
a preferred animal ”the bear” rather than attending to number. Thus, by using 
identical props we were able to reduce attention to some of the non-numerical 
aspects of the play.

According to the second principle the tasks were to cover the four aspects 
of representations, cardinality, ordinality and part-whole relations. The aim 
with the hide-and-seek activity was to provide the child with the opportunity 
to express his/her understanding of cardinality in general and numbers’ part-
whole relations in particular. Also, in the beginning of the play the child is 
encouraged to count on the number sequence while the cats were hiding, which 
is a basic feature of numbers’ ordinality. The activity thereby has multiple levels 
for analysis; the question ”are there any left” may reveal the child’s understand-
ing of the cardinality of three and the follow-up question ”how many” opens 
up for numerical representations of the experienced number. Number relations 
are changing within the whole of three objects, making the relations between 
one, two and three explicit (part-whole relation). In the piloting of the task 
we observed opportunities to explore children’s awareness of cardinality of 
numbers, for example in the following excerpts with Jamil (2 years 10 months)

Jamil: Can I have Kitty? (Jamil gets the toy)
Teacher: Are there any left in the box?
Jamil: Maja, can I have Maja? (Jamil gets the second toy) Now I have two! (Jamil 

hugs the toys)

This child expresses him possibly discerning the aspect of cardinality as he 
concludes having ”two” when given the second toy. Another example with 
David (3 years 5 months).

David: Where are all my buddies? (Holding the larger Kitty the cat, talking with a 
play voice)

Teacher: Look, here is one (Puts one toy on top of the box) Are there any kitties left in 
the box?

David: Two (Simultaneously showing index and middle finger)

This excerpt is a short but illustrative example of a child discerning the numeri-
cal relations in the given numbers. He answers with both number words and 
finger representation how many toys are hidden when one appeared on top of 
the box. To respond in this way, the child is assumed to have discerned the 
numerical relation between the visible toy, the two hidden toys and that they 
form a whole of three together. These two excerpts are examples of how we find 
that childrens’ understanding of numbers is possible to explore in this task. The 
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changes between hidden and visible toys provide a variation of numerical rela-
tions. This variation opens for the child to express him/her discerning the part-
whole relation of 1-2-3, which is also an indication of discerning cardinality. 

The third principle was to allow children to express different ways of under-
standing. Such expressions are considered important as units of analysis, allow-
ing both the variety of experiences between children and within the same child 
over a prolonged period of time to be studied. In other words, we aimed to 
develop tasks that would allow the children to express themselves in ways that 
could be analysed in depth rather than merely ”can-cannot” categories. The fol-
lowing two ways of responding to the beginning of the ”hide-and-seek” activity 
where the child is asked to count on the counting sequence while the toy cats 
are hiding illustrate one such variation we seek to explore.

Ines (1 years 11 months): One. Three. Six.

The child saying random numbers can be interpreted as knowing that number 
words are words connected to ”counting”, as a string of words. In addition, she 
says three words, which corresponds with the number of items to be counted. 
She may thereby experience the one-to-one correspondence between the sets of 
kitties and number words. The random order indicates that numbers’ ordinality 
are not yet discerned by the child, but experienced as ”words” of a certain kind. 
A different way of experiencing numbers is expressed in the following excerpt 
with Olivia (3 years 4 months).

Oliva: One, two, three, four, five. (The three toys are visible on top of the box. Olivia 
points irregularly at the toys from one side to the other. She stops counting 
when the toy furthest to the right is pointed at) 

The act of pointing and stop counting when the items run out could be inter-
preted as the child experiencing that counting has to do with determining the 
number of a set. Saying the correct sequence of number words is also a sign of 
discerned features of ordinality. However, it could also be a procedural act as 
in ”something you do when asked ’how many’ ”. Since the child is not point-
ing in one-to-one correspondence between object and number word said it is 
unlikely that the child experiences numbers as means to determine the quan-
tity of a set (not coordinating the ordinal and cardinal meaning of numbers). 
In this particular case the counting is however meant to be a measurement of 
time as part of the play. Thus, numbers can be experienced in different ways 
according to their meaning and purpose in different situations, which is criti-
cal to make use of numbers in proficient ways in everyday interaction and play, 
as well as arithmetic problem solving. As the children were enabled to express 
different ways of understanding, the third principle for our design of the tool 
seems to be fulfilled. 
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Conclusion
In this methodological paper, we have presented the process of designing a tool 
to be used in a combined research-development project exploring the numeri-
cal knowledge and development among toddlers. Our main intention was to 
find out whether the tool could reveal aspects discerned by the toddlers that are 
central for developing numerical competencies (e.g. Baroody & Purpura, 2017; 
Fuson, 1988, 1992). The design process included trying out tasks and props with  
children in various ages from different preschools. The evaluation of reliability, 
internal, external and ecological validity showed that the assessment tool can 
make visible different ways of understanding numbers, which presumably will 
allow both the variety of experiences between children and within the same 
child to be observed and analyzed. Ways of experiencing numbers are assumed 
to constitute those aspects that the child is able to discern and differentiate at 
a certain moment and situation, which gives us a framework for interpreting 
learning in terms of which aspects and how the child expresses him/herself 
discerning at different occasions. Gaining such data for qualitative analyses is 
critical for forthcoming development of preschool education in our project. By 
designing the tool where several aspects of numbers are discernable, we open 
up for an analysis of the complex construct of numbers. In developing the tool 
we became particularly aware of the importance of reducing irrelevant fea-
tures (see also Björklund, 2014), but still trying to frame the tasks as meaning-
ful from the child’s perspective (van Oers, 2018). The pilot study indicates that 
the tool is sufficient enough to be used in the primary study. Further studies 
using this tool with a larger sample will be conducted and evaluated to confirm 
whether the tool is robust enough for exploring toddlers’ learning of number and  
emerging arithmetic skills also in a longitudinal perspective.
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Connected classroom technology to 
monitor, select and sequence student 

responses

Maria Fahlgren and Mats BrunströM

This paper reports a study of teachers’ use of Connected classroom technology to 
prepare for whole-class discussions building on students’ computer-based work 
in mathematics. The study investigates four upper secondary school teachers’  
management of time and progression during the phase of the lesson where students 
are working in pairs. The findings highlight various didactical choices made by the 
teachers. These choices and some related challenges are discussed.

In concluding a survey on technology use in upper secondary mathematics 
education, Hegedus et al. (2017) raise the question: ”How can the teacher make 
best use of student created contributions?” (p. 32). A typical response has been 
that, supported by technology, teachers can develop more formative practices 
in which instruction is shaped by analysis and assessment of these contribu-
tions (e.g. Cusi et al., 2017). However, according to Drijvers (2011), it is more 
challenging for teachers to survey students’ work with a computer than with 
conventional textbooks using paper and pencil. Moreover, we have found that 
even if students produce paper-and-pencil responses (to computer-based activi-
ties) that reveal their understanding (including basic mathematical misunder-
standings), these are most often not registered by teachers during the lesson 
(e.g. Brunström & Fahlgren, 2015). This highlights the questions of whether 
and how technology can be used to give teachers more insight into students’ 
mathematical thinking, in real time, to inform subsequent teaching activities 
so as to create a formative teaching approach.

Support for formative practices
In the field of technology and mathematics education, there is growing inte-
rest in how technology can support formative practices in mathematics. When 
referring to formative assessment practices, we use the definition by Black and 
Wiliam (2009, p. 9).

Maria Fahlgren, Karlstad University  
Mats Brunström, Karlstad University
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Practice in a classroom is formative to the extent that evidence about stu-
dent achievement is elicited, interpreted, and used by teachers, learners,  
or their peers, to make decisions about the next steps in instruction that 
are likely to be better, or better founded, than the decisions they would 
have taken in the absence of the evidence that was elicited. 

One type of technology that is used to support teachers to achieve this type 
of classroom practice is often referred to as Connected classroom technology 
(CCT). CCT is defined as ”... a networked system of personal computers or 
handheld devices specifically designed to be used in a classroom for interactive 
teaching and learning.” (Irving, 2006, p. 16).

Earlier studies in this field have reported on the use of systems that connect 
students’ handheld graphical calculators with the teacher’s computer, e.g. TI-
Nspire navigator (Irving, 2006). For example, Clark-Wilson (2010) reported on 
a project investigating secondary school teachers’ practices using this system. 
There was one feature of the system, the Screen capture, that the teachers found 
particularly useful. Through this feature, the teachers can view all students’ 
hand-held screens on their own computer. Clark-Wilson found several ways of 
using this feature, e.g. ”... monitoring students’ activity during the lesson; sup-
porting teachers to know when to intervene; promoting and initiating whole-
class discourse ...” (p. 752). Another popular feature was the Live Presenter, 
through which the teacher could share interesting student screens with the whole 
class. This provided a ”shared learning space” where students’ own suggestions 
were discussed with the teacher and with their peers (Clark-Wilson, 2010). 

In recent years, CCT appropriate for one-to-one settings where students are 
equipped with a personal computer has been developed. Cusi et al. (2017) report 
on a study that used a set of digital worksheets embedded in a specific CCT, 
IDM-TClass, through which students’ computers are connected to the teacher’s 
computer. They found how various types of digital worksheet enhanced forma-
tive assessment strategies in whole-class activities. In the type called ”problem 
worksheet”, students worked in pairs or small groups on open-ended tasks 
and they were prompted to submit written responses as they progressed. This 
allowed the teacher to survey their answers (in real time) and to select answers 
to use as a basis for a whole-class discussion. In contrast to the use of Screen 
Capture, described above, where the teacher could survey students’ ongoing 
work on their calculator, the CCT in this case only displays submitted answers.

However, there is a challenge for teachers to survey multiple student answers 
(in real time) to use as a basis for subsequent instruction (Olsher et al., 2016). 
One example of an ongoing project that addresses this issue, is the development 
of the online assessment platform, STEP (Seeing The Entire Picture). The aim 
of this project is to support teachers by automatically categorizing student sub-
missions. This CCT goes beyond just categorizing the responses as being right 
or wrong, providing the teacher with information about students’ mathematical 
understanding at a group level (Olsher et al., 2016).
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Another challenge for teachers is to plan whole-class discussions based on stu-
dents’ computer-based work (Cusi et al., 2017). Cusi et al. found it helpful to 
use the five practices proposed by Stein et al. (2008, p. 321). 

1 Anticipating likely student responses to cognitively demanding  
mathematical tasks, 

2 monitoring students’ responses to the tasks during the explore phase, 

3 selecting particular students to present their mathematical responses 
during the discuss-and-summarize phase, 

4 purposefully sequencing the student responses that will be displayed, and 

5 helping the class make mathematical connections between different  
students’ responses and between students’ responses and the key ideas. 

In the study to be described, the focus is on teachers’ use of CCT to monitor, 
select, and sequence student responses in preparation for a whole-class dis-
cussion. However, implementing this kind of technology-supported practice 
is a complex undertaking, and there are several didactical choices to consider 
among which many relate to the issue of time management and lesson flow.

Time management and lesson flow
It is well established in the literature that time plays a critical role in reform-
oriented teaching, e.g. integration of technology (Assude, 2005; Leong & Chick, 
2011). Ruthven (2009) includes ”time economy” as one of ”five key structur-
ing features of classroom practice” in relation to teachers’ use of computers in 
school mathematics lessons. Assude (2005) investigated teachers’ time manage- 
ment strategies when integrating dynamic geometry in the primary school. She 
observed how the teachers in her study used some time saving strategies that 
might be useful for others to consider. One strategy is to avoid unnecessary dis-
ruptions during the activity, another strategy is to make sure that the students 
are already familiar with the mathematical objects needed (Assude, 2005).

Investigating Japanese mathematics teachers’ conception of high-quality 
teaching practice, Corey et al. (2010) reported that they gave a great deal of 
attention to The Flow Principle. Of particular interest, for this paper, is the 
aspect of flow that ”... deals with time allotment to different segments of the 
lesson and transitions between these sections.” (p. 454). 

So far, however, there seem to be few empirical investigations of how teachers  
manage their time when using CCT in their orchestration of mathematics 
lessons. This paper reports the findings from a study looking at mathematics 
teachers’ implementation of a designed computer-based lesson, consisting of 
three stages: introduction, pair work, and whole-class discussion. In particular,  
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this paper aims to investigate time management and progression during the 
phase of the lesson where students are working in pairs on activities developed 
for a dynamic mathematics software (DMS) environment. The research ques-
tions are: While using CCT during students’ pair work on computer-based 
activities, how do teachers manage, in general, (a) the lesson flow, and, more 
specifically, (b) their time to monitor students work and to select and sequence 
student responses in preparation for a whole-class discussion?

Method
The present paper reports on a study of four upper secondary school teachers’ 
performance of a lesson using a specific CCT, Desmos classroom activities. 
Since this is a case study, the intention is not to provide generalizable results, 
but to identify some didactical choices appearing when teachers utilize this 
type of technology. Although the participating teachers were all familiar with 
the use of DMS, the use of CCT was new for them. 

As a basis for planning the study, we used data, in terms of student responses 
to an explanation task, from a study with 229 students (Fahlgren & Brunström, 
2018). Our mathematical-conceptual analysis of these student responses (which 
space does not permit us to report here) provided key formative information 
about what kind of response categories to expect during this particular acti-
vity, i.e. the first stage in the Stein et al. model (2008). Guided by the Stein et 
al. model, we developed step-by-step guidance for a lesson consisting of three 
stages: introduction, pair work, and whole-class discussion. For a detailed 
description of the theoretical framing behind the design, see Fahlgren and 
Brunström (2019). The guidance included a suggestion of response categories 
(to the explanation task) to search for among the student responses. Moreover, 
it provided a recommendation on sequencing consideration of these responses 
during the whole-class discussion as well as suggesting some questions to pose.

This paper focuses on the pair-work stage, and specifically how the teachers 
utilized the CCT for monitoring, selecting and sequencing student responses 
to the specific explanation task (denoted ”1c”). Particular attention was paid to 
teachers’ utilization of the following types of CCT view:
Summary. This view provides the teacher with an overview of all students’ 

progression, i.e. how many items they have done (see figure 1).

Specific item. It is possible to survey all student responses to a single item at 
the same time and to select specific responses by using ”snapshots”.

Presentation preparation. All snapshots taken are automatically placed in 
this view. The teacher can sequence the selected student responses by 
dragging them to different presentation views for display (in whole class). 
The ordering of the presentation views could easily be changed and it is 
possible to show several student responses on the same presentation.
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During the pair work, the students used two computers; one displaying an 
e-worksheet (Desmos classroom activities) and one displaying the DMS 
environment, in this case GeoGebra. The students were prompted to submit 
responses, in terms of descriptions and explanations, to each item as they pro-
ceeded. It was these responses that the teachers had access to (and not the 
GeoGebra displays).

Data collection and analysis
The main data consists of screen recordings of the teacher’s computer providing 
information about the teacher’s options and choices. In addition, each lesson 
was audio recorded, and field notes were made through classroom observation 
by two researchers focusing on which students the teacher interacted with. 
Finally, a joint meeting with the teachers afterwards, where some observations 
by the researchers were presented and discussed, was audio recorded.

The data from the screen recordings (during the pair-work stage) were time 
coded as follows. First, each time that the teacher shifted the type of CCT view 
was indicated which resulted in several ”time spans”. Next, each time span 
was analysed to indicate instances where the teacher actively used the CCT 
for monitoring, selecting or sequencing. Data from both screen recordings and 
classroom observations were used in this phase. Finally, the teachers’ uses 
of the CCT during the pair-work stage were compared and contrasted. This 
resulted in the identification of ”didactical variables” (Ruthven et al., 2009) 
and possible values of such variables. Put simply, a didactical variable (DV) is 
any aspect of the task, the task environment, and the teachers’ management of 
them which may influence the unfolding of the expected trajectory of learn-
ing. In this paper we characterise a DV in terms of the way in which a teacher 
might ask about that variable. 

The joint meeting with the teachers afterwards provided useful information 
about affordances and constraints experienced, didactical intentions behind 
various choices as well as suggestions for improvement.

Unfortunately, the screen recording of one of the teachers (Teacher A) 
was interrupted after 14 minutes. Accordingly, for this teacher, we only have 

Figure 1. A screen capture of the Summary view from one of the teachers’ screen
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data from the classroom observation (including audio recording) and the joint 
meeting.

Results
Table 1 provides an overview of the time devoted to each stage of the whole 
lesson by the four teachers. In this section we focus on two main types of 
result relating to the time management and progression of the pair-work stages:  
Managing lesson flow and Monitoring, selecting and sequencing.

Managing lesson flow
Within the pair-work stage, we noted that the time from the first pair completing 
the computer-based activity to the beginning of the whole-class discussion was 
26 min. (Teacher B), 24 min. (Teacher C), and 24 min. (Teacher D) respectively. 
In the meeting with the teachers afterwards, this issue was discussed. The idea 
was that the students, when they had finished the activity, should continue with 
their work in the textbook, while waiting for the rest of the class to complete 
the activity. However, the teachers found that several students did other things, 
i.e. they felt that they had finished as the activity had been performed. Thus, 
the lesson flow was disrupted for these students. One alternative discussed is 
to design activities that include an initial ”core” which all students would com-
plete prior to the class discussion, plus some ”extension” to be tackled by those 
students that finish the ”core” early. 

One reason that the pair-work activity took so long for some students was 
that notions that were new for them appeared in the activity (as observed in two 
classes). Another reason was that some students got stuck on the explanation 
task (1c), probably because this was an unfamiliar type of task for them. In this 
way, the lesson flow was disrupted for these students as well. 

Since it is important to minimize the ”waiting time” for students that finish 
the activity early, and at the same time provide all students sufficient time to 
adequately engage with the task to be discussed, we suggest the following DV 
(and possible values of it): When should the whole-class discussion start? (DV1): 
(i) When all pairs have finished the whole activity, (ii) When all pairs have fini-
shed the task to be discussed, or (iii) When all the expected answer categories 
have been generated by at least one student pair. Three of the teachers chose (i) 

Teacher A Teacher B Teacher C Teacher D
Introduction 12:45 10:43 6:45 16:53

Pair work 19:15 31:38 31:08 33:09

Whole class 12:17 10:35 20:33 18:02

Total time 44:17 52:56 58:26 68:04

Table 1. The duration of each stage of the lesson in the classes
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while one of the teachers chose (ii). They all used the Summary view to decide 
when to start the whole-class discussion. Indeed, it may be that the availability 
of the Summary view via the CCT encouraged the teachers to wait for all stu-
dents to complete the task or activity. If a teacher would prefer (iii), the Specific 
item view would be useful.

Monitoring, selecting and sequencing
This section provides results about the teachers’ use of the various types of 
CCT view (introduced above). One of the teachers whose screen was recorded 
did not utilize the Specific item view. Instead, to survey the students’ responses 
to a specific item, the teacher looked at different groups’ responses to the item 
one at a time (by clicking on the corresponding square in the Summary view). 
As a consequence, the teacher looked at the same responses several (up to six) 
times while there were responses that s/he did not view at all. This result, we 
argue, highlights the usefulness of the Specific item view. This (unexpected) 
behavior of one of the teachers limited the data available concerning the use of 
the Specific item view. Equally, it affected that teacher’s opportunity to exploit 
the full potential of the CCT. Consequently, the detailed analysis of teachers’ 
utilization of all three CCT views comprises only two teachers.

The time diagrams in figure 2 show the various CCT views displayed on 
these two teachers’ screens during the pair-work stage: Summary (S), Specific 
item – explanation task (1c), Specific item – other tasks (O), and Presentation 
preparation (P). Moreover, the diagrams show the (relative) length of each time 
span as well as whether the teacher actively used the CCT (grey) or not (black). 
The numbers in the diagrams indicate the numbers of student responses selected 
(1c) or dragged for presentation (P) during the particular time span.

When analysing and comparing the time diagrams in figure 2 several didacti-
cal variables were identified in relation to the teaching practices of monitoring, 
selecting, and sequencing (Stein et al., 2008).

One form of monitoring is to use the Summary view to examine all stu-
dents’ progression. One teacher (Teacher D) only used this form once, while the 
other teacher (Teacher C) used it frequently (eight times, for short time spans). 
Together with the field notes taken during classroom observations, the time 

Teacher C

Teacher D

Figure 2. Detailed time diagrams of the CCT views shown on two of the teachers’  
screens during the pair-work stage
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diagrams made it obvious how Teacher C often utilized the Summary view to 
detect students who needed help, i.e. students who were stuck or had skipped 
an item. Classroom observations and the joint meeting provided evidence that 
Teacher A and Teacher B also used this view in the same way. In the discus-
sion during the meeting afterwards, all teachers agreed that this CCT view was 
useful for this purpose.

Another way of monitoring is to use the Specific item view to monitor all 
students’ responses to a particular item. When comparing the time diagrams 
in figure 2, it seems that Teacher D used this feature more than Teacher C. The 
reason for this might be that (as the further evidence below indicates) Teacher 
D wanted to start the selecting process quite early. 

In relation to the selecting and sequencing process, the time diagrams in 
figure 2 show that the two teachers used quite different strategies. Teacher D 
started selection after seven and a half minutes of the pair work and took all but 
one snapshots within four minutes. Three and a half minutes later, the teacher 
started sequencing. After another ten minutes, the teacher took a further snap-
shot (the last one) and completed the sequencing by adding this snapshot to the 
first presentation view. Teacher C, on the other hand, started selection after 
twenty seven and a half minutes of the pair work, and used just over a minute 
to take all (seven) snapshots. Then s/he immediately started sequencing, which 
was finished within less than one and a half minutes.

The screen recording shows that Teacher B, like Teacher D, started selec-
tion quite early (after four and a half minutes of the pair work), and took the last 
snapshot almost twenty eight minutes later. Sequencing started after seventeen 
minutes of the pair work, and was finished immediately after the last snapshot 
was taken. Data from classroom observations revealed that Teacher A, like 
Teacher C, started selection at the end of the pair work and took all snap shots 
and prepared all presentation views within a few minutes.

Some other issues were also raised in the reflection meeting. Three teachers 
pointed out the challenge of helping students when needed, and at the same time 
preparing for the whole-class discussion. Further, they found it challenging to 
identify the student answers in terms of the response categories.

To summarise, while two of the teachers started the selecting and sequencing 
processes quite early and had several periods of interaction with students before 
they completed the presentations, the other two teachers conducted selection 
and sequencing in a focused manner at the end of the pair-work stage. The screen 
recording from Teacher D revealed that a consequence of starting selection early 
might be that some students revise their responses after the teacher has taken 
the snapshot. This resulted in the following didactical variables being identi-
fied, and possible values of these variables. When should the selecting process 
start? (DV2): (i) As soon as some relevant answer has been produced, (ii) When 
all students have finished a specific task, or (iii) When all the expected answer 
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categories have been produced. And When should the sequencing process start? 
(DV3): (i) As soon as a student response has been selected or (ii) When the 
selecting process has been finished. 

Discussion
This study set out to investigate possible didactical choices related to the man-
agement of time and lesson flow that teachers have to consider while using CCT 
to support formative practices during students’ computer-based work. Didacti-
cal variables provided a useful tool to identify situations where the participating 
teachers made various choices. Although the study is a case study, the findings 
can provide some guidance for future practice and research on the use of CCT to 
prepare for a whole-class discussion based on students’ computer-based work.

Although the teachers did indeed find the CCT features supportive, it was 
challenging for them to orchestrate the pair-work stage, i.e. both to provide help 
to students and to prepare for whole-class discussion. One way of reducing the 
workload for teachers while students are working on their computers is to avoid 
new mathematical notions in the tasks or to introduce such ideas to the class in 
advance. This might also reduce the length of the pair-work stage, and hence 
the waiting time for students that finish the activity early. This aligns with one 
of the time saving strategies found in the study by Assude (2005).

These findings also raise questions about whether technology can support 
teachers further in their work of monitoring, selecting and sequencing student 
responses. This issue is addressed by the ongoing work with the STEP plat-
form in which student responses are automatically categorized to off-load from  
teachers this time-consuming task (Olsher et al., 2016). However, it is a chal-
lenge to design tasks that can be automatically assessed and categorized. Thus, 
we suggest task design as a fruitful area for further work in relation to automatic 
categorization of (digitized) student responses.

When to start the whole-class discussion (DV1) is a crucial question influen-
cing the lesson flow (Corey et al., 2010). Three of the teachers started when all 
students had finished the whole activity, which resulted in waiting time for 
several students. In this way, the lesson flow was disrupted for these students. 
On the other hand, starting too early with the whole-class discussion might 
disrupt the lesson flow for those students that are still working on the activity.

When reflecting on the didactical variables identified, they all relate to the 
optimal timing of key steps in preparation for (DV2, DV3), and initiation of 
(DV1), the whole-class discussion. A natural progression of the work reported 
in this paper is to investigate the pros and cons of choosing particular values of 
the identified didactical variables.
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A pre-study of grade 6 students’ 
orientation to social and 

sociomathematical norms during 
mathematical problem solving in groups

Hanna Fredriksdotter, niklas norén and kajsa Bråting

This paper presents an investigation of mathematical problem solving in two 
small groups of students in grade 6, as well as the groups’ orientation to social and  
sociomathematical norms. The interaction within the groups was analysed with 
proof schemes as analytical tool, in combination with principles and procedures of  
Ethnomethodological conversation analysis (EMCA). The analysis showed that one 
group oriented to social and sociomathematical norms that gave rise to a potentially 
positive learning opportunity, whereas the other group primarily oriented to a social 
norm of equality that overshadowed the mathematical discussion. This study serves 
as a pre-study for the analysis of larger material, where EMCA appears as a promising 
methodological contribution. 

Within the field of mathematics education, there is a consensus that collabora-
tion is beneficial for students’ mathematical development (e.g. Wood & Kalinec, 
2012). However, letting students take part in group discussions and collab-
orative tasks does not automatically lead to productive mathematical work; 
sometimes participation as such is favoured, prior to discussions regarding the  
mathematical content of the activity (e.g. Kilhamn et al., 2019). 

This paper presents an investigation of grade 6 students’ mathematical 
problem solving in small group interaction. The study is based on the ethno-
methodological approach, which is infrequently applied to previous research 
within the field of mathematics education (Ingram, 2018). According to ethno-
methodology, social interaction is a process where participants orient to shared 
norms of conduct, and where actions are organised in recognisable patterns 
(Heritage, 1984). By organising actions in patterns, the participants contribute 
to the establishment of norms (Ingram, 2018), which in the mathematics class-
room consist of both general social norms and sociomathematical norms that 
are specific to mathematical activities (Yackel & Cobb, 1996). According to 
Yackel and Cobb (ibid.), the development of sociomathematical norms creates 
a ”taken-as-shared” sense of when and how to contribute to mathematical  
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discussions, as the norms concern both the content and the process of participat-
ing in a mathematical activity. For the same reason, McClain and Cobb (2001) 
argue that the development of sociomathematical norms is closely related to the 
students’ mathematical development. Kazemi and Stipek (2008), who compare 
learning opportunities in varying classroom practices, confirm McClain 
and Cobb’s statement. However, further analysis of the role of social inter-
action in the mathematics classroom is valuable, particularly regarding how  
teachers’ and students’ turns build upon each other, and contribute to patterns 
that organise mathematical classroom communication (Drageset, 2015). Wood 
and Kalinec (2012) also call for the analysis of the relation between academic 
and social aspects of students’ collaboration in the mathematics classroom. The 
aim of this study is thus to analyse both mathematical and social aspects, and 
their relationship, of grade 6 students’ mathematical problem solving in small 
group interaction. Our research questions are as follows.

1. What characterizes explanations and solutions that students consider 
mathematically acceptable?

2. What social and sociomathematical norms do students orient to, when 
engaging in mathematical problem solving?

As only two groups were observed, this study serves as a pre-study for the 
analysis of larger material.

Theoretical framework 
This study is based on a combination of ethnomethodology and the emergent 
perspective. The aim of ethnomethodology is to analyse what people, who 
participate in various kinds of everyday activities, do in order to make those 
activities meaningful (Heritage, 1984). The emergent perspective shares this 
aim, with a specific focus on mathematical activities (Cobb & Yackel, 1998). 

According to the emergent perspective, the relation between the individual 
student and the social context of the mathematics classroom is central. As the 
constitution of norms is an important factor of the classroom culture, Yackel and 
Cobb (1996) developed the concept of sociomathematical norms, in connection 
to the formulation of the emergent perspective. Sociomathematical norms are 
normative aspects that specifically concern mathematical activities, whereas 
general social norms apply to relations between participants. One example of 
a social norm that is applicable in all classrooms, regardless of subject matter, 
is that students are expected to explain and account for their solutions to a 
problem. The corresponding sociomathematical norm is to expect that an expla-
nation of a solution to a mathematical problem is mathematically acceptable. 
Similarly, in any discussion, a new suggestion of a solution to a problem should 
be different from what has already been suggested, but in a discussion of a  
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mathematical problem, the suggestions have to be mathematically diffe-
rent. Students should also be able to recognize and appreciate the variety in  
sophistication of different mathematical solutions (McClain & Cobb, 2001).

What counts as mathematically acceptable, different and sophisticated solu-
tions varies between classrooms, as sociomathematical norms emerge through 
interactive processes between the teacher and the students (Yackel & Cobb, 
1996). For instance, the teacher contributes to the development of sociomathe-
matical norms by explicitly asking her students to present different solutions 
to a given task, as shown by McClain and Cobb’s (2001) analysis of discussions 
in primary school classrooms. The teacher’s way of asking questions, or giving 
attention to certain explanations, also implicitly contributes to the development 
of normative patterns in the social interaction; this is revealed by Partanen and 
Kaasila (2015), in their investigation of the development of norms during upper 
secondary school students’ collaboration in small groups. 

McClain and Cobb (2001), as well as Kazemi and Stipek (2008), investigated 
norms of entire classrooms, whereas we, like Partanen and Kaasila (2015), focus 
on small group work. However, we do not analyse the actual establishment of 
norms over time; instead, we focus on how participants orient to norms during 
the course of group interaction. Sociomathematical norms were part of the theo-
retical framework in Levenson, Tirosh and Tsamir’s (2009) investigation of the 
discrepancy between the norms teachers endorse and students perceive, as well 
as in Wester’s (2015) analysis of the tension between the teacher’s intentions and 
students’ perception of norms. The difference between these two studies, and 
the study reported in this paper, is that our aim is to analyse students’ interac-
tion, rather than the interaction between students and teachers. Students’ inter-
action was also the focus in Tatsis and Koleza’s (2008) identification of norms in 
students’ problem solving in pairs. However, Tatsis and Koleza performed their 
study as an experiment, whereas ethnomethodological investigations concern 
naturally occurring activities (Heritage, 1984). 

Empirical material and method for analysis 
The empirical material of this study consists of video recordings of two hetero-
geneous groups of students in grade 6, solving a mathematical problem. The 
observed group work represents a natural and authentic classroom situation, as 
the teacher of the class often let her students collaborate in small groups. The 
two groups (group A and group B) were observed during one lesson where they 
solved a combinatorial problem that was formulated as follows. 

There is a line-up at the bus stop. In how many different ways can:
a) 2 persons stand in line?
b) 3 persons stand in line?
c) 4 persons stand in line?
d) Try to find a rule for calculating the number of line-ups.
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At the beginning of the lesson, the teacher instructed the students to start out 
by working individually with the problem. After a few minutes, the teacher 
asked the students to turn to the classmate sitting next to them, and agree on a 
”pair-solution”. Thereafter, the dyads formed groups of four, and were told to 
agree on a ”group-solution”. 

In order to characterize the explanations and solutions that the students con-
sidered mathematically acceptable (RQ1) we used the concept of proof schemes 
as analytical tool. According to Sowder and Harel (1998), proof schemes serve 
as a classification of what makes people convinced that an assertion is true. In 
mathematics, the three main classes of proof schemes are analytic, empirical 
and externally based. Students who are able to reason in a logical and general 
manner demonstrate analytic proof schemes, whereas empirical proof schemes 
consist of explanations that rely on the perception of examples or concrete 
objects. The externally based proof schemes describe situations where the con-
vincing factors are located outside of the student, such as what an authority (for 
instance the teacher) has stated. The initial stage of the analysis was thus to code 
the students’ utterances with regard to demonstrated proof schemes. 

To further analyse the social interaction in the groups, we used principles 
and procedures of Ethnomethodological conversation analysis (EMCA). One 
principle of EMCA is to analyse naturally occurring data. Another principle is 
to treat talk-in-interaction as contextually embedded, in the sense that partici-
pants’ utterances and actions only can be understood in relation to what other 
participants say and do (Heritage, 1984). One major finding in EMCA research 
is that repair practices (that is, participants’ handling of various kind of trouble 
during talk, such as problems of understanding) is interactionally organized 
in at least three parts: trouble source, initiation of repair and repair (Sidnell, 
2010). Each spoken turn in the analysed sequences was therefore related to the 
preceding and the following turns, and their contributions were interpreted 
with regard to how the participants displayed an understanding of the turn (or 
not). As norms can be identified as patterns in social interaction (Ingram, 2018; 
Yackel & Cobb, 1996), we also analysed sequences of turns that demonstrated 
the groups’ orientation to social and sociomathematical norms (RQ2). 

Below, in the analysis of the interaction in the two groups, dialogue excerpts 
are organised in turns at talk, including relevant embodied actions and handling 
of artefacts. Descriptions by the transcriber are marked with ((double parenthe-
sis)) and speaker’s emphasis with underlining. The students have been given 
fictitious names: Alice, Anna, Alan and Andy in group A, and Bea, Bibi, Benny 
and Billy in group B.

Analysis of the interaction in group A
During individual work, Andy wrote a table of all possible combinations of 
line-ups for three persons, where the digits 1, 2 and 3 represented persons 
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standing in line. Thereafter he wrote two sets of six combinations, all begin-
ning with number 1 and 2 respectively, representing four persons in line, as 
shown in figure 1.

Using the two tables with six combinations, Andy was able to calculate the total 
number of possible line-ups for four persons. He explained his calculation to 
his ”pair-partner” Alan in the following way:

if the same person is in the front then there are six different ways for the 
ones behind to stand and then there are four persons who can be in the 
front so I just figured six times four is twenty four.

Andy reduced the problem from four to three persons, by fixating one person 
in the first place, and was then able to calculate the number of line-ups: ”six 
times four”. As Andy formulated a solution based on logical reasoning about 
a general character of the problem, he demonstrated an analytic proof scheme. 

At first, the other group members could not quite understand Andy’s explana-
tion. In the following sequence, Andy initially repeats his analytic explanation,  
which Anna and Alice respond to. 

41 Andy: if the 1 is in the first place all the time then there are six different ways if 
there are three persons behind

42 Anna: yeah but what if everyone else is in the first place
43 Andy: ((writes combinations with number 4 in the first position)) as there’s a 4 you 

have to take 4123 4132 42 well you get it 
44 Anna: yes but all the others can be in the front
45 Andy:  but check this out if there’s only the 4 in the front 
46 Alice: yeah
47  Anna: yeah
48 Andy: with these three persons behind they can move about so there are six differ-

ent ways 
49 Alice:  and then we can do the same thing with the others
50 Andy:  yes and then y’know there are four persons 
  six different ways six times four is twenty four 
51 Alice: mm ((nods)) good let’s do this as our group’s 

Figure 1. Excerpt from Andy’s notes
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Anna’s ”yeah” (42) indicated that she accepted Andy’s solution (41), but her fol-
lowing question also revealed that she did not understand his explanation. Andy 
treated Anna’s question (42) as a trouble source when he switched to an empiri-
cal proof scheme and provided an example (43), as an attempt to repair her dif-
ficulties to understand. However, Anna showed that she still did not understand 
Andy’s general explanation, and extended the repair sequence, when once again 
stating that everybody can be in the first position (44). Andy then continued to 
explain, by stressing the importance of keeping the same number in the first 
place: ”only the 4” (45). Anna and Alice showed that they listened, by saying 
”yeah” (46, 47). Alice also showed that she now could follow Andy’s reason-
ing (49), which Andy confirmed by repeating his initial way of explaining his 
solution (50). This also closed the repair sequence. Thereafter, Alice made it 
public that the group had agreed on Andy’s suggestion as the group’s joint solu-
tion (51). Andy’s group mates did not simply accept his solution, but strived to 
understand his general explanation, as shown by Anna, raising the same objec-
tion twice (42, 44). Together with Andy’s thorough explanation of his solution 
(43, 45, 48), the repair sequence displayed an orientation to a social norm to 
strive for joint understanding. 

Soon after the sequence presented above, Alan managed to intuitively for-
mulate the factorial function when telling his group how the number of line-ups 
for three and four persons can be calculated. 

 one times two is two times three is six 
 one times two is two times three is six six times four is twenty four

The group assessed Alan’s formulation as ”cool”, ”smart” and ”magic”, and told 
the teacher that their solution was ”great” and ”awesome”. Together with the 
effort to understand Andy’s logical reasoning, the group’s response to Alan’s 
formulation of the solution displayed an orientation to a norm that solutions to 
mathematical problems should be formulated on a general level. This corre-
sponds to the primal sociomathematical norm of recognizing the sophistication 
of a specific solution.

Analysis of the interaction in group B
In group B, Bibi initially wrote all possible combinations of three persons in 
line. Thereafter, she let the digits 1, 2, 3 and 4 represent four persons in line, 
and presented her solution as one list of six combinations, all beginning with 
1, as shown in figure 2.

Just like Andy, Bibi formulated a solution based on logical and general  
reasoning when explaining her calculation to her ”pair-partner” Bea: 

here are all the ways with a 1 in the front and all the ways with a 2 in the 
front that should get exactly the same number as there are just as many 
figures [so] with four figures I just did six times four and that’s twenty four .
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Bibi demonstrated an analytic proof scheme in formulating a general character 
in her solution: ”with a 2 in the front, that should get exactly the same number”. 
Benny and Billy, on the other hand, presented their solution as tables of letters 
and dots, thus demonstrating an empirical proof scheme, as shown by figure 3. 

Benny and Billy assumed that everybody had to change places in order for 
the new combination to be ”different”, and when the dyads came together as 
a group, they instantly realised that they had interpreted the problem in com-
pletely different ways. However, the students did not discuss the mathematical 
content of their solutions. Instead, Billy asked the teacher to join them in order 
to assess Bibi’s solution of the number of line-ups of three persons.

43 Billy: ((points at Bibi’s solution)) can you can you do it this way what’s it now eh 
123 132 231 213

44 Teach.: ((interrupts Billy)) you have kind of drawn how these different people stand
45–46 ((omitted talk about who wrote the solution)) 
47 Teach.: yes you could do it that way 
48 Bea: yes
49 Benny: okay 

Billy’s request for the teacher’s assessment (43) demonstrated an externally 
based proof scheme, which also Bea and Benny accepted in their responses to 
the teacher’s positive answer (48, 49). The possible problem of having two solu-
tions was, however, not resolved. Shortly after the sequence presented above, 
Benny turned to the teacher, again demonstrating an externally based proof 
scheme, in asking which one of the dyads’ solutions the group should choose.

71 Benny: which one should we have as the group’s eh joint
72 Teach.: ((to Benny and Billy)) well since you thought about it in a different way 

((omitted talk about different parts of the task)) maybe you could present a 

Figure 2. Excerpt from Bibi’s notes

Figure 3. Excerpt from Billy’s notes
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and b in your two different ways of thinking ’cause you just thought about 
it in a different way but you haven’t like done anything wrong 

73–76 ((omitted talk about which worksheet to write on))
77 Benny: we write both of them 
78 Bibi: we like write both of the ways 
79 Teach.: you could do that
80 Bea: mm
81 Teach.: it can be quite interesting there could be others in the class who thought 

about it in this way 

The teacher’s responses (72, 81) resemble the sociomathematical norm that sug-
gested solutions to a mathematical problem have to be mathematically different 
(cf Yackel & Cobb, 1996). However, the teacher also oriented to a social norm 
of equality, in telling Benny and Billy that they ”haven’t, like, done anything 
wrong” (72). Together with the statement that they ”just thought about it in a 
different way” (72) the teacher’s stance towards the dyads’ differing solutions 
became guiding for the group’s subsequent assessment.

98 Bibi:  but your idea was also very well thought out
99 Benny: right
100 Bibi:  because it is it depends both of them can be the correct answer y’know
101 Billy:  well both none of them is actually the correct one
102 Bibi:  no exactly
103 Benny:  it all just depends on how you think about it
104 Bibi:  exactly
105 Billy:  both are just as correct
106 Benny: both were just as good

Initially, Bibi assessed Benny and Billy’s solution positively (98), which Benny 
agreed with (99). The group also agreed that both solutions were equally correct 
(100, 101, 105, 106) and Benny repeated that the only difference between the 
two solutions was ”how you think about it” (103). Although the students talked 
about their mathematical solutions, this sequence demonstrates an orientation 
to a social norm that both parties are equal. 

Conclusions and discussion 
Many studies regarding classroom norms (e.g. Kazemi & Stipek, 2008; Leven-
son et al., 2009; McClain & Cobb, 2001; Yackel & Cobb, 1996; Wester, 2015) 
analyse whole class interaction, and interaction between teachers and stu-
dents. The study reported in this paper adds to previous research in that we 
focus mainly on social interaction within small groups of students, engaging in  
mathematical problem solving. 
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The students in the observed groups had belonged to the same class, with 
the same teacher, for two years. It is therefore reasonable to assume that they 
had taken part in the same mutual processes of developing classroom norms. 
Nevertheless, our results show that there were significant differences regard-
ing which social and sociomathematical norms the groups oriented to. As the 
development of sociomathematical norms ”gives rise to learning opportunities” 
(Yackel & Cobb, 1996, p. 466), our results imply that students’ in the very same 
classroom create and experience a variety of learning opportunities, within  
different groups.

The solution that group A considered to be mathematically acceptable was 
characterized by an analytic proof scheme, as Andy’s explanation was based on 
logical reasoning about general features of the problem. By engaging in a colla-
borative repair sequence, the students oriented to a social norm to strive for joint 
understanding. In positively assessing Alan’s formulation of how to perform 
calculations, the students also displayed an orientation to a sociomathematical 
norm that solutions should be formulated on a general level. The group there-
fore (intuitively) created a potentially positive learning opportunity, characteri-
zed by what Kazemi and Stipek (2008) denote press for conceptual learning. 

In group B, the dyads presented two solutions, characterized by analytic and 
empirical proof schemes respectively, but instead of discussing each other’s 
suggestions, the students invited the teacher’s authority in choosing which one 
to present as the group’s joint solution. The teacher then conveyed that it is 
interesting to present different solutions, which is in line with the sociomathe-
matical norm that suggestions to a mathematical solution have to be mathe-
matically different (Yackel & Cobb, 1996). However, the fact that the dyads’ 
suggestions actually were solutions of two different problems, due to differing 
interpretations of the task, was never discussed. Instead, both the teacher and 
the students primarily oriented to a social norm of equality, which oversha-
dowed the mathematical discussion. This is problematic, as discussions that 
lack assessments of the content of the solutions do not contribute to students’  
mathematical development (cf. McClain & Cobb, 2001).

Wood and Kalinec (2012) suggest that researchers should focus on both 
the mathematical activities and the social talk, in order to better understand 
how teachers’ arrangements of groups, and the design of tasks, might support 
students’ group work. Kilhamn et al.’s (2019) finding that the mathematical 
concepts and ideas of collaborative tasks do not always get adequate attention 
underlines the importance of investigating academic as well as social aspects of 
students’ collaboration. Kilhamn et al. also encourage continued investigation 
of how sociomathematical norms can be made explicit to students, to support 
their mathematical development. Our analysis on a turn-by-turn basis (as called 
for by Drageset, 2015) of students’ demonstrations of proof schemes, and orien-
tation to social and sociomathematical norms, showed how differing conver-
sational patterns may shape mathematical content as well as social practices in 
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students’ group work. EMCA therefore appears as a promising methodological 
contribution to the analysis of collaborative problem solving. 
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Five roles of the designer

Miguel Perez

This discussion paper raises some of the ethical issues related to different ways of 
interacting with teachers in educational design research. A categorisation of five pos-
sible roles that the designer may assume is proposed. These different roles will be 
framed from a perspective that may be referred to a systems approach to design. 
Focus is therefore put on methodological issues with the purpose to stimulate reflec-
tion on matters of design ethics that go beyond anonymity and informed consent. 
Finally, the different roles are related to the current tradition in educational design 
research.

Educational design research may be described as ”a family of methodologi-
cal approaches in which instructional design and research are interdependent” 
(Cobb & Gravemeijer, 2008, p. 68). This family of approaches explicitly shares a 
twofold goal. The goal is about addressing real-life problems in classrooms and 
in teachers’ everyday practices, as well as about contributing to theory and our 
understanding of the processes involved (Barab, 2014; Cobb et al., 2003; Collins 
et al., 2004; Lesh & Sriraman, 2005; McKenney & Reeves, 2012). Although 
the field has provided valuable insight into the complexity of education, we 
are all aware of the continuous difficulties concerning the dissemination of 
research results. For this reason, researchers within mathematics education 
have expressed the need for more encompassing design approaches in which the 
roles of teachers and other actors are more clearly considered (Cobb et al., 2017; 
Hoyles & Noss, 2015). As Van den Akker and Nieveen (2017, p. 76) explain:

A crucial challenge for more successful innovation in education is to 
build bridges and more interaction between many levels, factors and 
actors. One of the most promising strategies is to strive after more fre-
quent and direct interaction between teachers, developers and teachers in  
educational design, development and research activities.

Miguel Perez, Linnaeus University
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Although the idea of increased collaboration with teachers seems good, there 
are also difficulties associated with connecting two different communities – 
research and practice. But as noticed by Lester & Wiliam (2002), researchers in 
their reports rarely discuss the difficulties and the ethical issues involved when 
interacting with teachers and other stakeholders. The aim of this discussion 
paper is therefore to raise some aspects of design methodology – referred to as 
design ethics (Devon & van de Poel, 2004) – that are seldom discussed within 
the field of educational design research in mathematics education and that go 
beyond issues of anonymity and informed consent. Design ethics relates to 
the way the decision-making process is organised and how different tasks are 
divided between different actors. A second aspect concerns the role of stake-
holders in the design process and the way in which they are included or even 
excluded (ibid.). In particular, I will suggest a categorisation of five possible 
roles that the designer may assume. The roles are called designer as artist, 
designer as expert, designer as facilitator, designer as provider, and finally 
designer in service. These different roles will be framed from a perspective 
that may be referred to a systems approach to design. 

A systems perspective on design
This section provides the philosophical foundation for the elaboration of the five 
roles of the designer. But before we continue, the meaning of the word design 
needs to be clarified. In a systems approach, to design means to be involved in 
goal-seeking, or teleological, behaviour that aims at creating change, such as 
improving something or making something more usable or more sustainable, 
but without the idea of the existence of a final end (Bereiter, 2002; Churchman, 
1971; Simon, 1996). Creating change is a process that assumes that something 
exists first as a given even if the situation or the task may be unclear from the 
beginning. Although others may be involved, the designer is often the one who 
initiates and brings change into a situation by introducing artefacts, such as 
teaching artefacts or design principles, developed to attain goals. 

The researcher as designer
In design research the researcher and the designer are often the very same 
person (or a group of persons). Still, it may sometimes be convenient to speak 
of them as though they are two separate persons in order to recognise the kind 
of considerations that need to be made as many of the design aspects that are 
involved in design research may relate in different ways to the researcher and 
to the designer. For example, while the researcher is expected to meet scientific 
demands from research communities, the designer is expected to meet prag-
matic demands in practice. The researcher is expected to be rigorous and the 
designer is expected to be creative. In particular, the designer is involved in 
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creative processes that strongly depend on subjective judgements. These judge-
ments are established in proven knowledge about the domain of investigation, 
in this case, mathematics education. In other words, while the designer needs 
to be immersed in the social context, the researcher has a different role. He or 
she is expected to provide a rational explanation for the judgements made. Thus, 
in order to put things into perspective, the researcher may need to momentarily 
detach himself or herself from the very source of creativity that the designer 
draws from.

Another dilemma relates to the nature of the designed solutions. While the 
researcher may require the solution to be innovative with a high degree of 
complexity, practitioners may prefer a simple solution that works and is easy 
to implement. However, such conflicts may in fact be productive: ”Creative 
design arises when there is a conflict to be solved between the designer’s high-
level problem, and the client’s standards for an acceptable or useful solution” 
(Cross, 2006, p.72). Nevertheless, not knowing or having a good idea of how to 
balance multiple demands may result in neither being met. 

Didactic systems 
A system can be seen as a set of related elements. Elements can be concepts, 
objects, subjects or a combination of these. Language is an example of a con-
ceptual system. A falling apple under the influence of gravity is an example of 
a physical system where concepts and objects are connected through the laws 
of Newtonian mechanics. Systems are also made up of other systems which 
are called subsystems. An important decision is therefore how large or small 
set of components that needs to be considered and how to conceptualise the  
relation between them. 

Some systems can be called teleological systems, meaning systems that 
pursue goals, like a soccer team that trains for an upcoming game or like a 
teacher who wants a group of students to learn something. Didactic systems 
are systems that involve persons with a didactic intent. These systems consist 
of subjects that pursue goals, which in this case, is defined by the learn-
ing objectives. Furthermore, didactic systems are not restricted to formal 
learning spaces such as classrooms. However, the didactic systems that are 
mainly considered here are those that exist in formal settings, for example, in  
institutions such as schools.

The client, the decision-maker and the designer
To create change through design, there must be a purposive individual who can 
produce alternatives that can potentially lead to his or her objectives (Church-
man, 1971; Nelson & Stolterman, 2012). This must be someone with the ”ability 
to imagine that-which-does-not-yet-exist to make it appear in concrete form as a 
new, purposeful addition to the real world” (Nelson & Stolterman, 2012, p. 12).  
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To set the stage, we can imagine three such characters: the client, the decision-
maker and the designer. In this casting, the client is the one whose desires should 
be served by the system and who can be described in terms of his or her objec-
tives or goals. The client’s interest in these goals can be described by a ”trade-
off” principle that tells us about the priority of different possible futures. The 
designer’s responsibility is to imagine the client’s goals, but as the designer’s 
resources are limited, the client cannot expect to have it all. Instead, all the 
designer can do is to provide close approximations to these idealistic desires 
(Churchman, 1971). 

While the designer and the client need to share the same value structure, 
the client and the decision-maker do not necessarily do so. The decision-maker 
character has a different role because he controls the resources within the 
systems environment. By this, he is part of creating the real design. The rela-
tionship between these three characters becomes even more intricate when 
realising that, in real life, ”both client and decision maker are highly complex 
entities, made up of interacting forces” (Churchman, 1971, p. 48). In addition, 
it is possible that all three characters reside in one person. 

The designer engages in design efforts for the purpose of bringing change 
to an existing didactic system. The didactic system is also a teleological system 
concerned with learning. It includes teachers and students, and although learn-
ing in the didactic system is not restricted to students, it is the students that are 
the main targets of the didactic intent. In this sense, the didactic system serves 
the students, meaning that the students can be conceived of as the clients of the 
didactic system. The educational designer may share the didactic intent towards 
the students, but her efforts may not necessarily focus on the students. The 
designer may choose to address any actor of the didactic system (e.g. teachers). 
By including the didactic system as a teleological component, the students may 
remain as clients also within the teleological system of the designer. However, 

Figure 1. A design system and its actors
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the teleological system must also be designed so it can serve the researcher as 
a client, as in, the researcher herself and her ambition to contribute to scientific 
knowledge. In this sense, the designer may interpret the situation not only as if 
there were two connected systems but also two clients, in particular, the students 
and the researcher (figure 1). Although teachers may not be explicitly considered 
as clients, they nevertheless have important roles in the teleological system, for 
example, as actors in the didactic system – in particular, the teaching system. 

In this conceptualisation, the didactic system is considered as part of the 
teleological system in such way that the didactic system preserves its natural 
function even when embedded within the larger system of the designer. An 
alternative way is to conceptualise the didactic system as part of the envi-
ronment of the teleological system. In this latter case, students are no longer 
clients unless the designer and the teleological system take over the didactic 
intent. However, this means shortcutting the teachers’ natural role within the  
teaching system.

Five roles of the designer
We can imagine that the designer’s interaction with the client and the decision-
maker can take different forms. Inspired by Nelson and Stolterman (2012), we 
consider five roles of the designer: the designer as artist, as expert, as facilita-
tor, as provider, and as designer in service. The first four roles have individual 
merits and shortcomings that the fifth role, designer in service, attempts to 
exploit by assuming different roles during the design process. We proceed by 
presenting the four basic roles. Later in this section, we elaborate on the fifth 
role, designer in service.

Designer as artist
In this role, the designer acts as the sole owner of the design process. The client 
has little or no influence other than providing the designer with a relevant 
context. Furthermore, the designer as artist may not even be very interested 
in the desires or needs of the client. In this situation, the designer acts in a 
fashion more or less sufficient unto himself. The design solution is based on the  
designer’s own judgements as an instance of artistic expression.

This means that in the role of designer as artist, the designer controls both 
the goals and the design process. Even if the designer and potential clients may 
share similar goals, we can assume that they are viewed from different per-
spectives, at least if we assume that the designer and the client are not the same 
person. There is no active match-making between the designer and the client. 
Any potential relevance or utility for a client would be due to the experience 
and skills of the designer to produce such results. In the worst case, relevance 
for practice would be more or less accidental or only due to chance.
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Designer as expert
In this role, the client is not given the possibility to contribute to the design 
process. Although the client’s goals may be considered, the designer is the one 
with predetermined insights and design solutions. No customised interactions 
with the client are needed, as the client merely acts on behalf of the initiatives 
presented to him/her.

In this case, the designer helps the client in the way that the designer believes 
is the most effective or worthwhile. The designer finds the mandate to do so 
from the effort that the designer has put into analysing the context and the 
design problem as well as the scientific knowledge that the designer brings 
into the situation. However, this is, by the very nature of helping, a one-sided 
relationship (Nelson & Stolterman, 2012). Furthermore, if the problem is cor-
rectly analysed according the designer’s methods, the conclusions and solutions 
cannot be regarded as incorrect. If the designer should fail to produce any useful 
and relevant outcomes, it could be blamed on interfering variables or on short-
comings in the client’s implementation. If it is the latter, then the immediate 
solution could be to educate the client so he or she will become more proficient  
regarding the operationalisation of the designer’s proposal.

Designer as facilitator
When the designer acts as facilitator, the client is expected to decide what 
goals should be pursued and what should be done. The designer acts merely to 
organise and to support the design process and does not contribute with new 
perspectives or new ideas.

In the role of designer as facilitator, the designer considers the perspective 
of the client. The designer allows the client to make use of his or her wide expe-
rience and ”real” knowledge in the design process. The client decides what goals 
to pursue for the purpose of achieving results with relevance for local practices. 
In this case, solutions reside within the current environment represented by 
the client. The designer’s primary role is to facilitate any effort that the client 
suggests. The designer addresses issues of relevance and utility by giving the 
client authority to control goals and processes. In other words, the client is made 
responsible for strategic decision-making.

Designer as provider
In this role, the designer refrains from participating in the design process. As a 
provider, the designer acts only as an instrument by answering questions from 
an intentional client. In this case, the designer does not contribute intentionally 
to any part of the design process.

In this case, the client assumes total control over goals and processes. The 
designer provides support only when asked and in well-defined and limited 
issues (i.e. technical and scientific support). The designer relies on the client to 
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know how to use the knowledge and tools that the designer has provided. Also, 
in this case, relevance seems to be secured, as the client is made responsible for 
deciding on both strategies and tactics.

Ethical considerations
Both the designer as artist and the designer as provider require only minimal 
interaction between the designer and the client. This minimal interaction 
may cause difficulties for the designer to develop sufficient understanding for 
making informed ethical design judgements, as the designer works in isolation 
with limited interaction with the client and other actors of the system.

Furthermore, on one hand, the designer in the role of the designer as artist 
does not make the assurance that the knowledge produced can be understood 
or be used by a specific client for his or her purposes. On the other hand, in the 
role of the designer as provider, the designer does not have insight in the client’s 
design process and cannot be expected to judge if the solutions are generalisable 
beyond the immediate environment. In both cases, the knowledge produced is 
either the property of the designer or of the client. Each role focuses on eso-
teric knowledge rather than exoteric knowledge. In other words, the roles of 
the designer as artist and the designer as provider are self-serving rather than 
other-serving (Nelson & Stolterman, 2012). Thus, if dissemination is regarded 
as an important value of design, it may be lost with little chance of recovery. 

In comparison, the role of designer as an expert or a facilitator may appear 
more appealing, as the control of goals and processes are shared between the 
designer and the client. However, the expert and the facilitator face other diffi-
culties. The designer in the role of the designer as expert merely ”accesses the 
voice” of the client and does not pay sufficient attention to the client’s needs. 
And the designer as expert could be accused of acting in a superior way that 
could cause a conflict between the values of the expert and the values of the 
stakeholders involved. If the designer as expert fails to produce results that the 
client understands, he or she may be criticised for using an insensitive top-down 
approach that does not account for the specifics of the situation.

The designer as facilitator also faces other problems. Unlike the designer 
as expert, the facilitator does not contribute with new perspectives because he 
relies on the judgement of the client to know what to do. The facilitator’s may 
suggest design strategies based on the client’s request. The client is responsible  
for risk-taking regarding design tactics and design solutions. Nevertheless, 
along with all the other characters, the designer as facilitator is responsible for 
how design activities may affect others; however, the facilitator does not engage 
in redirecting the client’s actions. The designer as facilitator believes that no 
matter what happens, he or she should not interfere. Therefore, if something 
goes wrong, the facilitator could be accused of being, although presumably 
scientific objective, socially irresponsible. Furthermore, as no new inputs are 
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introduced, the facilitator accepts the client’s formulation of the situation. But 
the client’s intuition may be misleading: The solution that the client implements 
may come at the expense of other goals that the client is not aware of and also 
not prepared to sacrifice. The passiveness of the designer as facilitator may 
worsen the situation for the client. The facilitator chooses to accept the client’s 
perspective and does not engage in analysing the consequences of the client’s 
design solution. This approach may risk contributing to the establishment of a 
recurring problem instead of engaging in resolving the problem and improv-
ing the design solution. The client is fully responsible for evaluating the design 
solution and its consequences.

The designer in service
In summary, none of these power relations between the designer and client 
are fully satisfactory, but nevertheless, they should not be discarded so easily. 
Thus far, we have examined four out of five possible roles of the designer. The 
last role is the designer in service. This role represents an intricate relationship 
where both the designer and the client are engaged dynamically in the design 
process. This relationship involves switching between the four previous roles. 
In this sense, it is a balanced relationship between the designer and the client 
but still with the tensions of the other roles. The role of designer in service does 
not mean unconditionally accepting either proposed problem formulations or 
any initial ideas for solutions, as presented by the client or by other ”experts” of 
the environment (Nelson & Stolterman, 2012). The designer in service switches 
carefully between the four roles, purposively and intentionally rather than by 
decree. For some specific purposes or in some phases of the design process, 
the designer may momentarily assume the role of the artist, the expert, the 
facilitator or the provider to better understand and deal with a situation – to 
rock the boat, so to speak, but not in a harmful way. Rather, it is done carefully 
with the intention of negotiating and developing a mutual understanding of 
the design objectives and emerging issues in the design process. The tactic of 
merely asking what the client wants may not be sufficient, as it cannot always 
be expected that the client will know what he or she exactly wants or is capable 
of expressing it explicitly. Furthermore, ”[...] the statement of needs and wants is 
often confused and frequently wrong, simply because statements of wants and 
needs serve so many different purposes for the individual” (Churchman, 1968, 
p. 181). Instead, the designer may act like the expert or the artist and introduce 
artefacts or other arrangements and, by getting his client to react to them, form 
a preliminary understanding of how well the design proposal fits in the envi-
ronment. Which roles are relevant to assume in order to satisfy a design goal 
is the responsibility of the designer to decide in collaboration with the other 
actors of the teleological system. The designer and the other actors of the system 
may bring their own perspectives into their partnerships. In this sense they are 
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equal partners, but as their access to social and or scientific resources may be  
different, they cannot always be expected to contribute in the same way. 

The current educational design research tradition 
In educational design research within mathematics education, the standard pro-
cedure is that ”a research team assumes responsibility for a group of students’ 
learning” (Cobb & Gravemeijer, 2008, p. 68). A team design and implement 
teaching activities based on a selection of principles. Empirical outcomes are 
then analysed by the researchers by utilising predefined theoretical frameworks, 
with focus on describing and evaluating learning effects of the implemented 
activity (e.g. Cobb & Gravemeijer, 2008; McKenney & Reeves, 2012). Although 
teachers may sometimes be part of the research team, this standard procedure 
suggests that the dominant role assumed in this tradition is designer as expert. 
This role is used throughout the design process, including for the dissemination 
of research results. However, this strategy has not been effective for improving 
relevance for practice. As Dewey (1929, p. 19) asserted:

No conclusion of scientific research can be converted into an immediate 
rule of educational art. For there is no educational practice whatever which 
is not highly complex; that is to say, which does not contain many other 
conditions and factors than are included in the scientific finding.

Thus, in order to improve the current situation, perhaps other roles should also 
be considered. As expressed by Cross (2006): ”Design knowledge resides firstly 
in people: in designers especially [...] secondly in processes: in the tactics and 
strategies of designing [...] Thirdly [...] in products themselves: in the form and 
materials and finishes which embody design attributes” (p. 100–101).

In the role of designer in service the participating teachers are more clearly 
positioned as designers and agents of change. On one hand, the designers’ 
subjective judgement is invited as an essential creative feature in the research 
process. On the other hand, inviting flexibility and subjectivity can obscure 
the rationale for the research process thus making it harder to understand and 
follow. For this reason, the role of designer in service may be methodologically 
challenging, as the research process may not longer follow a predetermined tra-
jectory to the same extent as in the role of designer as expert. Nevertheless, by 
giving the teachers extensive responsibilities in the design process, they acquire 
design knowledge and control of the process. This may increase the possibility 
that people other than the researcher will also consider the design a good design.

Note
This paper is an adapted excerpt from the thesis by the author. See Perez (2018) 
for original publication.
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Components of knowledge in solving 
linear equations

Jöran Petersson

This article identifies knowledge components needed for successfully solving linear 
equations. Data for this purpose is 359 Swedish year 9 students’ written responses to 
the test task ”solve the equation 2x + 3 = 11”. The following set of knowledge compo-
nents were identified; arithmetic knowledge, parsing knowledge, balancing equa-
tions, giving a value to the unknown, not omitting parts and the habit of verifying the 
solution. This paper discusses for which of these knowledge components, students 
could discover and correct their own errors if they would both solve an equation and  
verify its solution.

In mathematics textbooks, a standard method for teaching how to solve linear 
equations is the canonical method (Buchbinder et al., 2015). This method 
includes the steps of first simplifying on each side of the equals sign arriv-
ing at the form ax + b = cx + d. After this follows inverse operations by making 
appropriate addition and/or subtraction operations arriving at the form ex = f 
thus isolating the unknown on one side and finally multiplying and/or divid-
ing in order to identify the value of 1 (one) unit of the unknown. Moreover, it 
seems that many students use the canonical method as a mechanical procedure 
(Huntley et al., 2007). 

Though solving linear equations has been taught and learnt since Babylonian 
time (Friberg, 2005), and there now is a large body of research on teachers teach-
ing and students learning how to solve them, Otten et al. (2019) yet made a call 
for further research in this area. The reason for their call is that they found the 
often-taught balance model (Andrews & Sayers, 2012; Marschall & Andrews, 
2015), be it physical, digital or drawn, to be complex as a didactical tool in the 
presence of negative numbers (Vlassis, 2002). Nevertheless, even when only 
positive numbers are present, students make errors that seem difficult for the 
student to identify as errors if simply applying the canonical method as a pro-
cedure (Petersson, 2018b). The aim of the present study is to explore the role 
of verifying a solution in relation to students’ responses to the task of solving 
a linear equation.

Jöran Petersson, Malmö University
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Components of prerequisites for solving linear equations
As stated above, the standard tool for solving linear equations is the canonical 
method (Buchbinder et al., 2015) and that students seem to too often use this 
as a mechanical procedure (Huntley et al., 2007). Now, one component in the 
canonical method is that it rests heavily on that the students view the equals 
sign as relational (in contrast to operational), which Knuth et al. (2006) found to 
be crucial for success in linear equation solving tasks. Another way to say this 
is that the equality must be kept balanced. A second component in the canoni-
cal method is arithmetic knowledge. For example Hall (2002) and Petersson 
(2018a) found that in subtractions, students may sometimes use counting down 
strategies where they include or exclude both the starting and ending number 
thus getting, for example, the difference 11 – 3 one unit too small or too large. 
A third component in the canonical method is parsing algebraic expressions 
correctly, for example 2x, as a multiplication and not as an addition (Humber-
stone & Reeve, 2008; MacGregor & Stacey, 1997; Petersson, 2018b). A fourth 
component in the canonical method is the concept of the unknown. Asquith 
et al. (2007) described perceptions of the unknown as a hierarchy of seeing 
unknowns as a multiple number, a specific number and an unknown digit. 
This includes giving a value to one unit of the unknown; that is setting ”x = …”.

Research question
A lot of research on solving linear equations explores some single component, 
such as those mentioned above. Less research seems to have explored several 
components simultaneously. Moreover, less research seems to have explored 
verifying a solution. Hence, the research question in this study is to explore 
how often students use verifying and what role explicitly verifying a solution 
hypothetically could play in helping students identifying and correcting their 
own errors made in some component of the canonical method.

Methods
To answer the research statement, the author collected 359 Swedish year 9 stu-
dents’ written responses to one task on linear equations given in a mathema-
tics test. The students’ responses were analysed with respect to the knowledge 
components described above.

The test task
Vlassis (2002) separated between what he called arithmetic linear equations, 
having the unknown on only one side, and non-arithmetic equations, having 
the unknown on both sides. The explored test task was ”Solve the equation 
2x + 3 = 11”. There are two reasons for choosing this arithmetic equation as test 
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task. The first reason is that this task is simple enough to get many responses, 
since a difficult equation might result in many blank responses not contributing 
to the result. Still, it is possible to, in this task, make errors corresponding to all 
the components mentioned earlier. The second reason for choosing this task is 
that it is similar to linear equation tasks in released Swedish year 9 national tests 
in that the unknown occurs on only one place (see table 1). More-over, table 1 
shows that in all years except 2006 and 2012; two arithmetic operations with 
different priority are present, the unknown has a positive integer solution and 
the coefficients are integers in the sense that it is natural to view for example 
x/2 as dividing by an integer rather than multiplying by the decimal number 0.5 . 
The exceptions are 2006 and 2012, where the equation task contained only addi-
tion. On the other hand, in 2006 the solution was a negative integer and 2012 the  
solution was a decimal number.

Analysing the students’ responses
Each student’s response to the task was categorised with respect to verifying 
or not verifying the solution explicitly in the written response. In addition, 
each student’s solution to the equation was categorised as correct or incorrect. 
Now, a response with an incorrect solution could contain several simultaneous 
errors. For example, a single response could contain both arithmetic errors such 
as setting 11 – 3 = 9 and parsing errors such as interpreting 2x as 2 + x . Thus, 
each incorrect response was analysed with respect to each of the components 
of balancing, arithmetic, parsing, explicitly giving the unknown a value and a 
fifth category that was found while examining the responses, namely omitting 
parts of the equation.

The students
359 Swedish year 9 students agreed to participate in this study and the linear 
equation task was given in a teacher administrated classroom test in mathema-
tics. To check the generalisability of the sample, the students in this study were 

Year 9 national test task Task formulation
2014 part B task 7 Solve 25 – 5x = 10
2013 part B task 9 Solve x/2 + 1 = 5
2012 part B1 task 9 Solve 2,35 = 0,5 + x
2010 part B1 task 10 Solve 13 – 3x = 7
2009 part B1 task 7 Solve 17 = 3x + 5
2008 part B1 task 8 Solve x/3 +  2 = 5
2006 part B1 task 6 Solve x + 6 = -2

Table 1. Linear equation tasks on released national tests (Prim-gruppen, 2019)
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compared with a sample from whole of Sweden with respect to the achieve-
ments on the national test part B, which is the part in which linear equations of 
the studied type occur, as seen in table 1. The author received achievement data 
from the whole Sweden sample from the National Test Team. In their sample, 
percentage of correct responses were 46 % for the second language students and 
60 % for the first language students. The author got national test achievement 
data from five of the six schools that participated in the present study and these 
second language students (n = 146) achieved on identical level as the national 
sample while the first language students (n = 113) achieved 56 %, which a little 
lower than the national sample. This latter difference is likely due to residen-
tial segregation effect (Hansson, 2010, 2012) since the students sampled were 
from schools with a high proportion of second language students. The similarity 
between the sample in this study and the national random sample with respect 
to achievements on the national test, suggests that the knowledge in mathema-
tics of these two samples are similar, which in turn indicates high reliability 
of the student sample used in this study. It should also be noted that the small 
difference between the two samples is not crucial for the validity of the present 
study not comparing achievements quantitatively but instead qualitatively iden-
tifying knowledge components that the students need for mastering solving 
linear equations. In fact, a lower achievement might mean a larger proportion 
of students not giving an answer to the task but it likely also implies a larger 
proportion and thus richer mix of incorrect responses, which should increase 
the saturation (the actual occurrence) of the different knowledge components of 
the canonical method found in the literature. This should contribute to a higher 
validity of the results. 

Results
Balancing as a component in solving linear equations
Figures 1a and 1b exemplify unbalancing the equation. In figure 1a the student 
tried to isolate 2x on the left side by subtracting the number ”3” on one side and 
adding the same number on the other side. Since the student in the next two lines 
did identical operations on both sides, though interpreting the square root sign 
as halving, it seems as if the student has confused ”doing the same operation 
on both sides” with ”change sign when moving a term to the other side”. In that 
sense, this error is neither an arithmetic error nor a parsing error but an erro-
neous balancing of the equation. The same holds in figure 1b where a student 
swapped 2x and 11 with each other in order to isolate 2x on one side. Moreover, 
the student in figure 1b used the equals sign to mark the transformation of an 
equation into another equation, which clearly indicates an operational use of 
the equals sign as ”becomes” instead of ”equals”.
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Omitting parts or terms when solving linear equations
In figure 2a, the student in the response explicitly verified that 8 + 3 = 11 but con-
cluded that x = 8 instead of 2x = 8 thus seeming to ignore the factor 2. In figure 
2b, the student subtracted 3 on only one side but apart from that did arithmeti-
cally correct operations (though in an odd way by dividing by 11 instead of by 
2), parsed the symbols correctly and correctly balanced the equation through the 
rest of the solving process. Together this indicates that the student may simply 
have forgotten to subtract 3 from the right hand side. 

The arithmetic component in solving linear equations
In the responses in figures 3a and 3b, it seems as if the students viewed the 
equals sign as relational since they consequently did the same operations on 
both sides. Despite the correct balancing of the equations, the two responses 
contain arithmetic errors. Indirectly we can also assume that their calculations 

Figure 1a. Opposite operations Figure 1b. Terms moved around 

Figure 2a. Omitted dividing by 2 Figure 2b. Omitted subtracting 3 

Figure 3a. Calculates 11 – 3 to 7 Figure 3b. Calculates 11 – 3 to 9
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of 11 – 3 leading to wrong differences 7 and 9 instead of 8 indicate that they 
did not use number facts when calculating the difference. Instead, they likely 
used counting down strategies where the student in figure 3a excluded the start-
ing and ending number when counting down from 11 to 7 while the student 
in figure 3b instead included the starting and ending number when counting 
down from 11 to 9. 

The component of giving a value to the unknown
In figure 3a, the student responded with ”2x = 7” but did not proceed to deter-
mine a value of one single x. In this category of responses there were also a few 
cases of responses ”2x = 8” and those that stated ”8 + 3 = 11” without explicitly 
giving a value to the unknown. 

The parsing convention component in solving linear equations
The only error in the calculations in figures 4a and 4b are that these students 
parsed the original equation 2x + 3 = 11 in ways that differ from what is endorsed 
in mathematics, namely seeing 2x not as a multiplication, but as an addition in 
figure 4a and as a power in figure 4b. Else, the arithmetic calculations in both 
figures 4a and 4b are correct with respect to the parsing error that each student 
made. When it comes to the students’ view on balancing the equation, the cal-
culations in figure 4a shows that this student consequently did the same opera-
tion on both sides until getting some solution. From this, we conclude that this 
student views the equals sign as relational and knows balancing as a way to 
solve equations. From the arithmetic statement in figure 4b we can see that the 
left hand side evaluates to the right hand side of the equality thus indicating at 
least an operational view of the equals sign while figure 4b does not give any 
information about if the student mastered the equals sign as relational though 
an operational use is evident. Finally, these two students treated the unknown 
as a variable, whose value should be determined, which they did explicitly in 
figure 4a and implicitly in figure 4b.

The component of verifying a solution
In figures 4b and 5, the students explicitly verified that a specified value of the 
unknown satisfies the equation.

Figure 4a. 2x parsed as 2 + x Figure 4b. 2x parsed as 2 x
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Frequency of various solution components
There were 255 (71 %) correct responses. Of the correct responses there were 
121 responses using the canonical method, 83 just responded x = 4 while 50 
wrote the explicitly verified solution as 2 · 4 + 3 = 11 and only 1 (one) both gave 
a solution via the canonical method and verified the solution. A note is that we 
do not know if these 83 students mentally did or did not verify their solution. We 
only know that they did not verify their response on paper. There were 56 stu-
dents, who did not answer the task. Among the 48 (13 %) erroneous responses, 
there were three non-classified responses. These were the responses ”8x”, ”18” 
and ”24”. Of the remaining 45 responses given in table 2, 30 made one single 
type of error. There were 10 responses coded in two error categories and among 
these, it was most common to combine unbalancing the equation with some 
other error. In 5 cases, there were responses coded in three error categories. A 
clarifying note is that counting the number of errors in each category instead 
of the number of responses explains why the sum 65 of the content in table 2 
exceeds the 45 responses categorised. 

Discussion
One focus in this study is students’ habit of explicitly verifying solutions when 
working with equation tasks. One striking observation in the data was that only 
one single student out of 359 responded with both solving the equation and 
explicitly verifying the value of the unknown by inserting it into the original 
equation. Else, it was common to either use the canonical method for solving or 
simply insert the solution into the original equation. For the students who came 
up with an incorrect solution to the equation, a combination of the canonical 
method and explicitly verifying the solution should help at least some students to 
discover their own errors and give them a chance to self-correct their responses. 

Figure 5. Verify a solution

Component Frequency (relative frequency)
Arithmetic error 6 (2 %)
Parsing error 19 (5 %)
Balancing error 12 (3 %)
Omits part 13 (4 %)
Unknown gets no value 15 (4 %)

Table 2. Frequency of components



Papers

48 Proceedings of Madif 12

Another focus in this study is errors in components of the canonical method. 
Students that respond as in figures 3a, 3b and 4a demonstrate knowledge about 
the canonical method (Buchbinder et al., 2015) and thus uses the equals sign 
as relational (Knuth et al., 2006). However, the two students responding as 
in figures 3a and 3b, made the same kind of arithmetic errors as described 
in Hall (2002) and Petersson (2018a). Their responses show that also arith-
metic knowledge is an indispensable component for correctly solving linear 
equations. Moreover, the arithmetic component in responses 4a and 4b and 
the balancing component in response 4a are correct with respect to the erro-
neous parsing described in research literature (Humberstone & Reeve, 2008; 
MacGregor & Stacey, 1997; Petersson, 2018b). This means that also correct 
parsing is an indispensable component when solving equations.

Of the balancing errors in table 2, more than half of them were similar to 
those in figures 1a and 1b and could be related to a non-relational view of the 
equals sign as described in Asquith et al. (2007) or due to a diffuse concep-
tion about the canonical method. One assumption is that students might dis-
cover errors due to both arithmetic mistakes and incorrect balancing if a task 
on equations asks for both a solution procedure and an explicit verification of 
that solution as in figure 5. This might also hold for students that omits parts of 
the equation during the solving procedure as in figures 2a and 2b. We can only 
speculate why some students omitted terms. A guess is that it might relate to 
the working memory of the individual student and thus not the cause of being 
careless.

However, students making paring errors as in figures 4a and 4b will not 
discover their errors by verifying their solution. For example, the response in 
figure 4b is an arithmetically correct and explicit verification. Instead, they 
need instruction on the sanctioned parsing rules. Neither might asking for veri-
fication help students that do not give a value to the unknown as in figure 3a. 
On the other hand, a hypothesis is that learning the habit of explicitly veri-
fying solutions should raise the awareness of actually assigning a value to a 
single unit of the unknown, which might make them elaborate their incomplete  
solutions into complete solutions. 

A third focus in this study is how explicitly verifying solutions hypotheti-
cally could help students identifying and correcting their own errors when 
solving equations. Since only 1 (one) student of 359 both explicitly solved and 
explicitly verified the solution while several students hypothetically should have 
discovered their own errors if they had verified their solution, one conclusion 
for the teaching and testing of solving equations is to encourage and remind 
students to also verify their solutions. This would help, in particular, students 
that else make frequent errors when solving equations. Moreover, it is likely 
that these students often are low-achievers and thus would benefit from this. 
One way to promote students’ habit of verifying is to, in tests, explicitly ask for 
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both solving and verifying, since it is commonly known that what is examined 
to a higher extent also is learnt.

A suggestion for further research is to, through an intervention study, explore 
if teaching and examining both solving and explicitly verifying would help stu-
dents discovering their own errors themselves. Furthermore, would this at the 
same time would support them in building a relational view of the equals sign 
and learning correct balancing of equations? Such a study should, of course, 
include non-arithmetic equations, and if applicable also quadratic equations 
and systems of linear equations. 
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A qualitative analysis of students’  
use of base-ten material

RobeRt GunnaRsson and Malin albinsson

Previous research indicates that manipulatives, like base-ten blocks, not necessa-
rily strengthen students’ understanding of numerical place-value and the decimal 
numeral system. This study takes its starting point in the hypothesis that to create 
functional teaching situations with base-ten blocks, it is necessary to first know stu-
dents’ prior understanding of such manipulatives. Therefore, here we present an 
analysis of students’ understanding when using such manipulative material to visua- 
lise multidigit numbers. The data was collected from individual interviews with 58 
students in grade 1 (6–7 years old). Using methods borrowed from phenomenogra-
phy, we identify six qualitatively different categories of students’ understanding, and, 
based on these, suggest implications for the design of teaching situations.

For many young students, the structure of multidigit numbers is, in itself, diffi-
cult to learn (see e.g. Fuson, 1990). Adding a manipulative material is not neces-
sarily enough to support students’ understanding of how numbers are struc-
tured. This has long been recognized as a problem. Ball (1992, p. 46) asks for: ”a 
lot more opportunity to discuss and develop ways to guide students’ use of con-
crete materials in helping students learn mathematics”, and continues that we 
”need to listen more to what our students say and watch what they do”. Hence, 
one way to read this is: to make a concrete material really supporting the learn-
ing process, one should start from the students’ understanding. In this paper, we 
take exactly this position; to design a functional teaching-intervention, we first 
need to analyse students’ understanding of the manipulative at hand. 

The manipulative material we are studying is the base-ten material. Base-ten 
material has been used for many decades in mathematics teaching and learn-
ing (Kim & Albert, 2014). It is a type of manipulative that consists of blocks 
of different shapes, see figure 1, where each block type represents ones, tens, 
hundreds, or thousands, respectively. The intention is that students, by using 
these blocks, should learn the structure of the decimal numeral system and the 
place-value of digits.

Robert Gunnarsson, Jönköping University 
Malin Albinsson, Järfälla kommun & Stockholm University
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However, there are indications that base-ten-manipulatives accompanied with 
instruction does not help students to a more profound understanding of place-
value (Osana et al., 2017; Puchner et al., 2008). Unfortunately, it seems as if the 
negative result is not limited to this specific manipulative material. A meta-
analysis of the efficacy of different concrete materials shows that students who 
have used manipulatives when working on their number sense in some studies 
did perform better, and in some cases equally good, but in many studies the 
students performed worse on a retention-test, compared to students who had 
trained with a textbook (Carbonneau et al., 2013). 

Going beyond the issue whether base-ten material facilitates students’ 
understanding or not, the question remains how students understand the mate-
rial. There are a few studies that have been devoted to this more specific issue, 
and to illustrate the development in this area, we select two studies in particular. 
Early on, students’ understanding of base-ten blocks was studied within a Pia-
getan framework by e.g. Labinowicz (1985). Such studies sort students’ under-
standing into Piaget’s stages of intellectual development. More recent studies 
analyse the understanding based on other frameworks, e.g. Nurnberger-Haag 
(2018). These discuss how students operate with the material, and study stu-
dents’ understanding of base-ten manipulatives from the perspective of embo-
died cognition. However, there are, to our knowledge, very few studies using a 
phenomenographic approach on students’ understanding of base-ten materials. 
As phenomenography can be used to identify what students need to discern 
to build a solid understanding of a phenomenon (Pang, 2003), it can also give 
information when designing functional teaching interventions.

Aim of this study
The aim of this study is to use a qualitative approach with phenomenographic 
features to describe the characteristics of how students in primary grades  

Figure 1. The base-ten material
Note. The material consists of (from the left) small cubes (representing ”ones”), rods (represent-
ing ”tens”), squares (representing ”hundreds”) and large cubes (representing ”thousands”)
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understand a supporting material – in this case the base-ten material – used to 
illustrate multidigit numbers.

Theoretical framework
For this study, where we analyse students’ understanding of a manipulative 
material, and how it relates to the properties of numbers, we chose to employ 
features from the framework of phenomenography. As described by Marton 
(1981), phenomenography is a research orientation to describe how concepts 
are understood by, for instance, a learner. Phenomenographic studies have been 
conducted in many different areas, particularly in mathematics. One example 
is Neuman’s (1997) study on numeracy and number sense. Studies based on the 
phenomenographic approach typically result in categories of description of the 
conception (Marton, 1981). According to Pang (2003), what separates phenome-
nographic categories can often be interpreted as critical aspects that students 
need to discern in order to advance the understanding of a phenomenon. We 
too are interested in what qualitatively different categories of understanding 
students exhibit. Hence, a qualitative approach where we borrow the analysis 
method from phenomenography can be a suitable step in making informed 
choices when planning teaching situations.

Methods
For this study, 58 Swedish students in their fall semester of grade 1 (age 6–7 
years) were individually interviewed. The interviews were part of a larger inter-
vention study (a learning study project) to be presented elsewhere. In the inter-
views the students were asked to tell the value of different Pokémon-cards and 
represent that value with base-ten blocks. The students were chosen from a 
screening of all preschool students (with the material ”Blå lådan”) of age 6 in a 
municipality in Sweden. Based on the test results, three schools with particu-
larly low scores were chosen. In a learning study processes with young students, 
interviews are often used to collect pretest and posttest data. However, in this 
study the interviews constitute the data. 

The interviews comprised mainly two main tasks: (1) To tell the value of 
given Pokémon-cards (with the numbers ”13”, ”42”, ”117” and ”258” written on 
them, respectively), and show that number using base-ten blocks. (2) To suggest 
a value of a fifth Pokémon-card, write the value with numbers, and show it using 
the base-ten blocks. During the entire interview the student had access to a large 
set of base-ten blocks. The interviews were documented by capturing video 
data. This procedure copies, in many ways, the process of extracting data for 
phenomenographic studies in other areas (see e.g. Han & Ellis, 2019). However, 
as the resolution of the video is too poor to make high-resolution images, the 
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figures below are reconstructed as close as possible from what students showed 
during the interviews.

The data from the interviews were verbatim transcribed and the transcripts 
coded in such a way that the parts where the students could have revealed their 
understanding of the number system could be extracted. These extracts were 
then subject to analysis where qualitative similarities and differences were 
identified, which, in turn, lead to qualitatively different categories of students 
understanding and use of the material. Hence the categories emerged from the 
data. The data were jointly analysed by the authors. 

Results
The analysis resulted in six qualitatively distinct categories of students’ under-
standing of how the base-ten material can be used. In defining the categories, 
we have made a selection; students’ answers that were not indicating an under-
standing of the base-ten material as representing a quantity, for instance by 
using the blocks as mere building blocks, have been omitted from the result. 
The final categories are presented below.

Category 1. Blocks can represent numbers
Students’ responses that are indicating some form of recognition of the blocks 
as representing different numbers have been assigned to this category. One 
example is a student taking the thousand-cube and says: ”this is two-hundred 
fifty-eight”. This is, of course, not correct but answers that fall into this cat-
egory are typically guesses or estimations. The essential is that the material 
can represent numbers. No counting seems to be involved for answers within 
this category. 

Category 2. One block is equal to ”one” [counting one-by-one]
To this category we refer students’ answers where counting one-by-one is used 
in spite of the blocks’ size and intended value. The counting does not necessa-
rily need to be correct. As when one student counts like: ”thirty-five, thirty-two, 
thirty-three, ... no, thirty-six ...” and picks another block for each number the 
student says. In addition, there are students counting faster or slower than the 
pace with which (s)he picks the blocks. But there are also students who do count 
correctly. As in this case where 107 small single cubes are counted one-by-one:

Teacher: What is the value of this Pokémon-card? [shows a card with the number 117]
Student: Hundred ... eh ... one hundred seven.
Teacher: One hundred seven. Can you show how much that is?
Student: Oh, it will be a lot.
Teacher: Yes, it will be a lot.
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Student: one, two, ... [counts loud one-by-one up to 100] ... one hundred. [looks at the 
teacher]

Teacher: One hundred.
Student: [counts on one-by-one up to 107. Again looks at the teacher]
Teacher: One hundred seven.
Student: Yes.

This conversation was an example of a student answer where each block is a 
”one”. The counting one-by-one resulted in a pile of small cubes, see figure 2a.

Typically, the smaller unit-cubes were considered within this category. But 
students can also pick any other block to count as one. As shown in figure 2b, a 
response we could assign to this category is a student showing the number thir-
teen using ten-rods. In addition, we also assign student answers that represent, 
for instance, the number 258 with three piles of only small unit-cubes (one pile 
with two, one with five and one with eight cubes). This is of course correct in 
some sense, although not fully in line with the intention of the base-ten mate-
rial. Anyhow, these students seem to have perceived the cardinality principle, 
or at least the one-to-one principle. Hence, in this category, the blocks seem to 
be regarded as numbers, but only one by one.

Category 3. Compound blocks represent the combined value 
Answers that indicate an understanding of the compound-ness of the blocks, for 
instance, that a ten-rod has the same value as ten single unit-cubes, is assigned 
to this category. An example of understanding can be seen in this excerpt.

Teacher: You can decide the value [of the card] all by yourself.
Student: Two thousand nine hundred
Teacher: Can you show me with the blocks how much that is?
Student: How much it is worth? [picks a hundred-square and counts silently, but points 

at one row at a time.] Ten. One hundred. [picks more hundred-squares] Two 
hundred, three hundred. ... Nine hundred. [picks a tenth hundred-square] This 

Figure 2. (a) A student has represented a number (107) with the blocks in the 
base-ten material by counting them one-by-one (b) Another student counted 
one-by-one up to 13, but with rods
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is one thousand. [pushes the hundred-squares aside and takes a thousand-
cube] Two thousand. 

Teacher: How much did you say he should be worth?

Student: Two thousand

Category 4. Blocks can be used both as value and as number 
Some student answers indicate an understanding of the blocks as if they can 
represent either number or value. In some cases, the same type of block is rep-
resenting both number and value in the same example, as, for instance, shown 
in this excerpt.

Student: Two hundred fifty-eight.
Teacher: Yes, good. Can you show it also with the blocks?
Student: Two [takes two ten-rods] ... hundred [takes a hundred-square]. Fifty [takes 

five rods]. Eight [takes eight small cubes]. There.

This student’s understanding resulted in the blocks shown in figure 3a. Here, 
the student seems to use ten-rods to represent five tens (that is, one ten-rod rep-
resents the value ten, or possibly the number one) and, at the same time, two 
rods times one hundred (hence, two ten-rods represent the number two). In any 
case, the hundred-square seems to represent a value.

Another example within this understanding of the blocks is shown in figure 3b. 
Here, the student’s reply indicates that the digits in each position is right but 
where it seems the student did not see the value of each block. Another example 
from this category is when a student continued counting to the aimed value but 
with different blocks, as illustrated in figure 4 and in the following excerpt.

Student: Eh, thousand. [points at the one-thousand cube]
Teacher: And ... all this one thousand, or? [move a hand over the blocks]
Student: Thousand, eh ... [selects hundred-squares and counts on] Two thousand and 

three thousand.
Teacher: So, your Pokémon-card has the value of three thousand?
Student: [nodding]

Figure 3. (a) One students’ representation of the number 258 (b) Another 
students’ representation of the number 852 (the student read the numbers  
backwards). In both cases, the blocks are used as both values and numbers
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In the example in this excerpt and in figure 4, the student indicates an  
understanding that one value can be represented by different blocks. Here, 
both thousand-cube and hundred-squares are representing one thousand, each. 

Category 5. The blocks in each position is of the same type
The main thing in this category is that the blocks are picked and counted from 
larger to smaller value. Student answers assigned to this category is based 
on piling blocks with higher value, and blocks with lower value, separately. 
However, the number of blocks is not necessarily limited within each decade 
(i.e., there could be more than nine blocks in each pile). The answers can give 
an incorrect illustration of the number, but nevertheless, they still indicate an 
understanding of the manipulative material that seems rooted in the place-value 
principle that the larger number are counted first and then the smaller numbers. 

In figure 5 we see two examples of students’ answers that are using some kind 
of place-value-principle. Here the students are considering the blocks as rep-
resenting one-hundred and seventeen (100 + 17), and two-hundred and fifty-
eight (200 + 58), respectively. The blocks are positioned in such a way that the  

Figure 4. A student’s representation of the number 3000 – first a thousand block, 
and then two hundred blocks on top

Figure 5. (a) A student’s representation of the number 117 by 10 ten-rods and 
17 unit-cubes (b) Another student’s illustration of 258 using 11 ten-rods and 
58 unit-cubes
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hierarchical structure of the place-value system is evident. This can be com-
pared to figure 3b, where different blocks in different positions are used. Hence, 
the answer in figure 3b indicate that the blocks are used to mark numbers regard-
less of the size of the blocks. In this category (category 5) of students under-
standing of the blocks, we instead place answers that are indicating an under-
standing that the shape of the blocks symbolize some kind of value.

Category 6. In each position there is a maximum number of blocks
In this category we place student answers that indicate an understanding of 
place-value with a limit to the number of numbers in each position (maximum 
nine numbers). One example that beautifully illustrates an understanding of the 
maximum number of blocks is this excerpt.

Teacher: You can make up a number [of the card].
Student: Then it should be one-thousand nine-hundred and ninety-nine. [makes the 

configuration shown in figure 6]
Teacher: Ok, and if you now should write this number with digits, could you do that 

on this paper?
Student: Yes, easy. [writes 1999]
Teacher: Good. What would happen to your number if you just added one more unit?

Student: Then it would ... one hundred ... one thousand ... Oh, it will be two thousand.

The student in this excerpt appears to have an understanding of a maximum, 
both as s(he) seems to look for the maximum number overall (and hence chooses 
the number 1999), and seems to realize that when adding one, there must be a 
shift to higher values in the adjacent higher position.

In addition to the categories described above, we also identified a group 
of answers where the blocks were used merely as a set of building material. 
Although they do show some kind of conception of the base-ten material in 
itself, these answers do not involve the value or cardinality of numbers and are 
therefore not considered as a category of its own.

Figure 6. A student’s representation of the number 1999. It could be the maximum 
number (s)he could make in this system (although there were more blocks)



Proceedings of Madif 12

Gunnarsson and Albinsson

59

Discussion and educational implications
Based on the claim of Pang (2003), we can use the categorization to give input 
for the design of teaching sequences based on the base-ten material. These 
implications are then in terms of hypothetical critical aspects, deduced from 
the qualitative differences between phenomenographical categories. 

From our data, we can speculate about hypothetical critical aspects. One 
such is that the number of blocks should mirror the number to be represented 
(the cardinality principle of the material). As an example, to represent the value 
of 200, one should represent this with an equivalent number of small cubes 
(compound or not). We note that understanding of base-ten blocks as units that, 
independent of size and shape, could represent ”one” was noted already by 
Labinowicz (1985). However, we see a difference between counting blocks one-
by-one independent of size (category 2) and perceiving blocks as representing  
value as well as number (category 4).

We also deduce the hypothetical critical aspect that each block (except the 
unit-cubes) represents a value, not a number, and that blocks of the same shape 
and size represent the same value. In relation to this, we identify a hypotheti-
cal critical aspect to be that the different size and shapes of the blocks can be 
used to represent the different digits in a number and that the hierarchy from 
smaller to larger blocks mirror the digits from right to left in a multi-digit 
number. The category which suggests that students use the blocks both as value 
and as number (category 4), indicates that it is important to make the students 
aware of the additive property of the material. Naturally, there is both a mul-
tiplicative and an additive component in the place-value issue, for instance as 
in 258 = 2 x 100 + 5 x 10 + 8 x 1. But traditionally, the intention of the material is 
that the student should be aware of the additive component between the diffe-
rent orders of magnitude. All-in-all we conclude that the qualitative categories 
can help make informed choices/decisions when designing teaching sequences, 
also regarding base-ten materials.
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Practices in multilingual mathematics 
classrooms: word problems

Eva NoréN aNd Laura CaLigari 

This is a study in multilingual mathematics classrooms where Swedish is the language 
of instruction. Our aim is to explore what troubles do appear when students work 
with mathematical word problems and how teachers provide scaffolding for stu-
dents’ learning. Classroom observations and student interviews were conducted. 
The lessons followed the structure of introducing, modelling, jointly practicing and 
individually performing. Students’ understanding of how to go about in the math-
ematical word problem genre advanced when they became familiar with the context 
and worked together by explaining, communicating in pairs and constructing  
individual word problems. 

In this paper, we present a study conducted in multilingual mathematics class-
rooms where Swedish is the language of instruction. Languages have been seen 
as resources in multilingual mathematics classrooms since the 1990s (Barwell, 
2009; Moschkovich, 2007; Prediger & Schueler-Meyer, 2017). However, few 
studies in classrooms with multiple languages represented have been pursued. 
Moreover, multilingual students in Swedish mathematics classrooms still 
underachieve (Skolverket, 2019). Thus, there is a need of more research in 
multilingual mathematics classrooms where students’ and teachers’ linguis-
tic resources are drawn on. Another rational for such research is that multi-
lingual classrooms have become more common in Sweden. Today, numerous 
mathematics classrooms consist of many mother tongues spoken by students 
and teachers. These students are all second language learners in mathematics. 
Research reveal that it can be difficult for students to communicate mathemati-
cal ideas and concepts when instruction is in their second language (Barwell, 
2009). Furthermore, research) show that word problems are particularly  
difficult for second language learners (Clarkson, 2007). 

Sweden of today is a multilingual country. A little more than 20 % of the 
students in compulsory school use other first languages than Swedish, Arabic 
being the most common (SvD, 2018). Mathematics teachers are supposed to 
support second language learners’ acquisition in mathematics through content 
and language integrated teaching (van Eerde & Hajer, 2009; Hajer & Norén, 
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2017), meaning that teachers’ instruction have to focus on specific language 
requirements of mathematics. The overall aim for this study is to explore how 
teachers provide scaffolding when second language learners encounter dif-
ficulties when solving mathematical word problems. In this paper we more 
specifically ask:
1 What difficulties can be discerned when second language learners read 

and solve mathematical word problems?

2 What strategies do teachers use to scaffold second language learners’ 
proficiencies in solving word problems? 

This study, reports from a project that explored and tried out content and lan-
guage integrated teaching of mathematics in school year 4 and further in year 
5, from October 2017 until December 2018. We present students’ classroom 
work with mathematical word problems and concepts, as well as interviews 
with students. 

Word problems and multilingual classrooms 
As noted above, studies in multilingual mathematics classrooms have shown 
that proficiency in the language of instruction relates to attainment in mathe-
matics, and proficiency in two or more languages makes a difference for stu-
dents’ attainment. Nevertheless, strong proficiency in a language that is not the 
language of instruction has also been shown to have an impact for students’ 
mathematical attainment (Clarkson, 2007). 

Gerofsky (1996) defined word problems as a certain genre of mathematical 
literacy, comparing it with other spoken and literary genres. Word problems are 
often associated to as real-world problems that students can relate to, though 
they have been criticized to be too artificial (De Corte et al., 2000) even saying 
that ”word problem solving” is disconnected from the real world. For example, 
in Greer (1993) 13–14-year-old students in Northern Ireland ignored aspects of 
the real world when answering word problems. One explanation is that students 
relate to contexts familiar to them. Barwell’s focus on word problems and its 
genre in some of his research in multilingual mathematics classrooms (2009), 
showed that multilingual students relate to their own cultural experiences  
and home culture when solving and constructing word problems of their own. 
Another clarification is that second language learners often draw informally 
on their mother tongue when solving word problems, in order to increase their 
learning (Clarkson, 2009; Planas & Civil, 2013). 

Theoretical considerations
We acknowledge the sociocultural nature of the resources second language 
learners and teachers bring to the mathematics classroom (Moschkovich, 2007). 
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Furthermore, also in line with the sociocultural tradition deriving from Vygot-
sky, language and content-based integrated teaching of mathematics and lan-
guage supportive theories are adopted (Gibbons, 2002; Smit, 2013; van Eerde 
& Hajer, 2009). This tradition is related to scaffolding processes through chal-
lenges and support to promote students’ autonomy. Smit (2013) writes that scaf-
folding is “a certain kind of support provided by teachers to help students move 
forward” (p. 14). Scaffolding is temporary and will gradually be removed as the 
structure being fostered becomes more solid and more reliable. Scaffolding in 
multilingual mathematics classrooms means:

– making the mathematical content understandable by putting it in contexts 
that the students can relate to,

– promoting students’ active language use both orally and in writing in the 
mathematics classroom,

– offering varied and long-term linguistic support.

Drawing on sociocultural theories, the practices in content and language inte-
grated classrooms often adapts scaffolding (Vygotksij, 1999) in a teaching 
and learning cycle model presented by Gibbons (2002). The cycle was further 
developed for mathematics teaching and learning by Smit (2013) in a project 
on second language learners’ reasoning about line graphs. The teaching and 
learning cycle involves a series of four phases in which a specific genre of text 
required in a school context is introduced, modelled, together practiced and 
individually performed by the students. According to Gibbons (2002), the idea 
is that second language learners have to progressively acquire skills in the 
language of instruction along a continuum from every-day language to more 
academic language, from spoken to written language and connected by lite-
rate spoken language. However, second language learners don’t acquire aca-
demic language skills through classroom discourse, like first language students 
often do. Second language learners need scaffolding in relation to the academic 
language of each school subject, in this paper mathematical language, says 
Gibbons (2002).

Methodology
The empirical data is ethnographic (Hammersley & Atkinson, 2007) and 
derives from classroom observations, fieldnotes, audio recordings of classroom 
interaction, collections of students’ materials, and student interviews. In two 
of the classrooms (Red School) in this study, besides Swedish, there were nine 
first languages spoken by the students 1. In the third classroom (Blue School) 
there were 13 first languages spoken besides Swedish 2. Students’ parents in 
both schools were informed about the ethical issues and signed consent forms. 
All names of schools and students are pseudonyms. 
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The study draws on 14 participant observations in the Red school and the two 
classes respectively, in which 40 students are learning mathematics. To verify 
findings about how students perceived mathematical word problems in the Red 
school we interviewed students in another school, the Blue School, where stu-
dents solved some of the mathematical word problems that the students in the 
Red School had solved. Interviews with 8 students were recorded individually. 
The students solved word problems, answered questions and talked about their 
experiences of solving word problems. They took on the tasks by reading the 
word problems and solving them while ”thinking” aloud.

The methodology is interpretative and relays to knowledge building and cul-
tivates research capability through collaborative analysis and critical reflection 
of students learning and classroom practices (Calder & Murphy, 2018). Regard-
ing difficulties discerned when students solve mathematical word problems, the 
analysis of students’ interaction with teachers and classmates identified themes 
(Braun & Clark, 2006). The themes were thoroughly linked to the practice in 
the classrooms. The analysis also showed that teachers’ scaffolding strategies, 
depended on the difficulties experienced by their students. 

Participant observations
Participant observations were conducted in the Red school where two teachers 
started to change their mathematics teaching towards using more content and 
language integrated methods. So far, their mathematics teaching hadn’t helped 
their students achieve as expected. Word problems in mathematics were the 
most challenging area for the students to work with, as well as for the teachers  
to teach. For example, when the students got the assignment to work with a 
thematic chapter “The Kolmården Zoo” with a lot of word problems from  
their textbook, the classroom became “chaotic” (teachers’ expression). Besides 
the two teachers there were mother tongue supervising personnel. Thus, stu-
dents had opportunities to use their first languages alongside Swedish in the 
mathematics classroom.

Interviews
Students in the Blue school expressed that the word problems they worked 
with in the classroom were the ones from their mathematics textbook and that 
they worked individually with them. The student also explained that it should 
be “quiet so you don’t disturb each other” (student quote). They also said that 
there were some occasions when they worked in small groups, for example, 
if the word problem was difficult, then they read the text with the teacher and 
focused difficult words. 

During the interviews in the Blue School, the students said that word prob-
lems were different from mathematical assignments without words in the mathe- 
matics textbook. The word problems required an understanding of their own 
reading and they had to decide on what calculation methods to use.
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Findings
In the thematic analysis of fieldnotes and audio recordings (from classrooms and 
interviews), three main themes were discerned regarding what seemed to create 
difficulties for students when solving word problems: ”difficult” words, ”dif-
ficult” contexts and ”conceptual understanding”. In various ways, the themes 
relate to each other. The analysis also displays strategies for how teachers scaf-
fold their second language learners. The strategies were promoting students 
to: use their first language, ask questions on the word problems presented, 
mark ”key words” in the word problems and to actively use Swedish orally 
and in writing. Teachers’ scaffolding was sometimes planned ahead, building 
on earlier lessons, results on diagnostic tests or text material that was going to 
be used. At other occasions the scaffolding unfolded while teaching, building 
on interaction in the classroom, for example students’ questions and students 
answers to teachers’ questions. The scaffolding was often relating to students 
understanding of mathematical concepts. 

”Difficult” words 
A mathematical word can be difficult, but the reason may be that the concept 
the word represents may not be understood. It is sometimes hard to define if stu-
dents have troubles with the mathematical words, their second language or if a 
student has missed the understanding of a concept. There are always linguistic 
challenges in learning mathematics in a second language (Schleppegrell, 2007). 

The students in the Red School had regularly failed when solving word prob-
lems in the classroom. Therefore, the teachers started systematically to diag-
nose the students on mathematical word problems One diagnostic test was taken 
from McIntosh (2008). Firstly, students solved the diagnostic test in Swedish, 
thereafter, they were offered to solve the same test in their mother tongue. A 
word problem that was difficult for the students to solve in both languages was:

Bo cut his apple in half, and then cut one of the halves in half again [Bo delar sitt äpple i halvor. 

Sedan delar han ena halvan mitt itu].
a) How many pieces of apple does he now have?
b) What fraction of the whole apple is one of the small pieces?

The task was formulated in Swedish, though here from the original source in 
English. The most difficult part of the wording was neither the first part of the 
sentence, nor the next. However, there was a wording in Swedish that seemed 
to be difficult for most students, mitt itu 3 (it is not a straightforward translation 
of ”one of the halves again”). The students had no difficulties when cutting the 
apple in half, but had to stop reading at mitt itu, get an explanation, and then 
go on cutting one of the halves in half again. Regarding the questions it was  
obviously a complex word problem to solve. Only four students out of 39 could 
solve the (b) question in Swedish. One teacher strategy for scaffolding stu-
dents was that mother tongue speaking teachers explained the words and the  
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mathematical phenomena to the students on their mother tongue. This was  
promoted by the Swedish teachers.

When solving the word problem in their mother tongue some students found 
it was no difference or it was easier, but some students felt more comfortable 
using their mother tongue. Another scaffolding strategy was to draw and write 
on the white board and grouping students in smaller groups, giving them follow 
up tasks to work actively with words earlier articulated in the diagnostic test. 
One example is shown in figure 1.

It was chosen by one teacher because she wanted her students to elaborate more 
on the Swedish wording mitt itu 4 relating it to ”share equally in two parts”.

When interviewing Blue Schools students, some words in the word problems 
seemed to be difficult to read and understand. Students got stuck on words and 
it showed as they slowed down their reading, sounded out the words aloud or 
reread words. The most difficult words were not always the mathematical words, 
but names of cities and people. Mathematics words like sträcka [distance] on a 
map caused trouble, because it has the same pronunciation and almost the same 
spelling as streck [line]. Additionally, lines were drawn on the map to show dis-
tances (see figure 2). Another example, “there are different words in the same 
assignment” (student quote) in one of the word problems and the picture that 
followed the assignment. 

In the example in figure 3, two students reacted to the words serietidningar 
[comic books] and tidningar [magazines] in the word problem but in the illus-
tration, it said serier [series] “is it the same thing? It can’t be series you watch 
on TV?”, a student in the Blue school reasoned out loud. The three words all 
referred to the same comic books, thus, confusing the students 6.

Concept Explanation

Sharing 
equally

Drawing of 
halt an apple

Figure 1. Photo from the white board

This is the family Svensson from Ljungby in Småland. 
Last summer they went to the Kolmården zoo 164. How much older is 

a) Daddy than mummy? 
b) Jonas than Miranda? 
165. Look at the map. 
The journey started in 
Ljungby. The first day 
they went to Jönköping 
and then to Mjölby. 
How long was it?

164. Hur mycket äldre är 
a) pappa än mamma? b) 
Jonas än Miranda? 
165.Titta på kartan. 
Resan började I 
Ljungby. Första dagen 
åkte de till Jönköping 
och sedan till Mjölby. 
Hur lång sträcka blev 
det?

Figure 2. Kolmården zoo tasks (Undvall et al., 2011, p. 43) 5 
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”Difficult” contexts 
In the Red school, the teachers returned to theme about a trip to Kolmården in 
the textbook. When it was first introduced a month before, students skipped 
the tasks. Kolmården is a big park with wild animals from different parts of the 
world. The tasks to solve included a family going there, word problems on the 
family members’ ages and their trip by car to the zoo. 

None of the students were familiar with the Kolmården context, thus, a lot 
of explanations were needed. The scaffolding strategy followed a structure in 
which one of the teachers started with bringing the first two pictures up on the 
smart board. The teacher inventoried what the students knew by letting them ask 
questions and collaboratively communicate about the pictures and it’s mathe-
matical content. Teachers wrote on the smart board. Both text and pictures were 
carrying mathematical meaning. Finally, students solved the word problems and 
later, in pairs, construed their own word problems for other students to solve. 
When working in the textbook with other themes, like the Market (figure 3), 
the context was familiar to most students, which helped them solve the word 
problems. 

Conceptual understanding
When students worked by themselves in the textbook, in the beginning of school 
year 4 in the Red School, many of them tried to skip the word problems. Stu-
dents were saying “the word problems are too difficult” and “I don’t know what 
to do”. When elaborating with the Kolmården theme the analysis showed it was 
obviously difficult for the students to understand the context and the wording. 
One example: “Look at the map”. The picture of the map (figure 2) carries 
meaning to the word problem, thus, not understanding the map is a drawback. 
The wording ”mitt itu” when cutting an apple, and other examples from word 
problems like ”every tenth”, serier [comic books] and ”addition”, also created 
troubles relating to concepts. 

Before starting to solve word problems and in line with planned scaffold-
ing, the teachers taught strategies like, “look for difficult words and words you 
don’t understand, mark the numbers, mark the words, underline the question/s, 
what information can you find”? Teachers and students together defined which 
words were mathematical concepts and which were some kind of key words 
or every day words used for constructing word problem. Words to define were 

I ett stånd såldes gamla serietidningar. Peter köpte 16 
tidningar. Hur mycket fick han betala?

In one stand, old comic books were sold. Peter 
bought 16 magazines. How much did he have to pay? 

Figure 3. The Market theme, the word serier up to the left (Undvall, et al, 2011) 5
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picked from the word problems. Students categorized the words and teachers 
wrote them in lists on the white board, one for concepts, and one for key words. 
The teachers often led collaborative classroom talk with students’ questions as 
starting points.

Successively, students were assigned concepts from the list. In pairs they 

elaborated on the concepts by writing explanations, so that others would under-
stand the concept, while also constructing word problems for others to solve.
Figure 4 is an illustration of that certain activities, such as collaborative work, 
encouraged students to talk to each other and to actively take on various 
assignments. The regular work in pairs made students exchange mathematical 
knowing. In activities like the exploration and construction in figure 4 of the 
concept ”every tenth”, students got used to examine concepts, explain to each 
other and communicate. This scaffolding strategy helped students solve and 
construe word problems of their own. Thus, it became obvious that the scaf-
folding strategies used, motivated students to solve word problems at the end 
of the school year 4. 

Discussion
This study shows the importance of examining, on the one hand, what difficul-
ties second language students encounter when working with word problems 
and, on the other hand, how teachers can scaffold and support second language 
learners’ mathematical word problem solving skill, by reducing difficulties 
observed. 

In the Red School classrooms, second language learners worked more 
engaged when familiar with the context and when they had been given time 
to work systematically with word problems. For example, the word problems 
relating to Kolmården, compared to the word problems relating to the Market, 
created challenges for the second language learning students. One reason could 
be that students related the Market to their experiences and thus their home 
culture and mother tongue. The Kolmården theme was the opposite, students 
couldn’t relate to their experiences (Clarkson, 2009; Planas & Civil, 2013). 
Students in the Blue school also got stuck on certain words when reading word 
problems. Those words, like sträcka and streck [distance and line], are usually 

Concept 
EVERY TENTH

Explanation
Every 10th, for example, after ten 
flashes, it turns into a different color.

Task
Christian buys candy. Every tenth 
candy is a piece of liquorish. He 
bought 70 pieces of candy. How 
many pieces of liquorish did he buy?

Solution

Answer: He bought 7 pieces of 
liquorish

= 770
10 

Figure 4. Student material
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learned in relation to everyday language, hence not familiar to all second  
language learners. In the Red school, students’ active use of language was 
promoted both orally and in writing. For example, when elaborating on mathe-
matical concepts or when construing word problems for their peers. Students 
were offered linguistic support, mostly in Swedish but also in their mother 
tongue, scaffolding them to negotiate meaning (Gibbons, 2002). In our analy-
sis we noted that even though the teachers in the Red school were not deli-
berately adapting the teaching and learning cycle (Gibbons, 2002; Smit, 2013) 
their lessons followed the structure of introducing, modelling, jointly practicing 
and individually performing. In other words, our study indicates that second 
language learners’ understanding of how to go about in the mathematical 
word problem genre advance when they become familiar with the context, get 
access to their mother tongue and are promoted to work together by explaining,  
communicating in pairs and construing individual word problems.
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Children’s awareness of numbers’ part-
whole relations when bridging through 10

Camilla Björklund

This paper reports findings from an assessment of fifty-one 6–7-yearold children’s 
ways of solving arithmetic tasks. In particular, ”double counting” strategies were 
found to be enacted when bridging through 10 even though the children evidently 
had learnt conceptually more powerful ways of encountering arithmetic tasks in 
the number range 1–10. In this paper the reasons for this outcome are analysed and  
discussed in terms of children’s ways of experiencing numbers’ part-whole relations.

That young children change strategies between arithmetic tasks is not unknown 
to the field of mathematics education, but the explanations why children abandon 
successful and conceptually logic strategies for more primitive ones differ. The 
aim of this paper is to contribute one way of explaining such strategy changes in 
terms of children’s ways of experiencing the part-whole relations of numbers. In 
order to make this contribution, a specific research question was raised: What 
awareness of numbers’ part-whole relations is reflected in the children’s ways 
of handling arithmetic tasks? This question is answered through a qualitative 
analysis of 51 children’s strategies in solving addition and subtraction tasks 
within the number range 1–10 and bridging through 10.

Background 
This study is part of the research project FASETT, which aimed to deepen 
the knowledge about young children’s learning of elementary arithmetic. The 
project took its’ departure point from earlier research in which children’s arith-
metic skills have been studied in terms of their ways of experiencing numbers 
(Neuman, 1987). An intervention program was conducted in preschool where 
children were afforded to experience numbers in such ways that in particular 
numbers’ part-whole relations were coming through (Björklund et al., 2020). 
This, based on the assumption that children who learn to discern numbers’ 
structural relationships (see Venkat et al., 2019) would be better prepared to 
handle elementary arithmetic tasks and also apply this knowledge to a larger 
number range. A follow-up assessment one year after the intervention was  
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conducted to evaluate any long-term effects of the intervention. Results from 
this follow-up assessment is the object of inquiry in this paper.

Research on early arithmetic skills
There is an abundance of studies describing children’s strategies in solving 
arithmetic tasks (e.g. Baroody & Purpura, 2017; Fuson, 1988). Much is learnt 
from these studies about more or less prosperous strategies and what cogni-
tive abilities that influence the child in making use of certain strategies. A 
cognitive perspective in research induces that early arithmetic understanding 
is local to particular principles, proceeding through more and more complex 
levels (Starkey & Gelman, 1982). There are claims that children are ”forced” 
to develop more advanced strategies when the number range exceeds 10 and 
children can no longer rely on their fingers to represent units (Carpenter & 
Moser, 1982). This leads for example to a Counting-on strategy rather than 
the less advanced Counting-all strategy when exceeding 10. Counting strate-
gies are thus ways to keep track of counted units often referred to a number 
line (mental or physical) and are commonly observed among young children 
(Laski et al., 2014). 

Furthermore, the strategy ”double counting” is by Fuson (1988) defined as 
a way of keeping track where the sequence of words are entities to be counted. 
When solving e.g. 15 – 7 = _ the child has to keep track of how many units are 
taken away and how many are left, at the same time, usually by raising one 
finger for each counted counting word and then counting the raised fingers, or 
by indexing with number words: ”15, 14 (1 taken away), 13 (2), ... 8 (7)”, thus 
the numbers are double counted. This is considered a normal step in the deve-
lopment of arithmetic skills, by Steffe (2004), as an extension of counting and 
thus a higher level of functioning. Neuman (1987) also observed this strategy in 
children’s arithmetic problem solving, but concluded it being a strategy invented 
by the children, when they experience arithmetic tasks as operating with single 
units and not as a flexible part-whole relation. Double counting is according to 
Neuman in this sense not a powerful strategy since it is cognitively demanding 
and put a heavy load on the working memory. 

A contrast to the dominance on seeing counting strategies as the outset 
for learning arithmetic is given by researchers who advocate that a structural 
approach, attending to numbers as part-whole relations, should be emphasized 
already in the early years (Brownell, 1935; Davydov, 1982; Neuman, 1987; 
Schmittau, 2003). This based on the fact that counting strategies may help child-
ren solve simple arithmetic tasks but do not support children in recognizing 
the numerical relations between and within numbers that more advanced tasks 
presupposes. An emergent awareness of structural relationships appears among 
young children as they analyse and discern local relationships of numbers in 
arithmetic tasks. This will eventually allow them to identify more general  
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mathematical relationships and properties that enable more advanced arithme-
tic strategies such as decomposition and commutativity to be used (Venkat et 
al., 2019).

Gray and Tall (1994) argue that individual differences in arithmetic skills 
development and enactment are related to preferences of counting procedures, 
or ability to derive from what is already known. Most children have both alter-
natives available and can choose the most convenient way to handle a task.  
Nevertheless, Gray and Tall show that children who primarily rely on proce-
dural strategies, such as counting single units, do not relate a task to earlier 
solved tasks as known facts, which in turn is not provoking a need to remem-
ber facts, since the counting procedure provides a security. Methods based on 
deriving from what is already known, on the other hand, enhance the ability to 
remember facts and support children in using those facts; ”I know 4 plus 4 is 
8, then 4 plus 3 must be one less, 7”. 

In a long-term perspective the strategy preference in solving arithmetic tasks 
becomes critical when the number range increases and more advanced arith-
metic is introduced. According to Ostad (1998), a strategy learnt in isolation 
from its conceptual foundation induces more errors (see also Geary et al. 2004) 
and is hard to transfer to novel problems. Furthermore, if a single unit counting 
strategy (such as double counting) has been established as the preferred one, 
it is not easily abandoned (Cheng, 2012). Thus, it seems that children’s use of 
strategies is more complex than learnt ways to solve problems. Consequently, 
for children to advance their arithmetic skills they need to develop a conceptual 
understanding of numbers, or in other words, to see numbers’ part-whole rela-
tions in ways that allow them to act in accordance with a structural relationship 
identified in an arithmetic task. 

Methods
A structural approach in teaching elementary arithmetic to preschool children 
was implemented in the FASETT intervention program with the intention to 
afford a conceptually solid basis for arithmetic skills development. The struc-
tural approach meant directing attention to numbers’ part-whole relations as an 
outset, rather than counting single units. This was enacted in designed activities 
conducted by preschool teachers in five preschools with children attending their 
last preschool year (as 5-yearolds). To evaluate the outcomes of the interven-
tion we investigated children’s ways of solving arithmetic tasks and interpreted 
their actions and solutions as expressions of ways of experiencing numbers and 
number relations, in line with the theoretical framework Variation theory of 
learning (Marton, 2015). Assessments were done before, right after and delayed 
one year after the intervention. All assessments were video-recorded, with the 
children’s legal representatives’ informed consent. The third (delayed) assess-
ment is the object of inquiry in this paper, Video-documentation was a criterion 
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for inclusion in the analysis, since children’s ways of using their fingers were 
considered important data, which could not be collected in sufficient details by 
any other method. 51 children were included. The assessments were done indi-
vidually by members of the research team in the children’s own school settings.

Items in the assessment were designed to evoke the possibility to enact dif-
ferent strategies both in the number range 1–10 and bridging through 10. The 
tasks were given as oral word problems and the children were asked to explain 
verbally or in other ways show how they had arrived at their answer. No manipu-
latives were available but the children were encouraged to use their fingers if 
they thought it would be helpful. The target tasks for this particular study are:

A Your friend has 2 shells and you have 5. How many do you have together? 

B On Saturday you get 10 candies. You eat 6 of them. How many are left? 

C Today you are going to set the table. There are 3 glasses already on the 
table but there will be 8 persons eating. How many more glasses do you 
need to get?

D On your birthday, you are blowing up balloons. After the party, 3 are 
broken and 6 are whole. How many balloons did you blow up from the 
beginning?

E You have 8 marbles and your friend 5. How many do you have together?

F If you have 15 stickers and give 7 to your friend. How many are left?

To answer the research question how is the awareness of numbers’ part-whole 
relations reflected in the children’s ways of handling arithmetic tasks a total of 
306 observations across the tasks A–F (51 children x 6 tasks), were analysed. 
Each answer was coded as correct/incorrect and according to the children’s 
different ways of handling the tasks, first considering the strategies observed 
among all children and then regarding the relation to tasks below or bridging 
through 10. 

The analysis of children’s expressed awareness of part-whole relations was 
done using Variation theory as theoretical framework. According to Variation 
theory (Marton, 2015), children can only act in accordance with their way of 
experiencing a phenomenon, that is, in this study the children’s actions and 
explanations are interpreted as expressions of their way of experiencing the task 
and the numbers given in the task. Some aspects (e.g. ordinality of numbers) are 
prominent when enacting counting single unit strategies and others are indis-
pensable to discern in order to be able to re-group or decompose number sets 
(e.g. numbers’ part-whole-relations). Aspects that are discerned thus determine 
different ways of experiencing (and thus acting on) the same task. If the child 
is only able to see some, but not other necessary aspects, it is assumed to limit 
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what strategies the child is able to enact. Based on these theoretical principles, 
an analysis of the strategies enacted by the children can reveal which aspects 
they have discerned and which are yet undiscerned, in particular when some 
tasks are provoking difficulties and the observations show children encoun-
tering such tasks in different ways. This theoretically driven approach allows 
us to describe what aspects in particular the children need to ”see” in order to 
make use of powerful strategies. The following excerpts are answers given to 
the task C (3 + _ = 8) and will illustrate the difference between how a child who 
is interpreted as experiencing numbers as part-whole relation acts and thus 
enacts a structuring strategy, and a child who sees numbers as single units, thus  
enacting a counting strategy, acts:

Counting: The child starts with three fingers unfolded on the right hand 
(thumb, index and long finger), unfolds the two other fingers and two 
more in consecutive order on the left hand, moving the lips silently. Then 
moving each finger from the right thumb in the same order and unfolds 
the long finger on the left hand as well. Starts moving each finger on the 
right hand again, then says ”I think I need eight, no”, counts by pointing 
at each finger on the right hand, saying ”I think I need six more”. 

Structuring: The child unfolds three fingers on the left hand and three 
more on the right hand, saying ”five, there were three glasses and it should 
be eight, then I have to get five more to make eight” raises the two folded 
fingers on the right hand showing eight unfolded fingers. 

The different ways of handling the same task reveal differences in the children’s 
ways of experiencing numbers: the first child creates sets by adding ones but 
fail to coordinate different sets since the counted units are not seen as separated 
from the whole. This makes it difficult for the child to find out what constitutes 
the missing part. The second example shows on the other hand a child handling 
the part and the whole simultaneously, he sees ”the five in the eight” and his 
actions reflects an awareness of the part-whole relations of the numbers in the 
task. In the results section below, these differences in awareness of numbers 
are discussed in terms of discerned aspects of numbers.

Results
The observations of the strategies enacted by the children reveal a variation of 
ways to solve the tasks. The strategies found in the tasks below 10 are: 

Known facts. The child knows the answer, retrieved from memory or as a 
result from mental arithmetic.

Structuring. Transforming a problem into a simpler one, attending to number 
relations, by decomposing numbers or structuring the task with finger patterns.
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Counting. Using a strategy that includes counting single units, such as  
Counting-all, Counting-on or Counting-down.

Guessing. Answering without apparent counting or reasonable explanations. 

In the tasks bridging through 10 the same strategies were observed, with an 
addition of: 

Structuring towards 10. Transforming a problem as above but in addition 
using base-10 properties of the number system.

Double-counting. The number of units taken away or added are kept track on 
by (mostly) fingers raised for each counting word and then identifying the 
counted units (fingers) to get the answer.

Among the children in the study many know number facts in the number range 
1–10 and are able to retrieve from facts to find an answer. These children are 
considered having discerned the number relations and can attend to numbers’ 
part-whole relations in solving the tasks. Number facts are seldom observed 
when bridging through 10, which means the children have to enact some struc-
turing or counting strategy to find an answer. The dominating strategy when 
bridging through 10 is counting (64 of 102 observations = 63 %). However, 
the tasks are difficult to handle by double-counting (41 of 64 = 64 % correct 
answers) while the structuring strategy in the tasks bridging through 10 mostly 
ends up with the correct answer (17 of 19 = 89 % correct). 

When further analysing the children’s ways of solving arithmetic tasks an 
inconsistency in strategy use was discovered. Some children who were found 
to successfully make use of a structuring approach in the lower number range 
failed to use this approach when bridging through 10 and were then observed 
to enact a double-counting strategy in the higher number range. In the fol-
lowing sections a pattern of enacted strategies are presented and discussed in 
terms of children’s awareness of the part-whole relations, based on individual 
children’s enactment in tasks C, D, E and F (the first two tasks, 2 + 5 and 10 – 6 
are excluded since answers were most often given as known facts). Three chil-
dren were not categorized since they were only giving random answers without 
explanations to the tasks.

Counting as primary strategy. Fourteen children were using counting and 
double counting as the only strategy for solving the arithmetic tasks. One  
illustration of this strategy is the following answer to task E (8 + 5). 

Child:  I have 8. And then it’s 5 more. Then I count 9, 10, 11, 12, 13.
Interv.:  How do you know when to stop counting? 
Child:  I count at the same time as I count. Like this, 8 and 1 [pointing at the table 

when holding up his index finger], 9 is 1, 10 is 2 [holding up two fingers], 
11 is 3 [holding up three fingers], 12 is 4 [holding up four fingers] and 13 is 
5 [holding up five finger]. 
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This child keeps track of the counted number words both verbally ”9 is 1, 10 
is 2 ...” and by raising one finger for each added unit and succeeds in solving 
the task. The strategy is time-consuming and the child has to keep simulta-
neous attention to two parallel sequences. Enacting these kind of strategies 
may be due to the children experiencing numbers as single units to be added 
to the larger set but do not identify the relation between the given parts and the 
whole. The cumbersome double counting strategy becomes their only option 
(other than guessing) because the children do not experience the tasks consti-
tuting a structured part-whole relation. Consequently, these children may not 
be able to use any decomposing strategies or retrieving facts from memory – it 
does not make sense to them. Nevertheless, in straight forward additions like 
task E they quite often succeed in finding out the answer. However, in the task 
F (15 – 7), this strategy becomes an obstacle when having to keep track of units 
on the number sequence backwards.

Child:  Fifteen, then I count down. Fifteen, fourteen [moving the thumb and index 
finger]. Fifteen, fourteen. Thirteen [holding the ring finger]. I don’t know 
what comes next [counts silently]. Twelve. Is it seven then? 

Experiencing numbers as single units induces these counting strategies that 
may solve simple arithmetic task, but when the parts exceed the number of 
object that the child is able to perceive or when the fingers cannot represent 
each unit necessary for operating on the task, the absence of structure based 
on number relations becomes critical. 

Changing strategies when bridging through 10. Twenty-five children were 
found to use mixed strategies. Nine of them, who were observed to enact double- 
counting when bridging through 10 did seem to experience numbers’ part-
whole relations within the number range 1–10, as they enacted structuring stra-
tegies or known facts when solving the tasks below 10. In other words, they did 
identify number relations below 10 but could not generalize this idea to a larger 
number range. This brings forth an important insight: In tasks where children 
need to bridge through 10, quite many still seem not to experience some of the 
necessary aspects of the part-whole relations of numbers to enact a strategy 
based on structuring the part-whole relation of numbers, since they change a 
highly successful strategy (structuring or deriving from known facts) to a more 
cumbersome, error-prone and time-consuming strategy (e.g. double-counting). 

Experiencing 10 as a benchmark. The analysis showed that nine children 
were structuring throughout all of the tasks. Based on their verbal reasoning 
when solving the tasks, they were experiencing 10 as a benchmark and directed 
their efforts to solve the task by structuring on their fingers and by decomposing 
numbers, as illustrated in the following excerpt from task E (8 + 5 = _). 

Child: Thirteen. If you take 8, and 2 from the 5 and adding those marbles, it makes 
10 here, and 3 left. If you put them together, it makes 13.



Papers

78 Proceedings of Madif 12

In other words, the child is able to enact the associative law of addition and 
seems to experience the parts in the arithmetic task in two ways, simulta- 
neously: 8 + 5 is seen as 8 + 2 + 3 where 2 is part of a new part 10 but also a part of 
the decomposed 5. A similar way of reasoning about how to solve the subtraction  
task F (15 – 7 = _), bridging through 10 is shown in the following:

Child: Eight. First I thought like take away 7 and then I started counting 7. And 8, 
9, 10, then it was 3 more and then I had 5, and 5 plus 3 is 8.

This child considers the inverse relation between addition and subtraction and 
adds units to 7. However, there seems to be an important benchmark when 
reaching 10 as the child then experiences the difference between 10 and 15 
to be added to the 3. The task 15 – 7 = _ is thus experienced as a composition 
of 7 + (3 + 5) = 15. A closer look at these children’s ways of handling the tasks 
reveals that they have a very clear idea of the number relations in the task, seeing 
them as composite sets relating to each other in a part-whole structure. What 
stands out is that they create units of 5 or 10 and decompose given numbers to 
create new units to ”fill up” 5 or 10. In other terms, they experience numbers in 
a quite different way than children who use counting as their only strategy and 
also compared to the children who change strategy when bridging through 10 
– they experience numbers’ part-whole relations simultaneously and take hold 
on ten as a benchmark for their structuring and furthermore see the task as to 
be mathematical rather than empirical.

Conclusion
Young children’s struggle with bridging through 10 is not unknown to either 
the research community or teachers. Laski et al. (2014) for instance showed that 
children’s use of base-10 decomposition in arithmetic tasks was related to their 
knowledge of number structure and children are able to use multiple strate-
gies depending on the task. The intervention program in FASETT emphasised 
numerical relations and most children learned and enacted structural strate-
gies when solving tasks below 10. However, of interest in this particular paper 
is why children who have learned to structure and use the part-whole relations 
of numbers below 10 change to strategies that do not attend to the part-whole 
relations when tasks are bridging through 10. The results from the analysis 
presented here might shed light on what constitute knowledge of number struc-
ture in a general sense and consequently what teaching elementary arithmetic 
should consider.

Counting seems to be a safe way to find a solution among our participants 
and many use fingers for keeping track of counted units. Some children use 
(double)counting as their only strategy, and do in fact solve many of the tasks. 
However, the field of research converge on the view that structuring strategies 
and using retrieved facts is preferred in a long-term perspective (Baroody & 
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Purpura, 2017; Gray & Tall, 1994). Nevertheless, based on this investigation 
it can be suggested that this cannot be taught as a strategy alone, it is rather a 
question of which aspects of numbers that the child experiences in a task. When 
comparing the mixed strategy users with those who only use structuring stra-
tegies, one aspect emerges as to be critical to experience: structuring towards 
10. Children are observed to attend to the part-whole relations of numbers and 
enact structuring strategies, but only those who also experience 10 as a bench-
mark seem to be able to generalize their seeing part-whole relations to numbers 
above 10 and decomposing parts to fit a 10-structure. 

Fuson (1988) concluded, supported by Steffe (2004), that counting-the-count 
methods were advanced. Based on the results presented above, double-counting 
is however not an advanced strategy, even though it is cognitively demanding 
to keep track of parallel number lines. It rather becomes a necessary way of 
handling arithmetic tasks if the child does not see the task as composite sets 
with 10 being a critical benchmark. Strategies such as counting single units and 
double counting, do not support the child in experiencing the relation between 
and within numbers, or the base 10-structure to simplify an arithmetic task. If 
counting single units is the only strategy that the child is able to enact, more 
advanced arithmetic tasks in the number range above twenty and using multi-
plication will probably not be possible either. This is in line with Gray and Tall’s 
(1994) conclusion that more able children appear to do a qualitatively diffe-
rent sort of mathematics than the less able, since they have alternatives and can 
choose the most convenient way to solve a problem. The study presented in this 
paper contributes that in this particular arithmetic context (below and bridging 
through 10) it is necessary that the child experiences number relations but also 
experiences 10 as a benchmark, in order to access the more powerful structur-
ing strategies in the larger number range. In forthcoming interventions it would 
thus be important to direct attention to this aspect as to be critical for learn-
ing arithmetic skills, in addition to facilitating the discernment of part-whole  
relations of numbers as an outset.
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Towards a theoretical understanding of 
learning with self-explanation prompts

Ida Bergvall and annelI dyrvold

Oral or written requests to students to self-explain important aspects in a task at hand 
(e.g. self-explanation prompts) has proven to increase learning. Research about such 
prompts has mainly been implemented with cognitive perspectives focused on the 
individual. In this paper, we suggest an alternative analytical framework grounded in 
a sociocultural theory. This framework is valuable because it adapts to the individual 
learning process as well as to the learning process that takes place in group work. In 
addition, this framework contributes valuable guidance to the teacher and to authors 
of teaching materials as well as to researchers in mathematics education. The analyti-
cal framework is explained in relation to an example task. An excerpt from student 
group work is also discussed.

Self-explanation prompts (SEPs), have previously been used and described as 
tools for teaching. SEPs are questions or elicitations that serve to induce mean-
ingful explanations for oneself to make sense of new information (e.g. Rittle-
Johnson et al., 2017). SEPs are most often used in textbooks, either as parts of 
the introduction when a new concept is introduced, or as a step in a step-by-step 
task. The SEP can for example request the reader to explain why something is 
true, what some aspect in a diagram means, or how a solution method works. 
SEPs can also be used orally for example as an element of a lecture. The theo-
retical foundation for learning with SEPs has mainly been described within the 
frame of cognitive theories (e.g. Nokes et al., 2011; Rau et al., 2017) or without 
any explicit theoretical frame (e.g. Corradi et al., 2012; Eysink & de Jong, 2011). 
The aim of this paper is to propose a theoretical framing of SEPs and how they 
can enhance learning, based on the idea of scaffolding grounded in a sociocul-
tural tradition and Vygotskij’s zone of proximal development. The theoretical 
explanation suggested here, contribute a solid theoretical understanding of how 
learning occurs for individuals as well as in group work. A second aim is to 
create an analytical framework to lay the foundation for well-informed teaching 
strategies, task design and analysis of students’ learning in research on SEPs. If 
there is a lack of a thorough theoretical understanding of the processes involved 

Ida Bergvall, Uppsala University  
Anneli Dyrvold, Uppsala University
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when working with a teaching strategy, it is easily happened that central  
prerequisites for the intended learning to occur are lost. 

Self-explanation prompts
In mathematics, the prompted self-explanations can for example be about the 
meaning of a mathematical concept or about a solution method. The purpose of 
the explanation is to clarify certain crucial aspects of the phenomenon of inte-
rest, connections between different parts, or links to previous knowledge, and 
thus strengthen one’s own understanding in the learning situation (Berthold 
et al., 2009; McEldoon et al., 2013). Self-explanations have proven effective to 
enhance learning (e.g. Rittle-Johnson et al., 2017). However, self-explanations 
do most often not happen spontaneously (Schworm & Renkl, 2007) and there-
fore prompts to self-explain can be used. Despite the focus on self, SEPs can 
be used in group work because one person’s self-explanation can constitute a 
piece towards the group’s mutual inferences. By engaging in the explanation, 
central aspects are made clear to the individual, but are also made apparent to 
the whole group. 

SEPs can be of various kinds and can be used for different purposes (see e.g. 
Dyrvold & Bergvall, 2019). One frequent purpose of SEPs described in pre-
vious research is as a means to foster conceptual understanding. By formulating 
SEPs as questions typically including a why-question or a prompt to discuss, 
students are encouraged to actively make inferences and construct arguments 
and thus strengthen their conceptual understanding. Another purpose is to 
support reading, mainly of multimodal texts. In this case, prompts could be 
designed as gap-filling tasks or questions prompting students to make infe-
rences about the text and its content. Prompts aiming to support multimodal 
reading often support students in how to relate different parts of the text, such as 
relating quantities to bars in a diagram (Dyrvold & Bergvall, 2019). An example 
of a SEP aiming to foster conceptual understanding is given in the task ”The 
Sunflower” (figure 1). 

The SEP is expressed by the sentence ”First, discuss what it means for some-
thing to grow at the same rate every week”. The SEP is supposed to support the 
students’ understanding of ”at the same rate”, a crucial aspect of the concept of 
proportion. The intention with this SEP is to promote students’ discussion of 
this central aspect and thus to support the students’ development of conceptual 
understanding.

Theoretical perspectives
This section starts with an overview of theoretical perspectives in previous 
research on SEPs. Thereafter we present a substantially different theoretical 
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perspective which highlights how SEPs function as scaffolding and nurture 
fruitful interrelations between thought and language, individually and also in 
interaction. The alternative explanation of learning with SEPs is presented in 
two sections. First, the fundamentals of scaffolding theory are explained within 
this context and second, the sociocultural tradition with emphasis on thought 
and language is presented. Finally, this perspective is elaborated in relation to 
an example of a SEP which illustrate the contribution of this theoretical view.

Theoretical framing in previous studies about SEP
In our reading of studies about SEPs, we have examined the theoretical framing 
in 42 recent studies focusing on SEPs, both within mathematics education and 
in other subjects. In these studies, a theoretical framing of SEPs is not always 
given or is only briefly elaborated. In studies without a pronounced theoretical 
argument for the SEPs, the SEPs may play a minor role in the investigation (e.g. 
Schalk et al., 2018) or the theoretical emphasis is laid elsewhere in the study, 
such as on learning with multiple representations (Corradi et al., 2012). There 
are also studies in which it is left to the reader to get a grip on the theoretical 
foundation that may be implicitly communicated through arguments for the use 
of SEPs such as to foster connections (Roelle & Berthold, 2013) or to support 
active learning and meaningful understanding (Neubrand & Harms, 2017).

In studies where the use of SEPs is based on explicit theoretical arguments, a 
common denominator is a cognitive perspective, a perspective that more or less 
turns the attention to the individual, not to the group and without any explicit 
explanation of the meaning of learning. The emphasis on cognitive perspectives 
in previous research can be traced back to the first studies within the area (e.g. 
Chi et al., 1989) and to several often quoted studies about SEPs, that largely have 
influenced the research field (Renkl, 1999). In particular, arguments for SEPs 
are often based on cognitive load theory (CLT) (e.g. Mwangi & Sweller, 1998; 
Renkl & Atkinson, 2003). In short, CLT separates between different types of 
cognitive processes that may impose three main types of mental effort on stu-
dents’ working memory when they work with some learning material: intrinsic, 
extraneous and germane cognitive load. Intrinsic cognitive load stems from 
the inherent nature of the task at hand, a type of load that SEPs do not intend to 

Kim grows sunflowers during the summer holidays. The summer vacation is 7 weeks long. 
The sunflowers break through the soil just as the summer holidays begin and then grow 
at the same rate every week.

First, discuss what it means for something to grow at the same rate every week. 

Task: One of Kim’s sunflowers is 42 centimetres after the summer holidays. How high was 
the sunflower two weeks after school closure if it grew at the same rate every week?

Figure 1. The Sunflower
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alter. The focus in studies about SEPs are rather laid on extraneous (unwanted) 
cognitive load and germane cognitive load (that contributes to learning). SEPs 
can be used to reduce extraneous load (Sithole et al., 2017) or to induce germane 
load (Berthold et al., 2011) or both (Kern & Crippen, 2017).

Besides the emphasis on CLT in studies on SEP, a constructivist theoreti-
cal base does also occur in several studies. For example, in a study by Roelle 
et al. (2015) it is emphasized that the self-explanation activities are construc-
tive since the learners must generate knowledge that goes beyond the provided 
information. Part of the goal with SEPs is also often that the students shall make 
inferences and revise existing knowledge, sometimes explicitly referred to as 
revising cognitive schemas, both in studies who have CLT as a theoretical frame 
and not. Cognitive schemas are also essential in Sweller’s (1994) description 
of learning mechanisms within the CLT and accordingly the focus on schema 
acquisition and revision is yet another sign of the common cognitive ground 
within the current corpus of studies on SEPs.

In the current paper however, we suggest an alternative analytical framework 
based on a sociocultural theory, which is useful as it provides tools for an in-
depth understanding of how learning occurs during students’ individual or col-
laborative work with SEPs. This framework has a twofold potential to explain 
how learning with SEPs occurs, first as scaffolding aiming to strengthen the 
thought by verbalizing the understanding of the content, and second by scaf-
folding and directing the students’ attention to crucial aspects for example 
of a concept. These two sides of the theoretical explanation will be further  
developed below.

Theory on self-explanation prompts and scaffolding
According to sociocultural theory, development takes place through collabo-
ration and imitation of how others solve advanced tasks. If you get help and 
guidance through collaboration, you can soon perform the tasks that you pre-
viously did not master. This difference between content that are familiar to a 
student and new content can be regarded as the zone of proximal development 
(ZPD) for the student (Vygotskij, 1978). In short, the ZPD has been described 
as the space that exists between a person’s achieved level of knowledge where 
he or she can independently solve problems, and the possible development of 
knowledge that can occur in interaction and with support, for example from 
a teacher (Bakker et al., 2015). Such support of learning in the ZPD has been 
denoted as scaffolding. Scaffolding are often used as a metaphor describing 
support given by the teacher, but can also refer to support in the form of peer 
learning or by artefacts. Three characteristic features central to scaffolding 
have been described by van de Pol et al. (2010): 1. Contingency – the scaffolding 
must be adapted to the student and his or her knowledge level. 2. Fading – the 
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support provided by the scaffolding should be removed or faded as the student 
has attained the desired knowledge. 3. Transfer of responsibility – gradually, 
as the scaffolding is removed, the responsibility for the work is also transferred 
from the teacher to the student.

When taking a perspective on learning as scaffolded by SEPs, the SEPs 
are perceived as the means that contribute to raise understanding to a higher 
level. The prompt can provide students with support in identifying and direct-
ing focus to crucial aspects. In this way SEPs act as part of the teacher’s, or the 
more knowledgeable others, support in the ZPD. When the student formulates 
and puts his or her explanation into words, this explanation works as a scaf-
folding in the ZPD (Vygotskij, 1978), for the individual, as well as for peers 
when thoughts are made audible. The student’s response to a SEP will also 
constitute scaffolding for other students in group work. In combination with 
preceding comments from other students, these responses do together create a 
conversation with the potential to scaffold learning within the ZDP. The con-
nection between language and thinking as one of the crucial aspects of learning,  
supported by SEPs is elaborated in more detail below.

Theory on thought and language
Vygotsky (1986) discusses language and its role for thinking and learning and 
emphasizes the inner language and its significance for thinking. For young 
children, thinking develops by speaking loudly to themselves. This pheno- 
menon has been referred to as an egocentric language. The egocentric language 
eventually develops into an inner silent language that, like the egocentric lan-
guage, supports the thought. This development can be compared to a student 
who works with a SEP, and explains crucial aspects of the concept for himself or 
audibly to a peer student. Gradually, thinking evolves so that the verbal expla-
nation becomes superfluous. Then the inner silent thought suffices as support. 
This transformation from the verbal explanation to the inner thought is essential 
in relation to how learning occurs when working with SEPs.

When it comes to scientific concepts, students’ conceptual understanding 
is most often not fully developed when a concept is introduced during a lesson 
or in a textbook. The student first learns to recognize a particular word and 
thereafter an understanding of the meaning represented by the word is deve-
loped. Thereby the understanding of a scientific concept is developed from the 
general by making links to the concrete and well-known (Vygotsky, 1986). 
By using language individually and in collaboration with others, the student 
can create such links between the concrete understanding of a concept and the 
general scientific expression. In this perspective, this link is the basis for learn-
ing of scientific concepts (Vygotsky, 1986). The function of SEPs in relation to 
the development of conceptual understanding is to prompt the student to use 
the language to explain the concept, and thus making links to the well-known.
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A learning situation when working with SEPs
In this section, we illuminate our perspective by an authentic example from 
three grade four students’ collaborative work with a SEP. The example is 
derived from a larger project aiming at investigating students’ learning during 
collaborative work with SEPs. The excerpt below shows the discussion during 
one group of students’ joint work with the mathematical task ”The Sunflower”, 
described in figure 1. The task contains the SEP ”First, discuss what it means 
for something to grow at the same rate every week”. The aim of this SEP is to 
support the students’ understanding of the concept of proportion. The concept 
is new to these students since the intention is to enable students to develop 
knowledge in their ZPD. In the design of a task or a learning situation, it is 
important that the students’ understanding and previous knowledge are tho-
roughly taken into account (van de Pol et. al., 2010). If the match between the 
student’s level of knowledge and the requirements in the task fails, the SEP will 
not work sufficiently.

The SEP encourages students to explain a crucial aspect of the concept pro-
portionality. According to the analytical framework described in this paper, the 
SEP aims to support the students’ learning in two ways. First, the SEP fills the 
function of fostering a verbal discussion and explanation of the targeted aspect. 
This verbalizing process creates a foundation for the students’ learning through 
the connection between thought and language. Second, the SEP supports learn-
ing by directing focus to the formulation the same rate, which is a crucial aspect 
of the concept. The following excerpt is an example of students’ collaborative 
work with a SEP. The analysis of the excerpt, guided by the proposed sociocul-
tural based framework, elucidates the analytical potential of this framework. 
Our theoretical interpretation of the students’ learning is explained in relation 
to the analysis below the excerpt.

1 Ally What does it mean for something to grow at the same rate every week?
2 Ben So all ... all ... maybe not all of them get the same length every time.
3 Ally No.
4 Ben But they increase the same. So that each plant, like if it was 10 centimetres, 

then it would be 20 more, so all of them would, would be, would be, 20 10 
centimetres more even though they are not quite equally long.

5 Chris Difficult to say ... you could say that it is like a staircase [shows steps with 
a gesture]. So you ...

6 Ben And each is 10 centimetres.
7 Chris So it’s like a staircase. It increases each time one step of 10.
8 Ben Exactly! Something like that.

In line 2, Ben’s utterance ”maybe not all of them get the same length every 
time”, reveal that the task is not too easy, and thus it is reasonable to assume that 
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there is a potential for learning within the ZPD. If Ben was working alone, the 
task may have been too hard to solve, but in group work all students’ verbalised 
thoughts became part of the scaffolding and the verbalised thoughts do therefore 
constitute a kind of buffer that adjusts the difficulty to the students. This can 
for example be seen in line 4–6 where Ben and Chris further verbalises their 
developing thoughts about proportional growth. Ben tries out thoughts in line 
2, thoughts that develops to a preliminary definition, ”increase the same”, in 
line 4. In line 5 Chris uncertainty reveals that the activities are within the ZPD 
even for him. He is unsure and uses a metaphor to describe his thoughts. This 
metaphor, ”a staircase”, do thereafter constitute a part of the scaffolding that 
supports Ben who further clarifies ”each is 10 centimetres”. In line 7–8 Chris 
and Ben agrees on a summary, which is interpreted as an expression of a new 
level of understanding since the utterances are more developed compared to the 
initial statements. The students build on each other’s contributions and strive 
against a shared under-standing. The transcript does not reveal to which extent 
Ally is part of the discussion. It may be that the adaption between the SEP and 
Ally’s level of understanding is poor (ibid.).

In summary, the SEP encourages the students to express their developing 
thoughts, thoughts that progresses from fragments to an appropriate description 
of proportionality in this particular case. So, the prompt function as scaffolding 
as well as the developing utterances and gestures do. 

Implications for mathematics education
In this paper the idea of scaffolding grounded in a sociocultural tradition is sug-
gested as a theoretical base for the analytical framework since it captures dimen-
sions other than those typically claimed to be explained by cognitive theo- 
ries. As illustrated in table 1 the suggested framework puts emphasis on two 
different aspects of learning that is nurtured by the SEPs, namely to scaffold 
both structure and the relation thought – language. The figure also illustrates 
how the framework is applicable for both individual work and group work. 

Cell 1 and 2 capture aspects related to the support the individual receives from 
working with SEPs. Cell 1 concerns the mathematical structure and cell 2 is 
about how thinking is supported by the use of language. Cell 3 and 4 show how 

What
How structure thought – language

individually (1) (2)

group work (3) (4)

Table 1. ”What” and ”how” self-explanation prompts can be scaffolding
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both the mathematical structure and the relationship between language and 
thought can be supported at group level. 

The previous example about proportionality exemplifies an analysis of the 
scaffolding function of verbalised thoughts. However, a SEP does with neces-
sity provide structure, by directing the attention to the aspect the students are 
supposed to develop their understanding about. According to scaffolding theory 
this structure is supposed to be adapted to the learner’s level of understand-
ing, to be faded out and to be used in a deliberate way by the students. A match 
between the support given by the SEP and the students are briefly touched upon 
in relation to the example, in the interpretation of whether the students develop 
within their ZPD.

The suggested analytical framework opens up possibilities for understand-
ing and analysing learning in research on SEPs, and provides guidelines in the 
design of tasks and learning situations. For example, SEPs can be designed to 
support the development of multimodal reading competence where they provide 
structure by focusing attention to particular features of the text. In relation to 
table 1 it is important to note that a learning situation can comprise several of 
the cells, such as group work scaffolding both on structure and thought – lan-
guage. The three distinguished characteristics of scaffolding: to be contingent, 
to be faded out, and to be used in a manner that transfers the responsibility to 
the learner (van de Pol et al., 2010), can be taken into account in task design, 
for example by successive prompts. The students then have the opportunity 
to take responsibility and choose the prompts that suits their level of under-
standing and the scaffolding function can reach its fullest potential. A perfect 
match between a SEP and a student group is not easily achieved, and dynamic 
scaffolding given by a teacher in relation to the expressed understanding can 
therefore be a useful calibrator during problem solving. With a good theoreti-
cal understanding, the teacher can act flexibly and adapt a SEP to the students’ 
needs in the current situation.

Discussion
In this paper, we have described a sociocultural based analytical framework for 
understanding and investigating SEPs and how they can enhance learning. We 
thereby highlight opportunities to recognize and analyse potentials of SEPs that 
might otherwise remain invisible. The framework we suggest contributes to a 
broaden understanding of SEPs compared to studies framed by cognitive load 
theory (CLT), where emphasis is put on how to provide structure to the indivi-
dual, which corresponds only to the upper left cell (1) in table 1. In this way, the 
explanatory power of CLT is limited to an individualised learning process, and 
rather on how to guide the students towards what is to be interpreted (removing 
load), than to support learning.

We argue that with the suggested sociocultural based analytical framework, 
more dimensions of the potential of SEPs are highlighted, which opens up new 
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opportunities to understand, use, and investigate this teaching tool. By using 
this framework, it is possible to illuminate how students can learn either indi-
vidually or in groups. Learning is supported by SEPs pointing out key aspects, 
as well as by SEPs encouraging students to verbalise their thoughts. When 
students work individually with a SEP, they have to write down their answer, 
or answer orally for themselves instead of using language in interaction with 
their peer students. This is in line with the inner silent language, described 
by Vygotskij (1978). The analysis of the example also shows how this theory 
can provide a basis for understanding students’ learning while working with 
SEPs. In summary, the described framework provides improved possibilities 
for teaching, learning, and research on SEPs as described by the four cells in 
the model in table 1.
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”Programming is a new way of 
thinking” – teacher views on 

programming as a part of the new 
mathematics curriculum in Finland

Ray PöRn, KiRsti Hemmi and Paula Kallio-Kujala

Programming has recently been included as a part of the mathematics curriculum 
throughout the grades in several countries. This is also the case in Finland. In this 
explorative study, we focus on Finnish Swedish primary school teachers’ views of 
programming in school mathematics and on the connection that they spontaneously 
draw between mathematics and programming. Most teachers connect program-
ming in primary school to the explicit activity of writing, giving or following instruc-
tions and to different aspects related to logical thinking. In addition, some teachers 
consider programming as an important problem-solving tool and still some of them 
mainly as an activity in mathematics. Only a few teachers connect programming to 
central computer science concepts as algorithms and abstractions and to specific 
mathematical areas.  

In line with several other countries, Finland has recently included programming 
as a part of mathematics curriculum in primary school (Duncan & Bell, 2015; 
Hemmi et al., 2017). This implies that primary school teachers (grades 1–6) 
have to integrate programming in their mathematics lessons. Primary school 
teachers as generalists need widespread professional development concerning 
technical skills and understanding of suitable pedagogies to successfully imple-
ment new curriculum ideas (Benton et al., 2017). Moreover, it is not quite clear 
what exactly is to be focused on at different grades as the Finnish national core 
curriculum is written in a very general way. The path from inclusion of pro-
gramming in the mathematics curriculum to enacting lessons targeting it in a 
relevant manner is complex (Mannila et al., 2014). The authors point out there 
are several issues to be discussed and defined to succeed in the implementation 
process of programming in the primary school classroom.

The present paper contributes by reporting the findings of an explorative 
study among primary school teachers the first year after the introduction of 
the new national core curriculum in Finland. We focus on what primary school 
teachers spontaneously ascribe to programming, and investigate particularly 
features connected to different aspects of computational thinking and the  

Ray Pörn, Åbo Akademi University 
Kirsti Hemmi, Åbo Akademi University & Uppsala University 
Paula Kallio-Kujala, Åbo Akademi University



Papers

92 Proceedings of Madif 12

connections they make to topics typically included in mathematics learning. 
The research question is the following: How do primary school teachers view 
programming as a part of the new mathematics curriculum?

With teachers’ views, we refer to ways in which teachers describe program-
ming and the teaching of programming.

The Finnish context
The general task of mathematics education as stated in the national core cur-
riculum (applied from 2016) is to develop students’ logical, accurate and crea-
tive thinking (FNBE, 2014). Programming is included in the content of Mathe-
matical thinking skills and applies to all students from first grade up to the 
end of grade nine (see Hemmi et al., 2017). Learning programming in mathe-
matics starts in grades 1–2 with constructing simple algorithmic instructions 
by using symbols in written or oral form and testing them. During grades 
3–6, the emphasis is on formulating instructions in a graphical programming  
environment.

There have not been any national efforts to systematically offer all teachers 
in-service education in programming, but different agents, such as regional 
authorities, universities, the National Board of Education and private compa-
nies, have frequently organized courses for teaching programming. The courses 
offered for class teachers have focused for example on visual programming 
with block-oriented tools like Scratch, code.org and various applets, educa-
tional robotics, algorithmic thinking and elements of programmable electro-
nics and making. Teaching programming has often been technology-driven 
and enthusiastic teachers and other actors have considered what they can do 
with a particular tool. Therefore, there might be a danger that a holistic picture 
of the learning path of children is not so clear for primary school teachers (cf. 
Hemmi et al., 2017).

Relevant literature
Computational thinking
The origins of computational thinking in early mathematics education can be 
traced back, more than thirty years, to the work of Papert who developed com-
puter software to facilitate children to engage and explore computer program-
ming as a natural problem-solving tool in their mathematics studies (Papert, 
1980, 1996). Later, Wing (2006) defined computational thinking as ”repre-
senting a universally applicable attitude and skill set involving solving prob-
lems, designing systems and understanding human behavior, by drawing on 
the concepts fundamental to computer science” (Wing, 2006, p. 33). After 
that, several organizations and authors have presented different definitions of  
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computational thinking (Grover & Pea, 2013). Many of these definitions are quite 
general and may indeed involve activities not necessarily directly connected to  
programming and coding.

Brennan and Resnick (2012) introduced a framework with three dimen-
sions of computational thinking: computational concepts, computational prac-
tices and computational perspectives. The first dimension includes common 
concepts that programmers use as they develop programs, such as sequence, 
iteration and function. Computational practices reflect different activities 
and problem solving practices that occur in the programming process, such 
as planning, testing, debugging, reusing and remixing. The third dimension, 
perspectives, involves the programmer’s connection and relationship to other 
members of the programming community and to the surrounding technological 
world. These dimensions are appropriate for understanding how K–12 students 
approach and connect to programming with Scratch and they are well in line 
with the programming content and ambition of the newly launched curriculum 
in Finland. In our study, we used Brennan and Resnick’s (2012) dimensions as 
starting point for the data analysis, but broadened it taking an open iterative 
approach as our study is of explorative character. 

While various studies about the relation between programming and mathe-
matics in school curriculum have been conducted, the possible effects of pro-
gramming on the learning of mathematics have not been clearly stated (Benton 
et al., 2017). However, many researchers highlight the critical role of the teachers 
in making explicit and systematic links between programming and students’ 
existing and developing mathematical knowledge (Benton et al., 2017). 

Teachers’ views on programming
There is little knowledge in the field of mathematics education about teachers’ 
views of programming and teaching of programming as a part of mathema-
tics curriculum and even less on how primary school teachers cope with the 
recent reforms in different countries. The paper by Mannila et al. (2014) sur-
veyed teachers’ experiences about and perceptions of computational thinking in 
five European countries. Hijón-Neira et al. (2017) investigated primary school 
teachers’ views on programming in schools in one region in Spain through a 
questionnaire and they analyzed the responses of 46 teachers. The teachers 
agreed on the benefits that programming provides in several areas, for example 
the development of thinking skills, the organization of ideas, the ability of 
abstraction and problem solving, motivational aspects, and the opportunities 
offered by teaching through games. The respondents remarked the importance 
of having properly trained teachers to teach this subject. Funke et al. (2016) 
interviewed six primary school teachers about their opinions on computer 
science and the findings pointed out that the teachers had no clear image on 
what computer science in school is, but they highlighted the importance of 
implementing computer science at an early educational stage. Recently Nouri 
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et al. (2019) investigated which skills 19 teachers interested in programming 
themselves aimed to develop among pupils. Apart from Brennan and Resnick’s 
(2012) dimensions, they found some general skills related to digital competency 
and 21st century skills. 

Pointing out the earlier concerns, for example about children bypassing 
mathematical ideas within less structured learning activities and without 
teacher guidance, Benton et al. (2017), examine the relationship between learn-
ing to program and learning to express mathematical ideas through program-
ming with Scratch on primary level mathematics (age 9–11). The teachers in 
the study expressed that they needed the powerful ideas of mathematics cur-
riculum to be clearly connected to the programming aspects of the computing 
curriculum. The study shows that it is possible to connect programming (with 
Scratch) to mathematical learning among students of different abilities and it 
had a positive effect on students’ motivation. Yet, the study raised a number 
of concerns with respect to teachers’ confidence and subsequent use of the  
technology within their teaching to support the learning of both computational 
and mathematical concepts. 

Data collection and analysis
The target group of this study is primary school teachers that are working 
in schools where the instructional language is Swedish. 1 The empirical data 
for this study was obtained using a web-based survey that was distributed to 
teachers through Swedish Finnish primary school principals (190) during the 
spring term 2017. The survey contained 34, mostly multiple-choice questions 
and took about 30 minutes to complete. The final group of respondents consisted 
of 91 teachers, 70 female and 21 men. The age and regional distribution of the 
respondents were satisfactory. Of the 91 participants, 71 had participated in at 
least one in-service training course in programming. In this paper, we solely 
explore and analyze teachers’ answers to one open question in the question-
naire: ”What is programming? You should focus on programming in primary 
school but you can also relate to programming in general.” From the context 
of the questionnaire, it is clear that this question is directly related to how the 
current change of the national curriculum (inclusion of programming) affected 
the mathematics content. The teachers were asked to focus on programming in 
school and to reflect on what they found important. The focus is on the teachers’ 
spontaneous reflections about programming. We did not want to probe them in 
anyway and the aim was to investigate if they spontaneously mentioned con-
nections between programming and mathematics as it is a part of mathematics 
in the Finnish curriculum.

Possibly, due to the current nature of the topic, many respondents gave  
relatively rich answers. The number of words in the different answers varied 
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from one word to 108 words and the mean number of words in the answers were 
25. The teachers’ responses (in Swedish) were first read and interpreted sepa-
rately by two first authors of this paper. We initially started the analysis with 
the categories of Brennan and Resnick (2012) in order to identify what kind 
of computational thinking teachers’ utterances were possibly expressing. Yet, 
these categories were not helpful in identifying other important views, such as 
curriculum issues and views on connections between programming and mathe-
matics. Therefore, we conducted a data-driven iterative analysis (e.g. Bryman, 
2001) starting by identifying certain similarities and generalities among the 
answers. We found six categories suitable for the final analysis (table 1). Due 
to the openness of the question, one answer could be assigned to several cate-
gories. In the Results section below, we describe the categories in more detail 
and exemplify them with teachers’ expressions translated to English in order 
to make the analysis transparent.

Results
The distribution of the teachers’ views on programming in relation to the six 
analytical categories can be seen in table 1. 

The number of answers assigned to different number of categories are 0 (6), 1 
(48), 2 (24), 3 (10), 4 (2), 5 (1). That is, six answers were uncategorized and 24 
answers belonged to two different categories.  No answer was assigned to all 
six categories. Below we describe and exemplify the categories identified for 
teachers’ spontaneous views on programming in school. 

Writing, giving and following instructions 
This category is the most common among the answers as 65 % of the teachers 
connected programming to the explicit action of writing, giving or following 
instructions. The next extract shows a typical teacher answer in this category. 

Category n
1. Writing, giving and following instructions 59 (65 %)
2. Logical thinking and identifying patterns 29 (32 %)
3. Algorithms, abstractions, modularization and testing 10 (11 %)
4. Problem solving 17 (19 %)
5. Use of modern technology and digitalization 9 (10 %)
6. Curricula, progression and future aspects 15 (16 %)
Total 139

Table 1. Distribution of teachers’ views on programming
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  In primary school education, it is important to let students test to program a 
computer, give instructions to another person or to a robot and try to make it 
complete the desired task. (Teacher 10)

As shown below, several teachers connect these kind of actions to activities 
associated to spatial thinking.

  [...] A simple way is to say; Go two steps to the right, one backwards and then 
five steps forward. Then you have come to the finish. (Teacher 33)

  For example, to be able to get a Beebot to go from one place to another by  
programming it. (Teacher 78)

A step-by-step procedure is sometimes connected to teachers’ interpretations 
of instructions.

  Programming is to give detailed step-by-step instructions that do not offer space 
for misinterpretations or ambiguity. (Teacher 72)

Several teachers pointed out that the instructions need not to be given to a com-
puter or robot, but equally well to a fellow student. 

Logical thinking and identifying patterns
This category was the second most common as 32 % of the teachers point out 
that programming is connected to logical thinking and/or the identification of 
patterns. Most responses in this category state that programming promotes 
learning of logical thinking as shown in the extract below. 

  Programming is, for example, to split a problem in to smaller parts, to see  
relations, to learn to think logically, to create something new.” (Teacher 64)

Others express that programming is very similar to logical thinking.

  I think programming is very much about logical thinking and recognizing  
patterns. (Teacher 45)

Most of the teachers connect programming to a combination of handling 
instructions and applying logical thinking 

Algorithms, abstractions, modularization and testing
These programming terms are common concepts in computer science and 11 % 
of the teachers claim that a central aspect of programming is the explicit con-
structing of algorithms, abstractions and the modularization or testing of a 
program. 

  It is about coding, solving complex problems by splitting them into smaller pieces, 
identifying patterns, creating abstractions and writing algorithms. (Teacher 16).

Teachers that connect to these concepts are likely to have more in depth  
knowledge of the process of applying programming to solve problems.
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Problem solving
The important problem solving aspect of programming is highlighted in 19 % 
of the answers. 

  Programming is a really good activity that trains the ability to solve problems. 
(Teacher 43).

Another teacher who connects programming to ”logical thinking, ability to 
solve problems, systematics and creativity” concludes with ”Programming 
is mathematics.” (Teacher 72). Despite the close and important connection 
between mathematical problem solving and programming, no teacher answer 
is giving any explicit example of such a problem solving activity.

Use of modern technology and digitalization
A few teacher descriptions (10 %) consider programming in school from a more 
general perspective. Some responses address the importance of understanding 
the relation between human and machines. 

  […] to realize that everything a machine can do is due to a human that has  
programmed it. (Teacher 10)

Others stress that programming is a part of modern technology.

  Several things in our close environment work with help of programming, e.g. 
machines, computer games and telephones. Industry uses robots that have been 
programmed. (Teacher 75)

This category captures more general aspects of programming not directly 
related to a school context.

Curricula, progression and future aspects
The aspects of curriculum and progression concerning programming in primary 
school are the focus in 16 % of the answers. Several teachers saw programming 
as a positive element in mathematics lessons and important for all students to 
learn, for example to prepare for future work life.

  We have to prepare them for the working life after school when they must be 
prepared to think creatively. (Teacher 58)

On the other hand, there were teachers who were not convinced about the  
importance of learning programming for all students. 

  I think programming is fun, but I do not see it as a useful ”subject”. That type 
of thinking can be acquired in many other ways. (Teacher 22)

Some of the teachers express a concern about the lack of information about the 
progress throughout the grades 1–6 concerning programming.
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  Interesting, but I would like to have a clearer plan about what to do each school 
year. (Teacher 69)

Several teachers also stated that they lacked relevant curriculum materials for 
teaching programming. 

Variation in teachers’ descriptions
The range and the qualities in teachers’ responses varied a lot. Some of the 
teachers touched several categories while others only responded with short 
sentences categorized into one category. The following extract is an example 
of the former and was coded into categories 1, 2, 3 and 6. 

  Programming is a working process were you construct an algorithm, a hypo-
thesis or a plan of how something should be executed or work. This plan is then 
tested and updated in order to work correctly. On a basic level, it can be as easy 
as working with numbered instructions. For older students it proceeds to the crea-
tion of block-based events using apps and computer programs and then finally in 
the highest grades by coding using a text-based language. (Teacher 62)

This teacher captures several important concepts and practices in computa-
tional thinking, such as instructions, events, algorithm, planning and testing 
as well as the progression of the topic. The second example is coded into  
categories 2, 3 and 4.

  Programming is all about logical thinking and problem solving. It is about 
coding, solving complex problems by splitting them into smaller pieces, iden-
tifying patterns, creating abstractions and writing algorithms. You can practice 
programming using different programs, games and languages. Programming 
is a new way of thinking. (Teacher 16)

The focus in this answer is on problem solving, the thinking aspect and the crea-
tion of algorithms and abstractions. The teacher also claims that programming 
really adds a new color to the classroom activity palette. The last example is 
coded into categories 2, 4 and 5.

  Programming is a way to teach students logical thinking, understanding of rela-
tions and problem solving. They develop both cognitively and linguistically. In 
time, they will understand that all new technology they use is based on program-
ming. (Teacher 40)

This teacher specifically lifts logical thinking and problem solving as impor-
tant learning goals and the technology connection is mentioned. The answer 
also highlights the communicative aspect of programming as being important.
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Discussion and conclusion
The aim of this study was to explore and describe the way Finnish Swedish-
speaking primary school teachers’ view programming as a part of the new mathe- 
matics curriculum. Several teachers saw programming as a positive element in 
mathematics lessons and important for all students to learn. Programming was 
primarily connected to the explicit writing, giving or following of instructions. 
It was also considered to contribute to the development of logical thinking, serve 
as a valuable tool in problem solving and be a useful skill in future work life.

The teacher’s answers reveal that programming is interpreted in different 
ways. Most teachers view programming as an activity whereas others inter-
pret programming from a subject point of view. The activity view is typi-
cally more related to categories 1–4 and the subject view is more visible in  
categories 5 and 6.

We next briefly comment on the relation of the answers to the framework 
by Brennan and Resnick. Many Finnish primary school teachers use Scratch 
as a programming tool and many of them have attended in-service training 
courses addressing Scratch. When they are to describe what they consider as 
programming, it might be that they view programming mainly through the 
lens of Scratch. Some answers that belong to category 1 and a few answers 
connected to category 2 and 3 are closely related to Brennan and Resnick’s 
concept dimension. Common words in the teachers’ answers are instruction, 
command, sequence, variable, conditional and loops. However, most answers 
relate to the practices dimension. The teachers typically describe how a certain 
programming activity is conducted and how it connects to some other learn-
ing aspect such as logical thinking and problem solving. They focus on how 
the students are working and learning. As one answer reveals, ”Programming 
is, for example, to split a problem in to smaller parts, to see relations, to learn 
to think logically, to create something new”. The perspectives dimension was 
visible in a few answers in category 5, with focus on modern technology and 
social aspects.

The explicit connections to specific mathematical content were scarce. For 
example, no teacher answer relates to the application of programming to arith-
metic, algebraic expressions nor probability. The examples given can only be 
connected to spatial thinking and geometrical shapes. Along the lines with the 
concerns mentioned by Benton et al. (2017), it might be that primary school 
teachers do not fully apprehend the interplay between mathematical and com-
putational content and learning. This also relates to some teachers’ concerns 
about lacking of information and relevant materials to be able to concretize the 
general goals of the national core curriculum. One suggestion for future action 
could be to organize educational courses for teachers that focuses on explicit 
connections between programming and mathematical content and learning.
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Integrating programming in Swedish 
school mathematics: description of a 

research project

Kajsa Bråting, CeCilia Kilhamn and lennart rolandsson

This paper describes a new research project investigating the implementation of pro-
gramming in Swedish school mathematics, specifically in relation to algebra learn-
ing. Based on Chevallard’s framework of transposition of knowledge, the project 
investigates what types of activities and systems of representations are introduced 
and argued for as programming makes its way into mathematics teaching, and what 
these may entail. Tentative results reveal syntactic and semantic differences between  
programming and algebra that may cause problems for students. Interviews with 
teachers show that they seek inspiration and activities from social media and internet 
rather than textbooks and other published teaching material. 

During the past five years programming and computational thinking have 
emerged as new skills in several countries’ national school curricula. Although 
computational thinking was introduced already in the 1980s (Papert, 1980) it 
did not become widely adopted, possibly because digital technology did not 
have the impact it has today through the internet and digital devices (Kotsopou-
los et al., 2017). However, about thirty years later, Wing returned to the term 
computational thinking arguing that it should be taught in schools alongside 
reading, writing and arithmetic (Wing, 2006). 

The integration of programming and computational thinking in school cur-
ricula has been done in various ways (Mannila et al., 2014). For instance, in 
England, programming was made part of a whole new subject, ”Computing” 
(Berry, 2013), while Finland and Sweden adopted a blend of cross-curriculum 
and single subject integration with the strongest link to mathematics (Bocconi 
et al., 2018). Unlike other countries, Sweden included programming in the 
mathematics curriculum in close connection to algebra through all grade levels, 
which makes the Swedish case unique in an international perspective. Until 
now, research on computational thinking and algebraic thinking has run on 
separate tracks, but the Swedish case offers a great opportunity to investigate 
the intersection of these two research domains.

The overall aim of the project described in this paper is to contribute to 
the international research field concerning the complex issue of implementing  

Kajsa Bråting, Uppsala University 
Cecilia Kilhamn, University of Gothenburg 
Lennart Rolandsson, Uppsala University
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programming and computational thinking in school mathematics (grades 1–9), 
specifically in relation to the learning of algebra. Based on two interrelated 
studies, the project attempts to explore how computational thinking is con-
nected to algebraic thinking and, ultimately, how this connection may create 
opportunities, challenges or pitfalls for student learning of algebra. The aim 
of this paper is to describe the project as well as report some tentative results 
concerning what aspects of programming and computational thinking that have 
made their way into school practice. However, we commence with a brief survey 
over the two research fields of computational thinking and algebraic thinking. 
Both are fairly new as research fields and therefore attempts at defining and con-
ceptualizing what is meant by these types of thinking is still an ongoing process, 
which we have described in more detail elsewhere (Kilhamn & Bråting, 2019).

Computational thinking 
Over the past decade, computational thinking (CT) has been paid increased 
attention in education at all levels. The significance of CT can be explained by 
the fact that it supports cognitive development and creative problem solving, as 
well as by the growing interest in artificial intelligence (Nouri et al., 2020). In 
the Nordic countries, CT and programming are included in an evolving defini-
tion of digital competence (Bocconi et al., 2018). In Sweden, programming was 
introduced as a new content in the national syllabus for mathematics in 2017, a 
revision which was expected to be fully implemented in August 2018 (Swedish 
National Agency of Education, 2018), giving schools a short time frame for 
teacher training and preparation.

Often, the concept represents a product-oriented perspective where various 
tools are applied in order to form CT skills (e.g. Grover & Pea, 2013). Aho (2012) 
defines CT as ”the thought processes involved in formulating problems so their 
solutions can be represented as computational steps and algorithms” (p. 832). 
Problem solving and algorithmic thinking are thus considered fundamental 
aspects of CT (Futschek, 2006). Developing CT also requires students to deal 
with the sometimes counterintuitive notations and conventions in the syntax 
of different programming languages.

Generally, CT is considered a more extensive concept than programming, 
although teaching and learning programming requires the use of CT (Hickmott 
et al., 2018). Furthermore, Brennan and Resnick (2012) highlight the appropriate 
role of programming as a means to develop CT, identifying three dimensions of 
CT: i) concepts such as sequences, loops and data; ii) thinking practices such 
as debugging, remixing and abstracting; and iii) the perspectives expressing, 
connecting and questioning. These dimensions come to the fore in program-
ming activities at a school level, and form a useful framework for both teaching 
and assessing CT. An early initiative to use this framework has been taken by 
Nouri et al. (2020) in a thematic analysis of teacher interviews.
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In a literature review of studies on CT in mathematics classrooms, Hickmott 
et al. (2018) found few studies that explicitly linked the learning of mathe-
matics concepts to CT. Even when concepts involving numbers, operations 
or algebra were present, the primary intention was always the introduction of  
programming concepts.

Algebraic thinking and algorithms
Researchers have suggested several frameworks for conceptualizing alge-
braic thinking in elementary grades. Many of these draw on Kaput’s (2008) 
description of early algebra in terms of three content strands; the study of 
structures and relations; the study of functions; and the application of a cluster 
of modelling languages. Although a conclusive definition of algebraic think-
ing (AT) does not [yet] exist, most definitions include the two core aspects of 
expressing generalizations and symbolizing in formal or informal systems of  
representation (for several examples see Kieran, 2018). 

The introduction of algebra in school mathematics was traditionally assumed 
to build on a thorough knowledge of arithmetic and was therefore not intro-
duced until secondary school. For some decades, however, this division between 
arithmetic and algebra has been rejected, and it is now generally accepted that 
supporting algebraic thinking and the use of algebraic tools already in the early 
grades is beneficial to the learning of both arithmetic and algebra (Kieran, 2018). 

Before the 1980s, traditional algorithms were seen as a cornerstone of arith-
metic, but following the invention of pocket calculators a debate flourished on 
the necessity of these algorithms (Kamii & Dominick, 1997). Traditional algo-
rithms were replaced by an increased emphasis on number sense and conceptual 
understanding. In Sweden, the term algorithm was removed from the descrip-
tion of arithmetic in the national curriculum in 1994, but re-inserted in 2018 
as a core concept in algebra in connection to programming, implying a shift 
of emphasis from a procedural use of algorithms to a conceptual understand-
ing of algorithms. In mathematics education, an algorithm is defined as a finite 
sequence of executable instructions which allows one to find a definite result 
for a given class of problems (Brousseau, 1997). The general structure of an 
algorithm connects algorithmic thinking to AT, so potentially, algorithms and 
algorithmic thinking may lie in the intersection of AT and CT. 

Theoretical frames of the project
Within the research project we use the theory of transposition of knowledge 
(Chevallard, 2006) in order to study the implementation of programming in 
school mathematics, see figure 1. While the relevance of Scholarly knowledge is 
what is achieved by professional programmers, Knowledge to be taught is made 
legitimate by different actors making decisions about what, when, and why to 
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teach, and is thus broken into smaller parts (Kang & Kilpatrick, 1992). When 
computer programming is transposed to become a body of teachable knowledge 
in school, decisions are made for example concerning where to place the topic 
in relation to other topics, what kinds of activities and symbolic representations 
to use, as well as how and in what order different aspects of programming and 
CT are to be taught at specific age levels. 

The process of transposition of computer programming has already started 
in Sweden through the choices made in the revision of the national curriculum 
(Swedish National Agency of Education, 2018). The next step of didactic trans-
position will happen as the national curriculum is interpreted and operationa-
lized in textbooks and teaching materials, and further by teachers, to become 
knowledge taught in the classroom. The project described in this paper offers a 
unique opportunity to study the transposition of knowledge related to aspects 
of computer programming, computational thinking and algebra as it occurs in 
the implementation of the revised national curriculum in Sweden. 

To deepen our analysis, we identify and describe the systems of representations 
that appear in different semiotic representations (Duval, 2006), how and why 
these are chosen, discarded or taken for granted in each phase of the didactic 
transposition. Especially, we investigate how computer-related representations 
interact with already present algebraic systems of representation. 

Method
Within the project, we conduct two studies that both separately and related 
to each other help us to discern important aspects of the issue of integrating 
programming in school mathematics. Here we briefly describe the studies and 
exemplify what has been done so far.

Study 1. Teaching materials and textbooks
This study focuses on the transposition from Scholarly knowledge to Know-
ledge to be taught in the didactic transposition process. We investigate the 
current steering documents in mathematics education, government produced 
teaching materials, and commercially produced mathematics textbooks includ-
ing teacher guides. The selection of textbooks is made according to their popu-
larity and diversity due to earlier studies showing that there are substantial  

Figure 1. The four phases in the didactic transposition process

Note. The encircled processes appear in focus of the project described in this paper
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differences between textbook series (Bråting et al., 2019). At present, four 
textbook series from three different publishers have been chosen for analysis. 
We are currently conducting a qualitative content analysis of the textbooks’ 
tasks with respect to the programming content. The first two of Brennan and 
Resnick’s (2012) dimensions have been used as a base for an analytical tool. 

In this paper, we will report some results from our initial analysis of textbook 
series for grades 1–6 as well as our investigation (Kilhamn & Bråting, 2019) of 
programming activities suggested in a government-provided teaching material 
available online 1 based on the 2018 revised curriculum in Sweden. In the latter, 
we have utilized Duval’s (2006) framework to highlight syntactic and semiotic 
aspects of algebraic concepts that appear in both algebra and programming, 
such as the equal sign, variable, algorithm and function. 

Study 2. Teachers’ voices 
The second study focuses on the transposition from Knowledge to be taught 
into Taught knowledge (figure 1). Data is gathered from teachers who are in the 
process of implementing programming in their mathematics classrooms. In the 
analysis we focus on what didactical choices teachers make and why, as well as 
what opportunities, challenges and pitfalls they identify, in particular in relation 
to different semiotic registers. At present, we have data from two sources; a) 
teachers’ written documentations of lesson studies (c.f. Fernandez & Yoshida, 
2012) and b) individual teacher interviews with early adopters.

Lesson study plans and teachers’ written reports of enacted lesson studies 
were collected from 24 groups of teachers, attending an in-service development 
programme; in total approximately 135 primary and secondary school teachers. 
The teachers involved in the programme came with mixed ability and motiva-
tion towards teaching programming as part of the mathematics curriculum. 
Each lesson study consisted of two or three cycles of co-planning, enacting 
and revising a lesson about programming in mathematics. In some of the lesson 
studies the lesson was taught by the same teacher in each cycle, in others by 
different teachers. The written documentations have been scrutinized to iden-
tify types of activities and programming environments used, as well as chal-
lenges and questions raised by the teachers. These results will be instrumental 
in helping us identify themes for focus group interviews further on.

Individual semi-structured interviews have been made with ”early adopters”, 
i.e. teachers who actively teach programming at an early stage of the imple-
mentation and who identify themselves as enthusiastic about bringing program-
ming into mathematics lessons. The early adopters were recruited through our 
teacher education networks. At present 20 interviews of around 30 minutes each,  
covering teachers from grades one to nine, have been conducted, audio-recorded 
and transcribed. Some of the teachers will later participate in a second round of 
interviews. Using NVivo software, a content analysis is being conducted, relat-
ing interview data to theoretical definitions of AT and CT. What mathematics 
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and what types of activities teachers choose to present in their classrooms as 
well as how they justify their choices will be analysed as a means of under-
standing the transposition of knowledge (Chevallard, 2006). We will describe 
some tentative results that indicate issues that we need to analyse in a more 
systematic way. 

Tentative results of study 1
The tentative results of Study 1 show that there are differences between pro-
gramming and algebra, regarding both syntax and semantics, that may cause 
problems for students’ algebra learning. In our initial analysis of government-
provided teaching material (Kilhamn & Bråting, 2020), the different meanings 
of the equal sign and the concepts variable and algorithm have been discussed 
in terms of Duval’s (2006) framework of different systems of representations. 
For instance, in algebra the equal sign is used as a relational operator. There-
fore, it would be meaningless to write a = a + 1 since it is not true for any value 
of a. Meanwhile, in programming the same expression is understood as the 
assignment ”add 1 to the value a” which is often used when a program needs 
to loop through a range of consecutive integers. Instead, the double equal sign 
(==) holds a relational meaning in programming. These kinds of differences 
can afford the development of algebraic thinking through contrasting examples 
and awareness of accuracy, or constrain it if the teacher is unaware of the dif-
ferent experiences students have. In addition, we need to take into account that 
the equal sign already causes problems in school mathematics since students 
tend to interpret it as an operator symbol (4 + 3 make 7) rather than a relation 
(Kieran, 1981). In Duval’s (2006) terminology, one may argue that there are 
differences between the two systems of representations as well as within the 
same system of representation.

The initial analysis of textbooks in mathematics for grades 1–6 reveals that the  
implemented content is similar in the different textbook series, although it has 
been included in different ways. While some textbook publishers have revised 
all textbooks in mathematics in order to include programming and digital tools, 
others have offered most of the new content online as supplementary material 
and in teacher guides. Regarding the programming content, our initial results 
show that the most common concepts included in the textbooks’ tasks are step-
wise instructions, algorithms, iterations and repeated patterns. For instance, 
more than half of the tasks in textbooks for grades 1–3 focus on stepwise instruc-
tions and about a third on iterations. There is a high correspondence between 
the textbooks’ content and the prescribed content in the revised 2018 curriculum 
document. However, the connection between algebra and programming in the 
textbooks is vague. Programming content is either added as separate chapters, 
or integrated in already existing chapters of arithmetic, statistics, geometry or 
problem solving. We find this result interesting, given that a major part of the 
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programming content in the 2018 curriculum document is included within the 
core content of algebra.

Tentative results of study 2
The lesson studies show, as expected, that activities vary according to grade in 
the school system, but also seem to vary depending on the programming envi-
ronment and language that teachers have chosen to use. Teachers express two 
issues of concern when teaching with programming environments, and some 
uncertainty about what to teach and why.

Teachers in the lesson studies express how block programming environments 
offer a variety of features that could become distractive for some students, with 
an abundance of side effects and aesthetics to control. In contrast, they highlight 
syntax issues as challenging in environments for textual programming. For 
example, a conditional statement in programming can be written in many ways 
enhancing students’ creativity and motivation, while in textual settings students 
have to follow the rules of the syntax and pay attention to many different signs. 
The two types of environments seem to offer quite different representations  
of concepts that teachers have to take into consideration when teaching. 

Another finding relates to semantic differences in different programming 
environments. For example, in unplugged activities arrows pointing up, down, 
left and right signify points on the compass while on a robot they signify 
forward, backward, and which way to turn. 

The types of activities and choices of programming environments described 
in our interviews with early adopters mirror those found in the lesson studies. 
Scratch, Code.org and Python are most frequently used. However, they have 
quite different ideas about what to teach and why. They express uncertainty 
about what types of activities and environments to include in the teaching of 
programming, for example, if activities with spreadsheets or interactive geo-
metry programs such as GeoGebra should count as programming or not. They 
all agree that programming increases motivation in mathematics, which will 
hopefully affect students’ learning of mathematics. The activities they describe 
include a limited variety of mathematical content, the most common being 
movement or lines and figures in a coordinate system, calculations, probability 
or statistics. Working with patterns is quite common, but mostly those activities 
are limited to finding a repeated pattern that could be coded as a loop. Con-
nections to algebra are scarce in the activities described, and not particularly 
highlighted in the interviews. When specifically asked, variables are brought 
up by some as the link to algebra.

The preferred source of inspiration and ideas for most of the early adop-
ters is social media, where they participate in special groups for mathema-
tics teachers. Rather than using textbooks or publisher-produced digital  
teaching aids, they choose internet-based environments that are free of charge 
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and easily accessible. Although most of the early adopters had taken a basic 
course of 7.5 ECTS credits in programming for teachers, only a few of them had 
a profound skill in programming themselves, enabling them to create their own  
programming activities.

Discussion
In conclusion, it could be said that teachers are in a challenging situation. As 
students move through the grades different programming environments will be 
used, causing them to learn and relearn the semantics and syntax of symbols. In 
addition, we identify challenges connected to aspects of learning symbols and 
concepts that appear in both programming and mathematics with slightly dif-
ferent meanings and syntax. We therefore consider teachers’ knowledge about 
these matters tremendously important, and we intend to make use of Duval’s 
(2006) framework to further investigate and better describe such features. Our 
preliminary analyses of teaching materials, textbooks, lesson study documenta-
tions and interviews indicate that the didactic transposition (Chevallard, 2006) 
of knowledge concerning aspects of programming and computational thinking 
is shaky and diversified. Teachers take an active part in it through social media, 
but at the same time expose themselves to influences they may not be able to 
view critically since the difference between commercial marketing and peer 
support is not always clear.

The emphasis on social media as a source for ideas and inspiration about 
how to fulfil the new curricular demands implies two things. One is that there 
is obviously a very active community of teachers who interact and help each 
other. The other is that there is a lack of authority in decisions about what to 
teach and why to teach it. 

The teachers who now teach programming in schools are educated mathe-
matics teachers with no, or very limited, programming skills. From the inter-
views with early adopters it is clear that such skills are necessary in order to 
see potentials and pitfalls well enough to create activities suitable for specific 
learning goals. In particular, moving from a procedural use of algorithms to 
a conceptual focus on the structure of algorithms, i.e. connecting CT with 
AT, is not possible with limited knowledge of programming. Furthermore, 
the difference between ”using digital tools” and ”teaching programming” is 
not always clear. For some teachers, programming essentially means coding, 
focusing the first two dimensions in Brennan and Resnick’s (2012) framework; 
computational concepts and thinking practices. For others, it seems to be an 
overarching concept incorporating the third dimension, that is the computa-
tional perspectives expressing, connecting and questioning, along with skills 
in handling digital tools.

We also note that the integration of programming into the core content of 
algebra in the Swedish curriculum is not mirrored in the transposition process 
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from knowledge to be taught to taught knowledge (figure 1). Neither textbook 
authors nor teachers seem to see the connection clearly, and programming 
activities in mathematics more often deal with other mathematical content. In 
addition, the focus on programming per se seems stronger than the focus on 
mathematical concepts in our study, in a similar way as described by Hickmott 
et al. (2018).

According to Nouri et al. (2020) and the teachers they interviewed, the so 
called 21st century skills could be taught with block programming, i.e. Scratch, 
but according to the teachers in our study, it is not that simple, as block pro-
gramming also brings a tension between students’ self-expression and teachers’ 
management. We agree with Nouri et al. (2020) that teachers need increased 
knowledge about different programming concepts, but would also like to add 
the need of a thorough understanding of how different mathematical concepts, 
e.g., variables can be used and denoted differently in different programming 
environments. Therefore, in the next stage of the project, we will scrutinize to 
what extent teachers are aware of the affordances of mathematical symbols and 
concepts in relation to Brennan and Resnick’s (2012) framework. 
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Signs emerging from students’ work  
on a designed dependency task in 

dynamic geometry

IngI HeInesen Højsted and MarIa alessandra MarIottI

This paper reports on the design and implementation of a didactic sequence in the 
frame of a design-based research study. We elaborate on the task design principles 
and present the analysis of two Danish grade 8 students (age 13–14) working on the 
very first task of the sequence. The Theory of semiotic mediation frames the analysis 
of data, which was collected in the form of screencast, video and written products. 
The results indicate that students expect dependencies to be non-hierarchical in DGE; 
that specific prompts may be needed to shift students’ attention to specific elements 
of constructions; and that asking the students to explain unexpected observations 
seems to be necessary for active reflection.

In the vast research literature on dynamic geometry environments (DGE here-
after), several studies deal with the relation between DGE affordances and stu-
dents’ mathematical reasoning, conjecturing and proof (e.g. Sinclair & Robutti, 
2013). A seminal affordance of DGE, is that dynamic geometrical figures may 
be constructed, which may be manipulated by dragging, while certain pro-
perties remain invariant. The relationship between the elements of the figure is 
locked in a hierarchy of dependencies, determining the outcome of a dragging 
action (Leung et al., 2013). These dependencies are linked to the theoretical 
properties of the figure, which are decided by the construction method, by the 
theory of Euclidean geometry governing the system and by software design 
choices. Although the research literature on DGE affordances is comprehen-
sive, Sinclair et al. (2016) state that task design and teacher practice remain 
understudied, a statement, which was reiterated by Komatsu and Jones (2018). 
An influential contribution in this domain is the Theory of semiotic mediation 
(Bartolini-Bussi & Mariotti, 2008), which provides a framework for describ-
ing the complex relation between tasks performed with artefacts, such as DGE, 
and students’ development of mathematical meanings, as well as the role of the 
teacher in this regard.

In this paper we report on a didactic sequence, which was carried out in lower 
secondary school in Denmark, focusing especially on the task design related to 
a ”dependency task” (we elaborate on this notion to in the task design section).

Ingi Heinesen Højsted, University of the Faroe Islands 
Maria Alessandra Mariotti, University of Siena
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In the next section, we briefly introduce the key concepts from the Theory of 
semiotic mediation, after which the research question of this study is formulated. 
Afterwards, we describe the objectives, hypotheses and choices concerning the 
task design of the initial tasks in the didactic sequence. Then we present data 
analysis from a pair of students working on the very first task in the sequence.

Theoretical approach
The Theory of semiotic mediation (Bartolini Bussi & Mariotti, 2008) characte-
rizes how students form personal meanings in relation to the use of an artefact. 
The initial personal meanings developed by the student, may not match the 
mathematical meanings an expert mathematician (the teacher) would recog-
nize. However, through the didactical intervention, the evolution into mathe-
matical meanings may occur. Bartolini Bussi and Mariotti (2008) coined the 
term ”semiotic potential” of an artefact to express the duality of possible per-
sonal meanings and mathematical meanings, which may be evoked by using an 
artefact in the solution of a specific task. Awareness of this potential enables the 
teacher (or researcher) to design tasks aiming to promote certain mathemati-
cal learning. Such cognitive development is described as a process of inter-
nalization, which has ”two main aspects: it is essentially social; it is directed 
by semiotic processes. In fact, as a consequence of its social nature, external 
process has a communication dimension involving production and interpreta-
tion of signs.” (Bartolini Bussi & Mariotti, 2008, p. 750). Therefore, the analysis 
of the internalization process may be oriented towards the analysis of the use 
of signs in social activities. In other words, the evolution of student meanings 
may be analysed by interpreting the signs the students produce, e.g., gestures, 
verbal utterances, written signs or DGE actions in social activities. The analy-
sis may unveil to what extent the didactic sequence, including the task design, 
foster the production of signs with underlying meanings that are in alignment 
with the aim of the sequence. The development of meanings can be highlighted 
by identifying specific semiotic chains, e.g. chains of relations of signification 
(Bartolini Bussi & Mariotti, 2008, p. 756)

The teacher plays an essential role in supporting the evolution of personal 
meanings toward mathematical meanings. However, interpreting and reacting 
in classroom discussions and on the spot to signs produced by the students may 
be challenging for the teacher. Therefore, it may prove useful to accompany 
the design of the tasks both with the analysis of the semiotic potential and the 
description of the possible ”unfolding” of such a potential. In this way, the task 
design may integrate types of signs, which can be expected to emerge as the 
students work on specific artefact tasks. In this light, the following research 
questions arise: As students work on a designed dependency task, which type 
of signs emerge that are related to the use of the dragging tool and can be 
seen as evidence of students’ awareness of the logical relationship between the  
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geometrical properties in play? How may choices in the task design be revised 
in order to support the intended learning aim more effectively?

Method
The study is part of a larger project in which design-based research methodo-
logy is applied (Bakker & van Eerde, 2015). The aim of the project is to develop 
design principles for didactic sequences that utilize the potentials of DGE in 
relation to students’ development of reasoning competency 1 (Højsted, 2018). 
Based on an initial theoretical analysis, a 15 lesson didactic design was deve-
loped and tested in three design iterations in three different Danish 8th grade 
classes (age 13–14). The students worked in pairs using one computer. Data was 
gathered in the form of screencast recordings from all groups and collection 
of students’ written products. In addition, three groups were chosen in each 
class for external video recording to allow for a richer collection of emerging 
signs. The groups were chosen in collaboration with the teacher to comprise a 
range of low to high attaining groups concerning mathematics achievement. 
All students had previous GeoGebra experience, and knew the basics, e.g. using  
commands for construction.

The data is analysed by identifying the emerging signs/semiotic chains of 
the students, in order to make a synthesis of possible personal signs that the 
teacher may expect, and to review to what extent the meanings are aligned with 
the expected outcome of the task design. Finally, the design is evaluated in light 
of the analysis and some refinements of the design are proposed. Due to space 
limitation, we only present data from one medium-high achieving group in 
this paper; we do however refer to data from other groups in the analysis and 
concluding discussion.

Task design
The design of the initial tasks in the didactic sequence can be decomposed 
into three related dimensions. At the macro level, there is an objective, which 
describes the students’ learning aim. Then there is a hypothesis about the types 
of tasks, which may support the students to achieve the aim. Finally, there are 
choices made in the micro level of design, such as formulations in the task and 
descriptions of student activity. To ensure alignment, each choice should be 
coherent with the hypothesis, which in turn should be coherent with the objec-
tive. This structure is homologous of that of the design-based research (Bakker 
& van Eerde, 2015) and consistent with the predictive and advisory nature of 
the research project.

The learning objectives are twofold: (1) that the students develop an aware-
ness of the logical relationship between geometrical objects in GeoGebra, which 
are perceptually observable as invariants during dragging. That involves being 
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able to discern free and locked objects in GeoGebra, and to be aware of the fact 
that it is these relations between objects, which decide the outcome of dragging. 
(2) That they are able to interpret the construction dependency geometrically 
as logical dependency. This requires geometrical attention to the theoretical 
relations induced in the construction procedure. 

The hypotheses concern both these objectives and are related to the semio-
tic potential of a DGE with respect to the logical dependency between geo-
metrical properties of a constructed figure (Leung et al., 2013; Mariotti, 2014). 
The semiotic potential already described in relation to a construction task, is 
now reformulated from the perspective of the task design in terms of objective, 
hypotheses and choices. The hypotheses are based on the previous literature 
concerning the semiotic potential of tools in a DGE. Hypothesis (1): Since any 
constructed figure behaves according to the geometrical relationships defined 
by its construction procedure, students acting on a figure produced by a con-
struction command can observe the difference, and may realize the dependency 
induced by a command, i.e. the perceptual result of dragging may be related to 
the input commands. We denote this type of task, which encourages the con-
struction of a figure and consequent guided exploration of the dependencies in 
the figure, a ”dependency task”.

Hypothesis (2) concerns the semiotic mediation process. The students’ per-
ception of the phenomena observable on the computer screen may be linked to 
a geometrical interpretation. Partly, this geometrical interpretation may occur 
spontaneously if the students utilize their previous geometrical knowledge, but 
in particular, it may evolve through social interaction, and most essentially, 
through the mediation of the teacher in classroom discussion. Even though 
hypothesis 2 is of utmost importance, we will primarily focus on hypothesis 
1 in this paper.

Besides the general choice of proposing the exploration of a constructed 
figure, four choices are made at the micro level of the task design, in alignment 
with the hypotheses. (i) The students are encouraged to make a construction, 
which contains certain dependencies between objects. The choice reflects that 
the goal is to foster awareness of properties in the construction. Therefore, by 
selecting the construction commands themselves, instead of being handed a 
ready-made construction, the students may reflect on how to make the construc-
tion appear in the DGE. In addition, they may interpret the behaviour of the 
construction during dragging, as a consequence of their construction method. 
However, some guidance was given in the form of accompanying pictures of 
commands, which may be useful to complete the construction, as well as a 
picture of the required construction. Choices (ii–iv) are related to what White & 
Gunstone (2014, p. 44–65) refer to as Prediction-Observation-Explanation: The 
students are required to predict the result of an event, and to justify their pre-
diction. Afterwards, they report what they observe and resolve any differences  
between prediction and observation. (ii) The students are encouraged to predict, 
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before they drag objects, what will happen on the screen when they drag certain 
points, and to justify their prediction to the co-student they are working with. 
This choice reflects the aim of directing the students’ reflections onto theoreti-
cal properties of the construction. Asking the students to predict the properties 
of the diagram before they drag, may give rise to conflict, if what they observe 
does not coincide with their prediction. The conflict can provoke intellectual 
curiosity (Laborde, 2003). Encouraging students to justify their prediction sup-
ports them in becoming able to justify claims to others, which is a characteristic 
of the reasoning competency (Niss & Højgaard, 2019, p. 16). The aim is that the 
justifications become anchored in the theoretical properties, which they have 
just induced. (iii) The students are encouraged to drag certain points and to 
describe what happens. This step is added so that the students can confirm the 
expected outcome, or wonder why it did not go as expected and try to figure out 
why. Again, with the goal of students becoming aware that the theoretical pro-
perties induced in the construction are responsible for the outcome of dragging. 
(iv) The students are encouraged to give an explanation concerning certain 
essential relations in the construction. This step may direct the students’ atten-
tion to certain essential properties of the construction, again to pursue the main 
goal of developing awareness of the theoretical properties of the constructions, 
which decide the outcome of dragging. Steps (ii–iv) are sometimes repeated for 
different elements of the same construction.

According to the Theory of Semiotic mediation, the request of discussing and 
writing that accompanies each task constitutes the semiotic component of the 
design related to hypothesis (2); it is expected to trigger the semiotic mediation 
process that is rooted in the use of the artefact and will be further developed in 
the collective discussion. The specific choices concerning the role of the teacher 
in the classroom discussion, will not be elaborated upon in this paper. 

The unfolding of the semiotic potential
In this section, we analyse part of the data from two students, Sif and Ole, 
working on the very first task of the sequence. First, we introduce the task for-
mulation, then we present the emerging student signs and analyse them using a 
semiotic perspective. The first part of task 1 is described in figure 1.

1.a. Construct two points A and B in GeoGebra and the midpoint C between them. 
Use the command 

1.b. What do you think happens to the other 
points when you drag point A? Guess first and 
justify your guess to your partner. Investigate 
afterwards, what happened?”

A

B

C

Figure 1. The first part of task 1
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The teacher described Sif as a high achiever and Ole as an above average 
achiever in the mathematics classroom. They are about to guess to question 1.b:

18 Ole: Ehm, I think B stays in the same place and A will be moved and C will still be 
in the middle. [Marking the points onscreen with his finger while explaining]

19 Sif: Eh, B stays in the same place. And then.
20  Ole: C remains in the middle.
21 Sif: [Writing the answer and talking] C will move, depending on A’s ... will move 

to stay in the middle.
22 Sif: [Reading the text out loud] Investigate afterwards what happened. [Drags 

point A]

26 Sif [Writing and talking] We guessed right.

The pre investigation written answers was (the guess): ”B stays the same, C 
will move in order to remain in the middle” and the post investigation answer 
was: ”we guessed right”.

Analysing 1b
Sif and Ole describe the expected movement of each point in the construction. 
Their expressions indicate an awareness of the fact that the relations induced 
in the construction will be maintained. The description is at the local level of 
points of the construction: ”B stays in the same place”, ”A will be moved”, 
”C will still be in the middle” (line 18). We can also notice that the utterance 
about point C is elaborated upon to highlight that it will not stay in the same 
position but rather that ”C remains in the middle” (line 20). Further, they indi-
cate that C is dependent on A ”C will move, depending on A’s ...” (line 21). We 
may interpret that the personal meanings underlying the expressed signs are 
coherent with the meanings that the activity aims to foster, namely that there 
are relations between the geometrical objects, that these relations determine 
the dependency between the points and such relations decide the outcome of a 
dragging action. The students do in fact explicitly express such a dependency 
as the final result of a semiotic chain that evolves in the dialog between the 
two students. We can see how the meaning of dependence becomes more and 
more explicit in the semiotic chain: ”still be”, ”remains”, ”move depending on 
A and move to stay in the middle”. In the last formulation – that is not reported 
in the written report – both the dependence relation and the specific property  
originating the dependence are made explicit.
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Considering the aim of step (ii), the students do make a prediction based on the 
theoretical properties, which they induced in the construction. Sif also offers an 
explanation to the expected movement of point C ”C will move, depending on 
A’s... will move to stay in the middle.”, but not for the other points. The students 
drag and confirm their prediction, which was the aim of step (iii).

Step (ii) and (iii) on different elements of the construction
Task 1d was as follows: ”What do you think happens with the other points 
when you drag point C? Guess and justify first. Investigate afterwards, what  
happened?” The following occurred when Sif and Ole worked on task 1d.

95 Sif:  [Reading the text] What do you think happens to the other points when you 
drag point C? Guess and justify first. 

96 Ole: It’s all moving together.
97 Sif: Then everything moves because C must be in the middle. Then they will move 

in relation to C? [The tone indicates a question and she looks at Ole] 
98 Ole: I think so. 
99 Sif: Then one could imagine that it was just a line moving around. 

  [Sif gestures with her hand a line going through the three points. It looks like 
she moves her hand so that it remains parallel to the initial line]

100 Ole: Yes exactly, in parallel. 
101 Sif: Okay, so we just say that everything will move relative to point C. [Writing] 
103 Sif: Yes, because it must be in the middle in relation to C. [Sif tries to drag point C]
104 Ole: Oh!
105 Sif: One cannot move C. [Sif writes down]
109 Sif:  Ehhh, and why can’t you? ...
  [The teacher (T) has stood next to them for a while, and decides to intervene]
110 T:  Why can’t you move C?
111 Ole: Eh, I don’t know
112 T: Why can’t you move the midpoint?
113 Sif: It is perhaps because it is the midpoint in relation to the other two points.
114 T: What do you think you can move if it was? [It seems he is asking them what 

is possible to move]
116 Sif:  A and B.
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117 T:  Yes you can move on A and B because that was what he said [”he” means the 
researcher, which did an introduction to the material at the start of the lesson], 
you know, it’s a dynamic program. That is, C will always be the midpoint, 
that is, C is automatically moved if A and B are moved.

118 Ole:  Yes exactly.
119 T:  If you do not move A and B, then C stays the same. 
120 Sif:  Okay. [They move on to the next task]

The pre investigation written answers was (the guess): ”Both points will move 
in relation to C” and the post investigation answer was: ”You cannot drag C”.

Analyzing 1d
We may interpret from line 96 ”It’s all moving together” that Ole intuitively 
expects that the construction will move as a Rigid/solid structure. This imme-
diate expectation is observed in several other groups too. Sif understands Ole’s 
suggestion, elaborates upon it and justifies why it may be so, based on the con-
struction. However, she is not completely sure (line 97). Although she says that 
the line moves ”around”, her gesture suggests a movement remaining parallel 
with the initial position in an orthogonal translation (line 99), Ole notices the 
meaning of the gesture and makes it explicit (line 100). 

The students predict what will happen and justify their predictions, based 
on theoretical properties, which was the aim of step (ii). The description of the 
expected global movement of the construction is interwoven with justifica-
tions based on local elements such as ”everything moves because C must be in 
the middle” (lines 97, 101, 103). The surprising result of their dragging inves-
tigation leads them to wonder why C cannot be moved. It seems plausible that 
they would continue to work on this question if the teacher did not intervene, 
hence step (iii) worked according to plan in this case. The initial teacher action 
is promising. First, he asks ”why can’t you move point C” followed by a refor-
mulation into ”why can’t you move the midpoint”. This highlights the theoreti-
cal status of point C. The intervention of the teacher moves from a general to a 
more specific question. Such a shift leads the student to immediately grasp the 
suggested geometrical perspective and guess (line 113). However, the teacher 
then shifts the focus from non-draggable to draggable points, to which the stu-
dents correctly answer A and B. He explains what they already know, that C 
remains the midpoint, referring to an authority argument and to the software 
”that is what he said, you know, it’s at dynamic program” (line 117), and finally 
”If you do not move A and B, then C stays the same” (line 119). His explana-
tion does not make it any clearer why C cannot be moved. What is observed 
can be explained both by geometrical reasons and by software design reasons. 
In GeoGebra, it is not possible to drag locked objects, which are derived from 
other objects. However, other DGE 2 allow dragging the dependent points too. 
The teachers action seems to close the door on the students’ investigation. It 
can be considered a missed learning opportunity. 
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Concluding discussion 
In our analysis of the type of signs produced by the students, we notice that 
several students, including Sif and Ole, expect the construction to behave as a 
rigid/solid structure during the dragging of derived points. This finding indi-
cates that students do not immediately expect the relations between elements to 
be hierarchical. In fact, the students signs suggest that they intuitively to view 
the construction as a rigid/solid structure with non-hierarchical dependencies. 
The finding is consistent with previous results with junior high students and 
graduate students in mathematics education (Talmon & Yerushalmy, 2004). 
This knowledge may be useful to the teacher if such dependency tasks are to 
be introduced in the classroom, or if other tasks are introduced, in which the 
hierarchical nature of the environment is expected to be exploited. The fact that 
the teacher only refers to the geometrical property may limit the interpretation 
of the phenomenon to geometrical reasons. What can be observed is explained 
both by geometrical reasons and by ”software design” reasons. What the  
students are to become aware of refers precisely to both.

From the analysis of the signs emerging from other groups, we see that, in 
order to explain the on screen phenomena, some students refer neither to the 
construction process nor to geometrical properties. They instead use a global 
description of the construction, e.g. the signs ”they move along in parallel” or 
”the sides move along like a stick”. They seem not aware of the necessary atten-
tion to relations between local elements of the construction, and that they should 
interpret what happens on the screen in relation to the construction process. 
It may be useful to revise the task formulation concerning choices (ii–iii) to 
ask more directly about each element in the construction pre investigation, 
and post investigation, in order to support a geometrical interpretation of the 
phenomenon that can be observed, i.e. instead of asking ”what happens when 
you drag point A”, the question could be more focused, aimed at directing the 
attention on specific elements of the figure, e.g. ”what happens to point B when 
you drag point A” etc. 

In our interpretation of the students’ signs produced in relation to task 1d, 
we found that even though the students are surprised and intellectual curiosity 
arises (Laborde, 2003), they may just write what happened, and quickly move 
on to the next task (this happened in some cases). The task may be reformulated 
so that, in case the construction does not behave as predicted, then the students 
are encouraged to explain why. This may lead us to the hypothesis that a good 
task choice would encourage the students observe a situation where they expect 
something to unfold and on the contrary, this does not happen. Afterwards 
they must explain why. The general hypothesis could be: In front of something  
unexpected, an explanation rises …
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Mathematical communication 
competency in a setting with GeoGebra 

CeCilie Carlsen BaCh

The core of mathematical communication competency is the ability to interpret 
others and the ability to express oneself mathematically. This paper examines the 
activation of this competency and its interplay with digital technologies in an 8th-
grade classroom (age 14–16), focusing on two students’ interaction with GeoGebra. 
The aim is to investigate and discuss the stated interplay from two different lenses: 
discourse and instrumental genesis. The lenses bring different perspectives. On the 
one hand, the results show that using GeoGebra increases the complexity of stu-
dents’ mathematical communication because the students need to switch between 
discourses. On the other hand, to support communication competency, GeoGebra 
must be an instrument for the students. 

In mathematics education, the focus on both digital technologies and mathe-
matical competencies is increasing (Trouche et al., 2013; Niss & Højgaard, 
2019). However, a significant problem arises when implementing these two 
paradigms, which seem to run separately. This paper focuses on the interplay 
between digital technologies and the mathematical communication competency 
(as described in Niss & Højgaard, 2019) in an 8th grade classroom (students 
aged 14–16) in Denmark.

In Denmark, it is meaningful to investigate this interplay because of the 
implementation of both digital technologies and mathematical competen-
cies within the national curriculum in both primary and secondary education 
(UVM, 2017; 2019). However, research on the mathematical communication 
competency is limited, and research on its interplay with digital technologies 
does not exist. 

This paper aims to investigate and discuss the interplay between the use 
of digital technologies and mathematical communication competency using 
two theoretical dualities: visual mediators-routines (Sfard, 2008) and artefact-
instrument (Guin & Trouche, 1998). This paper asks how the two theoreti-
cal dualities of visual mediators-routines and artefact-instrument contribute 

Cecilie Carlsen Bach, Aarhus University
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to understanding the activation of students’ communication competency in a 
setting in which students work with GeoGebra.

This study investigates the interplay using an illustrative case of two 8th 
grade students’ problem solving as data. The mathematical problem, which the 
students worked with, was partly designed to activate communication compe-
tency and partly to the use of GeoGebra. To understand how the communication 
competency is activated when using of GeoGebra, the competency description 
is not enough. To understand the mathematical communication aspect, Sfard’s 
(2008) perspective on discourses is utilised as an analytic tool. Also, the theore-
tical concept of instrumental genesis is used as an analytical tool to examine the 
use of GeoGebra (Guin & Trouche, 1998). Two transcripts of the two students’ 
work are presented, followed by an analysis from a discourse perspective and 
then, an analysis from the perspective of instrumental genesis. The discussion 
combines the analyses with the competency perspective.

Mathematical communication competency 
In the Danish competencies framework (KOM), general mathematical com-
petency is defined as ”someone’s insightful readiness to act appropriately in 
response to a specific sort of mathematical challenge in given situations” (Niss 
& Højgaard, 2019, p. 14). KOM consists of eight mathematical competencies, 
all of which are related yet different, and one of them is mathematical com-
munication competency. Having mathematical communication competency 
means having 

[…] ability to engage in written, oral, visual or gestural mathematical 
communication, in different genres, styles, and registers, and at differ-
ent levels of conceptual, theoretical and technical precision, either as an 
interpreter of others’ communication or as an active, constructive com-
municator. (Niss & Højgaard, 2019, p. 17)

Frequently, mathematical communication includes one or more mathemati-
cal representations and generates the use of particular mathematical concepts, 
results, or theories (Niss & Højgaard, 2019).

Communication in mathematics
This section introduces theoretically to mathematical discourse, focusing on 
visual mediators and routines. 

Sfard (2008, p. 146) defines communication in mathematics as ”[...] a rule-
driven activity in that discursants’ actions and re-actions are from certain 
well-established repertoires of options and are matched with one actioner in a  
nonaccidental patterned way”. 
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This definition regards communication as a patterned activity between indi-
viduals who act on others’ actions based on rules. According to Sfard (2008), 
mathematical sentences give an impression of handling material things, but 
mathematical nouns replace the names of the material objects. In colloquial 
discourses, the objects exist independently of the discourse involved in the com-
munication, but this does not apply in mathematical discourse. Visual media-
tors might represent objects in mathematics, but the actors of the mathematical 
discourse never gain access to the actual objects (Sfard, 2008).

Sfard (2008) includes four elements in the definition of mathematical dis-
course: word use, visual mediators, narratives, and routines. First, an impor-
tant characteristic is the use of words that are distinct for mathematics. These 
words could be ”equation”, ”slope”, ”piecewise function”, and ”graph” when 
working with functions. Second, a visual mediator in a mathematics discourse 
is ”a visual realization of the object of a discourse” (Sfard, 2008, p. 302). Par-
ticularly in mathematics, this involves mathematical symbols, but a realization 
could also include graphs, gestures, words, and drawings. Third, the narra-
tives are descriptions and explanations of mathematical objects and activities. 
Forth, routines are ”repetition-generated patterns of our actions” (Lavie et al., 
2019, p. 153).

Based on Sfard (2008), having mathematical communication competency 
(Niss & Højgaard, 2019) means that a student must be able to engage in a mathe-
matical communication situation based on particular rules for the activity. The 
student must be able to use mathematical words; use and understand different 
visual mediators existing in the communication situation and understanding 
rules of engaging in a communication situation (Sfard, 2008). In a mathematical 
communication situation in which students work with GeoGebra, GeoGebra 
becomes a mediator of discourse. The students then both act and react on each 
other and the in- and outcomes provided by GeoGebra (Antonini et al., 2020). 

Instrumental genesis 
When students use digital technology within the classroom, the software in-
fluences the mathematics content that the students are learning, because new 
opportunities to interact with mathematical objects emerge (Guin & Trouche, 
1998). The use of GeoGebra is no exception. Distinguishing between artefact 
and instrument is key when using instrumental genesis to look at students’ use 
of technology. An artefact is regarded as a material object; an instrument, on 
the other hand, does not exist in itself, but an artefact becomes an instrument for 
a person when she can use it in an activity (Verillon & Rabarbel, 1995). When 
an individual manipulates an artefact into an instrument, instrumental genesis 
happens (Guin & Trouche, 1998).

The complex process of instrumental genesis leads to the reorganization of 
activity – in this way, the student can manipulate the artefact, and it becomes 
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an instrument. The student needs to acquire new knowledge to be able to make 
new procedures. At the same time, ”the features of instrumented activity are 
specified” (Guin & Trouche, 1998, p. 201) concerning both the constraints and 
the possibilities inherent to the artefact. The constraints and the possibilities 
are subsequently connected to the new procedures of the artefact. Then, the 
student encounters the artefact, and the student can ”identify, understand and 
mange in the course of this action” (Guin & Trouche, 1998, p. 201). Thereby, 
the instrumental genesis occurs when the student has new possibilities to use 
the artefact, and when a reorganization of the instrumented activity takes 
place. The artefact becomes an instrument for the student (Guin & Trouche, 
1998). In an instrumented activity, it is essential to state the close relationship 
between the students’ mathematical knowledge and knowledge about use of the  
instrumental (Lagrange, 2005) 

The use of the digital tool offers different representations and words 
(Guin & Trouche, 1998), which is interesting when looking at mathematical  
communication (Niss & Højgaard, 2019). 

Method
The aim of this study is reached by investigating the communication between 
two students that are solving a mathematical problem concerning piecewise 
functions, with the help of GeoGebra. The data consists of the students’ speech, 
their actions, and the reactions from GeoGebra. Data is presented as transcripts 
of a discussion between the two students. 

This section presents the educational context, the design of the mathematical  
problem, and the transcript used as data in the analyses. 

Design of the mathematical problem
The students solve a task, based upon a released PISA task about newspa-
per sellers. Two job advertisements describing sellers’ pay per week are pre-
sented from two different newspapers: Zedland Star and Zedland Daily. The 
Zedland Daily pays 60 Danish kroner every week and, additionally, 0.05 Danish 
kroner per sold newspaper. Zedland Star pays 0.2 Danish kroner per sold paper, 
and then 0.4 additional Danish kroner per newspaper sold after selling 240  
newspapers in one week (OECD, 2012, p. 70, task no. PM994Q). 

The designed lesson lasted 90 minutes. The students worked together and 
shared one computer to promote communication. The task offered the use of dif-
ferent representations, essential for both mathematical discourse (Sfard, 2008) 
and the process of instrumental genesis (Guin & Trouche, 1998). In the original 
PISA test, the task was a multiple-choice question – the students had to choose 
between four pictures, which all contained both a graph for Zedland Star and 
Zedland Daily. In the present study, the students were guided by instructions 
about the newspapers’ pay, and they were asked to draw the graphs themselves:
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Use GeoGebra to calculate the differences between how the newspapers pay 
the sellers.
– Compare the graph and solutions for the two newspapers.
– Choose the newspaper you would prefer to work for and explain thoroughly 
why.
– Prepare arguments for a discussion in plenum using your results, including 
different representations.

Zedland Daily is defined as FD(x) = 0.05x + 60. Zedland Star is defined as 
FS(x) = 0.02x if 0 ≤ x ≤ 240 and FS(x) = 0.6x – 96 if x ≥ 240 (OECD, 2012, p. 70, 
task no. PM994Q). 

Educational setting
Data collection took place in an 8th grade (students aged 14–16) classroom in 
Denmark. The students usually worked with GeoGebra in school, but they were 
not used to solve tasks concerning piecewise functions in GeoGebra. Learn-
ing about piecewise linear functions is mentioned in the Danish curriculum 
(UVM, 2019). However, working with piecewise linear functions demands a 
more comprehensive understanding of functions than just working with linear 
function (Bayazit, 2010). 

Transcripts of the students’ dialogue
The data is presented as transcripts of dialogue between two students (S1 and 
S2). Two transcripts function as extracts and focus on the students’ process of 
the mathematising of Zedland Star when using GeoGebra. Zedland star is the 
piecewise linear function.

The following is Transcript 1. S1 has, just before the transcript started, 
written fx = 0,4x + 48 in the algebra window in GeoGebra. The use of commas 
is essential here: In Denmark, the rule is to use decimal commas instead of 
decimal points in decimal numbers. (GG = GeoGebra).

Transcript 1. Decimal commas versus decimal points

S1  This is what we agree on, right? For every x, we have 0,48? [S1 looks at S2] Then 
we are pressing ”enter”.

S2  Enter, enter, enter.
GG Please check your input.
S1  What? No! Oh, it is because. I know what I did wrong. [S1 points with the mouse 

on fx] A parenthesis is missing there. There is a parenthesis missing there! [S1 
controls the computer and writes f (x) instead of fx]

S1   Otherwise, we will change it into y. [S1 presses enter again]
GG Please check your input.
S1   What? [S1 changes f (x) into y] How bad are we at this?
GG Please check your input. 
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S1   Oh, it is because you need to use a period instead of a comma. It still needs to 
be y. [S1 changes the comma into a decimal point]

S1   Wouldn’t it [= GeoGebra] show it? [S1 right-clicks with the mouse in the algebra 
window; she does not understand why it cannot be shown in the graphical 
window]

S1   Show object. Oh, it is because it starts at 48, we are so stupid. [S1 zooms out]

Transcript 2, below, is an extract of the dialogue when the students figure out 
that Zedland Star is a piecewise function. 

Transcript 2. Understanding piecewise functions

S1  Ups. We did something wrong. This is not right, S2. [S1 and S2 look at the face 
of GeoGebra] That one is not right. It says that when you have sold zero news-
papers, you have 48 DKK (= danish valuta), but that is not true? When you sold 
that many when you have sold 240 newspaper, you have 48 DKK – then, you 
are over here, but I do not know how to do that. [S1 points at (240, 48) in the 
coordinate system]

S2  Okay. [S2 takes on the control of the computer, deletes y = 0.4x + 48 in the alge-
braic window. Now it says, ”y =”]

S1   Okay. We will try to change it again.
S2  Okay. So, if you have sold 240, you get 48 DKK, okay?
  […]
S1  This is really how you are supposed to write it, x ... This is how it is until we 

reach 240, then we have to ... [S1 writes ”y = 0.2x”, but does not press enter]
S2  Should we try something else? [S2 adds ”0.4” to the equation]
S1  Okay 0,4x. I think that we are missing something on that one [pointing at their 

present graph for the Zedland Star]. There must be a limit, a parenthesis, or 
something else. Is there supposed to be something else, when it reaches 140? 
[meaning 240]

S2  Yes. 

Analyses of the students’ communication
This section presents two analyses of the presented transcripts. First, focus is 
on the students’ communication. Secondly, focus is on the use of GeoGebra.

Communication when using GeoGebra
In this section, transcript 1 and 2 are analysd using Sfard’s (2008) concepts 
visual mediators and routines to understand the mathematical communication 
between the students. The analysis focus on identifying different uses of visual 
mediators, which is uses of various mathematical realisations of mathematical 
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objects, in this case piecewise functions, and students’ different routines, that 
is, patterns of visible actions relating to the mathematical content.

In transcript 1, the students’ communication involves different visual media-
tors such as ”0,48”, the equation written in GeoGebra, and the graphical rep-
resentation of the function. Taking decimal numbers as visual mediators, a 
discrepancy between the discourse between the students and the discourse 
between the students and GeoGebra emerge. In the discourse between the stu-
dents, decimal numbers are written using decimal comma (e.g., ”0,48”). In the 
discourse between GeoGebra and the students, decimal numbers are written 
using decimal points (e.g., ”0.48”). In the discourse between the students and 
GeoGebra, GeoGebra becomes a mediator of the mathematical discourse 
between the students. The students then need to switch between discourses 
and the different visual mediators used in the two discourses. Looking at tran-
script 2, a development of the students’ use of decimal points and commas 
appears when the students say ”comma”, but uses decimal points when writing 
in GeoGebra. The students then know how to use the visual mediators of both 
discourses.

The students’ use of a decimal comma when writing decimal numbers can 
also be described as a routine in their mathematical discourse between the stu-
dents (i.e., when they write decimal commas in transcript 1 and say comma in 
transcript 1 and 2). In the discourse mediated by the students and GeoGebra, the 
use of decimals points when writing decimal numbers in GeoGebra is regarded 
as a meta-rule mediated by GeoGebra. The use of a decimal point is a pattern, 
repetitive in their action when working with decimal numbers. Mainly in tran-
script 2, this pattern of action appears when the students repeatedly keep on 
the writing the decimal points due to GeoGebra’s demands.

Summing up, two different mathematical discourses exist when students 
use GeoGebra in class analysing the visual mediators and the routines in  
transcript 1 and 2. 

The use of GeoGebra when communicating
In this section, the students’ uses of GeoGebra in transcript 1 and 2 are ana-
lysed, utilising two concepts from instrumental genesis: artefact and instru-
ment. The concepts help to understand how GeoGebra influences the mathema-
tical communication between the students. The analysis focuses on identifying 
if GeoGebra is (still) an artefact for the students, which is when the program 
is just a material thing, or if GeoGebra has become an instrument. GeoGebra 
is regarded as an instrument if the students can use GeoGebra in an activity 
(Verillon & Rabardel, 1995). The process of instrumental genesis is identified 
by looking at reorganisations of the students’ problem solving activity (Guin 
& Trouche, 1998). 
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At the beginning of transcript 1, GeoGebra is an artefact for the students since 
the students’ ability to use GeoGebra is limited. The students keep using a 
comma instead of a point, which indicates that the students have not yet acquired 
the knowledge needed for the use of GeoGebra involving decimal numbers. 
Because of the feedback provided by GeoGebra, the students reorganize their 
activity to solve the task. Thereby, the feedback increases knowledge acquisi-
tion and the students slowly begin to understand the constraints of GeoGebra. 

At the end of transcript 1, the students have learned how to use; that is, the 
need to use decimal points instead of decimal commas. The process of instru-
mental genesis has begun: at the very end of transcript 1, further possibilities 
for the use of GeoGebra arise, which is the zooming feature. This development 
indicates that the students’ acquisition of knowledge is an ongoing process 
throughout the activity. 

In the middle of transcript 2 show the reorganization of activity when writing 
decimal numbers within GeoGebra. GeoGebra has become an instrument for 
the students. Although the students have instrumented GeoGebra working 
with decimal numbers, the students experience new constraint when aiming at 
making a piecewise function at the end of transcript 1. Elements of GeoGebra 
remains artefacts. 

The students’ understanding of functions to include piecewise functions are 
lacking, which could be a reason why the students try to construct Zedland Star 
as one function for the whole interval. The mathematical knowledge concerning 
the object related to the artefact is essential for instrumental genesis. However, 
the students’ mathematical understanding increases – or, their knowledge about 
representing piecewise functions in GeoGebra improves – as the students work 
in the teaching session. 

Discussion
In this section, the activation of the mathematical communication competency 
from the two dualities, visual mediators-routines and artefact-instrument, is 
discussed.

As stated earlier, the communication competency consists of both the ability 
to express oneself and the ability to interpret others’ communication (Niss & 
Højgaard, 2019). From a mathematical discourse perspective, the students need 
to master the different discourses that they participate in (Sfard, 2008). As seen 
in transcript 1 and 2, the students need to be able to switch between the two 
discourses. In a situation, in which the students activate their communication 
competency, they must understand how the routines and visual mediators of 
the particular discourses they participate in. The situation depends on who is 
engaged in the communication situation – a student taking the person that he 
communicates with into account master the communication competency better 
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(Niss & Højgaard, 2019). The students must be able to switch between different 
discourses communities. For instance, the discourse changes occur between 
peers, in classroom discussions, and when working with software (Sfard, 2008; 
Antonini et al., 2020). Using the former analysis combined with the aspects of 
the communication competency, the students not only need to express them-
selves to other people without the use of software, but also to software, such as 
GeoGebra, and they need to express themselves through software to others (Niss 
& Højgaard, 2019). When students communicate to software, such as GeoGe-
bra, they communicate based on GeoGebra’s rules of discourse (transcript 1). 
The students express themselves through software when they use the results 
from the software in communication with others, depending on the current dis-
course (transcript 2). In the activation of the communication competency, the 
students express themselves to others based on rules of discourse outside the 
software, but the students must understand how to switch between discourses 
(Sfard, 2008; Antonini et al., 2019; Niss & Højgaard, 2019). If the students do 
not understand the different visual mediators and routines for each discourse, 
the communication is not as effective as it could be, and their communication  
competency would seem less developed (Niss & Højgaard, 2019).

Using instrumental genesis to analyse the students’ activation of their com-
munication competency, the students need to have GeoGebra as an instrument 
(Guin & Trouche, 1998). When GeoGebra functions as an instrument, the stu-
dents understand and control the communication and the rules for the use of 
decimal points versus decimal commas. If students’ attention is on how to write 
decimal numbers, their focus moves from the mathematical aspects of the acti-
vity (i.e. piecewise functions) to the features of GeoGebra, because GeoGebra 
then is yet an artefact (Verillon & Rabardel, 1995). At the end of transcript 1 
and beginning of transcript 2, the students’ have been through the process of 
instrumental genesis, which means that the students’ problem solving activity 
has been reorganised (Guin & Trouche, 1998). After the reorganisation, the stu-
dents can focus on representing Zedland Star using both equations and graphs. 
Knowledge of various representations makes the students more competent in 
mathematical communication when they express their mathematical ideas and 
solutions to the tasks (Niss & Højgaard, 2019). 

The students’ knowledge about the mathematical content (i.e. functions), 
seems to be very relevant not only for the use of GeoGebra but also to show 
mathematical communication competency. When the students do not know that 
Zedland Star must be formulated differently for the two intervals, the students’ 
seems less competent when communicating because they express an incorrect 
understanding of piecewise functions (Niss & Højgaard, 2019; Bayazit, 2010). 

Summing up, this study indicates that mathematical communication com-
petency is more complex when students use GeoGebra to solve mathematical 
problems. Both perspectives indicate that the students must be familiar with 
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the tool to support the competency. Using Sfard (2008), students must under-
stand the different discourse they participate in and they must switch between 
them. In this case, GeoGebra mediates the discourse – students’ then must acts 
based on GeoGebra rules. Also, instrumental genesis must happen, involving a 
reorganisation of activities for the students (Guin & Trouche, 1998), when the 
students understand the constraint and possibilities. 
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Problem solving as a learning activity  
– an initial theoretical model

AnnA IdA SäfStröm And JohAn LIthner

Problem solving has been considered the gold standard of mathematical activity. 
It is a goal of mathematics education that students become problem solvers, and it 
is suggested that problem solving is a superior method for learning mathematics.  
However, the arguments supporting the claim that problem solving leads to better 
learning are often vague. In specific studies, problem solving often constitutes mere 
one part of a compound design, making it difficult to determine the specific contri-
bution of problem solving. The aim of this paper is to develop an initial theoretical 
model for problem solving as a learning activity, based on existing frameworks and 
previous research. Suggestions for how this model could be empirically tested are 
also discussed.

Problem solving has a special status in mathematics education. Problems are 
termed ”the heart of mathematics” (Halmos, 1980, cited in Schoenfeld, 1992, 
p. 339) and it is stated that ”We do mathematics only when we are dealing with 
problems” (Brousseau, 1997, p. 22). Developing problem solving competence is 
seen as a key goal for learners (NCTM, n.d.; OECD, 2019; Schoenfeld, 1992; 
Skolverket, 2019) and problem solving is seen as, and shown to be, essential for 
developing mathematical knowledge and thinking (Brousseau, 1997; Cai, 2003; 
Downton & Sullivan, 2017; Ridlon, 2009; Schoenfeld, 1985; Jonsson et al., 2014). 

However, explanations for how problem solving leads to better learning are 
often vague or lacking, which is evident in the studies in Sidenvall’s (2019) 
review of research on teaching designs based on learning by problem solving. 
Some studies lean on a general and implicit argument that you learn what you 
do (Abdu et al., 2015; Csíkos et al., 2012; White et al., 2012). In some designs, 
additional characteristics of tasks are emphasised, such as real-world basis 
(Bonotto, 2005; Schukajlow & Krug, 2014), contrasting examples (Coles & 
Brown, 2016) or explanatory prompts (Swan, 2007). In some studies, problem 
solving is mere one design element, which is justified as an enabler of other 
elements, such as discussion of different solutions (Coles & Brown, 2016; Kot-
sopoulos & Lee, 2012; Pang, 2016; White et al., 2012). While good teaching 
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naturally involves multiple elements that interplay, this constitutes a scien-
tific difficulty, as it obscures the contribution and value of different elements. 
This in turn creates obstacles for practice. If we do not know how design ele-
ments affect learning, the adaptations that are necessary in implementation risk  
altering integral elements while preserving extraneous features. 

One important clue in understanding how problem solving works as a learn-
ing activity is that it promotes creative mathematically founded reasoning 
(CMR). CMR is reasoning that is constructed by the learner (novelty) and sup-
ported by arguments (plausibility) that are founded in intrinsic mathematical 
properties of the components of the problem (anchoring) (Lithner, 2008; 2017). 
However, as with problem solving, the more specific mechanisms of CMR that 
enhance learning are yet unknown (Lithner, 2017).

In sum, there is a need for clarification of how characteristics of problems 
and problem solving contribute to the development of specific learning goals. 
The first step in that direction is to formulate an initial theoretical model for 
how problem solving works as a learning activity, which is explicit and struc-
tured enough to be empirically tested. The aim of this paper is to develop such 
an initial model by linking the CMR framework to previous research and other 
frameworks regarding problem solving. 

Characteristics of problems and problem solving
Problems are usually defined as a subset of mathematical tasks carrying spe-
cific characteristics. These characteristics are supposed to lead to a specific 
type of mathematical work on tasks, called problem solving. It is then argued 
that it is the characteristics of this kind of mathematical work that facilitate the 
better type of learning associated with problem solving. Since the definition of 
problem varies, so do the foregrounded characteristics of problem solving and 
the arguments for how problems lead to the activities with those characteristics.

In this paper, we focus on frameworks characterizing problems as involv-
ing something unknown. Schoenfeld (1985) defines problems as tasks where 
the problem solver does not have easy access to a procedure giving a solution. 
Beghetto (2017) states that problems entail uncertainty regarding how to think 
and act. In stronger formulations, the unknown is specified as knowledge that 
the problem solver does not yet have (Brousseau, 1997; Hiebert & Grouws, 
2007), but is needed in order to solve the problem. Sometimes, this unknown 
knowledge is restricted to a method (NCTM, 2000; Skolverket, 2019). It follows 
that whether a task is a problem depends on the person attempting to solve it, 
and the context in which it is presented. For example, in everyday life a task 
may evoke other resources and strategies than if it is presented in a classroom, 
rendering it routine in one context, but not in another. However, the relations 
between task and context are complex, and a thorough elaboration on these 
relations beyond the scope of this paper.
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As a result of extensive empirical work, Schoenfeld (1985) presents a framework 
for the knowledge and behaviours required for problem solving. The framework 
comprises four categories: resources, heuristics, control and belief systems. 
In order to reach a solution, the problem solver needs to evoke mathematical 
resources, such as facts, algorithms, standard procedures, understandings and 
intuitions. She also needs heuristics, i.e. strategies for making progress on 
unfamiliar tasks, such as drawing figures and investigating examples. In order 
to plan, monitor and evaluate her process, she needs to use control, which can 
be seen as a subset of what other researchers have called metacognitive or self-
regulative skills (Schoenfeld, 1992). Finally, she needs a belief system allowing 
her to think that her mathematical knowledge is useful and that she can make 
progress if she tries. 

Beghetto (2017) argues that problem solving is characterised by creative 
thought and action, while Hiebert and Grouws (2007) stress that problem 
solving involve effortful struggle, as the problem solver ”grapples with key 
mathematical ideas that are comprehendible but not yet well formed” (p. 387). 
Brousseau (1997) states that problem solving entails overcoming an obstacle 
by constructing a specific piece of knowledge.

An initial model for problem solving as a learning activity
The model incorporates the idea that the knowledge and behaviours coming 
into play when solving problems can be captured in Schoenfeld’s (1985) four 
categories: resources, heuristics, control and belief systems. While Schoenfeld 
(1985) views this set as prerequisites for problem solving, we view this set as 
problem solving competences that are not only applied and used during problem 
solving, but also developed and improved. This two-fold function is conveyed 
in the term exercising (Säfström, 2013). Therefore, this set is also an adequate 
categorisation of plausible learning goals of problem solving.

For each competence, we will describe how problem solving is hypothesised 
to work as a learning activity developing this competence in relation to charac-
teristics of problems, connecting existing frameworks and current research. 
For each competence we will also consider the meaning of two important con-
ditions for learning: time and success. Regarding time we will elaborate on 
whether and how problem solving is likely to enhance learning in the moment 
and by sustained activity over longer periods of time. Regarding success we 
will describe whether and how learning is likely to be affected by whether the 
student successfully solves the problem.

Developing resources by problem solving
In problem solving, resources are exercised in a different way than when working 
on routine tasks. The unknown of the problem requires novelty (Lithner, 2008). 
It is not possible to find the solution by mere guessing (although guessing may 
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be a constructive part of the solution), therefore the solver needs some kind of 
argumentation supporting the construction of the solution. This argumentation 
needs to be mathematically plausible and anchored in intrinsic mathematical 
properties of relevant components of the task (Lithner, 2008). It is this particular 
consideration of both known and new mathematical properties of the particular 
resources in question, not required and usually absent in routine task solving 
(Norqvist, 2017; Norqvist et al., 2019), that reinforces, expands and connects the 
individual’s resources. In other words, problem solving requires resources to 
be organised in a way that enables the student to identify intrinsic mathemati-
cal properties of components and construct a line of arguments following, or 
possibly creating, a path of connections. Therefore, mathematical knowledge 
cannot be used purely atomistically, probing memory of facts and algorithms. 
Instead, problem solving leads to learning mathematics with understanding, 
i.e. ”making connections, or establishing relationships, either between know-
ledge already internally represented or between existing networks and new 
information” (Hiebert & Carpenter, 1992, p. 80). The idea that problem solving 
results in a more connected and efficient organisation of resources is supported 
by Karlsson Wirebring et al. (2015) who showed that students who learned by 
problem solving used less brain activity on post-test while performing better, 
compared to students who learned by routine tasks.

Learning with respect to this competence can take place within a single 
learning session, as previously shown (Jonsson et al., 2014). This indicates 
that the activation of resources can be immediate, and new connections made 
within the solution process of a single task. Over time, exercising of connected 
resources may both densify and strengthen connections. On the one hand, con-
sideration of intrinsic mathematical properties and attempts at constructing 
arguments exercise resources even if problem solving fails. On the other hand, 
the number of completed tasks is not correlated to increased learning per se 
(Jonsson et al., 2014). Therefore, unsuccessful problem solving may still be a 
better learning activity for resources than successful work on routine tasks.

Developing heuristics by problem solving
Non-problems can be solved by standard procedures, and if a procedure is 
known it suffices to apply it or, at most, determine which procedure is suitable 
from a delimited list. If possible, many students choose simple and routine 
methods (Downton & Sullivan, 2017; Norqvist et al., 2019). However, the 
unknown of problems makes resources insufficient for attaining a solution. 
Therefore, problem solving entails exercising heuristics, i.e. strategies for con-
structing one’s own solution. Single problems are not enough to develop heuris-
tics. A method becomes a heuristic only when it is found successful on a set of 
similar but unfamiliar problems (Schoenfeld, 1985). This implies that learning 
of single heuristics requires both extended time and success. In order to learn 
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a set of heuristics and when they are suitable, one needs to encounter different  
types of problems, requiring additional time and failure as well as success. 

Developing control by problem solving
Control is exercised when the task requires strategic decisions and evaluation 
of advances and setbacks. Therefore, the faculty of problem solving as a learn-
ing activity for control depends on the level of uncertainty and complexity. 
Uncertainty requires evaluation: if the interpretation of the problem is dubious, 
if it is unclear what to do or whether what was done is correct, one needs 
CMR to construct arguments for strategy choices and conclusions (Lithner, 
2008). Complexity requires strategic decisions: if the problem requires multiple 
steps and consideration of numerous details, one needs to monitor the process  
(Schoenfeld, 1985). 

If consistently prompted for, control can be enhanced over the matter of 
months (Schoenfeld, 1992; Shilo & Kramarski, 2019). It is likely to develop 
more slowly by problem solving alone. This combination of requirements – 
sufficiently difficult problems and prolonged commitment – may prove insur-
mountable for many learners. While occasional failure is likely to stimulate 
exercising of control, repeated failure may not, implying that the development of 
control requires a subtle balance between success and failure. Indeed, previous 
research show that higher demand of CMR may result in students resorting to 
imitative reasoning (Boesen et al., 2014; Sidenvall et al., 2015). Therefore, it is of 
outmost importance for each individual student to encounter problems that are 
challenging enough to activate control and at the same time reasonable to solve.

Developing belief systems by problem solving
If given problems on an appropriate level, learners can take responsibility for 
the process and construct their own solutions for problems of increasing dif-
ficulty (Brousseau, 1997; Lithner, 2008). This is hypothesised to establish the 
belief that one’s own arguments anchored in intrinsic mathematical proper-
ties can solve problems, promoting the learner’s own mathematical authority. 
Problem solving is connected to different norms than imitation of procedures, 
and there is a reflexivity between socio-mathematical norms and beliefs (Cobb 
& Yackel, 1996). Frequent problem solving may therefore affect the learner’s 
beliefs regarding whether solving problems is viable and what level of effort is 
expected when dealing with mathematical tasks. 

It is well-known from both research and practice that beliefs can be difficult 
to change and take time to develop (Hannula, 2006). We also propose that the 
development of mathematical authority is success sensitive. At least in rela-
tion to some beliefs, the choice of task may be crucial. If the student holds the 
belief that she cannot solve mathematical problems, the most important design  
decision may be to choose a problem that the student will in fact solve. 
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Discussion
In this paper we have presented an initial theoretical model for how problem 
solving works as a learning activity. The main rationale for this model is that 
it can serve as a starting point and guidance for further empirical research on 
mathematics teaching and learning. The model provides direction for poten-
tially fruitful experiments, regarding duration of interventions and how prob-
lems should be designed. However, we want to stress that the aim is not to deter-
mine necessary and sufficient causes for learning. While such causes would 
no doubt be valuable if discovered, we acknowledge that ”causes” are often 
more accurately described as ”conditions” (Shadish et al., 2002).  For example, 
resources could be learnt with understanding in other situations than problem 
solving, but tasks will not develop resources unless they involve something 
unknown. However, problems will neither develop resources unless additional 
conditions are fulfilled, e.g. that the problem provides an opening for the learner 
to start working on the problem.

Some researchers assert that mathematics can only be learnt by problem 
solving (e.g. Brousseau, 1997). At the same time, mathematical knowledge and 
skills are sometimes described as prerequisites for problem solving (Bergqvist 
et al, 2010; Schoenfeld, 1985). We argue that the notion of CMR (Lithner, 2008) 
provides a means for unifying these views: problem solving gives opportunities 
to exercise resources in different ways than routine tasks, since the absence of a 
predetermined method demands constructing arguments anchored in intrinsic 
mathematical properties. 1 Therefore, resources are structured and connected 
in problem solving, and this structure provides a means for further reasoning 
and problem solving.

The model presented here considers problem solving as a learning activity 
in itself. This focus also reveals potential difficulties and shortfalls in problem 
solving, e.g. that developing belief systems may require success, while develop-
ing heuristics and control may require failure. Such insights can guide the com-
bination of problem solving with other design elements. As previous research 
shows, problem solving is better realised if combined with other activities. 
Brousseau (1997) emphasises the function of institutionalisation in valuing 
and reformulating students’ own constructions of resources and heuristics in 
culturally accepted terms. This can be achieved in whole class discussions, as 
suggested by others (Kotsopoulos & Lee, 2012; Pang, 2016; Stein et al., 2008). 
Acquiring and using a heuristic vocabulary during problem solving has been 
shown to further development of heuristics (Koichu et al., 2007). With respect 
to control, Schoenfeld (1985) supports the Vygotskyean hypothesis that indi-
vidual reflection is preceded by social reflection, and has shown empirically that 
questions prompting for reflection develop students’ metacognitive behaviour. 

It is probable that the teacher-student interaction during problem solving 
influences norms and practices in other parts of the classroom context, and that 
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the norms and practices in the classroom context at large influence problem 
solving (Cobb & Yackel, 1996). Attending to certain aspects of the students’ 
work and thinking lades these aspects with value, affecting beliefs. For example, 
asking what the problem is about signals that this is something important to 
consider. Asking about the students’ thinking and work signals that this is of 
value, besides the result and final answer. It is therefore a reasonable hypothesis 
that interaction concerning heuristics, control and resources also influences 
belief systems, but possibly over longer periods of time. This method may be 
more effective for changing belief systems than trying to affect them directly.  

To be useful for practice, further elaboration on how other activities support 
or hinder learning during problem solving is needed, and indeed providing 
theoretical and empirical bases for such elaborations is a key concern for our 
continued work. It is, however, beyond the scope of this paper and our current 
understanding of the complex phenomena involved.

Suggestions for empirical studies
We know from Schoenfeld’s (1985) work that the four categories of knowledge 
and behaviours are detectable when observing students’ problem solving pro-
cesses. We also know that mathematical reasoning can be studied by means 
of observation and interviews (Lithner, 2008). While these methods provide a 
foundation for how learning and development of problem solving competence 
can be studied, they are not sufficient in themselves. Problem solving as a phe-
nomenon gives rise to specific challenges when it comes to studying develop-
ment over time. By definition, a task cannot be used to test the problem solving 
competence of a student twice. If different tasks or activities are used at diffe-
rent occasions, performance can be profoundly affected by the characteristics 
of the tasks.  Hence, validity for problem solving measures is a delicate issue.

In addition, some aspects of problem solving may be specifically difficult to 
study. To a large extent, the processes involved in problem solving are taking 
place in the mind, hidden from observation. While the observer can access some 
of those processes by asking questions, such methods are always interventional. 
This is especially true for control, as it is epistemologically debatable how 
accounts given when requested relate to peoples’ actual rationale (Edwards, 
1997). This issue is lessened, but not removed, by studying the exercising of 
control communicated by group members in group work.

As most existing methods for studying problem solving involve time con-
suming methods such as observation or interviews, it may be difficult to conduct 
studies at scale. While surveys and questionnaires, e.g. for self-reported beliefs 
and metacognitive skills, are available, such methods can suffer from poor 
validity (Veenman & van Cleef, 2019).

It is clear that additional work is needed in order to empirically test our initial 
theoretical model and further understanding of how problem solving functions 
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as a learning activity. Undoubtedly, we will have reason to reconsider and revise 
our model as our work proceeds. Nonetheless, we believe that the formulation of 
initial models serves an important purpose in guiding and evaluating empirical 
studies, and for interpretation of both failure and success.
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Conceptual knowledge in mathematics 
– engaging in the game of giving and 

asking for reasons

Per NilssoN

In this study I re-analyse a transcript from Kazemi and Stipek (2001) in order to show 
how constructs of the semantic theory of inferentialism can be used to give account of 
conceptual knowledge in mathematics. In mathematics education research connec-
tions are crucial to conceptual knowledge. Inferentialism provides a theoretical con-
ceptualization of connections, in terms of inferential relationships and moves in the 
language practice of giving and asking for reasons. Based on this conceptualization, 
the present study shows how constructs of inferentialism can facilitate a fine-grained 
analysis of conceptual knowledge in mathematics and provide insight on teachers’ 
actions in pressing for conceptual knowledge in teacher-student interaction.

There are several frameworks for describing knowledge in mathematics. Across 
different frameworks, research seems to agree on conceptual knowledge as one 
core component of mathematical knowledge (e.g. Kilpatrick et al., 2001; Niss, 
2003). Conceptual knowledge corresponds to relational knowledge (Skemp, 
1976) and is thought of as ”a connected web of knowledge, a network in which 
the linking relationships are as prominent as the discrete pieces of information” 
(Hiebert & Lefevre, 1986, pp. 3–4).

Since Hiebert’s and Lefevre’s (1986) seminal work, conceptual knowledge 
has come to have a prominent position in defining and characterizing mathe-
matical knowledge (Star, 2005) and in capturing the learning of significant con-
cepts within different mathematical domains (Baroody et al., 2007). However, 
it has been observed an ambiguity in how conceptual knowledge is understood 
and used (Baroody et al., 2007; Star, 2005). In line with Hiebert’s and Lefevre’s 
(1986) definition, research often emphasizes connections as crucial to con-
ceptual understanding but, what Crooks and Alibali (2014) observe is that the 
meaning and structure of connections are often described in vague or general 
terms, with limited theoretical grounding. 

The aim of the present study is to show how constructs of inferentialism 
(Brandom, 1994, 2000) provide opportunities for fine-grained analyses of  

Per Nilsson, Örebro University
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conceptual knowledge and of teachers’ actions in pressing for conceptual 
knowledge in teacher-student interaction.

To make my analytical point, I re-analyse a transcript from Kazemi and 
Stipek (2001) where one teacher is trying to press two students to extend their 
reasoning on addition of fractions. Kazemi’s and Stipek’s study is representa-
tive for many studies on conceptual knowledge in mathematics, where con-
ceptual knowledge is described in general terms, with no explicit theoretical  
grounding (Crooks & Alibali, 2014).

Conceptual knowledge
Despite a clear movement in both research and educational practice toward 
emphasizing conceptual knowledge it does not appear to be a clear consensus 
in the literature as to what exactly conceptual knowledge is and how best to 
measure it (Crooks & Alibali, 2014). The term ”conceptual knowledge” has 
come to denote a wide array of constructs. Hiebert and Lefevre (1986, pp. 3–4) 
define conceptual knowledge as ”[…] knowledge that is rich in relationships. 
It can be thought of as a connected web of knowledge, a network in which the 
linking relationships are as prominent as the discrete pieces of information”. 

Conceptual knowledge is keyed on connections, but the definition says 
nothing about whether the connections relate to mathematical procedures or 
concepts. Star (2005) argues for the need to treat type and quality as two inde-
pendent dimensions in the conceptualization of conceptual (and procedural) 
knowledge in mathematics. Star proposes that conceptual knowledge is the 
knowledge type of concepts or principles and describes the quality of con-
ceptual knowledge in terms of connections. Commenting on Star’s proposal, 
Baroody et al. (2007) suggest an alternative in which they describe quality as 
a matter of connections along the Likert scale of not, sparsely, somewhat, well 
and richly connected. However, what is meant by, e.g. sparsely connected, or 
how this differs from somewhat connected, is not theoretically underpinned or 
described in any detail (Nilsson, 2020). 

The suggestion of the present study is to redefine conceptual knowledge as 
exclusively a knowledge type and to use the theory of inferentialism to extend 
our understanding of the role and meaning of connections as a means for giving 
account of qualities of conceptual knowledge. To this end I follow Anderson et 
al. (2001) and define conceptual knowledge as the knowledge of classifications, 
structures and principles.

An inferentialist account of conceptual understanding
Inferentialism constitutes a semantic theory (Brandom, 1994) in which infer-
ential relationships (connections) in concept use are considered a necessary and 
inseparable part of knowledge and meaning-making (Bakker & Derry, 2011). 
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Following Sellars (Sellars et al., 1997), Brandom (1994) argues that we, as 
human beings, possess the ability to make judgments and form reasons for how 
and why things happen as they do (Bakker & Derry, 2011; Brandom, 2000). A 
belief or an action of a person has a position in the space of reasons as the person 
is aware that their belief or action could be different and can reflect whether 
their belief or action should be as it is (Mackrell & Pratt, 2017). 

Inferentialism takes a social and pragmatic stance on meaning-making and 
understanding. Rather than considering the space in which thought moves, 
Brandom suggests looking at inferences from the perspective of playing a lan-
guage game (Wittgenstein, 1968). Brandom (1994) introduces the Game of 
giving and asking for reasons (GoGAR) as a metaphor to describe how knowl-
edge and meaning-making emerge inferentially within a social and pragmatic 
practice of reasoning. The principle idea is that we, as human beings, negotiate  
meanings in the way we use concept 1 (Seidouvy et al., 2019). In the words of 
Brandom (2002); concepts become what they are according to how they are 
used, in ”being a move in the ’game of giving and asking for reasons’ ” (p. 528). 

Inferentialism is resolutely holistic (Bakker & Derry, 2011). One needs many 
concepts in order to have any, since the content of each concept is constituted 
by its inferential relationship to other concepts. Think of the situation of having 
practical mastery of the concept of ”probability,” coming into articulation in the 
claim, ”the probability of six is 1/6 when rolling a die.” Claiming this implies, 
among many things, to know that the claim is based on a perfectly symmetric 
die, that the relative frequencies of sixes stabilize around 1/6 as we increase the 
number of rolls and that the probability of not having a six is 5/6. This example 
involves a GoGAR of many reasons related to the concept of probability, of which 
only a few been made explicit here. The main point, however, is that these reasons 
are relevant and become contentful due to their inferential connections. At least 
four types of inferences can be delineated (Brandom, 2000; Nilsson, 2020).

Identity. Identity inferences are probably the most common inference in 
language games. It speaks to our ability to make classifications. For 
instance, pointing to the picture of a quarter-shaded circle one could 
write ”This is 1/4” and someone else could say ”This is 25 percent”. 

Negations. Negation inferences speak to comparison and contrasting. We 
understand what something is when we are able to infer what it is not (cf. 
Marton et al, 2004). 

Conditionals. Conditionals take the form of ”if-then” clauses and are prob-
ably the prime construct of inference. With conditionals, we focus on the 
circumstances needed for something to happen or to be. The inference, 
”If there are 50 black marbles in a bag with a total of 100 marbles then, it 
is a fifty percent chance to pull a black marble from the bag” exemplifies 
a conditional.
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Counterfactuals (Brigandt, 2010). Counterfactuals relate to conditionals, as 
they deal with circumstances in an explicit way. Significative of counter-
factuals is clauses involving the expression of ”had been”. Say that you 
encounter a parallelogram (P) for the first time. Expressing, ”if all four 
angels of P would have been 90 degrees, then P would have been a rec-
tangle” exemplifies a counterfactual, which adds to your understanding 
of when to use the concept of rectangle and the concept of parallelogram.

I re-analyse a transcript from Kazemi and Stipek (2001) to show how an inferen-
tialist account of conceptual connections can facilitate a fine-grained analysis 
of conceptual knowledge in classroom talks in mathematics.

An inferentialist re-analysis of conceptual knowledge
Kazemi’s and Stipek’s study is cited 480 times (Google Scholar 25 September, 
2019) and is representative for many studies on conceptual knowledge in mathe- 
matics, where conceptual knowledge is described in general terms, with no 
explicit theoretical grounding (Crooks & Alibali, 2014).

Kazemi’s and Stipek’s (2001) study involved four teachers in grades 4 and 5, 
all teaching the same lesson on the addition of fractions. The aim of the study 
was to ”analyse and provide vivid images of classroom practices that create a 
press for conceptual learning” (Kazemi & Stipek, 2001, p. 78).

Kazemi and Stipek (2001) analysed and compared episodes from two lessons 
of high press and two lessons of low press. In the present study I will focus on 
one transcript on high press interaction (Ms. Carter), since it provides most 
vivid images of classroom talks in mathematics for the support of conceptual 
learning. The episode is from a fifth-grade classroom.

It is important to understand that the purpose is not to question the accu-
racy of Kazemi’s and Stipek’s analysis. According to Kazemi and Stipek, their 
analysis is more extensive and detailed than what is common in many studies 
looking at conceptual knowledge in mathematics. So, in some sense their study 
is used as a critical case (Flyvbjerg, 2006). In other words, if I manage to show 
that inferentialism can provide support to elaborate further on Kazemi’s and 
Stipek’s analysis on conceptual knowledge, there is reason to believe that this 
would be possible in many other cases.

I begin the analysis below by briefly presenting the conclusions made by 
Kazemi and Stipek. I then turn to the inferentialist analysis, which took place 
in the following steps. Firstly, in order to account for conceptual learning, 
I searched for inferential patterns enacted, according to identity inferences, 
negation inferences, conditionals and counterfactuals. Secondly, I looked at 
the teacher’s role. Kazemi and Stipek focused on how the teachers pressed 
for conceptual learning. Looking at the episode from an inferential lens, 
in the second step I was searching for instances where the teacher missed  
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opportunities to press students’ reasoning further, making the GoGAR more 
explicit. Thirdly, I compared the outcomes of Kazemi’s and Stipek’s analysis 
with the inferentialist analysis.

Results
Episode 1 in Kazemi and Stipek (2001)
Ms. Carter asked Sarah and Jasmine to explain how they divided nine brownies  
equally among eight people and why they chose particular partitioning strategies.

Sarah: The first four, we cut them in half. [Jasmine divides squares in half on an 
overhead transparency] 

Ms. C.: Now as you explain, could you explain why you did it in half? 
Sarah:  Because when you put it in half, it becomes ... eight halves. 
Ms. C.: Eight halves. What does that mean if there are eight halves?
Sarah:  Then each person gets a half. 
Ms. C.: Okay, that each person gets a half. [Jasmine labels halves 1–8 for each of the 

eight people.] 
Sarah:  Then there were five boxes [brownies] left. We put them in eighths. 
Ms. C.: Okay, so they divided them into eighths. Could you tell us why you chose 

eighths? 
Sarah:  It’s easiest. Because then everyone will get ... each person will get a half and 

[whispers to Jasmine] How many eighths?
Jasmine:  [Quietly to Sarah] 1/8. 
Ms. C.: I didn’t know why you did it in eighths. That’s the reason. I just wanted to 

know why you chose eighths. 
Jasmine:  We did eighths because then if we did eighths, each person would get each 

eighth, I mean 1/8 out of each brownie.
Ms. C.: Okay, 1/8 out of each brownie. Can you just, you don’t have to number, but 

just show us what you mean by that? I heard the words, but ... [Jasmine shades 
in 1/8 of each of the five brownies not divided in half] 

Jasmine:  Person one would get this ... [Points to one eighth] 
Ms. C.: Oh, out of each brownie.
Sarah: Out of each brownie, one person will get 1/8.
Ms. C.:  1/8. Okay. So how much then did they get if they got their fair share? 
Jas./Sar.:  They got a 1/2 and 5/8. 
Ms. C.:  Do you want to write that down at the top, so I can see what you did? [Jasmine 

writes 1/2 + 1/8 + 1/8 + 1/8 + 1/8 + 1/8 at the top of the overhead projector]
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Kazemi’s and Stipek’s presented analysis
In this situation of high press exchanges, Kazemi and Stipek claim that students 
went beyond descriptions or summaries of steps to solve a problem. Instead, 
the students linked their problem-solving strategies to mathematical reasons 
and, in that sense, Kazemi’s and Stipek’s approach parallels the inferentialist 
idea that conceptual content is constituted in the game of giving and asking for 
reasons. Kazemi and Stipek then infer that, the exchange among Sarah, Jasmine 
and Ms. Carter highlights a conceptual focus. 

Ms. Carter asked Sarah to explain the importance of having eight halves 
and the reason why the partitioning strategy using eighths made sense. 
After Jasmine gave a verbal justification, Ms. Carter continued to press her 
thinking by asking her to link her verbal response to the appropriate pic-
torial representation by shading the pieces, and to the symbolic represen-
tation by writing the sum of the fractions.(Kazemi & Stipek, 2001, p. 65)

Some reflections on Kazemi’s and Stipek’s analysis/conclusions. In the first line 
we see that ”reasons” are part of their analysis. However, what they ascribe as a 
reason in the exchange is not clear and not is the meaning of reasons, in terms of 
what follows from it and what it follows from. Next, we note that ”link” is central 
to their analysis. It is claimed that links are made between verbal responses and 
pictorial representations and symbolic representations. But, the nature of the 
links (connections) are not made explicit. Are the links just acts of classification, 
according to identity inferences, there is a low degree of inferential reasoning 
involved and so of conceptual knowledge.

Inferentialist analysis
Kazemi and Stipek (2001) used the episode of Sarah, Jasmine and Ms. Carter 
as an example of high-press interaction that moves the talk beyond descriptions 
or summaries of steps to solve a problem. However, scrutinizing the interac-
tion by an inferentialist lens, we are provided more detailed information of 
the content of the talk and of missed opportunities for the teacher to press the  
students’ conceptual understanding on fractions further. 

Figure 1 present a summary of the inferentialist analysis of the episode with 
Sarah, Jasmine and Ms. Carter. From a GoGAR-perspective we can say that the 
episode centers around a ”four-brownie task” and a ”five-brownie task”. The 
four-brownie task is about explaining why each person gets a 1/2 of a brownie 
from four brownies and the five-brownie task is about explaining why each 
person gets 5/8 of a brownie from 5 brownies. The GoGAR is then about making 
sense of these two tasks and the solution of them.

The solution to the four-brownie task is structured in two conditionals 
expressing quotitive division, whereas the solution to the five-brownie task is 
structured in two conditionals expressing partitive division (figure 1). Making 
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explicit their solution to the four-brownie task Sarah claims, ”The first four, 
we cut them in half”. If this claim comes alone, one could infer that the answer 
applies to partitive division, resulting in ”two”: half of four is two. However, 
the phrase involves ”cut” and is accompanied with Jasmine dividing each of the 
four squares in half on an overhead transparency. So, the inferential meaning 
of half is not constituted from how half takes a position in ”half of a set (parti-
tive division)” but, from how it takes a position in ”how many half brownies are 
contained in four (whole) brownies (quotitive division)”. Further, to make sense 
of Sarah’s and Jasmine’s reasoning, one may infer that, what they present is not 
the actual solution but a reconstruction of a solution. In other words, Sarah and 
Jasmine knows that each person will receive half of a brownie out of the four 
brownies and, what they do is to show that four brownies contains, or can be split 
into, eight halves. An alternative interpretation could be that the students infer 
from the implicit equation 4 · x = 8 that each person will have half of a brownie. 
So, to understand more about the students’ reasoning to make the content more 
explicit, and so, accessible to the rest of the class, there were reasons to press 
Sarah and Jasmine further on the four-brownie task.

The solution of the five-brownie task follows a two-step structure reflect-
ing partitive division. Sarah claims, ”We put them in eighths”. Ms Carter then 
adds to the GoGAR, ”Okay, so they divided them into eighths”. In partitive 
division you want to find out the size of each part if you have a whole that is 
to be divided into a given number of parts. The brownies are to be distributed 
over eight persons so, the brownies should be divided into eight parts of equal 
size. However, now the total amount of brownies was not cut directedly in 5/8. 
In a two step-procedure, each brownie was first cut in eights. Each of the five 
brownies then contributed with 1/8 of a brownie so every person received 5/8 
of a brownie. 

I agree with Kazemi and Stipek that Ms. Carter presses the talk beyond 
descriptions or summaries of steps to solve a problem. However, from the  

Figure 1. A summary of the inferentialist analysis of the solutions to the four-
brownie task (to the left) and to the five-brownie task (to the right)
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inferentialist analysis, we can see several situations where the teacher is not 
taking advantage of opportunities to develop the GoGAR on fractions further. 
For instance, Ms. Carter leaves the solution on the form of two separate fractions 
1/2 and 5/8. The GoGAR could have been extended by pressing the students to 
make explicit the identity inferences from ”1/2” to ”4/8” and then, consequently, 
from ”1/2 + 5/8” to ”4/8 + 5/8= 9/8”. The GoGAR could then have been further 
extended by making explicit the identity inference from 9/8 to 1 1⁄8.

Ms. Carter could also have developed the GoGAR by means of negotiation 
inferences. In other words, she could have pressed the students to elaborate on 
differences between the conditional patterns in the solution of the four-brownie 
task (quotitive division) and the conditional patterns in the solution of the five-
brownie task (partitive division). The fundamental negation is that, the principle 
by which Sarah and Jasmine distribute the first four brownies is not the same 
as the principle they use to distribute the last five brownies.

Concluding discussion
In this study I have re-analysed a transcript from Kazemi and Stipek (2001) 
in order to show how constructs of the semantic theory of inferentialism 
(Brandom, 1994, 2000) can be used to give account of conceptual knowledge 
in mathematics. Research emphasizes connections as crucial to conceptual 
knowledge (Hiebert & Lefevre, 1986). However, Crooks and Alibali (2014) 
observe that the meaning and structure of connections are often described in 
vague or general terms, with limited theoretical grounding. On a theoretical 
level then, the significance of the present study should be seen according to how 
it provides a theoretical conceptualization of connections, in terms of inferen-
tial relationships and moves in the language practice of the game of giving and 
asking for reasons. On an empirical level, the significance of the study should 
be seen according to how this inferential conceptualization of connections 
facilitates a fine-grained analysis of conceptual knowledge in mathematics and 
provide insight on teachers’ actions in pressing for conceptual understanding 
in mathematics in teacher-student interaction.

Kazemi and Stipek (2001) used the episode presented above as an example 
of a teacher creating high-press interaction. However, looking at the episode by 
inferentialist means, we came to see that many inferential relationships were left 
implicit in the interaction. There were several opportunities to push the students 
further, making the content even more explicit and accessible to the class. But, of 
course, inferentialism does not do all of the job itself. Being able to perform the 
above inferentialist analysis requires that the analyst is knowledgeable in mathe-
matics. So, on a theoretical level, the inferentialist perspective suggests the 
need for further research on investigating and/or trying to developing teachers’  
inferentially structured knowledge in mathematics.
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There was no counterfactual in play in the episode above. Nor, was it, in the 
same way as was the case with a negation inference, easy to see how a coun-
terfactual could be brought to the fore as an explicit topic of a GoGAR. It was 
actually difficult to give account of any counterfactual at all, when looking at 
the entire empirical material presented in Kazemi and Stipek (2001). This is 
probably representative for many classrooms. However, if conceptual know-
ledge is about making semantic connections, there is reason to engage students 
in a variety of contexts in which such connections can be exercised. On this 
account, the present study suggests research to explore the design of tasks and 
activities that challenge students and teachers to engage in GoGARs that allows 
for counterfactuals.
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Primary students’ expressed emotions 
towards mathematics education

Martin nyMan

A body of research highlights factors relating to students’ emotions – towards them-
selves, the social environment, learning, and the subject itself – as being of pivotal 
importance for learning. This paper reports on a study where students in grades 
two and five were interviewed about their experiences with mathematics, especially 
focusing on expressed emotions. Using a combination of deductive frameworks and 
an inductive search, nuances in students’ expressed emotions were revealed, with 
tentative results indicating that issues of control are significantly important and that 
boredom conceals emotionally important complexities. 

Previous research has indicated that emotion is an intrinsic part of every learn-
ing situation, including mathematics learning (e.g. Hannula, 2006; Radford, 
2018; Ryan & Deci, 2000; Schukajlow et al., 2017). Emotions ”simultaneously 
emerge from, and shape experience” (Liljedahl, 2014, p. 27) and thus, play a 
part in the individual’s structuring of future action through the interrelationship  
between emotion, motive and action (Leont’ev, 2009). 

It appears that student interest in, motivation for and engagement with 
mathematics is inversely proportional to years of schooling (e.g. Blomqvist 
et al., 2012; Hannula, 2006). However, available studies on affective factors 
like emotion primarily cover teenagers or adults (Dowker et al., 2019) and 
focus on mathematics anxiety in relation to solving tasks without explaining 
how these phenomena develop (Batchelor et al., 2019). Thus, there is reason 
to focus more on capturing the nuances within emotions, as well as the sup-
posed link and interplay between different affective factors, to better under-
stand the mechanisms behind student action. Therefore, the aim of this study is 
to explore student emotions in relation to mathematics and in particular nuances 
in expressed emotions by addressing the following research questions: 

1 How do students express emotions in relation to mathematics and what 
are the characteristics within these expressed emotions? 

2 How and by what mechanisms are students’ emotions linked to expressed 
motives? 

Martin Nyman, Stockholm University



Papers

152 Proceedings of Madif 12

Background
The neurological way of describing emotions is to view them as bioregulatory 
reactions made up of chemical and neural responses that the brain produces, and 
that this production is performed automatically and in steps (Damasio, 2004). 
The initiation of the emotion is followed by biochemical changes in the body and 
brain and finally the emotion is made conscious, resulting in the person ”feeling 
the emotion”. This mechanism places emotion in the middle of the physiology-
psychology divide as the mechanism that connects the two (Damasio, 2004). 
Understanding this connection is important for education. Since the aim of 
the present study is to explore nuances in students’ expressed emotions, Schir- 
mer’s (2015) operationalisation of the concept is used. She defines emotion as 
”conscious or unconscious mental states elicited by events that we appraise 
as relevant for our needs and that motivate behaviours to fulfil these needs” 
(Schirmer, 2015, p. 26). 

The division between emotion and feeling has been explored and discussed 
for mathematics education purposes by other researchers (e.g. Sumpter, 2020). 
One conclusion being that emotions include both bodily experiences and, 
sometimes but not always, a cognitive interpretation and/or expression of these 
experiences. Another conclusion is that the analysis of emotional nuance must 
expand beyond a positive-negative dichotomy. 

Further, a body of research in the field of psychology has tried to establish 
whether the number of different emotional sensations are infinite or limited to 
a finite set of basic emotions (Shirmer, 2015). The theoretical starting point for 
this study comes from Löwheim (2011). He advocates a finite set of eight emo-
tions, making the neurologically grounded argument that this figure represents 
the maximum number of configurations one can derive from the three synaptic 
amino acids involved in the process of producing sensations in the brain. These 
eight emotions are: excitement, joy, surprise, distress, fear, shame, disgust and 
anger. Though the number is fixed, the individual experience of emotional sen-
sations may be more varied, since sensations occur to various extents and can 
be more or less intense. Contrasting this fixed number, Lewis (2013) presents 
a different – and larger – set of emotions at play in educational situations. He 
also discusses an interrelation between the concepts emotion and motivation. 
Theories for describing this interrelation are important for understanding the 
mechanisms for student action.

To further understand the role of emotion in student action in relation to 
teaching, it is important to acknowledge the different positions of the aquisition-
ist and participationist paradigms respectively (Liljedahl, 2014). The acquisi-
tionist paradigm implicitly treats emotion as a psychological phenomenon that 
is a reaction to (interpretation of) the individual’s experience and which regu-
lates their future actions. In the participationist paradigm, the role of emotion 
is intertwined with the individual’s actions through their motives which in turn 
are created by their needs. Since motives, hence also needs, can be unknown 
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to the individual, the emotions work as regulators of actions by feeding back 
the fulfilment of the individual’s needs. As a consequence of the causal chain – 
needs-motives-action – the importance of motivation is significantly reduced 
in the participationist paradigm (e.g. Arievitch, 2017). It is understood that the 
individual is not required to have motivation (i.e., pleasure, salary or grades) in 
order to do something, but is required to have a need (personal, social or other), 
which creates a motive for action The individual is understood not required 
to have motivation (i.e., pleasure, salary or grades) in order to do something, 
instead they are considered to have a need (personal, social or other), which 
creates a motive for action (Leont’ev, 2009). Independent of the paradigm there 
is still a need for expanding the multitude of affectively relevant dimensions 
even further. One attempt is made by Hannula (2006, 2012), who combines 
eight dimensions, grouped together in three dimensions on the sides of a cube 
– emotion, cognition and motivation make up the first side of the cube; psycho-
logical, physiological and social the second; and the two temporal dimensions 
state and trait the third side.

Looking at empirical studies conducted within the Swedish context, one 
indication reported by Blomqvist et al. (2012) is that students’ emotional dispo-
sitions turn from positive to negative around the age of nine; but, due to metho-
dological constraints, the study neither discusses nuances within the group posi-
tive versus negative, nor potential causes for these emotions. Another indication 
is the connection between emotion and motivation (Nyman & Sumpter, 2019) 
and between emotion and achievement (Palmér & van Bommel, 2018). These 
studies, conducted with youngsters ranging from six to 18, imply an intercon-
nection between emotion and other affective and cognitive factors that is stable 
and established early. Karlsson (2019) discusses the issue of anxiety towards 
mathematics expressed by poorly achieving students and points to a strong 
social link to negative emotions, but also suggests that emotional sensations can 
be either the cause or the effect of a situation. These examples depict emotion 
as a concept both interconnected with other psychological and physiological 
constructs as well having both an inhibitory and a promotive function (see also, 
e.g. Hannula, 2015; Dowker et al., 2019). 

Methods
Since the aim of this study involves capturing nuances in student expres-
sions, semi-structured interviews were chosen as the method for data collec-
tion. This method combines providing the respondents freedom to elaborate on 
their thoughts with the structured format of a questionnaire. It also allows the 
interviewer to pose follow-up and clarifying questions and for the respondent 
to do the same. The interview guide was based on a seven-item questionnaire 
instrument developed by Dahlgren Johansson et al. (2010) and later also used 
in a study by Blomqvist et al. (2012). The questionnaire combined closed items 
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using a four-step-based likert scale in the form of happy and sad faces, with 
free-text items and a drawing task at the end. In the present paper, focusing on 
emotion, questions 1, 2 and 5: ”How do you like math?”, ”How do you feel before 
a math lesson?” and ”How do you feel when you do math?”, respectively, will 
be discussed. All 19 interviews were conducted by the author with the inter-
viewees face-to-face, one-on-one, in a room near the classroom during lesson 
time. Each interview was audio-recorded and lasted between 20 and 30 minutes.

Participants
Data were collected at three schools in an urban area, for convenience and to 
remain within the same municipality. One inner city and two suburban schools, 
located in opposite areas in the the municipality were chosen. Students between 
the ages of eight and 11 in grades two and five, respectively, were chosen to 
enable comparisons with the previous studies (Dahlgren Johansson et al. (2010) 
and Blomqvist et al. (2012)). Due to the respondents relative youth, it was  
necessary to spend some time with each class prior to data collection, and thus, 
for practical reasons, the number of participating schools had to be limited 
to three. Ethics considerations stipulated by the Swedish Research Council 
through Codex (Vetenskapsrådet, 2017) were followed, so every participant 
had written parental consent and were informed that participation was volun-
tary and that they could stop the interview without reason at any time. The aim 
of this study was to capture general nuances in students’ emotions towards 
mathematics rather than emotions related to extremely high or low levels of 
achievement, while the number of interviews had to be limited. Therefore, on 
the day of the interviews, the teachers were asked to pick out, from among the 
volunteering pupils, individuals that they considered to be neither extremely 
proficient in nor having serious difficulties with mathematics. This was done 
hoping to reach representatives from the presumably large and often self-suffi-
cient group of students that ” just go about their business” during mathematics 
lessons. The teachers were also asked to consider pupils who would manage the 
interview situation comfortably without feeling stressed or uneasy. In total, 19 
pupils were interviewed – 10 in grade two and nine in grade five.

Analysis
Prior to analysis, the interviews were transcribed by the author. The data were 
transcribed verbatim, including non-verbal communication like exclama-
tions and extended pauses. Questions number 1 (”How do you like maths?”), 
2 (”How do you feel before a maths lesson?”) and 5 (”How do you feel when 
you do maths?”) were those that explicitly framed emotions or feelings. There-
fore, as a first analytical step, the transcripts were marked where the responses 
to the selected questions appeared. In addition, a second reading of the tran-
scripts was made, looking for instances where respondents had made addi-
tional references to emotions or feelings in the exchanges that were the result of  
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follow-up on questions other than the selected three. The first step in the sub-
sequent analysis was then carried out and the instances were coded Positive or 
Negative with utterances like ”I like math when …” and ”It makes me stressed 
when …”, respectively. An instance was coded Neutral when the respondent 
referred to factors that were emotionally neutral, such as hunger. The second 
step used Löwheim’s (2011) theory of basic emotions to divide the three initial 
categories into sub-categories. Finding these categories involved paying close 
attention to the words or expressions used by the respondents. For example, 
”I feel relaxed” instances were coded under the subtheme Relief, while ”fun”, 
”like”, ”happy” were coded under the subtheme Joy. This example also illus-
trates a decisive difference in emotional strength or intensity where ”happy” is 
considered to be stronger than ”like”. 

In order to expand the analysis beyond the descriptive, a framework for 
analysing data by the types of motives or justifications in which respondents 
framed their responses was adopted as a third step. This framework was deve-
loped by Hannula (2012) and describes eight themes, four of which (cognitive, 
motivation, social and physiological) could be found in the data, while one 
is the construct which is the focus of this article – emotion. Here the coding 
focused on the specific ways the respondents expressed their experiences. For 
example, ”I’m challenged by it” connects to the theme Motivation, whereas ”I 
don’t want my friends to laugh” connects to the theme Social. This example also 
highlights that each theme ranges over positive as well as negative emotions. 
The mapping of categories over Hannula’s framework resulted in a number 
of responses, for example, the category Content carried properties that were 
inconsistent with any of Hannula’s themes. This called for a fourth analytic step 
where the remaining responses were weighed against each other and the rest of 
the responses. This aimed to discern additional themes that captured the same 
level of explanatory dimension that the rest of the themes did. This step was an 
inductive search for similarities, inspired by the approach of thematic analysis 
(Braun and Clarke, 2006). 

Results
The results are summarised in two tables – table 1, followed by the analysis 
focusing on the first research question, and table 2, building on this and focusing  
on dimensions of the second research question. 

Table 1 shows the different emotional themes developed from data and an 
example for each theme. The right hand column shows the eight basic emotions 
listed in the theory section.

As table 1 shows, there are discrepancies between the themes derived from 
the expressions in the data and the theoretical constructs. The most salient 
of these discrepancies is the theme Relief. Students clearly expressed having  
feelings of relief in relation to managing an activity or coping with their tasks 
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on time. This approaches being something of a double negative – the responses 
are positively loaded but the argument is based on the absence of something 
negative. The emotion Distress manifests primarily as discontent; however, the 
boundary with stress is not crystal clear; in fact, the emotion Fear manifests 
as something closer to stress. It seems that fear of not being able to solve prob-
lems, answering questions from the teacher, etc, causes stress. Looking at the 
rest of the themes, we see that full strength of the emotions are generally not 
expressed both, either on the positive or the negative side. And, the strongest 
emotions, especially the negative, are not present in the data.

Further, table 2 summarises how expressed motives are distributed over the 
expressed emotions listed in table 1. In the left column the expressed emotions 
are listed and the table shows the different ways these emotions are justified by 
the respondents, structured under five themes. The results are discussed with 
a focus on qualitative differences between categories and themes even though 
number of instances is presented (in brackets) to provide an overview of the 
relative frequencies between different themes. 

Excerpt Expressed emotions Basic emotions
It’s fun and exciting Joy Excitement
It feels like you’re on top of things Content Joy
If feels safe to have a kind teacher that helps 
you, if you need

Relief  – 

 –  – Surprise
Sometimes it’s a bit tiresome Discontent Distress
You get stressed because if it’s correct or not Stress Fear
I’m ashamed to ask Shame Shame
 –  – Disgust

 – Anger

Table 1. Excerpts and themes mapped against constructs from theory of Basic 
emotions

Cognitive Motivational Technical Personal  
(relates to self)

Social

Positive (91)
Joy (34) Process (7) Challenge (19)

Position (8)
Content (15) Situation (14) Autonomy (1)
Relief (20) Control (20)

Negative (64)
Discontent (1) Boredom (1)
Stress (52) LC Temporal (7) LC Personal (45)
Shame (11) Personality (8) Social (3)

Table 2. Student’s expressed justifications for emotions experienced

Notes. Number of instances within brackets. LC = Lack of Control.
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Among the Positive emotions, the first subtheme is Joy where Process and Posi-
tion are closely related and both link to Cognitive dimensions but differ in rela-
tion to outcome, whereas Challenge links to Motivational dimensions. In all 
three categories, respondents express enjoyment or happiness originating in the 
cognitive development they feel in relation to mathematics. When an utterance 
expresses this sense of development and cognitive expansion as being sufficient 
in themselves it is coded Process. When this shifts more towards the result 
of the work, which shows a linkage to the person appreciating their moving  
position on a ”mathematical ability scale” this is coded Position. 

Content is emotionally weaker than joy – positive, but with less intense sen-
sations. The two concepts in this category both frame the working situation but 
for different reasons. 

Tania: Solving the maths tasks, and talking to your friend, sometimes we can […] 
talk a bit about maths and I think that’s fun.

Matteus: You can count in your own way. No one says you have to write this way or that.

The Situation theme, illustrated by Tania, is linked to technical issues around 
the working situation such as where to sit, being allowed to listen to music, 
and similar expressions of mathematics being a safe and comfortable activity. 
The Autonomy theme is also linked to the working situation, however, here 
the positive feelings are associated with the possibility of doing it ”in your own 
way” as Matteus puts it. The Control theme also links to the working situation, 
but the feeling is expressed as the relief of being able, knowing how to do the 
work. Matteus again. 

Matteus: I feel calm, I can work at my own pace, not anybody else’s pace. And it’s not 
a contest about being first and so on.

Comparing the positive subthemes with each other indicates two main sources 
of emotion – one related to inherent mathematical properties and another to 
factors outside the mathematical content. And even though the emotional sub-
categories can be placed along an intensity continuum the different motive 
themes do not appear to form any similar simple pattern.

Before turning to the negative emotions, we see that the total number of posi-
tive responses is considerably larger than the sum of the different categorised 
positive responses (91 versus 69), and that negative responses have no such 
”overflow”. Thus, there is a difference between how positive and negative emo-
tions are expressed. The 22 positive, non-categorised responses contain those 
saying ”Good”, without any further comments. This is not the case among the 
negative responses, which are always motivated. Among the negative responses, 
we see that the Boredom theme only has one instance, which calls for caution in 
drawing conclusions – Chris (Y2) takes an unusually long time to answer the 
question, ”How do you feel before a maths lesson?”, but eventually chooses the 
happy-face card, however, with the following remark.
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Chris: Because it’s a bit, like, I get tired from math but when I know we are going 
to do fun pages or something that perhaps is fun then it’s number one [the 
happiest-face card].

Chris goes on to explain that he likes ”when it gets difficult also” because ”it 
ain’t fun when you have really easy stuff, like two plus two and stuff”. After 
this, the interviewer asks Chris what it is that makes him tired:

Chris:  It’s when you must do super many pages, […] all the way to, like, page 80 
when you’re on page 65, then my arm gets really tired.

Chris describes mathematics as being fun; however, for it to be fun, some level 
of challenge (i.e. working on non-routine tasks) is necessary. In the light of 
this, Chris’ tiredness is interpreted as negative and categorised as Discontent. 
Chris never explicitly says maths is boring or uses explicitly negative words to 
describe it. However, adding other instances where students generally describe 
”zoning out”, the negative valence as well as its strength is clear, for example. 

Marcus: Because when I start working in the maths book it gets a little messy […] so I 
can’t concentrate because I just look at other stuff”.

Among the other negative subthemes, Stress is the most commonly expressed 
emotion and its motive is related to lack of control, divided between a Tempo-
ral and a Personal subcategory (LCT and LCP, respectively). Not having enough 
time to finish tasks during an exam or keeping up with the pace of the class 
connects the emotion to temporal factors. The superficially similar category 
of personal lack of control (LCP), is probably a more disadvantageous emotion 
because it links to issues of self-efficacy, self-control and potentially also  
self-worth. Chris’ introspection is a typical LCP -coded response.

Chris: Like, ”Oh no, I don’t know how to do it!” and I bet it’ll take a long time to 
learn.

Even though this kind of data are too small to draw quantitative conclusions 
from it, it is worth noting that this group is the largest among the negative 
responses, in fact the largest altogether.

Looking further at Shame, the results signal that the social dimension can 
come from feeling ashamed in relation to others, or from being outside a group. 
The category splits into two.

Vera: It feels really difficult because my friend sitting next to me is quite fast and 
so then I feel a bit stressed – that I’m quite far behind then.

Vera describes a shameful feeling, however, not connected to herself or her 
abilities, but her concern is that she will be left behind, that she will literally be 
on her own. The decision is therefore to code this type of instance as Sociality. 
Now compare this to what Jane (Y5) is saying:

Jane:  Sometimes, some say, like, ”that one is really easy” – just blurts it out. Then 
I feel ashamed for asking. Because it feels like they might say that I’m bad at 
maths.



Proceedings of Madif 12

Martin Nyman

159

Jane’s comment has the same social dimension, but this feeling originates from 
beliefs of self-worth. Therefore, this different type of shame-connected motive 
is coded Personality. Thus, a hierarchical structure seems to exist between the 
concepts: Personality – Sociality – LCP – LCT, in descending order of emotional 
strength and separated in levels of interaction. 

Discussion
Given the important role emotion plays in learning situations (e.g. Hannula, 
2012; Radford, 2018) and that emotion reciprocally both shapes and is shaped 
by a person’s experience of education (Liljedahl, 2014), this paper contributes 
to describing and analysing these connections and to revealing some of the 
nuances within emotion and other affective constructs. This is relevant since 
emotion is a major ingredient in the individual’s motives for engaging in edu-
cation, and is therefore linked to achievement (Leont’ev, 2009; Schukajlow et 
al., 2017). When discussing the results, it is important to bear in mind that since 
this study is a small-scale interview study its primary contribution lies in offer-
ing avenues for continued research . However, from a methodological perspec-
tive, it is interesting to note that eliciting responses using likert-scale ”faces” 
turned out to be more fruitful than anticipated when it prompted respondents 
to reflect on situations they associated with happy and sad faces, respectively. 
This resulted in every respondent contributing very rich data. Thus, the findings 
of this study can be sen as a qualitative continuation of the more quantitative  
studies by Blomqvist et al. (2012) and Dahlgren Johansson et al. (2010).

In relation to RQ 1 the results indicate that students are indeed emotional 
about mathematics, and table 1 contains a summary of the ways these emo-
tions are expressed. Looking at the characteristics and comparing the data 
with Löwheim’s (2011) basic emotions we see that both positively and nega-
tively loaded emotions are represented: joy, excitement, shame and distress. 
Factors of fear and distress manifest themselves more like stress and discon-
tent, respectively, and occur both in test/exam situations and during ordinary 
lessons. These factors are linked to personal or social dimensions in line with 
what others have reported (e.g. Karlsson, 2019; Samuelsson, 2011). Even though 
the strongest negative emotions of anger and disgust are not explicitly present 
in the data, it is a strong possibility that these emotions, together with fear, are 
all expressed as stress. This suspicion implies the need for further research. 
However, instances of ”weaker” responses that are clearly emotional in nature 
are also present, like this feeling of relief expressed by Matteus: ”I feel calm, 
can work at my own pace”. In conclusion, even though considering feelings as 
conscious and emotion as unconscious (cf. Damasio, 2004; Schirmer, 2015) 
implies that respondents express thoughts about feelings rather than emotions, 
as educators we need to take these emotion-related experiences (both strong 
and weak) into account. 



Papers

160 Proceedings of Madif 12

In relation to RQ 2, the ways students justify emotions, shown in table 2, can be 
understood as a starting point for understanding the mechanisms connecting 
emotion to other affective concepts. For example, it seems that issues of motiva-
tion emerge when students are asked to describe emotion, and vice versa. This 
is parallel to the interplay between motivation and emotion reported by Nyman 
and Sumpter (2020), and Hannula (2012), where Motivation and Cognition, as 
well as social dimensions, are part of his model. Further, the Personal dimension 
appears to be very similar to Samuelsson’s ”self-concept” (2011). However, the 
Technical factors, contributing to negative as well as positive emotions, do not 
seem to be part of any previous theory. Considering these points and the limited 
size of this study, further research in this field is required – preferably using a 
participatory methodology – to capture the fleeting emotion-connected dimen-
sions occurring momentarily during lessons. When looking at implications for 
teaching, the participationist perspective’s connection (e.g. Arievitch, 2017) to 
action, through student emotions and motives, places the power to influence 
students more in the hands of the teacher – through well planned teaching – than 
a more psychological and individualistic view on emotion and affect does. The 
design of this type of teaching should also be the subject of further research.

One additional, and peculiar detail from this study is the absence of instances 
of the emotion Surprise. Shirmer’s (2015) definition of emotion rests on the con-
cepts of appraisal and need implicitly connects emotion to motive (e.g. Leont’ev, 
2009). Inspired by Liljedahl’s research on the ”AHA!-experience” (2005), and 
since surprise can be connected to a motive for understanding (the reason for 
one’s surprise), implies that surprise is a dimension of learning situations that 
could be made fruitful in order to enhance student learning. Thus, potentially 
a starting point for further research. 
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On the notion of ”background and 
foreground” in networking of theories

CeCilie Carlsen BaCh, Mathilde Kjær Pedersen, riKKe 
Maagaard gregersen and Uffe thoMas janKvist

In this paper, we report on a finding in an ongoing literature review on Networking of 
theories. As theories are the focus of networking practices, discussion of what is meant 
by theory is an ongoing debate. In our reading of these discussions, we experience a 
discrepancy in the use of the notion of background theories and foreground theories, 
which can be related to an absolute or a relative understanding of these notions. We 
account for this discrepancy and discuss potential consequences of each perspective 
to argue that a new notion ”framing theories” or a distinction between ”background 
theory inside mathematics education” and ”background theory outside mathematics  
education” may accommodate these consequences.

The term ”networking of theories” stems from the thematic working group 
(TWG) on theoretical perspectives and approaches in mathematics education 
research (MER) at the Congress of European Research in Mathematics Edu-
cation (Kidron et al., 2018). The group confronts the issue of the diversity of 
theories in mathematics education, and claims that ”theoretical approaches can 
only become fruitful if connections between them are actively established” 
(Bikner-Ahsbahs et al., 2014, p. 8). Taking this stance, the group has embarked 
on the challenge of how to establish connections between theories by develop-
ing ”networking of theories” as a research practice. Several important questions 
and issues have been discussed over the years. Kidron and colleagues (2018) 
state the following examples: ”What are the aims of connecting theories? […] 
To what extent does the networking depend on the theories that are considered?” 
(p. 257); ”To what extent do we share the same notion of theory? (p. 257); ”What 
are the different aims of networking?” (p. 258); ”What do researchers do when 
they use more than one theory? Do the different approaches use the same words 
with different meanings?” (p. 258). Such questions have been addressed in the 
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literature on networking of theories, e.g. Bikner-Ahsbahs and Prediger (2006) 
the ZDM article ”Diversity of theories in mathematics education – How can we 
deal with it?”, the ZDM issue ”Comparing, combining, coordinating – network-
ing strategies for connecting theoretical approaches” edited by Prediger et al. 
(2008), and not least in the recent book ”Networking of theories as a research 
practice in mathematics education” edited by Bikner-Ahsbahs and Prediger 
(2014). Surely, the potential answers must to some extent draw on a common 
notion of ”what theory is” – we return to this below. For now, we draw the atten-
tion to the observation that in the available literature on networking of theories, 
there are often references to the notion of background theories and foreground 
theories (to be explained in more depth below) – this often occurs with specific 
reference to Mason and Waywood (1996), who initially introduced the terms 
into MER. Our ongoing review, which so far encompasses 96 publications on 
networking of theories, reveals the observation that the use of these two terms 
in more recent literature do not necessarily align with the original description by 
Mason and Waywood. More precisely, although some theoretical perspectives 
are attributed the role of background theories; these are not necessarily used in 
the sense of Mason and Waywood. Hence, there is a discrepancy between the 
descriptions and the actual use. In this paper, we ask the question: How are the 
notions background theories and foreground theories used in the literature on 
networking of theories? 

We do not provide a full account of the 96 publications due to the space 
limitations of this paper. Instead, we present and discuss our finding through 
two carefully selected illustrative cases, showing the discrepancy in the use of 
background theory. Before we get to these cases, we briefly discuss the notion 
of theory itself and explicate the original notion of background and foreground 
theories as defined by Mason and Waywood (1996).

What is ”theory” in mathematics education research?
In networking of theories, a minimum requirement must be that we can agree on 
what is and what is not a theory. The literature – not only in mathematics educa-
tion – is rich on various attempts of coining what theory is. For the reader who 
is unfamiliar with this discussion, we provide a brief account in this section. 
The reason we do this is not to apply this in our further analyses, but rather 
as a general comment to the ongoing discussion on what a theory actually is, 
and not least what a theory must be described by in order to be networked with 
other theories. We shall consider a theory from the perspective of networking  
theories, not least, with reference to what has taken place in this literature. 

Kidron et al. (2018) state that the questions of what a theory is and how 
theoretical frameworks shape MER ”came into play when comparing or just 
talking about theories is the heterogeneity of what is considered as a theoretical  
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framework in MER and the consequent possible incommensurability of the 
investigations that are carried out in different theories” (p. 261). Radford (2008, 
p. 320) suggested that a theory is a way of producing understanding and ways 
of action based on a triplet PMQ:

A system, P, of basic principles, which includes implicit views and explicit 
statements that delineate the frontier of what will be the universe of  
discourse and the adopted research perspective.

A methodology, M, which includes techniques of data collection and  
data-interpretation as supported by P.

A set, Q, of paradigmatic research questions (templates or schemas that 
generate specific questions as new interpretations arise or as the principles 
are deepened, expanded or modified). 

Around the same time, Prediger et al. (2008) surveyed different notions of 
theory found in the literature. This led them to distinguish between static and 
dynamic notions of theory, eventually pleading for a dynamic understanding: 
”theories or theoretical approaches are constructions in the state of flux” and 
they ”consist of a core, of empirical components, and its application area. The 
core includes basic foundations, assumptions and norms, which are taken for 
granted” (p. 169). Niss (2019), however, notes: ”The fact that theories or theo-
retical approaches are in a state flux doesn’t mean that the definitions of the 
concepts are as well”. We agree with Niss (2019) that: ”Anything called a theory 
(or theoretical framework, construct etc.) is a theory of something! I.e. it deals 
with certain sorts of objects and phenomena, as well as terms for these”. Mason 
and Waywood (1996) define such objects as the ”sorts of things that are studied, 
even if they are not perceived as ’things’ in any material way” (p. 1058). From 
Radford’s (2008) account, it is unclear where these objects reside, although 
several researchers in networking of theories seem to consider them as part of 
the principles (P). 

Foreground and background theories
As mentioned in the introduction, Mason and Waywood’s (1996) distinction 
between foreground and background theories is often referred to in the dis-
cussion of the concept of theory. In this section, we outline our interpreta-
tion of the distinction as a basis for further discussion. Mason and Waywood 
(1996) present theory as a ”hypothesis, or possibility such as a concept that 
is not yet verified but that if true would explain certain facts or phenomena” 
(p. 1055). They define foreground theory as explicit hypothesising based on 
the process of asking and answering questions within mathematics education, 
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because ”[…] the foreground aim of most mathematics education research is to 
locate, precise and refine theories in mathematics education about what does and 
can happen within and without educational institutions” (Mason & Waywood, 
1996, p. 1056).

Thus, from the process of questioning ”things” within a local or specific area 
of mathematics education research gives rise to new theories in forms of explicit 
hypotheses about what is happening, or what can happen under certain circum-
stances. The foreground theories are generated within mathematics education 
and can have one or more of four different functions: descriptive; explanatory; 
predictive and informing practice. Conversely to foreground theory, Mason and 
Waywood define background theory as implicit hypothesising or as a belief that 
guides behaviour. They consider that ”every act of teaching and of research can 
be seen as based on a theory of or about mathematics education” with reference 
to Thom (1976), who puts it as ”all mathematical pedagogy, even if scarcely 
coherent, rest on a philosophy of mathematics” (quoted in Mason & Waywood, 
1996, p. 1056). In this sense, the theory remains in the background and implies 
an implicit way of action or behaviour of the teacher or researcher, but is not 
used with an explicit aim. It is important to notice that a background theory does 
not become a foreground theory, just because the hypothesis becomes explicit. 
Mason and Waywood (1996) emphasise that as a researcher, it is important to 
be aware and explicit about one’s own background theories and their implicit 
assumptions and hypotheses. They explain:

Background theories encompass an object (aims and goals of the research, 
including what constitutes a researchable question [...]), objects (what sorts 
of things are studied, [...]), methods (how research is carried out, validated 
and applied), and situation (as perceived by the researcher), and provide a 
language for discussing these. The situation necessarily assumes, mani-
fests, encompasses, and is constituted through a philosophic stance mani-
fested in the discourse and in other practices. (p. 1058)

This implies that the activities of research, such as framing researchable ques-
tions, using an appropriate method, collecting data, using analytical tools and 
looking at results as well as the validation hereof, are all determined and con-
structed by the background theory. This is elaborated with examples of how 
theoretical positions such as post-modernism, phenomenology and different 
directions within constructivism stress different ways and methods to investi-
gate sociological and psychological dimensions and phenomena in educational 
research. Hence, we understand background theory as the theory that affords the 
conditions for the structure of the research, but it is not a theory generated within 
mathematics education research (MER). In addition, MER draws on theories  
from domains such as psychology and sociology, and their philosophical posi-
tions as well as their methods (Mason & Waywood, 1996). Accordingly, we 
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understand Mason and Waywood’s (1996) explanation of background theories 
as theories establishing the view by which we look at mathematics education, 
for example critical theory, constructivism, social-constructivism, phenomeno-
logy or ethnology. It also follows that we understand their term of foreground 
theory as the theoretical constructs generated and developed by research in 
mathematics education that have explicit aims in forms of describing, explain-
ing, predicting and/or informing specific situations, concepts and practices 
happening or possible to happen in the teaching and learning of mathematics. 

As an example of the differences between foreground and background theo-
ries, we use Vergnaud’s (2009) Theory of conceptual fields (TCF). As TCF is 
a theory developed in MER, specifically concerned with mathematical learn-
ing, it is a foreground theory. To consider the background theories of TCF, we 
must understand what theories precede TCF. As Vergnaud (2009) argues for 
his perception of schemes, he draws on Vygotsky’s (1962) as well as Piaget’s 
(1977) understanding of schemes. These two constructivist perspectives both 
have a broader scope on learning as they are developed outside of MER. Hence, 
we position them as the background theories of TCF. 

A hermeneutic literature review
The following is a brief overview of our initial literature review on network-
ing of theories. This review was conducted as a hermeneutic literature review. 
Due to very limited results in databases, a systematic literature review was 
not possible to conduct (Boell & Cecez-Kecmanovic, 2014). As a part of a her-
meneutic process, the understanding of the literature is never final; a constant 
re-interpretation is taking place. We began by scanning CERME proceedings, 
relevant ZDM issues and books and reference lists for the relevant literature to 
expand our literature base. Furthermore, we did literature searches in MathE-
duc and ERIC, although this did not reveal many relevant sources. Only litera-
ture describing the practice of networking of theories in mathematics education 
were included in the final cohort. We described each relevant piece of literature 
in the following categories made our findings about background theories more 
explicit: 1) actual results; 2) how is networking of theories used and discussed; 3) 
what theories are being networked; 4) what strategies and methods are applied; 
and 5) perspectives with particular relevance to our overall project.

In our efforts to grasp the discussions of category 2, we compared the use of 
the notion of foreground and background theories in the literature on network-
ing of theories to the original reference by Mason and Waywood (1996). Our two 
cases are carefully chosen to illustrate the result of this comparison: Each case 
utilises background theory explicitly, yet differently. But first, a further elabo-
ration on the different uses of background theory in networking of theories.



Papers

168 Proceedings of Madif 12

Foreground and background theories in networking of theories
In relevant literature, the use of Mason and Waywood (1996) is widespread, 
both in paragraphs concerning theory and in discussions thereof. At CERME5, 
a communication problem within the field of MER was noticed: ”Researchers 
from different theoretical frameworks sometimes have difficulties to under-
stand each other in depth because of their different backgrounds, languages 
and implicit assumptions” (Arzarello et al., 2007, p. 1618).

This quotation emphasises the need to understand the origin and background 
of theories as well as their implicit assumptions and hypotheses. According 
to Bikner-Ahsbahs and Prediger (2006), the distinction between background 
and foreground theories seems applicable when analysing theories and their 
functions in different phases of research. This could be the characterisation 
of foreground theories and their respective background theories. An example 
is: ”The theory of interest-dense situations is a foreground theory with a 
middle range scope (Mason and Waywood, 1996), situated in the background 
theoretical framework of interpretative research on teaching and learning”  
(Bikner-Ahsbahs & Halverscheid, 2014, p. 99).

According to Bikner-Ahsbahs and colleges (2014), the underlying theoreti-
cal assumptions must be explicit when networking theories. Bikner-Ahsbahs 
and Prediger (2006) point out that ”the background theory and its philosophi-
cal base are deeply interwoven” (p. 53). For instance, when taking a construc-
tivist perspective, mathematics has a philosophical view on the construction 
of knowledge. Nevertheless, the use of foreground and background theories is 
regarded neither as a definite definition of theories, nor as an absolute catego-
risation of theories. This leads to a more relative use of background and fore-
ground theories, than originally intended by Mason and Waywood (1996), e.g.: 
”In contrast [to the absolute definition], the status of some parts of the theory can 
change from foreground to background theory or vice versa within the research 
process” (Bikner-Ahsbahs & Prediger, 2006, p. 54). We interpret this statement 
to mean that a theory is not only of/about MER or only in MER, but that a theory 
can act as either, depending on the situation. Bikner-Ahsbahs and colleges 
(2014) contribute to this meaning by referring to foreground and background 
theories as relative distinctions. Still, and despite the discussions of making 
background theories explicit, authors reporting on networking processes and 
results seldom explicate the distinction. Hence, the way these terms are used 
within research practices are less apparent that one might initially anticipate.

Examples on the different use of background theory
Our first case is an example of the relativism of the notions as presented in 
Bikner-Ahsbahs and Prediger (2006). Koichu (2013) describes the work of 
a colleague in which a selected framework is contrasted with another. The 
insights obtained in the contrasting process are used in a following process of  
unpacking a selected construct in the selected framework:
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To this end and consistently with the Bikner-Ahsbahs and Prediger’s 
(2006) terminology, the former theory can be seen as a foreground one, 
and the latter – as a background one. On the other hand, they use the Hersh-
kowitz et al.’s (2001) work as a background theory or as an overarching 
framework, in which their own foreground theory is embedded.

 (Koichu, 2013, p. 2841)

The relativism of the status of a given framework thus becomes apparent as 
something that emerges in particular situations in research activities expressing  
the relation between frameworks in use. 

Our second case is an example of another use of the notion of background 
theory. First, Fetzer (2013) addresses a specific perspective, namely Latour’s 
Actor network theory (ANT) as a background theory to understand objects in 
mathematics education: ”Latour’s approach is fascinating and irritating and 
provokes the research question, if and respectively how actor network theory 
can be a fruitful background theory to get a better understanding about the 
role objects play in mathematical learning processes” (Fetzer, 2013, p. 2800, 
italics in original).

Using Latour’s ANT, Fetzer (2013) presents an example in line with Mason 
and Waywood’s (1996) distinction between foreground and background theo-
ries. Latour’s ANT, as a theory outside of mathematics education research, 
is used as a background theory determining the researchers’ definition of an 
object, the researchable objects, methods and situations. Similar utilisations are 
found in Bikner-Ahsbahs and Prediger (2014) and Bikner-Ahsbahs and Halver-
scheid (2014). This way of using the notion of background theory implies that 
it is a perspective outside of MER, which allows the researcher to understand 
mathematics education through a particular philosophical or epistemological 
stance. 

To sum up, our literature review on networking of theories indicates that 
the original terms, as defined by Mason and Waywood (1996), have under-
gone further development. The use of the notion of background and foreground 
theories in the networking of theories literature now also encompasses a more 
relative definition of background theory, i.e. one focusing on the relations of 
theories within MER.

Coexistence of two notions of background theory 
In the discussion of theories related to networking of theories, Bikner-Ahsbahs 
and Prediger (2014) suggest to take ”the notions of foreground and background 
theory as offering relative distinctions rather than an absolute classification, 
they can help to distinguish different views on theories (p. 6). This quotation 
clearly describes the development of the definitions of foreground and back-
ground theories. Hence, in line with the findings of our literature review, and as 
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showcased by the two illustrative cases above (Fetzer, 2013, and Koichu, 2013), 
the relative and the absolute distinction of the foreground and background theo-
ries coexist in literature on networking of theories. Schoenfeld (2007) empha-
sizes a need for specificity of concepts in research, as loosely defined terms can 
produce variation in results. Looking at the absolute distinction of background 
theory, this satisfies Schoenfeld’s criteria for specificity. However, what are the 
potential consequences of an absolute distinction of background and foreground 
theory? One consequence is that it causes a large number of foreground theories, 
because all theoretical developments and contributions generated inside MER 
are considered as such. Another consequence of the absolute distinction is an 
untended need for a notion that denotes the experienced distinctions between 
theories inside MER. Using Koichu (2013) as an example of Bikner-Ahsbah and 
colleges’ (2014) relative use of the notions, theory in mathematics education 
has a similar role as a background theory. Hence, the use of foreground theory 
as a background theory seems to confuse the use of background theory, since 
background theories inside mathematics education and background theories 
outside mathematics education then coexist.

Moving to the relative distinction of background and foreground theories, 
also this might not withstand Schoenfeld’s (2007) criteria for specificity. A first 
consequence of a relative distinction is a less clear definition of foreground and 
background theories. A second consequence is the existence of different utiliza-
tions of the notion of background theory. When different utilizations of back-
ground theory exist, a third consequence occurs: The importance of the back-
ground theories outside MER and its philosophical base might be indistinct. If 
researchers do not take their background theories outside MER into account, 
the implicit assumptions and hypotheses continue to be tacit.

Conclusion 
Our study shows that both a relative and an absolute distinct of foreground and 
background theories exist in the literature of networking of theories. Koichu’s 
(2013) uses the relative distinction when denoting the relation between theo-
ries or frameworks in use. Fetzer (2013) uses the absolute distinction when she 
considers the underlying beliefs or epistemological position that determines the 
researches’ goals, aim, questions and objects. Considering both the absolute and 
the relative distinctions, the following consequences appear: 

– Adhere to the absolute distinction: a need for a new notion distinguishing 
background theories emerges when networking.

– Adhere to the relative distinction: different utilizations of background 
theories appear.
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The consequences of both reveal the need for distinguishing between fore-
ground theories, background theories inside MER and background theories 
outside MER. In networking of theories, the relative distinction also builds 
on the changing relationship between the theories used in a research practice 
(Bikner-Ahsbahs & Prediger, 2006). This means that one theory may act as 
both foreground and background inside MER.

Looking at the consequences of an absolute and a relative distinction between 
foreground and background theories, these indicate the need for a new distinc-
tion/notion. We suggest that the background theories inside mathematics edu-
cation research are referred to as framing theories. Looking at Koichu (2013), 
the new distinction informs and describes the different roles of foreground and 
background theories in networking. If the notion framing theories is applied, 
the importance of background theories outside MER arises and the implicit 
assumptions and hypotheses in background theories outside MER thus becomes 
clearer. The new notion is not needed to characterise Fetzer’s (2013) network-
ing practice and the distinction between foreground and background. However, 
given the use of background theory outside MER and foreground theory inside 
MER, the theories involved do not change between the two types in a net-
working practice. This means that the dynamic relationship between theories  
only exist between framing theories and foreground theories inside MER. 
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Students’ use of written and  
illustrative information in  

mathematical problem solving

AnnA TeledAhl And JAn OlssOn

This study investigates how elementary students use written or illustrative informa-
tion in their mathematical problem solving. A previous study indicated that students 
who focus on illustrative information in task solving are more successful than those 
who focus on the written. Our study expands this idea, suggesting that there are dif-
ferent ways of attending to illustrative and written data. Students can treat the two 
sources of information as isolated or trying to connect and combine them in order 
to verify or test solution ideas but also to generate new ideas. This may have implica-
tions for teachers seeking to support students in their problem solving. Encouraging 
students to make productive use of written and illustrative information may assist 
them in overcoming obstacles.

Solving mathematical problems has long been considered a productive way 
for students to learn mathematics. Teachers and researchers have tried out and 
investigated various approaches to instruction that promotes problem solving 
in mathematics (Brousseau, 1997; Cai, 2003; Hiebert, 2003). One of the dilem-
mas with problem solving to learn mathematics is that it is difficult for students 
to solve mathematical problems. This is somewhat of a paradox because tasks 
that fail to be challenging also lose some of their potential as tools for learning. 
Earlier research has shown that students who solve mathematical problems by 
creatively constructing new solutions are more likely to solve similar problems 
at a later stage than students who are given instructions on how to solve the 
problem (Jonsson et al., 2014; Lithner, 2008; Olsson & Granberg, 2019). This 
points to a crucial junction in mathematics teaching, students need to meet 
challenging problems, but it is to be expected that many of them will need help 
in getting past some of the challenges. This help however should not remove 
the challenges by introducing a method with which the problem can be solved 
but rather provide clues on how to overcome obstac-les without a complete 
description of a solution method. Providing feedback that helps the student to 
proceed with her problem solving without giving her too much information is a 
demanding task for teachers. It is unlikely that there will ever be a best practice  
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in the form of a fixed set of strategies for teachers who engage in interactions 
with students. There are, however, several general ideas on what teachers should 
consider in their interactions with students who are stuck in their problem 
solving, examples include asking students to explain their reasoning, to encou-
rage them to develop and justify their reasoning and to test their conclusions 
(Olsson & Teledahl, 2018, 2019). 

Beyond such general approaches, research on the ways in which students 
approach certain problems may provide further clues on how teachers can assist 
students in overcoming stages that are problematic, in their problem solving. 
A recent study (Norqvist et al., 2019) investigated what items of information 
that students focused on, while solving a non-routine task. The study used eye-
tracking techniques and found that students who focused their attention on pic-
tures that illustrated the mathematical problem were more successful than their 
peers in a post test. The present study aims to investigate this idea by examin-
ing students’ reasoning in problem-solving situations that contain both written 
and illustrative data. An investigation of the ways in which students consider 
different data in a mathematical task may provide valuable information on how 
teachers can assist students in proceeding with mathematical problem solving 
in situations where they are stuck. The research question is: In what ways are 
students using written and illustrative data in their problem solving?

Background
In school mathematics, teachers are often providing students with procedures, 
which, if performed correctly, will solve tasks. When solving non-routine 
tasks this may foster strategies of recalling memorized procedures possible 
to use when constructing the solution. Lithner (2008) defines this approach 
to reasoning as algorithmic reasoning (AR). Why teaching mathematics this 
way, by providing algorithms, is a prevalent practice may be explained by the 
fact that it is relatively easy for the teacher to prepare, and the students are 
often successful in solving tasks (Blomhøj, 2016). However, a wide range of 
research has stated that teaching in which the teacher provides instructions 
on how to solve tasks, is not an efficient way to teach mathematics (Hiebert, 
2003). Students will engage in rote learning, which is focused on execut-
ing steps in a procedure, without understanding the intrinsic mathematics. 
This behaviour excludes students’ engagement in constructing and justify-
ing solutions, something that many studies suggest as important for learn-
ing (Brousseau, 1997; Lithner, 2008). Brousseau (1997) claims that to learn 
mathematics one needs to construct solutions using mathematics, something 
which Lithner concretizes further with the definition of creative mathemati-
cal reasoning (CMR). That is, when solving non-routine tasks, for which stu-
dents do not know a solution method in advance, they engage in constructing  
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solutions and formulating arguments (Lithner, 2008). While they construct the 
solution method themselves, they must assess whether the method will solve 
the task or not. In this process, the mathematics will gain meaning for the 
student and she will learn. Such an approach to mathematics teaching requires 
a different teacher role. Instead of explaining how to solve tasks the teacher 
should prepare suitable tasks, encourage the students to use their mathematics  
resources and ask them to justify their solutions (Brousseau, 1997).

Several quantitative studies have confirmed that students who practice on 
tasks demanding CMR score higher on post-tests compared to students prac-
ticing on tasks using AR (Jonsson et al., 2014; Norqvist, 2018; Olsson & Gran-
berg, 2019). These studies indicate however that many students also fail to solve 
CMR-tasks in practice, but the studies do not explain the mechanisms behind 
these failures. Norquist et al. (2019) take a step towards explaining some of the 
differences between successful and non-successful CMR-students. The study 
argues that students, when solving the tasks, extract different types of data 
(illustration, description, formula, example and question) necessary to solve 
the problem. The authors suggest that some students base their solutions on iso-
lated examples of data from either text or illustrations, not using opportunities  
to combine text and illustration to verify their answers. 

Visualisation in mathematics has long been acknowledged as important 
for students learning (Arcavi, 2003) but studies point in different directions. 
Some studies suggest that the combination of written and illustrative informa-
tion in mathematical tasks can increase students’ cognitive load, thus making 
it more difficult for them to solve problems (Berends & van Lieshout, 2009; 
van Lieshout & Xenidou-Dervou, 2018). Other studies, that have investigated 
students’ use of carefully prepared illustrative information, have showed that 
this can be beneficial to students’ problem solving and that productive use of 
visual imagery is common among expert mathematicians (Scheiter et al., 2010; 
Stylianou & Silver, 2004; Van Garderen & Montague, 2003). Further investi-
gations are needed to explain differences in success and learning, addressing 
students’ reasoning in non-routine tasks that offer information in writing as 
well as through images.

In our ongoing project, we investigate teacher-student interactions aiming 
to support students’ CMR. The approach is to iteratively establish principles 
for teacher action in these interactions, design mathematics activities based on 
the principles, and analyse the activities with the purpose to develop the prin-
ciples and make them useful to teachers (Olsson & Teledahl, 2018, 2019). Tasks 
that are used in the mathematics activities often combine written and illustra-
tive data to instruct students. With inspiration from the study by Norqvist et 
al. (2019) on students use of illustrative information we revisited some of our 
data. A preliminary analysis indicates a pattern that appears to be common, 
students usually start their problem-solving process by trying to understand the 
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written information, and then they turn to and try to understand the illustrative  
information. Our study is focused on the reasoning that follows this initial 
pattern of interpreting the problem.

Theory
Lithner’s framework for imitative and creative reasoning (2008) proposes that a 
key-factor for successful learning when solving mathematical tasks is whether 
students engage in algorithmic or creative reasoning. Here, reasoning is defined 
as the line of thought adopted to produce assertions and reach conclusions in 
task solving (Lithner, 2008, p. 257). Algorithmic reasoning (AR) is charac-
terized by attempts to recall a procedure that is supposed to solve the task. 
This includes memorized procedures from solving similar tasks and imitating 
teacher instructions. Creative mathematical reasoning (CMR) is characterized 
by the creation of a new reasoning sequence (or re-construction of a forgotten 
one) supported by arguments anchored in mathematics. 

In our ongoing project, we have developed principles for teacher-student 
interactions in teaching aimed at students learning mathematics through CMR. 
In mathematics teaching aiming for CMR students must have possibilities to 
(a) express independent reasoning, (b) develop and (c) justify their own reason-
ing and to (d) test their results. These principles can be used both for planning 
and implementing teaching, addressing both design of tasks and preparing  
teacher-feedback interactions.

The tasks used in this study were designed in line with Lithner’s (2017) 
principles: (1) creative challenge, no solution methods are available from the 
start and it must be reasonable for the students to construct the solution, (2) fair 
conceptual challenge to understand mathematical properties (e.g., representa-
tions and connections) and (3) justification challenge, is it reasonable for the 
particular student to justify the construction and implementation of a solution.

Method
The aim of this study was to investigate students’ reasoning when using textual 
and illustrative data in mathematical problem solving. Our study uses and re-
examines research data collected continuously in an ongoing project aimed at 
investigating ways in which teachers can assist students in overcoming various 
obstacles in problem solving situations. The students and their mathematics 
teacher were part of the project for three years starting when the students 
enrolled in fourth grade and ending when they finished sixth grade. During 
this time, the students were regularly engaged in problem solving activities 
in which they worked in pairs. Problem-solving sessions were audio-recorded 
through a portable device placed on the students’ desk. For each pair of stu-
dents in this study the recordings are complemented with notes on students’ 
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body language. For every session the teacher was wearing a microphone and 
her interactions with every student group was also recorded. This study uses 
six recordings from two problem solving sessions where the mathematical task 
that students were working on was presented in a way that combined written 
and illustrative data (see figure 1 and 2). 

The analysis of the recordings focuses on sequences where students are 
constructing a solution to the problem based on written and/or illustrative data. 
What is of interest is the way students use the data to create a reasonable solu-
tion, for example by extracting elements possible to calculate. The first part of 
the analysis was focused on identifying instances, in which students during 
their problem solving explored both written and illustrative data. In a second 
step, students’ apparent use of the two sources of information was analysed to 
identify which data was used at various stages of the process and in what way.

In listening to, and reading transcripts of, students’ reasoning it is sometimes 
difficult to distinguish the written data from the illustrative. We have relied on 
notes on students’ use of body language and on explicit clues in their reason-
ing, such as ”look” or ”… here there are …” but we have also tried to identify 
clues to their focus in what is not mentioned, such as sequences in which there 
is no mention of any information that can be thought of as deriving from the 
illustration (an example of this can be found in the excerpt of the transcript, 
page 6, lines 4–5). 

Figure 1. The matchstick task

Figure 2. The thermometer task
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Findings
When exploring students’ full solution sequences of two tasks including both 
written and illustrative data, we observed that most students started with trying 
to construct a solution based on the written data. When this was not enough, 
they turned their attention to the picture. Then, two groups were formed, stu-
dents who made connections between written and illustrative information and 
students who based their solutions on isolated examples, either from written 
or illustrative data. Students A and B’s approach to the Matchstick task is an 
example of an attempt to construct the solution on isolated examples, first trying 
to construct the solution based on written data, and then by using the picture.

1 A If 4 squares are 13 sticks, we can calculate how many sticks are needed for one 
square … 13/4 … but 13 is not in the multiplication table of 4 …

2 B But you need one less on this side (points at the last stick in the square most far 
to the right)

3 A Instead we can draw or build seven squares and count the sticks

The example shows students who try to construct a solution based on the 
explaining text. The strategy is to calculate backwards to find out how many 
sticks are needed for one square. Student A realizes 13/4 will not result in a 
whole number. Student B observes that for the last square one less stick is 
needed. The students abandon the first strategy and find another one, draw and 
count, based on the figure. The observation on line 2 could have been used to 
explain why the counting backwards strategy did not work and connect the 
written and illustrative data for the task. Instead, the students seem to be satis-
fied with finding an alternative accessible strategy. This has consequences for 
the continuing attempts to solve the task. 

4 B Okay, 22 sticks for 7 squares … how many are needed for 50 squares?
5 A uhm … we can check the calculation table for 7
6 B Yes … look … there were 22 for 7 [squares]
7 A Yes … but the multiplication table for 7 only includes 49 … we can calculate 22 x 7
8 B That is 154
9 A Yes … and then we need another square
10 B And in that one we only need 3 sticks
11 A Then it is 157

The students return to the use of a calculating strategy, even though they pre-
viously observed the problem that one square has a different number of sticks, 
possibly because they realize it is not possible (or at least a lot of work) to draw 
and count as they did in the first example. What is interesting is that they make 
use of their insight that the last square only needs three sticks when adding 
the last square (line 9–10). In addition, in this part of the solution, they use  
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information both from text and from figure, but they do not connect them to each 
other. This can also be interpreted as a sign of their satisfaction with finding a 
strategy that seems to work.

These examples indicate that it is difficult for these students to combine 
information from textual and illustrative resources. Students can use informa-
tion from both, but they do not connect them and draw conclusions important 
for the solution.

When students A and B believe they have solved the task the teacher (T) 
asks them to explain. 

12 T Can you explain the way you were thinking when you solved the task? Can you 
find a way to check your answer? 

13 A We were thinking that 7 squares are 22 sticks and the multiplication table for 7 
goes to 49

14 A So 22 x 7 is 154 and then we needed one more to have 50
15 B And then we needed 3 more sticks.
16 A Yes, because you only need 3 sticks to build another square … but wait … we 

have calculated too many … we have used too many four-sticks-squares … 

When students explain how they solved the task they realize that they have too 
many sticks because every new square only needs 3 sticks. Now they make the 
connections between their numerical approach and the insight that every new 
square adds 3 sticks. It is possible that if the teacher had not asked the students 
to explain they would have been satisfied with their incorrect solution. 

Students C and D approached the Thermometer task (figure 2) by reading 
the written data. They came up with the solution to subtask a that 15° C equals 
25° T. They are unable to figure out how to solve subtask b by using only infor-
mation from the text, so they turn their attention to the picture and observe 
that for different temperatures there are different differences between T and C.

17 C 5° C is 20° T
18 D 10° C is … what are 10 ° C?
19 C It is 30° T … and 15° C is 40°
20 D But wait … we answered 25 [subtask a] ... 5 steps in C are 10 steps in T

After correcting subtask a they continued: 

21 C This must be correct … look … if C increases by 1° T increases by 2° … and 
here there are 5 steps for 10 … T increases twice [compared to C]

22 D And while T starts at 10° … C is 0° when T is 10° and you add twice as many C 
to 10 [to calculate T]
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Students C and D’s solution of subtask a seems to be based on the single example 
that 0° C equals 10° T. When exploring the picture, they realise they are wrong 
(line 20). The observation that 5 steps in C equals 10 steps in T is then combined 
with the written information (line 21) and the solution that T always increases 
twice as much as C is drawn. On line 22 the conclusion on line 21 is combined 
with the information that when C is 0° T is 10° and a general solution to how to 
calculate T out of C is presented. In comparison to students A and B students C 
and D combines written and illustrative data, in an earlier stage of the solution.

Discussion
This study is inspired by Norqvist et al. (2019) in which eye tracking techniques 
were used to investigate what students focus on when they solve mathematical 
problems. The authors suggested that students, who focused on illustrative data 
in a task, when solving a problem, were more likely to solve similar tasks in a 
post-test. In our study, we have tried to identify not only what data the students 
use but also in what way it is used. Our results indicate different ways to attend 
to illustrative data. Students can start their construction of a solution by using 
only data, which is provided in writing, and then turn to the illustrative when 
they are unable to construct a viable solution method. This is illustrated by our 
first example in which students A and B search the illustrative data to find an 
explanation to why their proposed solution method of dividing the number of 
matchsticks with the number of squares, does not suffice to solve the problem. 
These students however turn back to their original idea, which is now modified, 
and abandon the picture as a source of information. Students C and D on the 
other hand turn back and forth between the written and illustrative data using 
both to verify their ideas, but also to assist them in forming new ideas. By com-
bining the two sources of information they move away from the idea of using an 
isolated example to inform their reasoning. Their proposed solution method is 
checked repeatedly against the written data and the information that is derived 
from the image. In this way, they create arguments for their solution method that 
take several of the conditions of the task and the subtasks, into consideration. 

It is risky to generalise based on a few examples, but it is not unreasonable 
to assume that the way students attend to and use illustrative and written data 
in mathematical problem solving may enhance their possibilities to indepen-
dently construct their own solutions. Regardless of whether the solutions are 
correct or not, the teacher can challenge the students use (or non-use) of illustra-
tive and written data, the idea being that increased or varied input is potentially 
beneficial to students learning (Brousseau, 1997; Lithner, 2008). This suggests 
that teachers should consider how they can design tasks and challenge students 
to use two (or more) data sources in productive ways. As has been shown in  
previous studies however (Berends & van Lieshout, 2009; van Lieshout &  
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Xenidou-Dervou, 2018), students’ access to illustrative data can increase their 
cognitive load making problem solving more difficult. This suggests that teachers  
may play an important role in supporting students’ use of information from 
more than one source, encouraging them to move back and forth between the 
two sources and to, when appropriate, use either source to verify their solution. 
In the case of students A and B it seems like the teacher’s question ”Can you 
explain the way you were thinking when you solved the task? Can you find a way 
to check your answer?” encouraged them to combine what they had retrieved 
from illustrative and written data. For the students C and D, the image of the 
thermometers is combined with the written data, and it seems as if it is the com-
bination that assists them in their reasoning. In this example, it is also obvious 
that the interaction between the two students benefits from the two sources of 
information as they move from discussing claims to checking them against the 
image as well as the written conditions. Previous studies have also suggested 
that using visualisations is an important part of problem-solving skills (Scheiter 
et al., 2010; Stylianou & Silver, 2004). Encouraging students to make productive 
use of different data is thus a potential new principle in our on-going project.
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Polysemy and the role of representations 
for progress in concept knowledge

Linda Marie ahL and OLa heLenius

Mathematics is a polysemic enterprise, where the same name is given to different 
things. Polysemy is present whenever mathematical patterns identified in different 
circumstances share the same structure. This structure will be subsumed under the 
same mathematical symbolism. Therefore, it is of interest to theorize upon progress 
in concept knowledge, with respect to the polysemic nature. We argue that pro-
gress in concept knowledge involves an epistemological shift that occurs when the 
meaning introduced by situations and iconic representations is replaced by meaning 
residing in non-iconic representations that exists independent of the situations and 
iconic representations. Our theorization can be used in teaching design and by  
curriculum developers.

Every mathematical concept has a mathematical definition. It is only through 
carefully formulated formal expositions that we can ensure that the mathema-
tics we construct is logically coherent and free of contradictions. Structuralistic  
expositions of mathematics came in vogue through the formation of the group of 
mathematicians writing under the pseudonym Nicolas Bourbaki. The Bourbaki 
group started their quest in the first half of the 20th century, interestingly in 
part as a reaction to the work and style of the French mathematician and poly-
math Henri Poincaré, who tended to tone down rigor to instead stress intuitive 
connections (Senechal, 1998). The tension between formalism and intuition 
is not only a matter of style, but is built into the mathematics itself. Poincaré 
allegedly formulated this as: Mathematics is the art of giving the same name 
to different things. 

Poincarés dictum concerns polysemy: that the same lexical item stands for 
a family of related senses. Not only lexical items but also mathematical symbol 
systems and the concepts themselves regularly have several but related senses. 
The symbol 1/3 can mean both one divided by three and the rational number 
one third. In this strong sense, mathematical concepts are polysemic.

Polysemy is not synonymous with ambiguity. In mathematics education 
research literature however, polysemy has often been treated as something 
creating ambiguity and hence difficulties for students (Janvier et al., 1993). As 
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we see it, polysemy is instead an essential feature of mathematics. It is poly-
semy that allows mathematics to be extremely compactly formulated and still 
widely applicable. Whenever mathematical patterns identified in different cir-
cumstances share the same structure, this structure will be subsumed under 
the same mathematical symbolism, creating polysemy. 

Polysemy is very widespread in mathematics. Even the basic mathematical 
concept of whole numbers is conceptually polysemic. This has been thoroughly 
investigated by Lakoff and Núñez (2000), using the terminology of conceptual 
metaphors from cognitive linguistics. They describe how the concept of whole 
numbers and basic arithmetic is structured by means of four distinct experien-
tial realms: object collection, object construction, using a measuring stick, and 
moving along a path. These are initially psychologically distinct. But by means 
of conceptual blending they together form one single concept of whole numbers. 
Another example is given by Thurston (1994) in a seminal article on the nature 
of mathematical work. Thurston refers to a list with at least 37 different ways 
of conceiving the derivative of a function and even claims: ”The list continues; 
there is no reason for it ever to stop” (Thurston, 1994, p. 164). 

Our aim is to theorize polysemy and discuss implications for progress in 
concept knowledge. In line with Vergnaud (1998) we see mathematical concepts 
as psychological constructs, but analysis of progress in concept knowledge 
”must be made in mathematical terms, since there is no way to reduce mathe-
matical knowledge to any other conceptual framework” (p. 167). We will reflect 
on elementary mathematical concepts, and we will argue that they are typically 
born out of classes of situations or from pictorial representations, that we will 
denote by the term iconic representations. Such elementary concepts are later 
often subsumed under the same concept by means of being labeled by the same 
words and by being handled by the same symbol system, creating polysemy. 
We will argue that it is not until we move to symbol system representations that 
certain problems generated by polysemy can be resolved. 

The paper is hence prescriptive, normative and theoretical. We declare 
certain aspects of mathematics as essential. Then we draw conclusions about 
what this will mean for progress in concept knowledge and instruction. We 
complement this theoretical endeavor with examples from an empirical analy-
sis of Swedish textbooks, to see to what extent our theorization is realized in 
a present practice.

Progress in concept knowledge in some theories
Progress in concept knowledge in mathematics has often been studied though 
examining a shift in development where the conceptual entity is first an action 
or a process, and later becomes a mathematical object in an individual’s mind. 
The cognitive process of forming an object, a static conceptual unit, from a 
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dynamic process is denoted by the term reification (Sfard, 1991). The well-
established APOS theory addresses reification by describing the process of 
conceptual understanding as evolving from actions to schemas (Asiala et.al, 
1996). In APOS, a shift in conceptual understanding occurs through a cogni-
tive organization of actions, processes and objects in schemas that form the 
framework for understanding concepts in new related problem situations. Sfard 
(1991) describes the development of mathematical concepts from process to 
object as a hierarchy in three stages: interiorization; condensation and reifi-
cation. Sfard claims that mathematical concepts start their lives as processes 
and her theory assumes that an ontological shift is needed for the concepts to 
become objects. ”Only when a person becomes capable of conceiving the notion 
as a fully-fledged object, we shall say that the concept has been reified.” (Sfard, 
1991, p. 19). These theories point out the important transformation from action 
or process to a mental object and also that an object that has been reified (in 
Sfard’s terms) can later be involved in a process which in turn may be reified, 
creating a hierarchy of objects that all have their roots in some particular action 
or process. However, neither Sfard nor APOS explicitly deals with the situa-
tion when one mathematical object has its roots in several different and partly 
unrelated processes. That is, they do not account for the polysemic aspect of 
mathematical objects that we are interested in. 

Another classical theory for progress in concept knowledge builds on the 
dichotomous classification between concept image and concept definition (Tall 
& Vinner, 1981). The concept image is here the formal definition of a concept, 
while the concept image is the total cognitive structure associated to that concept, 
which may include both properties, symbolic expressions, mental images and 
processes. The concept image may also contain what Tall and Vinner calls the 
concept definition image, which is a mental counterpart of a concept defini-
tion. Essentially, progress in concept knowledge within this frame of reference 
would mean having a concept image that, when evoked, allows the individual to 
deal with the concept in a way that becomes ever more in line with the concept 
definition. But Tall and Vinner also discussed progress in terms of the concept 
definition image becoming stronger, which is a metaphor for that students can 
rely more on formalism and be less dependent on mental pictures. 

In relation to our theorization, an important aspect of a concept image asso-
ciated to a concept is that it may contain conflicting components. This means 
that in principle, the theory of Tall and Vinner, could accommodate polysemy, 
where different, and sometimes possibly conflicting meanings are associated to 
the same concept. But the conflicts are never analyzed as an effect of polysemy, 
but rather as an effect on an inadequate concept image. 

To examine concept knowledge for geometrical objects, Fischbein (1993) 
developed the theory of figural concepts. Fischbein observes that elemen-
tary geometrical objects are a symbiosis of a figural character and the formal  
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descriptions of the object. He claims that intuition of geometrical objects 
comes from the figural aspect while the rigor for dealing with such objects 
must come from the formal conceptual form. In principle, also Fishbein’s theory 
could accommodate polysemy, but it is not explicitly dealt with in Fischbein’s  
original work or in papers that reference it. 

In line with Tall and Vinner, progress for Fischbein would incorporate 
becoming more flexible in when to invoke figural thinking and formal think-
ing. This is reminiscent of how Vygotsky sees the transition from thinking in 
terms of spontaneous concepts versus thinking in terms of scientific concepts 
that require teaching to be understood. Vygotsky emphasizes, ”the very notion 
of scientific concept implies a certain position in relations to other concepts, i.e., 
a place within a system of concepts” (Vygotsky, 1962, p. 93). Vygotsky observes 
that all higher thinking is mediated by systems of signs – semiotic systems. 
Duval (2006) characterizes semiotic system by referring to multi-functional 
systems, like spoken or written natural language, and mono-functional systems, 
like most specific mathematical symbol systems. Nunes (1999) calls such rep-
resentations compressed, indicating that they contain hidden culturally coded 
information, not visually distinguishable in the symbols themselves. She con-
trasts this with extended representations, where the form of the representations 
itself contains the necessary information to decode the mathematical informa-
tion at hand. We will use the term iconic for such representations and refer to 
other as non-iconic.

From the theories above we learn that conceptual progress is complicated 
psychological processes. However, to examine polysemy and analyze the role 
played by iconic and non-iconic representations, we need to consider connections 
between concepts in different situations, since concepts cannot exist in isolation 
from other concepts. For that reason, we will use the Theory of conceptual fields, 
developed by the French psychologist Gérard Vergnaud to provide an explana-
tion of why progress in mathematical concept knowledge psychologically is 
very complex despite that formal mathematical expositions normally are clear 
and hierarchical. A conceptual field consists of a set of concepts tied together 
with a set of situations where the concepts apply (Vergnaud, 2009). According 
to Vergnaud the meaning of a concept comes from a variety of situations. Reci-
procally, a situation cannot be analyzed with one concept alone, but only with 
several concepts, forming systems. Conceptual fields consist of such clusters of 
situations and concepts and hence forms a good basis for analyzing polysemy. 

Theory
Our theorization will be formulated in the language of conceptual fields. 
Vergnaud (2009) defines a concept as a triplet of three related sets. The set 
of situations where the concept is relevant; the set of operational invariants 
that can be used by an individual to deal with these situations; and the set of  
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representations, symbolic, verbal, graphical, gestural etc. that can be used to 
represent invariants, situations and procedures. Note that in this definition,  
situations and invariants are psychological categories, that is, mental construc-
tions, while representations can be both mental and physical/external. Since we 
are not here interested in explaining the thinking of particular individuals but to 
analyze progress in mathematical concept knowledge in general, we will deal 
with situations and invariants from the point of an observer (Maturana, 1988). 
This means that we will assume that in educational and mathematical settings, 
enough individuals will form situations and invariants similar enough so that 
it makes sense to talk about them as phenomena in themselves.

We will extend and specify Vergnaud’s definition. To avoid a lot of techni-
cal detail, we will abuse the notation of representation and call an image ( ),  
symbol (1/2), word (one half) or other combinations of signifiers a represen-
tation, without specifying what it represents and for whom. Any of the three 
symbols above can in some certain circumstance represent any of the others, 
as well as some underlying abstract idea or invariant. We distinguish between 
two particular types of representations, iconic and non-iconic. We call a rep-
resentation iconic when some observable patterns in the representation cor-
respond to some structure in the represented idea or invariant. The images  
and  are iconic representations of multiplicative part-whole relationships. In 
non-iconic representations, the denotation instead builds on convention, where 
the typical examples are spoken language or letters being combined into words 
in written language. We will be interested in mathematical symbol systems 
and our illustrative example is a/b. The non-iconic symbols 1/2 and 3/4 are not 
just composite symbols that can represent the same part-whole relationships 
as the partly colored circles above. They belong to a system with a set of trans-
formation rules, governing how changes to a symbol relate to changes in the  
represented invariant. 

Our theorization stipulates three things: 
1. The origin of concepts. Vergnaud’s view on concepts means that situations, 

invariants and representations are conceptually intertwined. But for concepts 
that are introduced in schooling, the initial invariant from which the concept is 
bootstrapped must come from either a situation or a representation (see footnote 
2 in Duval, 2006, for an elaboration). Combining this with our characteriza-
tion of two types of representations creates three essential ways of generating 
concepts. First, concepts can be connected to the invariants in a class of situa-
tions, like when a meaning of division is given through describing a number of 
things to be divided in a number of bags. Second, concepts can be connected to 
iconic representations, like when fractions are given meaning by an image of 
a partly colored circle. Third, concepts can be connected to mathematical rela-
tions formulated in non-iconic symbol systems, like when division is described 
by saying that a/b is a number c such that a = b · c.
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2. The umbrella effect. Like we exemplified with whole numbers, mathemati-
cal concepts are regularly subsumed into more general concepts. When con-
cepts generated from situations or iconic representations are subsumed under 
more general concepts there will be invariants from the original concept that 
will cease to be invariant under the new umbrella. In the equal sharing situa-
tion, used to explain division above, division of a by b results in a number c that 
is smaller or equal to a, but this does not hold for division in general. Likewise, 
when part-whole relationships are iconically represented by circle sectors, no 
fraction can be bigger than the whole circle. But, in general a/b can have any 
size. Note that the three examples in the previous paragraph are all denoted by 
the same symbol system, a/b. Even though we in this case continue to talk about 
division and fractions as different things, from a mathematical point of view 
we can subsume both concepts under the umbrella of quotient constructions. 

3. Contradiction of invariants. One iconic representation that generates frac-
tions is part whole relationships of whole numbers. For a ≤ b, a/b is associated to 
a colored bead out of b total beads, like 2/3 is a symbolic representation of the 
image . But another iconic representation that also generates fractions 
is when a certain part of one circle is taken to represents fraction, like when 

 represents 1/2. Both these representations individually form straightfor-
ward one-to-one correspondences with the symbol system. However, when the 
part-whole representation is extended to also denote numbers bigger than one, 
this model is mixed with the previous model. The representation is normally 
extended so that  is taken to mean one whole and one half, that is 3/2. But 
when the ideas from the two representations are mixed, then can just as 
well mean 3/4. The one-to-one relationship is hence broken. We claim that this 
case is typical for what happens when different iconic representations or situa-
tions are used to generate the same concept. We claim that the case of quotient 
constructions is an illustrative example of how polysemy is introduced when 
mathematical concepts are derived from situations or iconic representations.

The character of mathematics we have described and the theoretical con-
clusion we draw has important consequences for progress in mathematical 
concept knowledge. It is simply inevitable that when mathematics is grounded 
in iconic representations and situations, there will be cognitive conflicts when-
ever several sub-concepts are gathered under the same concept; something we 
have described as an essential aspect of mathematics. These cognitive conflicts 
will be unresolvable as long as the meaning of mathematical concepts continues 
to be grounded in the iconic representations and situations. This is because there 
are invariants inherent in iconic representations (or situations) that are cohe-
rent within such a representation, and in relation to the mathematical concept, 
but that are not coherent between iconic representations. When corresponding 
mathematical relations are represented and dealt with by a mathematical symbol 
system, the above-described incoherences are resolved. Therefore, a necessary 
consequence of these theoretical observations is that it is important that teaching  
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is designed to overcome the incoherence created by iconic representations. The 
meaning of concepts and the relations they entail are, wisely, initially drawn 
from situations and iconic representations. But at some point, the meaning must 
be placed in the mathematical relations and the symbol systems. The icons and 
situations, that initially generated the conceptual meaning need to get a new role 
as just being examples, or concrete realizations of the mathematical meaning. 

An empirical example from Swedish textbooks 
To what extent do the types of representations we have dealt with occur in prac-
tical mathematics teaching? As a proxy for how concepts might be taught, we 
have examined two common Swedish textbook series, covering grades 1 to 6 
and grades 7 to 9 1(Ahl & Helenius, in press). The gist of the material was that 
while reasoning in terms of symbol systems at times are used to explain pro-
cedures, symbol systems was not used to explain connections or motivate con-
cepts until in grade 8 and even then, only very sparsely. Concepts were instead 
explained by situations and iconic representations. Invariants in the situations 
and iconic representations were then labeled by the symbol system whereby it 
may be explained what aspect of the symbol that relates to what aspect of some 
invariant. We discuss a representative case below.

That the same fraction can be represented in different ways within a symbol 
system captures that a fraction is a multiplicative relationship. Equality of frac-
tions was introduced in grade 4 (Ahl & Helenius, in press). It was repeated in 
grade 5, together with the procedure of how to reduce fractions (figure 1). It 
was shown in terms of the standard symbol system for fractions how reducing 
a fraction can be done, by means of dividing the numerator and denominator 
by 2 (in the right-hand example). This is an example of polysemy, since within 
one calculation, the same symbolic expression is used both for representing 

Figure 1. Introduction to reducing fractions in grade 5
Note. The text marked with bullets in the top of the figure says: To reduce a fraction means that 
you transform the fraction to a simpler form. When you reduce you divide the numerator and the 
denominator with the same number. When you reduce, the value of the fraction does not change. 
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rational numbers and division. The explanation, however, is not given in terms 
of mathematical relations in the symbol system. Instead, it is the geometric 
invariant in the iconic representation that supplies the explanation, by showing 
that coloring 4 out of 6 equal segments signifies the same part of the of circle 
as coloring 2 of 3 parts. The number line, in figure 1, iconically supplies a 
similar argument. Neither the circle representation nor the number line argu-
ment involves division. In the symbol system representation, it can be consi-
dered known that 4/2 = 2 and 6/2 = 3 but no explanation to why it is allowed to 
divide both the numerator and the denominator by 2 is given within the symbol 
system. The same argument is repeated in grades 6, 7 and 8 with similar iconic 
representation as above. 

An argument entailing reasoning with relations in the symbol system could 
for example build on factorization, observing that 4 = 2 · 2 and 6 = 2 · 3 and that 
4/6 = (2 · 2) / (2 · 3) = 2/2 · 2/3 = 1 · 2/3 = 2/3. Approaching reduction of fractions 
from this point of view would set the stage for answering two important ques-
tions that in the illustrated explanation remain unanswered, and that in fact 
cannot be answered without factorization: why divide with 2? and, how do 
you know that you reached the simplest form? The answer to both questions 
builds on the concept of common divisors. In this line of reasoning it does not 
matter if a symbol a/b is thought of as a fraction or as a division. The symbol 
system approach would require that multiplication of fractions is introduced; 
something that is not done until grade 8 in the analyzed book series. While 
introducing multiplication of fractions earlier would be something we endorse, 
even without such a change an approach involving factorization would still 
be able to give suggestions on how to rearrange iconic representations when  
introducing how to reduce a fraction. 

Implications for mathematics education
We have argued that progression in concept knowledge requires a deliberate 
movement from reasoning in terms of iconic representations and situations to 
reasoning within non-iconic symbol systems. This argument is not unique, as 
it could represent the classic saying: going from the concrete to the abstract. 
However, our contribution is that we build our argument on the observation that 
mathematics is polysemic and that the practice of generating concepts by means 
of situations and iconic representations inevitably generate some contradictions 
between different situations, requiring different interpretations, represented by 
the same concept and symbol system. We exemplified with concepts that can 
be subsumed under the concept of quotient constructions, that is, anything we 
denote as a/b. 

We emphasize that the movement towards reasoning in symbol systems is 
not only about becoming versed in using symbol systems. Just as important  
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is the epistemological development of realizing that meaning can emerge 
directly from relations described in symbol systems. An epistemological shift 
occurs when situations and iconic representations, that previously generated the 
mathematical meaning, shift to be representations of some meaning that exists  
independent of the situations and iconic representations. 

We acknowledge that our theory shares properties with several previous 
theories that deals with progress in concept knowledge. The epistemological 
shift we are advocating has similarities in APOS (Asiala et al., 1996) and with 
Sfard (1991). But while Sfard speaks of processes that are reified and Asiala et al. 
about processes being encapsulated as objects, in our theorization elementary 
mathematical concepts can be generated both from situations (which involves 
processes) or from iconic representations. Our focus on iconic representations, 
which is something inherently figural, means that our theory also shares simi-
larities with Fischbein’s (1993) theory of figural concepts. But whereas Fisch-
bein deal with geometrical objects, we emphasize that also many non-geo-
metrical objects are dealt with by introducing iconic representations that have 
geometrical properties. As we showed in our example, even relatively elemen-
tary arguments may entail different interpretations of the same symbol, that is, 
polysemy. But as long as the meaning making resides in iconic representations 
or situations it is hard to make use of the power that the ability to go between 
different interpretations of the same concept allows. 

A key conclusion from our theorization is the need for a particular form of 
epistemological shift in the progress of concept knowledge. In many previous 
theories, this shift involves a change in the psychological nature of the object, 
from process to object or from concrete to abstract. In our theorization, we 
instead emphasize the role of representations, with a deliberate movement from 
meaning making through situational and iconic representations to meaning 
making through relations in symbol system representations. 

Nunes (1999) makes a distinction between extended and compressed repre-
sentations that, as we mentioned, have resemblance with iconic and symbol sys-
tem-based representations. Nunes empirical analysis indicates ”that extended 
representations are preferred at initial points in learning” but also that ”the 
analysis of conceptual relations indicates the advantages in the use of com-
pressed representations and thus the need to cope with the move from extended 
to compressed representations in mathematics instruction” (Nunes, 1999, p. 38). 
We think this is important, in particular in relation to teaching design and pro-
duction of curriculum materials. More emphasis on symbol system knowledge 
will obviously come with its own challenges and it is an empirical question how 
this can be done in practice. Our message is that the focusing on reasoning in 
terms of relations in symbol systems with the aim of creating learning opportu-
nities for an epistemological shift deserves more discussion. The purpose with 
the present paper is to contribute to such a discussion. 
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Positioning of programming in 
mathematics classrooms – a literature 
review of evidence based didactical 

configurations

AndreAs eckert And AlexAndrA Hjelte

This literature review looks into the roles that programming and mathematics can 
take in relation to each other in an educational environment. This is done by retriev-
ing papers from Web of Science and MathEduc on mathematics and programming in 
education, prior to university level, and analysing their tasks through a lens of Instru-
mental Orchestration. The four different exploitation modes identified are manipulat-
ing a physical entity, manipulating a virtual entity, creating own interactive environ-
ment and creating, testing and refining mathematical algorithms. Depending on how 
mathematics and programming are positioned in the four modes, the emphasis on 
mathematics and programming varies, resulting in different outcomes of the lessons.

Feurzeig and Papert (1969) envisioned a future where students of all ages learn 
key concepts and procedures of mathematics through their newly developed 
programming language Logo. Now that vision seems to partly be coming true 
as an increasing number of countries add coding as a part of their national cur-
riculum for elementary school to improve students’ digital competence (Euro-
pean Communities, 2007). Feurzeig and Papert (1969), amongst others, moti-
vates this change by highlighting the skills required to master coding, and the 
potential of integrating learning in other subjects in the coding process. The 
dual purpose opens up for different ways of introducing programming in the 
curriculum. Sweden for example, which is the context this paper is written 
within, chose to include coding in existing subjects, mathematics being one of 
them (Skolverket, 2018). 

Mathematics curricula already includes mathematical content to be learned 
and mathematical proficiencies to be developed, and in countries such as Sweden 
programming is meant to fit into this structure. Introducing programming into 
the teacher’s practices amplifies the complexity and challenges the way he or she 
has taught the subject so far (Lagrange & Monaghan, 2009). Teaching mathe-
matics becomes more complex because of the human/machine interactions as 
part of the learning environment, where the teacher could be seen as a conductor 
creating the prerequisites for an orchestra with several different instrument to 

Andreas Eckert, Örebro University 
Alexandra Hjelte, Gumaelius-school
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harmonize (Trouche, 2004). To orchestrate teaching of mathematics, we need to 
look into the available components, or didactical configurations, as well as how 
to exploit such configurations (Drijvers et al., 2010). As programming becomes 
a part of the didactical configuration, we need to attend to how lessons and tasks 
can be designed to achieve different learning outcomes. 

So, how are teachers and researcher to understand the role of coding in 
mathematics education? We aim to identify the shifting roles of mathematics 
and programming in educational settings that combines the two with this lite-
rature review. It is our hypothesis that studies have utilized different didacti-
cal configurations, and exploited those configurations in various ways, in their 
educational designs. Our research question is how does different didactical 
configurations position programming in relation to mathematics in terms of 
means and goals for learning? which we intend to answer by systematically 
searching and analysing recent research papers. 

Theoretical background
Digital competency, often highlighted in mathematics education, are versions 
of Wing’s (2006) computational thinking (Arnulfo, 2018). It is described as 
problem solving proficiency where the problem solver is aware of how for 
example programming can support successful problem solving across disci-
plines. Arnulfo (2018) identifies characteristics of computational thinking that 
are of value for mathematics learners. They are; confidence in dealing with com-
plexity; persistence in working with difficult problems; tolerance for ambiguity; 
the ability to deal with open-ended problems; and the ability to communicate 
and work with others to achieve a common goal or solution. These characte-
ristics are thought of as having a positive effect on mathematical learning, and 
working with mathematics through programming is thought of as having a 
positive effect on students’ development of these characteristics. Thus, showing 
the bi-directional intention of including computational thinking in mathema-
tics education. Kotsopoulos et al. (2017) argue that working in a mathematics 
classroom to develop these characteristics is best thought of in terms of four 
pedagogical experiences, unplugged, tinkering, making and remixing. Tinker-
ing is to modify premade code, making is to write your own code and remixing 
is to reuse and combine existing pieces of code in new ways to create programs. 
These three practices could be performed both unplugged and in a computer 
environment. However, Kotsopoulos et al. (2017) differentiates between the 
unplugged experience, found in curricula for younger children, and working 
in a computer environment. They suggest that the four practices could be used 
in a sequential approach for novices to develop their computational thinking 
and coding skill. 
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It is a big step to go from the unplugged experience of computational thinking 
to working in a computer environment. To understand the complexity of teach-
ing mathematics with human/machine interaction, Trouche (2004) introduced 
the idea of instrumental orchestration. The idea is that teachers create oppor-
tunities for students to develop their computational thinking and mathematical 
reasoning through organizing available artefacts, i.e. didactical configuration, 
and determining how to utilize these artefacts, i.e. exploitation mode. Artefacts 
can be physical objects in the classroom, such as a computer, but also a non-
physical object, such as a programming environment which is the case in the 
present study. Drijvers et al. (2010) compares didactical configuration with how 
teachers configure their teaching settings, their intentions, and what artefacts 
that are available. It is the what? of instrumental orchestration. They further 
compare exploitation mode with choosing when and how each instrument (or 
artefact) should come into play when describing how teachers exploit the didac-
tical configuration to work toward an intended goal. It is the how? of instrumen-
tal orchestration. In the context of programming, choices of how to introduce, 
sequence, scaffold and work through a task are all part of the exploitation mode. 
It is our interpretation that didactical configuration and exploitation mode are 
key aspects of task design. Tasks are thought of as the written and/or verbal 
task given to the student (e.g. code a dice simulator) and its required artefacts. 
A task design needs both the prerequisites of a programming language, and the 
opportunities to use it to create a working classroom task.

Method
The research question of this paper is answered by the means of a systematic 
literature review. This means we systematically collect relevant research papers 
through database (Webb of Science and MathEduc) query and analyse the them 
with the purpose of answering a research question (Eriksson & Barajas, 2013). 

Deciding keywords and searching for papers
We used ”math*” combined with the following phrases that complement each 
other; education, learning, teaching, instruction*, activity, student*, pupil* and 
child*. To find papers that contained mathematics and programming, those 
phrases were then combined with ”programming” or ”programing”, together 
with ”computational thinking” and ”compute”. 

To get an overview over the resent research, the time for article publications 
were set to 2007–2018. The search and retrieval of papers were performed on 
August 20, 2018, therefor no papers published after that date was included in the 
analysis. The papers were also limited to papers that were published in English. 
This resulted in a hit of 318 papers from the database Web of Science. Within the 
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database MathEduc, without the possibility of limiting the search by categories 
or research areas, the same search resulted in 225 papers.

Reading titles, abstracts and papers 
To manually single out papers, that addressed programming and mathematics 
in education, relevant for this study the following inclusion criteria was used: 

– The article addressed computer programming

– The article addressed mathematics education

– The article focused on programming before university level

– The article was an empirical article 

The titles and parts of, or full, abstracts of the extracted papers were read by 
one researcher. In some cases, this was not enough to decide if the article fully 
satisfied the inclusion criteria. In those cases, the content of the papers was 
scanned, looking at research questions, method for the study and sometimes 
the results and conclusions to determine if the papers should be included. In a 
few cases there were some uncertainties if an article should be included or not. 
In those cases, the papers were read by both authors and discussed if it should 
be included based on the criteria. 

Several papers addressed the combination of mathematics and programming 
for higher education and were excluded. Some papers only addressed program-
ming or combined programming with other subjects but had been included in 
the database search due to the mention of education within STEM (science, tech-
nology, engineering and mathematics). These papers were also excluded. There 
were also papers that focused on mathematics education, where programming 
was not addressed. Often, they used the framework of computational thinking 
in some way, without programming, or used the phrase compute unrelated to 
programming. Papers that were purely theoretical or presented a task without 
an empirical investigation within the article were also excluded. This resulted 
in 15 papers from Web of Science, and 7 papers from MathEduc. However, one 
of the papers, written by Ke (2014), was found in both databases. This resulted 
in a total of 21 papers. Eight of the papers were published within journals in 
the area of mathematics didactics, ten papers were in journals with another 
didactical orientation and two papers came from journals without an explicit 
didactical focus. 

Analysing the papers
To identify patterns, similarities and differences between tasks within the dif-
ferent papers the analysing tool NVivo was used to structure the data. The tasks 
were analysed using the lens of instrumental orchestration to identify artefacts 
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that make out the didactical configuration (e.g. aspects of the programming 
environment, of devices student used, of physical objects etc.) and their exploi-
tation modes (e.g. what the students were supposed to use the artefacts for, how 
the teacher organized the work with the artefacts etc.). We used the descriptions 
of the tasks together with the studies’ research questions, methods and results 
in our analysis. As a first rough categorization we identified the subject content 
that the students worked with, the programming environment they used, dif-
ferent physical objects used and the context of the class (e.g. mathematics class 
or computer class). Aspects of the artefacts making up the didactical configu-
rations and their exploitation modes where then summarized, categorized and 
presented in table 1. 

Three randomly selected papers were cross-analysed by both authors to 
compare their interpretations. The cross-analysis ensures the coherence in the 
interpretation and categorization of the tasks (Bryman, 2011).

Results
To understand the shifting roles of mathematics and programming in previous 
research the tasks were categorized into four exploitation modes, based how 
the didactical configuration was exploited in the lesson to stage tasks. These 
exploitation modes were then worked through to identify the different roles of 
programming and mathematics. Three aspects of the didactical configuration 
that had an impact on the roles of mathematics and programming were identi-
fied. The aspects were; (1) the learning goal of the task, (2) the task given to 
students and (3) the tools the students used. A summary of the results can be 
found in table 1.

Learning goal Task given to stu-
dents

Tools used

Manipulating a 
physical entity

Mathematical topics 
(primarily geometry)

”Program this physi-
cal entity”

Programming envi-
ronment and (some-
times implicitly) 
mathematics

Manipulating a 
virtual entity

Mathematical topics 
(primarily geometry)

”Program this virtual 
entity”

Programming envi-
ronment and (some-
times implicitly) 
mathematics

Creating an inter-
active environment

Mathematics and 
programming, with 
programming in the 
foreground

”Program a (math-
ematical) game”

Programming envi-
ronment and some-
times mathematics

Creating, testing 
and refining algo-
rithms

Mathematics and 
programming, with 
mathematics in the 
foreground

”Create an algorithm 
to solve this (math-
ematical) problem”

Programming envi-
ronment and math-
ematics

Table 1. An overview showing exploitation modes (left) and aspects of the  
didactical configurations (on top) elaborated on in the result section
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We expand on the exploitation modes found in the literature first, and then how 
mathematics and programming was positioned based the three aspects of the 
didactical configurations in each mode.

The didactical configurations presented in the papers resulted in four exploi-
tation modes; manipulating a physical entity; manipulating a virtual entity; crea- 
ting an interactive environment and; creating, testing and refining algorithms.

Five tasks were categorized as manipulating a physical entity, contained 
tasks in which the students were to program a robot to do a specific thing. The 
artefacts used in these types of tasks where; the mathematical topic of geo-
metry and a robot that was used to visualize the mathematical content. The pro-
gramming environment differed between programming directly on the robot 
(e.g. Bartolini Bussi & Baccaglini-Frank, 2015) and block programming in a 
computer environment (e.g. Taylor, 2018). The exploitation mode consisted of 
using the environment to fit the task of the moving robot and formulating tasks 
to make the robots do different things. The artefacts where then exploited in 
different ways to help the students develop their spatial understanding. For 
example, by letting the students discuss movements of the robots.

Our second category contain tasks coded as students working with manipu-
lating a virtual entity. The virtual entity could for example be a programmable 
cat or a car on the screen that executed predetermined actions without further 
interaction of the user. 11 tasks were about manipulating a virtual entity. Within 
these 11 tasks there was an object, in a virtual setting, that the students worked 
with and manipulated in some way. The artefacts used in these types of tasks 
where the mathematical topic of geometry and functions and using a digital 
block programming environment. They exploited visual outputs of program-
ming environment in tasks that consisted of either creating geometrical objects 
(e.g King 2015) or to understand the changing movement, speed and accele-
ration of objects in some way (e.g. diSessa, 2018). It was done by letting the 
students work in small groups, pairs or alone. Within several of these studies, 
mathematics is the learning objective of the task. However, they require the 
students to understand the structure of programming. Using the task therefore 
sometimes led to a situation where the tasks’ mathematical learning goal was 
not apparent to the students. One example of this is described by Alfieri et al. 
(2015) where the students were supposed to move a robot through a virtual 
game and needed to calculate wheel rotations to make sure that they end up in 
the right place. The task is primarily a programming task (program the robot 
in the right way) in which mathematics was implicit. Mathematical knowledge 
was needed to solve the programming problem, which sometimes resulted in 
the development of students’ mathematical understanding, or appreciation for 
the necessity of mathematics. 

The third category contains tasks in which the students create their own 
interactive environment by programming a game, three tasks had this as a 
main objective. The games could contain one or more virtual entities; however, 
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a user could interact with the game without doing changes to the code. In the 
description of the task the mathematical topic is not decided by the teacher. It is 
decided by the students in the development of their game. Because on the open 
character of the programming task, there was no mathematical area designated 
to the students. The artefact in these tasks were the block programming environ-
ment, in a computer class setting (Ke, 2014) or mathematics class setting (e.g. 
King, 2015). The task was to create a game for a sibling or peer. The students 
worked in small groups or pairs with the programming languages Scratch or 
TouchDevelop. It often resulted in a situation in which the students worked a 
lot with solving different programming problems, and developing their under-
standing for programming. However, Ke (2014) reported that two of the groups 
in their study created a game without integrating any mathematics. In the cases 
where students had opportunities to work with, and develop an understanding 
for, mathematical concepts as well as programming, students often focused on 
the programming. 

The final category focus programming and mathematical tasks where stu-
dents work with the assistance of a computer to make mathematical calculations 
or models. In these tasks the graphics played a minor (or no) role compared to 
tasks in prior categories. Six papers included students working with algorithms 
for calculations or creating models. Students were creating, testing, refining 
and interpreting different algorithms, with different purposes. The artefacts 
in this category were the mathematical range over different areas focusing on 
understanding algorithms and the programming environment. The program-
ming environment used also differed between different text-based program-
ming languages and block programming. The context was set in a mathematics 
class, informatics class or technology class. The learning goals within these 
types of tasks focus on understanding algorithms (Grover et al., 2015), creat-
ing algorithms to solve a mathematical problem (Psycharis & Kallia, 2017) or 
gaining a deeper mathematical understanding of concepts by creating mathe-
matical models with algorithms (Kahn et al., 2011). The students worked alone 
or in pairs. The tasks encouraged students to exploit programming to solve 
mathematical problems, and as a help to visualize (Taub et al., 2015) or to gene-
rate calculations (Psycharis & Kallia, 2017) that the computer executes faster 
than the students. 

Understanding the shifting roles of mathematics and programming
This literature review has presented different types of artefacts used in educa-
tional settings to work with mathematics and programming. We also described 
how these artefacts are put to work in respect to the learning goal, how they are 
exploited, and how this positions mathematics and programming within these 
contexts. Since the purpose of this study was to investigate the shifting roles 
of mathematics and programming the following three aspects of the didactical 
configurations where used to understand the role and positions of mathematics  
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and programming in different tasks: (1) learning goal of the task, what the teacher 
intended the students to learn when working with the task, (2) assignment pre-
sented to the student, either a mathematical assignment or a programming  
assignment and (3) tools the student use to solve the assignment. 

Papers with tasks of manipulating a physical or virtual entity have one thing 
in common, the learning goals revolve around students developing their geo-
metric understanding. Hence mathematics has the role of the learning goal 
(King, 2015). The learning goal is less specific when tasked to create an inter-
active environment. The students are to learn mathematics when working with 
programming, so programming is positioned in the foreground in the activity. 
The learning goals also include that students should learn programming and/
or develop an interest for it (Ke, 2014). Within this category, our conclusion is 
that both mathematics and programming are positioned as a learning goal. The 
tasks in the fourth task-category, like the tasks in the first two, has more explicit 
mathematical goals where the students are expected to work with and under-
stand the mathematical algorithms. However, programming is also emphasized 
as an expected learning outcome in the tasks utilizing these exploitation modes. 

The second aspect is the assignment of the task. Students work with tasks 
encouraging them to program something. It could be a robot, a figure, a game, 
or an algorithm. In that sense the assignments are programming assignments. 
However, some of the tasks in the third and fourth category explicitly said that 
mathematics was a part of the task; e.g. create a mathematical game (Ke, 2014) 
or program an algorithm to solve [this mathematical problem] (Psycharis & 
Kallia, 2017). That was not the case when asked to manipulate a physical or 
virtual entity

The final aspect consists of the tools the students need, and use to solve the 
given assignment. Within all the exploitation modes the students are using pro-
gramming tools to solve their assignments, which is expected taking our search 
into account. They are also using mathematics in some way, however to what 
extent and in what way differs both between and within the different exploi-
tation modes. The mathematics is needed to solve the problem how to move 
the robot through an environment (Alfieri et al., 2015) or make the cat hit the 
basket case (Sung et al., 2017). However, the mathematics may not be explicit 
to the students, and even sometimes lost. Within Creating an interactive envi-
ronment, when the students worked with games, the mathematical content was 
not decided by the teacher or researcher. The (mathematical) content was set 
by the students, depending on how they designed their game and which mathe-
matical problems they encountered. This sometimes meant that the students 
worked with mathematics and sometimes they did not, as in the case of creating 
an interactive environment by programming a game. Ke (2014) concludes that 
two of the groups created a game without having mathematics incorporated, 
and so the role of mathematics was lost. 
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Discussion and conclusions
In this paper we have identified different roles that mathematics and program-
ming can adopt when working with the two simultaneously in an educational 
environment. The results indicate that the roles are not fixed but can take a 
variety of different positions in relation to each other. Programming can be 
used for working with mathematics. Mathematics can be used for working with 
programming. Programming and mathematics can also complement each other 
in solving different tasks and problems. Our results suggest that these positions 
are set by learning goals, formulation of the assignment, the environment in 
which the students can work with the problem and the tools they need to solve 
it. These shifting roles risk placing one in the foreground and one in the back-
ground, both in expected learning outcomes and in the actual activity that the 
students are working with. Without an explicit mathematical topic, aim and 
formulation of task, programming tends to be positioned in the foreground (Ke, 
2014). But it is possible to balance both mathematics and programming so that 
they complement and giving each other meaning and purpose. 

This paper has shown that awareness of the mathematical content that the 
students are expected to work with, is an important aspect to take into conside-
ration when working with programming and mathematics. There is however a 
need for more research that focuses on the relationship between the two subjects. 
Research that can further investigate how these two subjects can be used in a 
way that is beneficial for both the development of mathematical understanding 
and knowledge of programming. The direction takes us deeper into understand-
ing pedagogical aspects of computational thinking (Arnulfo, 2018) and how the 
structure of programming can be combined with mathematics. Research might 
bring us closer to the ideas of Feurzeig and Papert (1969), where programming 
can be used as a way to gain an understanding for mathematical concepts, but 
where mathematics also can be used to understand programming. The research 
project this paper is written within will use the outcomes to design research 
interventions on the topic, further exploring how different task designs work 
in a school context.
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On pre-service secondary teachers’ 
mathematical content knowledge in 

statistics

Jonas Bergman ÄrleBÄck and Peter FreJd

In this paper we report on the use of a pre-post-test design to study pre-service  
secondary mathematics teachers’ mathematical content knowledge in statistics 
before and after their first university course in statistics. The results show that the 
participants were successful in the pre-test on items related to sampling, probabi-
lity and the general logic of making formal statistical inferences, but struggled with 
items concerning distributions. Comparing the pre- and post-test reveals an increas-
ing average of the participants’ scores in most statistical areas, but that topics like 
informal statistical inferences and distributions remain challenging for the majority 
of the participants. 

The technologies of today collect and make vast quantities of data easily avail-
able. However, data itself does not tell us anything, but requires being orga-
nized and looked at using models to provide information and knowledge. Now 
more than ever models are needed in private and professional settings to inter-
pret and make sense of data in various forms (Manyika et al., 2011). In this 
context, understanding a range of statistical topics and learning statistical rea-
soning are invaluable tools for all students to become proficient with, in order to 
enable them to interpret and make sense of data (Franklin et al., 2007; OECD, 
2013). In Sweden, students in grades 7–12 learn about randomness, probabi-
lity, descriptive statistics, measures of spread, correlation, causality, regres-
sion, and the normal distribution (Skolverket, 2011a; 2011b). However, learning 
statistics has proven to be challenging. Research has shown that students, as 
well as teachers, often poorly understand the statistical procedures they learn, 
and additionally have difficulties in interpreting graphs and making inferences 
from data (Bakker & Derry, 2011; Batanero et al., 2011; Shaughnessy, 2007). In 
line with the argument by Ball at al. (2008), it is important that teachers have 
a solid understanding of statistical content knowledge to be able to teach the 
statistics syllabus in schools successfully. Although Batanero et al. (2011) high-
lighted the lack of adequate research related to both pre-service and practicing 
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teachers’ statistical content knowledge, some studies suggest that pre-service 
secondary mathematics teachers (P-SSMTs) struggle with learning statistics 
(Lovett & Lee, 2018).

 In this paper we contribute to the understanding of P-SSMTs’ statisti-
cal content knowledge, and investigate if there is any merit to the claim that 
P-SSMTs struggle with the statistics course(s) in their teacher training pro-
grammes as noted by Lovett and Lee (2018). To do this, we investigate a class of  
Swedish P-SSMTs’ statistical content knowledge using a pre-post-test design.

Aim and research question
The aim of the study presented in this paper is twofold: (i) to provide a snap-
shot of P-SSMTs’ statistical content knowledge when they are admitted to the 
teacher training programme and before having taken any university courses 
in statistics; and (ii) to identify how the P-SSMTs’ strengths and weaknesses 
of their statistical content knowledge found in (i) change (if at all) after their 
first university course in statistics. To this end, we investigate the following 
two research questions: (RQ1) What statistical content knowledge do P-SSMT 
display before their first university course in statistics? and (RQ2) How does 
P-SSMTs’ statistical content knowledge change as the result of participating 
in a university course in statistics?

Previous research
In their review of the literature on teachers’ and pre-service teachers’statistical 
content knowledge, Lovett and Lee (2018) conclude that research to date pri-
marily focused on (pre-service) elementary teachers’ statistical content know-
ledge, whereas literature investigating P-SSMTs’ statistical content knowledge 
is spares. Within the limited literature on secondary (pre-service) teachers’ 
statistical content knowledge, Lovett and Lee (2018) identifies 3 main research 
areas focusing on: (1) computations, algorithms and procedures; (2) insufficient 
reasoning skills; and (3) obstacles around interpreting and developing graphical 
representations. The main results from these areas are that P-SSMT are well 
equipped when it comes to using procedures and algorithms for computations, 
such as calculating mean values. However, the repetitive focus of standard 
procedures in mathematics and statistics courses in the teacher training pro-
grammes tend to have a negative impact on (pre-service) teachers’ statistical 
content knowledge in terms of their statistical reasoning skills and abilities to 
make interpretations of graphical representations. In particular, understand-
ing and interpreting box plots and histograms, analyzing skewed distributions, 
sampling distribution, variability, confidence intervals and p-values, as well 
as reasoning about, and making inference between, sample- and population  
distributions pose difficulties (Lovett & Lee, 2018).
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The general remark above regarding the spare research on teachers’ and P-SSMTs’ 
content knowledge in statistics is also valid in the Swedish context. However, 
Nilsson and Lindström (2013) profiled 43 (whereof 18 + 6 secondary teachers) 
Swedish teachers’ knowledge base in probability. They found that the teachers’  
”knowledge profile is more computationally oriented than conceptually orien-
ted” (p. 61), and identified five knowledge profile patterns showing (1) a base 
level understanding of the classical interpretation of probability; (2) challenges 
concerning the structuring of compound events; (3) issues with conjunction and 
conditional probability; (4) having a less degree of specialized content know-
ledge than common content knowledge (cf. Ball et al. (2008)); and (5) problems 
with random variation and principles of experimental probability.

Theoretical framework
In this paper we are interested in mapping and assessing P-SSMTs’ content 
knowledge in statistics. Hence, we generally situate our work in the research 
field of mathematics education as investigating the common content knowledge 
(CCK) within the framework of mathematical knowledge for teaching (MKT) 
by Ball et al. (2008), or more specifically within statistics education research 
as CCK as understood in the statistical knowledge for teaching framework 
(SKT) by Groth (2013). We use the statistical content in itself as the organizing 
framework for the analysis, and to be able to capture more nuanced aspects of 
P-SSMTs’ CCK in statistics, we structure the content within the CCK in statis-
tics by departing from the five ”big ideas of statistics” discussed by Pfannkuch 
and Ben-Zvi (2011): data, patterns in data, variability, distributions, and infe-
rence. These five content topics are not disjoint, but rather important and inter-
twined facets of what it means to engage in statistical inquiry. For example, and 
as discussed by Franklin et al. (2007), probability and sampling are important 
aspects permeating and connecting all these five ”big ideas”. In addition, and 
in light of the recent developments within the statistics education research com-
munity, we also consider it productive to divide inference to be either formal 
or informal (cf. Makar & Rubin, 2009). Hence, we in this paper conceptualize 
and structure CCK in statistics into 5 areas related to probability, sampling, 
distributions, informal inference, and formal inference.

Methodology, method and research setting
To answer the two research questions we draw on previous, but largely unpub-
lished, research experiences based on a research instrument constructed from 
previously published research and well-documented instruments. The general 
idea behind this compiled instrument, which we call CIiS (Concept Inventory in 
Statistics), was to provide a snapshot of the test-taker’s CCK in various areas and 
topics within statistics. Hence, we designed our study around the adaptation and 
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use of the CIiS as a pre- and post-test given to P-SSMTs before and after their 
first university course in statistics. Before elaborating on the CIiS instrument 
and its construction further, we will first briefly describe the research setting. 

The research setting 
The P-SSMTs participating in the study were enrolled in a teacher education 
programme at a Swedish university. Before taking the pre-test, the P-SSMTs 
had studied one semester of mathematics covering topics such as algebra, linear 
algebra, calculus and mathematics education. None of these courses included 
any statistical content. However, all the P-SSMTs had completed a section on 
statistics as part of their upper secondary schooling. The upper secondary 
level mathematics syllabus (Skolverket, 2011b) includes topics such as: Sta-
tistical methods for reporting observations and data from surveys, discussion 
of correlation and causality, methods for calculating different measures of 
central tendency and measures of dispersion including standard deviation, and  
properties of normally distributed material. 

The pre- and post-test were administrated before and after the P-SSMTs 
took a 8-week course in statistics (among other courses), that was composed 
of 12 lectures, 12 lessons and 1 laboratory activity using statistical software. 
The course used and was structured around the textbook by Britton and Garmo 
(2012), and covered content such as stochastic variables, probability distribu-
tions, expectation values, variance, covariance and correlation, normal and 
binomial distributions, uncertainty associated with parameter estimation and 
as confidence intervals. 

The pre-test was given to npre = 30 P-SSMTs the day before the first lecture 
in the statistics course. The time allocated for the pre-test was originally two 
hours, but since all P-SSMTs finished the CIiS within an hour, only one hour 
was allocated for the post-test. The post-test data was collected before the final 
written exam in an extra and voluntary review session for the final exam. Hence, 
participating in the post-test was not mandatory for the P-SSMTs, and resulted 
in npost = 17 P-SSMTs taking the post-test. 

The instrument
The CIiS instrument used for the pre- and post-test was originally compiled 
as a preliminary diagnostic and design tool for two in-service courses on the 
teaching and learning of statistics for teachers in the US at the upper secondary 
level with various backgrounds (Lee et al., 2013). The instrument consists of 30 
multiple-choice items organized in 20 question selected from other prior vali-
dated instruments. Each item only had one correct answer, but some items have 
two alternatives (8 items), others three (8 items), four (12 items), or five alterna-
tives (2 items). Of the 30 items on the CIiS, 19 come from the CAOS 4 instru-
ment [Comprehensive assessment outcome in statistics] (delMas et al., 2007), 
eight from the instrument ARTIST [Assessment resources tools for improving  
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statistical thinking] (http://app.gen.umn.edu/artist/), two from Zeiffler et al. 
(2008), and one item was added by the instructors of the US in-service teacher 
course as a complement to one of the CAOS 4 items. See delMas et al. (2007) 
for a detailed discussion how the items in CAOS 4 and ARTIST were deve-
loped, tested and validated. All the 30 items, originally written in English, were 
translated into Swedish by one of the authors and then proof-read and validated 
by the other author and an experienced department colleague. Examples of  
multiple-choice items from the CIiS is presented in figure 1 and 2 below.

To investigate the P-SSMTs’ CCK in statistics, seven subscales were compiled 
based on: (1) our conceptualization of CCK in statistics (probability, sampling, 
distributions, informal inference, formal inference); (2) the specified measured 
learning outcomes of the individual CAOS 4 items in delMas et al. (2007); and 
(3) the explicit organization and categorization of the items in the ARTIST 
material – see table 1 below.

Result
Table 2 in the Appendix shows the P-SSMTs’ result on the 30 items on the CIiS 
pre- and post-test. We first summarize the P-SSMTs’ CCK in statistics in terms 

Nedan visas 5 histogram över 5 olika klassers provresultat på en skala från 0 till 10 poäng.

Vilken av klasserna har störst standardavvikelse och varför?

Klass A, eftersom detta histogram har störst skillnad i höjd mellan staplarna.
Klass B, eftersom många av provresultaten ligger långt ifrån medelvärdet.
Klass C, eftersom detta histogram har störst antal olika resultat.
Klass D, eftersom fördelningen av resultat är spretig och ojämn
Klass E, eftersom histogrammet har stor spridning av resultat och ser normalfördelat ut.

Figure 1. Item 5 on the CIiS pre- and post-test: reading and describing a  
distribution (using standard deviation)

Ett förtag som håller på med familjespel har tagit fram en liten plasthund som man kan kasta 
som en tärning. Hunden kan antingen landa med alla fyra benen mot underlaget, helt på rygg, 
eller på sin högra- eller sin vänstra sida. Företaget vet dock inte hur stor sannolikheterna är 
för de fyra olika utfallen. Vilken av nedanstående metoder är mest lämplig om företaget vill 
uppskatta de olika sannolikheterna för hur hunden kan landa? 

A. Eftersom det finns fyra olika utfall, så kan har varje utfall tillskrivas en sannolikhet av 1/4.
B. Kasta hunden många gånger och beräkna hur många procent av gångerna som de 
olika utfallen inträffar.
C. Simulera situationen och ta fram data baserat på en modell som har fyra lika sannolika utfall.
D. Inget av ovanstående alternativ.

Figure 2. Item 7 on the CIiS pre- and post-test: probability
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of the pre-test scores for all the npre = 30 P-SSMTs, and then discuss the scores 
of the npost = 17 P-SSMTs completing both the pre- and post-test. 

Overall scores on the CIiS pre-test
The distribution of the npre = 30 P-SSMTs’ overall score on the CIiS pre-test 
is displayed in figure 3. Out of a maximum score of 30, the npre = 30 P-SSMTs 
achieved in average a score of x = 17.13. The standard deviation was σ = 3.46. 
The 25th percentile is 14.75 and the 75th percentile is 20.00.

The three items on the CIiS pre-test on which the P-SSMTs were most success-
ful focused on the probable sampling outcomes given an explicit distribution 
of a population (93 %, item 12B), interpreting a probability statement in a real 
world context (90 %, item 8), and drawing an inference based on the outcome of 
a described experiment (87 %, item 9A). The four items on which the P-SSMTs 
scored the lowest involved how errors due to sampling affects inferences about 
a population mean (13 %, item 11), understanding the graphical description 
(histogram) of a quantitative variable (20 %, item 2), and interpretations of 
confidence intervals (27 %, both item 17B and 17D respectively).

CIiS subscales scores on the pre-test
Table 1 below displays the P-SSMTs pre-test scores on the CIiS seven subscales, 
and shows that the P-SSMTs were most successful in items related to probabi-
lity (77 % success rate), issues involving sampling (71 % success rate) and the 
general logic of making statistical inferences (67 % success rate). The areas in 
which the P-SSMTs struggled the most were confidence intervals within making 
statistical inferences (41 % success rate), informal inference (47 % success rate) 
and distributions (49 % success rate), which also is reflected in the success rate 
of the individual items pointed in previous section.

A pre- and post-test comparison on the CIiS overall scores 
Looking at the overall score on the pre- and the post-test for the n = 17 
P-SSMTs who completed both tests, the P-SSMTs’ average scores changed  

Figure 3. P-SSMTs’ overall CIiS scores on the pre-test
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non-significantly (t (16) = 0.566, p = 0.579) from (x = 18.12; σ = 3.18) to (x = 19.65; 
σ = 3.78). The individual score on 18 of the items increased on the post-test, 
whereas 11 scores decreased and the score on one item stayed the same.

A large gain can be seen on item 6 focusing on expected patterns in sample 
variability were 53 % of the P-SSMTs who answered incorrectly on the pre-test 
got the answer right on the post-test (more than doubling the success rate from 
36 % to 77 %). Also on item 17D (on confidence intervals) a large portion (44 %) 
of the P-SSMTs who got this wrong on the pre-test answered correctly on the 
post-test, resulting in an overall increase from 35 % to 70 % on the item. Large 
gains can also be found (see table 2) for items 17B (confidence intervals), 14A, 
14B (on sample size) and 5 (sample variability), and it is notable that the score 
went up for four of the six items focusing on confidence intervals. The gains in 
item 6, 14B and 17D are all statistically significant on the p = 0.05 level.

Among the 11 items on which the score was lower on the post-test compared 
to the pre-test, is item 11. Item 11 is about informally rejecting a null-hypothesis, 
and the success rate on this item went down from 24 % to 6 %. Indeed, 77 % 
of the P-SSMTs answered incorrectly on item 11 on both tests. In table 2 one 
can also see what portion of the P-SSMTs changed from correct answers on 
the pre-test to incorrect answers on the post-test (and in this context items 1, 4 
(both describing a distribution) and 10A (informal inference using boxplots) are 
notable). In addition, one can note that the score for four of the six items focus-
ing on p-values became lower on the post-test. The only statistically significant 
negative change in score on the p = 0.05 level was found for item 1.

A pre- and post-test comparison on the CIiS subscale scores
Table 1 above shows that the P-SSMTs increased their CCK in statistics as 
mea-sured by the CIiS in five of the seven subscales. The largest gain ware in 
the subscale Sampling (from 71 % to 89 %) and in Statistical inference: general 
logic (from 65 % to 80 %). However, the P-SSMTs’ CCK in statistical went 
down in the subscales Distributions (from 70 % to 44 %) and Informal inference 

Subscale (max subscale score: 
items on test)

Pre (n = 30)  
% (x ; σ)

Pre (n = 17)  
% (x ; σ)

Post (n = 17)  
% (x ; σ)

Probability (2: 7, 8) 77 % (1.53; 0.63) 82 % (1.65; 0.61) 88 % (1.71; 0.50)

Distributions (4: 1–4) 49 % (1.97; 0.93) 70 % (2.18; 1.07) 44 % (1.76 ;1.03)

Sampling (7: 5,6,12A-B,13,14A–B) 67 % (4.80; 1.40) 71 % (4.94; 1.39) 89 % (6.24; 0.90)

Informal inference (3: 10A-B,11) 47 % (1.40; 0.73) 49 % (1.47; 0.72) 39 % (1.18; 0.73)
aSI: general logic (3: 9A-B, 20) 71 % (2.13; 0.82) 65 % (1.94; 0.82) 80 % (2.41; 0.80)
aSI: confidence intervals  
(6: 17A-D; 18, 19)

41 % (2.47; 1.38) 51 % (3.06; 1.30) 60 % (3.59; 1.73)

aSI: p-values (5: 15, 16A-D) 57 % (2.83; 1.18) 39 % (1.94; 0.83) 48 % (2.41; 0.80)

Table 1. P-SSMTs’ results on the seven subscales on the CIiS pre- and post-test

Note. aSI is and abbreviation used for Statistical Inference
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(from 49 % to 39 %). Only the increase measured in the subscale Sampling was  
statistically significant (t (16) = -3.096, p = 0.007).

Discussion
Regarding RQ1 our result shows that the P-SSMTs participating in the study had 
relatively good CCK in statistics with respect to probability, sampling and the 
general logic of making statistical inferences, but poorly handled confidence 
intervals, informal inferences and distributions. The latter is in line with pre-
vious research results (Lovett & Lee, 2018) and is perhaps not surprising since 
neither confidence intervals, informal inferences and distributions normally 
are part of the P-SSMTs prior educational experiences. The P-SSMTs rela-
tive high average score on items related to probability is in line with the result 
of Nilsson and Lindström (2013) regarding that the participants displayed a 
basic understanding of the theoretical interpretations of probability. However, 
the CIiS subscale measuring probability is composed of only two items, and 
hence only provide a crude and selected snapshot of the participates CCK with 
respect to probability. It is interesting that p-values, otherwise pointed out as 
troublesome for P-SSMTs in the research (Lovett & Lee, 2018), not stood out 
as difficult in the pre-test.

After having participated in the course in statistics, the results show that with 
respect to RQ2, the P-SSMTs CCK in statistics increased between the pre- and 
post-test in all areas except those related to distributions and informal infe-
rences. Although somewhat speculatively, given the limited amount of data, the 
decrease in the subscale informal inference taken together with the increase in 
the three subscales of formal statistical inference, indicate that the course in sta-
tistics favor the formal aspects of statistics over more informal ways of making 
inferences. From a general CCK perspective focusing on the formal aspects of 
mathematics, this makes sense. However, in light of more recent discussions 
within the statistics education community, informal inference is suggested to 
be more important and productive for the teaching and learning of statistics (i.e. 
an important component of so-called specialized content knowledge (SCK) to 
be develop within the MKT and SKT frameworks). The low scores on the sub-
scale informal inference point to the need to provide the P-SSMTs with learn-
ing opportunities to develop their informal inference reasoning skills, either 
in the statistics course, or in an accompanying mathematics education course. 
In such a (re-)design and development project, a research-based extension of 
the CIiS scale on informal inference might be a useful tool, which in addition 
would provide interesting research opportunities. In its present form the CIiS 
only provide a selective snapshot of the CCK in statistics, with a small number 
of items in each subscale. Hence it is hard to generalize the findings in this 
study, and the result must rather be interpreted in relation to the particularities 
of the research settings at hand. 
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Appendix
Table 2. P-SSMTs’ results on the pre- and post-test

Note. a Following DelMas et al. (2007) item response pattern reported are: Incorrect = incorrect 
on both pre- and post-test; Decrease = correct pre-test, incorrect post-test; Increase = incor-
rect pre-test, correct post-test; Pre & Post = correct on both pre- and post-test (bold indicate an 
increase; italic a decrease).
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They saw and dared to call things 
mathematics: facilitators’ views on 
an online mathematical professional 

development module 

Troels lange and Tamsin meaney

Although much money is expended on developing professional development 
resources, little is known about how facilitators, who often mediate the materials 
for teachers, evaluate them and how these evaluations compare with those of the 
teachers. To provide input into this area, the results from a survey completed by 59 
facilitators of an online mathematics module for preschool teachers are described 
and compared with those of preschool teachers. Although the facilitators gave similar 
responses about the three design elements of the module – content, tasks and rela-
tionships – they also identified areas, which were not covered by what was in the 
module itself. 

In this paper, we analyse the results of a survey completed by 59 facilitators about 
their experiences with online, professional development (PD) modules for pre-
school teachers to gain insights into the design of these materials. We compare 
the facilitator results with those of teachers who had undertaken the course. Iden-
tifying differences as well as similarities in views provides insights into whether 
the facilitators’ understandings of the materials are shared by the teachers and 
if the materials should be altered to increase the impact on teachers’ learning.

Recently, preschool teacher PD has received attention with a special issue on 
this topic being published in 2017 in Mathematics teacher education and devel-
opment. Most of these articles have focused on changes to teacher practices 
or knowledge. Of the few papers on facilitators of PD for preschool, the focus 
has been on the training of the facilitators (Hassidov & Ilany, 2014). Neverthe-
less, calls have been made to focus more on the important role of facilitators in 
mathematics PD (Lange & Meaney, 2013). This is particularly necessary when 
facilitators mediate online PD materials developed by others as ”little is known 
about best practices for the design and implementation of these oTPD (online 
teacher professional development) models” (Dede et al., 2009, p. 9). Hill et al. 
(2013) called for an evaluation of PD design elements from a range of teachers  
and facilitators to build up a body of knowledge that moves beyond local, idio-
syncratic approaches to implementation. As more online PD materials are made 

Troels Lange, Western Norway University of Applied Sciences 
Tamsin Meaney, Western Norway University of Applied Sciences
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available in the future (Dede et al., 2009), there is a need to better understand 
from users, such as facilitators and teachers, what are the design features that 
effectively support PD. 

Background
In 2012, Sweden initiated a large-scale PD programme for mathematics teachers.  
Administered by the Swedish Agency for Education (Skolverket), teachers in 
collegial groups read, discussed, planned and tried activities and reflected on 
their experiences. The input for these tasks comes from web-based PD modules, 
which for preschool teachers have 12 parts to be completed over 18 months. All 
modules have the same structure with each part comprising four sections: (A) 
individual studies; (B) group discussion and planning; (C) enactment/obser-
vations in own teaching situations; and (D) group discussion and follow-up. 

In previous research (Helenius et al., 2015), we described a design model 
for PD materials based on our decision-making during the production of the 
first third of the PD-module materials. The design model includes 3 elements: 
content deemed as important for teachers to understand; tasks for the teachers 
to undertake; and the relationships that needed to be nurtured. We consider that 
the choice of content is the driver of the other two elements. For the preschool 
module, the content was based on Bishop’s (1988) six mathematical activities, 
because curricula and policy documents indicated that this was the knowledge 
teachers needed (Skolverket, 2011; Utbildningsdepartementet, 2010).

The 12 parts of the preschool module that provide input on the content are: 
(1) Introduction to Bishop’s (1988) six mathematical activities; (2) Playing; (3) 
Explaining; (4) Documenting what the child can do; (5) Introduction to Locat-
ing and Designing; (6) Locating; (7) Designing; (8) Documenting for teacher 
planning; (9) Introducing quantifying; (10) Measuring; (11) Counting; and (12) 
Documenting for supporting the work environment. Each set of four parts had 
an introduction, two parts related to Bishop’s six mathematical activities and a 
summary part which discussed different aspects of documentation.

Although Skolverket financed facilitators to work with school teachers, 
similar funding was not made available for preschool teachers. The teachers 
were instead expected to organise themselves into groups, which would then 
work through the online materials. However, when the materials were made 
available, many municipalities funded facilitators to organise PD sessions for 
groups of preschool teachers. However, at this point in time, there was no training  
specifically for these facilitators.

We collected data through an online survey for teachers and one for facilita-
tors, from March to May 2016. The surveys included similar questions, modified 
to suit the different roles of teachers and facilitators. Contact was made with 
municipalities, across Sweden, where it was known that their preschool teach-
ers had completed at least 4 out of the 12 parts of the module (the equivalent of 
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at least 6 months’ worth of work). The municipalities then forwarded the link 
for the online survey to teachers and facilitators. 

Both surveys had 27 questions, 21 were multiple-choice and the other six 
were open-ended. Both surveys asked for information about the mathematics 
that participants had in their teacher education and their years of experience 
working in preschools. The open-ended questions provided comments from 
the facilitators about the three elements of the design model; content, tasks and 
relationships.

Results and discussion
In this section, the results from the facilitators are compared with the results 
from 267 preschool teachers, published in Helenius et al. (2017). We do this 
to gain insights into whether the facilitators’ understandings of the materials 
were the same as the teachers and if the materials could or should be altered to 
increase the impact on teachers’ learning.

The facilitators and the teachers (Helenius et al., 2017) had similar amounts 
of mathematics in their teacher education, similar amount of experience of 
working in preschools, and had completed similar amounts of the online 
module. Of the 59 facilitators, 8 (14 %) had less than five years’ experience 
working in preschools, 8 (14 %) had between five and ten years and 43 (73 %) 
had more than ten years. 29 (49 %) of the facilitators had no mathematics in their 
teacher education, 27 (46 %) had 15 ECTS and 2 (3 %) had 30 or more ECTS; 
one did not respond to the question. 50 (85 %) of the facilitators had completed 
eight or more parts of the module and the rest at least four parts. A similar pro-
portion of teachers had finished at least four parts, but 12 % had competed all 
twelve parts. In the next sections, we describe the results for the three elements: 
content, tasks and relationships. 

Content
The facilitators provided information on content by answering questions about 
which parts of the module they appreciated the most and the least. The ques-
tions allowed for more than one part to be nominated. As was the case for the 
teachers, far fewer facilitators indicated a part of the module that they appreciated 
the least than a part that they appreciated the most. 

The parts that were nominated by more than 20 % of the facilitators as being 
appreciated the most, were: (2) Playing, (6) Locating, and (7) Designing, which 
was nominated by 30 %. These results are similar to those of the teachers (Hele-
nius et al., 2017) and indicated that the parts appreciated the most included 
content specifically about Bishop’s (1988) six mathematical activities. 

The parts that the facilitators liked the least were (5) Introduction to Locat-
ing and Designing, (6) Locating, and (8) Documenting for teacher planning, 
which were nominated by 14 % of facilitators. Although these results differ 
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from those of the teachers (Helenius et al., 2017), the numbers are too small to 
indicate a clear trend. However, far fewer facilitators, like the teachers, nomi-
nated a part they liked least compared to the percentages who nominated parts 
they liked the best.

Locating featured in both the most and least appreciated part, which was 
also the case for the teachers (Helenius et al., 2017). This indicates that more 
information is needed about why Locating produced such divided views. In the 
open-ended question, one facilitator (F48) explained why they liked Locating 
the most, ”jag uppskattade mest ’lokalisera’, det satte igång både lärarens och 
barnens fantasi” (I appreciated ”Locating” the most, it initiated both the teacher’s  
and the children’s imagination). However, there were no comments about why 
it was liked the least, indicating that further research is needed.

It could be that the facilitators needed more time to better understand the 
ideas to do with Locating. Like some teachers (Helenius et al., 2017), several 
facilitators indicated that it was only after completing several parts that they 
could understand how the parts were related. For example, F15 wrote ”det har 
varit trögt innan begreppen lagt sig och fått förståelse för arbetslaget. pga att 
det går fort fram blir det rörigt varje gång en ny [del] inleds”. (It has been slow 
before the concepts have settled and gained understanding in the work team. 
Because it progresses quickly, it gets messy every time a new [part] is started). 

Other comments, similar to F15, suggest that the facilitators found the 
content to be challenging for the teachers in that it extended their combined 
understandings about what children could do mathematically in preschools. 
F37’s response to the question, about which part they appreciated the most, 
illustrates this point:

F37:  Väldigt svårt att välja en! Spontant så skulle jag säga att delen om leka och 
förklara är det som gett oss mest. Detta med tanke på att man ofta inte tänker 
de delar som matematik” 

   Very difficult to choose one! Spontaneously, I would say that the part about 
playing and explaining is what has given us the most. This is because you often 
do not think of these parts as mathematics. 

Other facilitators talked about witnessing ”aha experiences”, suggesting that 
while the content may have been challenging, it provided opportunities for the 
teachers (and the facilitators) to gain new insights. Many also indicated that the 
teachers were able to see mathematical learning opportunities in their work and 
were more willing to discuss mathematics together, than they had been earlier. 
The results in table 1 showed the responses the facilitators gave to the questions 
about why a part was appreciated the most or the least. 

More facilitators indicated that it was the tasks, including the discussions, 
rather than what the teachers learnt that made them appreciate a part (this is 
discussed in more detail in the next section). Half of the facilitators indicated 
that they chose a part as being least appreciated if they considered the written 
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texts and films in sections A and B to be difficult to understand. This is perhaps 
not surprising as the texts and films conveyed the content. In a response to the 
open-ended question, F30 wrote, ”Tycker att alla moduler varit bra, med en del 
texter med svåra ord att bena ut kanske uppskattades minst” ([I] think all parts 
have been good, with some texts with difficult words to work out maybe being 
appreciated the least). 

Tasks
The module tasks were situated in the four sections, A, B, C, D, in each of the 
12 parts. As designers, we considered that the tasks should be specific and 
connected to the context. To do this, we considered: How can the affordances 
of context and artefacts be utilised to support content delivery? Why would 
teachers want to engage in these activities? Therefore, we asked the facilita-
tors about what they considered supported or hindered the teachers’ learning 
in two survey questions where they could choose more than one answer. Tables 
2 and 3 show their responses as well as the compatible teacher responses from 
Helenius et al. (2017). 

The teachers 
learnt the most /
least from it

The written texts 
and films made 
it easier/ harder 
to understand the 
message

The activities 
with children 
clearly showed/
did not show how 
much mathema-
tics they can do

The discussions 
with colleagues 
facilitated (not) 
understanding of 
the message in 
the part

Most (n=53) 15 (28 %) 12 (23 %) 34 (64 %) 28 (53 %)
Least (n=44) 15 (34 %) 23 (52 %) 6 (14 %) 8 (18 %)

Table 1. The reasons for why a part was most or least liked by the facilitators

Materials Discussion with 
colleagues

Trying out 
activities with 
children

Documentation 
of own and chil-
dren’s learning

Facilitators (n=59) 18 (30 %) 51 (86 %) 47 (80 %) 26 (44 %)
Teachers (n=255) 53 (21 %) 201 (79 %) 141 (55 %) 76 (30 %)

Table 2. The tasks that the facilitators considered to contribute the most to 
teachers’ learning

Time to do 
PD

Texts too 
hard

Film not 
relevant

Activities 
too difficult 
to imple-
ment

Activities 
not appro-
priate for 
children’s 
group

Discus-
sions not 
helping 
learning

Facilitators 
(n=56) 47 (84 %) 30 (54 %) 20 (36 %) 8 (14 %) 17 (30 %) 2 (4 %)

Teachers 
(n=245) 204 (83 %) 105 (43 %) 73 (30 %) 51 (21 %) 52 (21 %) 3 (1 %)

Table 3. The difficulties that hindered learning from the PD tasks
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The facilitators and the teachers valued the tasks to a similar degree (see table 
2). Although the facilitators appeared to be generally more positive, the diffe-
rences were not statistically significant using a chi-square test. The facilitators 
considered that discussions with colleagues and trying out tasks with children 
contributed the most to the teachers’ possibilities to learn. 

In contrast, table 3 shows that a lack of time was considered the biggest 
hindrance to teachers’ possibilities to learn by the facilitators and the teachers 
(Helenius et al., 2017). However, as F13 noted, facilitators acknowledge that a 
lack of time was often compounded with other issues outside the scope of the 
module:

  För att kunna förändra den rådande praktiken måste man förstå. För att kunna 
och vilja förstå behöver man vara intresserad. Fokuserar man på annat t.ex. tids-
brist stänger man in sig i ett hörn, tyvärr. Olika utbildningsnivå har påverkat 
väldigt mycket.

  In order to change the current practice, one must understand. To be able and 
willing to understand, you need to be interested. Focusing on other things e.g. 
lack of time, pushes one into a corner, unfortunately. Different levels of educa-
tion have had a great impact.

Of the tasks that the teachers were expected to engage with, the facilitators, as 
had the teachers, highlighted the impact of texts, which were too hard to read, 
on teachers’ possibilities for learning. Facilitators would be expected to support 
the teachers to understand the text, but with similar education and background 
to the teachers, they may have struggled with the texts in the same way. As 
designers of the module, it is important to consider how to provide texts that 
better supported teachers to engage with the content. Materials written spe-
cifically for facilitators, to help them support teachers’ academic reading were 
made available later.

Figure 1 shows that more than 80 % of facilitators considered that all the 
tasks contributed ”quite a lot” or ”very much” to the teachers’ learning. This 
included reading texts and watching the videos, which teachers had also  

Figure 1. Graph of contribution to learning by percentage of facilitators
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nominated to the same degree in their responses to this question (Helenius et 
al., 2017). Some of the facilitators suggested that the concepts in the texts and 
the films became understandable when they were discussed with the teachers. 
For example, F46 stated, ”Genom att de diskuterade texterna och filmerna med 
varandra och försökte hjälpas åt med vissa begrepp som kunde ibland uppfat-
tas vara svåra att begripa” (By discussing the texts and films with each other 
and trying to help each other with certain concepts that could sometimes be 
perceived as difficult to understand). When the teachers engaged with the con-
cepts, the facilitators noted that they learnt. F21 summarised the impact of the 
PD tasks on the teachers’ learning by stating ”De såg och vågade att kalla saker 
för matematik” (They saw and dared to call things mathematics).

In some responses to the open-ended questions, documentation – when com-
pleted – was highlighted as a valuable tool for supporting conversations. For 
example, F35 stated, ”Dokumentationerna gör att vi kunde få syn på sådant som 
vi inte sett under själva aktiviteten samt kunna diskutera hur vi går vidare” (The 
documentation means that we could see things that we did not see during the 
activity itself and are able to discuss how we are going to proceed). However, 
some comments suggested that the documentation was not completed or only 
connected to being able to see mathematics everywhere (see Helenius et al., 
2017). Not completing the documentation activities could affect teachers’ rela-
tionships with each other, the facilitators and parents, as discussed in the next 
section.

Relationships
In designing the module, we recognised that there were a number of relation-
ships that needed to be supported through the materials. One of these was the 
relationship between us and the teachers. However, when there were facilitators, 
then they and not the materials mediated the content and tasks to the teachers, 
with our relationship to both groups having a different role. 

Table 4 outlines what the facilitators considered to be the most important 
part of their role (they could give more than one answer). It is unclear whether 
the facilitators who nominated ”ensuring the teachers had access to the materi-
als” simply meant distributing the materials or making them understandable to 
the teachers. However, almost all the facilitators saw supporting discussions, 
presumably on the materials, as important. 

In discussing their role in the open-ended question, the facilitators acknow-
ledged that it was sometimes hard to get teachers to engage in the different 

Ensure teachers 
have access to 
the material

Support discus-
sions in sections 
B and D

Support the 
practical tasks 
in section C

Evaluate the 
documentation 

Facilitators (n=59) 37 (63 %) 51 (86 %) 18 (31 %) 23 (39 %)

Table 4. The tasks that the facilitators considered to be most important
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tasks. For example, F38 wrote ”försökte men svårt då jag har kollegor som inte 
tycker att detta varit så roligt” (tried but hard when I have colleagues who do 
not think this was so fun). In this case it seemed that the online materials were 
not in themselves sufficient stimulus for the teachers to engage with the PD. In 
contrast, other facilitators mentioned that the materials seemed to exert pressure 
on the teachers to engage in the tasks. For example, F18 stated, ”Man ’tvingas’ in 
i uppgifter – bra att få lite press på sig så att det blir gjort. De har ändå sett vad 
mycket matematik det finns och går att få in i verksamheten” (One is ”forced” 
into tasks – good to have some pressure put on you so that it gets done. They 
have nevertheless seen how much mathematics there is and that can get into the 
work situation). When the teachers did engage with the materials, the facilitators  
considered they learnt more.

As the designers of the PD materials, we had tried to engage the teachers 
by ensuring that the materials made use of the teachers’ previous experiences. 
41 out of 56 facilitators (73 %) considered that the materials did this quite a lot 
or very much. However as noted earlier, the facilitators identified difficulties 
with comprehending the texts, which could be considered as occasions where 
we, as the designers, had misunderstood the teachers’ competencies. To over-
come these difficulties, the facilitators often mentioned the role of discussions.

F37:  Att få höra vad andra fastnat för i texten, både det som är lätt och svårt har gett 
en ökad förståelse för textens innehåll. Att få förklara det man kan för någon 
annan ger en större förståelse. Kollegialt lärande är toppen, tillsammans är vi 
starka!

  Being able to hear what others got stuck with in the text, both what is easy 
and difficult, has given an increased understanding of the content of the text. 
Explaining what you can [i.e. understand] to someone else gives you a bigger 
understanding. Peer learning is the top, together we are strong!

As the designers of the module, we had wanted the materials and tasks to 
support the teachers to develop their relationships with children, colleagues 
and parents. Figure 2 suggests that the facilitators indicated that this was the 
case, although the impact was the most with children and the least with parents. 
Similar results arose from the teacher survey (Helenius et al., 2017).

Many of the facilitators commented about how teachers’ relationships with 
children could be extended by challenging the children mathematically, ”Att 
lärarna tar tillfällen i akt att lyfta barnens matematiska kunnande, mycket mer 
spontant än tidigare” (The teachers take the opportunity to raise the children’s 
mathematical knowledge much more spontaneously than before) (F56). For this 
facilitator, the materials provided support for teachers to identify mathematical 
learning opportunities for the children, which may have gone unnoticed earlier.

It may be that teachers saw increasing their relationships with children as 
their main role, but had difficulty considering how mathematics education could 
increase their relationship with parents. Therefore, there was a possibility for 
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facilitators to emphasise this through mediating the materials, which might 
have been missed by teachers, focused on what they considered to be their main 
roles. Nevertheless, some facilitators noticed that working with the module did 
provide teachers with new ways to engage parents in discussions about their 
children’s mathematics. For example, F20 stated, ”Vi har blivit bättre på att tala 
om för föräldrarna hur och varför vi arbetat med matematiken i vår vardag” (We 
have become better at telling parents how and why we worked with the mathe-
matics in our everyday). Some facilitators noted that documentation tasks in 
the module supported teachers to have materials that facilitated conversations 
with parents. However, other facilitators noted that it was not always easy to 
talk about the children’s mathematics with their parents, especially when they 
had another mother tongue, ”de har i princip annat hemspråk allihopa och har 
svårt att förstå” (They basically all have different home languages and have 
difficulties understanding) (F19). The materials did not provide suggestions for 
overcoming this problem.

Conclusion
Hill et al. (2013) challenged the PD community to gather evidence from a range 
of different contexts to consider how design elements operate in different local 
situations. The Swedish PD programme for preschool teachers provides one 
such context. Comparing the results from the facilitators with those of the 
teachers (Helenius et al., 2017) indicates that there were many similarities in 
the responses. In regard to the content, the facilitators like the teachers consi- 
dered that the content gave the teachers new insights into mathematics edu-
cation in preschool. However, sometimes time was needed for the teachers to 
understand how to connect the new ideas to what their experiences in preschools 
were and it was the facilitators who had to keep the teachers motivated, while 
they adapted their thinking. 

In regard to the tasks, the facilitators noted that discussions with col-
leagues were very useful in supporting the teachers to make sense of their 
reading. Doing things with children also resulted in the teachers experiencing  

Figure 2. Facilitator views on how the module affected teachers’ relationships
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”aha-moments”. Although the reading of the texts was seen as an important part 
for gaining these moments, there is some research to be done on how to support 
the facilitators to do this. In particular, more needs to be known about how facili-
tators mediate the materials as well as how we as the designers can rewrite some 
of the texts to make them more easily understood, but ensure they introduce the 
teachers to new ideas. This could ease the work of the facilitator in motivating 
the teachers to persevere in reading and making sense of the texts. According 
to the facilitators, doing activities with the children seemed to support teachers 
to elaborate on their relationships with children. To a lesser extent, the facilita-
tors considered that the materials supported the teachers to engage with parents 
about the mathematics education the children were doing. Again, research is 
needed to investigate how to improve the possibilities in the materials to better 
support relationships with parents but also to provide support to facilitators so 
they can better support what opportunities that were already there.
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Critical aspects of equations when 
explored as a part-whole structure

Jane Tuominen, CharloTTa andersson  
and lisa BJörklund BoisTrup

The aim of this paper is to present critical aspects that were identified when students 
explored equations as a part-whole structure with negative numbers included. Stu-
dents in grades 3, 8 and 9 participated in a ”theoretical work”. Learning study was 
used as a research approach and learning activity theory constituted a guiding prin-
ciple when designing research lessons. According to the analysis, five critical aspects 
were identified, regardless of grade. The critical aspects are: there is a relationship 
between all the numbers in an equation; two parts together equals a whole with 
the same value; what constitutes the parts and the whole, respectively; the same 
relationship can be formulated in four different ways; the whole can assume a lower 
value than the parts. 

The aim of this paper is to present critical aspects that were identified when 
students explored relationships, as a part-whole structure, between numbers 
in equations (e.g. Schmittau, 2005). Accordingly, the critical aspects concern 
what students need to discern in order to learn how the numbers in an equation 
relate to each other (cf. Davydov, 2008). The equations consisted of additive 
structures (Vergnaud, 1982) and included negative numbers (integers). One 
challenge concerning teaching negative numbers may be that it is not straight-
forward to explore them empirically by quantities (Schubring, 2005). A reason 
for extending the numbers to negative numbers in this study was to challenge 
an assumption that subtraction tasks always lead to the difference consisting of 
a lower value than the minuend, and that addition tasks lead to the sum consist-
ing of a higher value than the addends (Bishop et al., 2014). Another reason for 
extending the numbers was to challenge students not to just ”know” or ”see” 
the ”answers”. Challenging these assumptions was taken as a way to afford a 
strong focus on the relationship between the numbers in an equation rather than 
a focus on calculations. 

One theme discussed in the literature is that when the focus is only on cal-
culations based on rules and procedures, this may lead to students not being 
given an opportunity to reflect on mathematical structures beyond the rules 

Jane Tuominen, Stockholm University 
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and procedures at hand (Kilpatrick et al., 2001; Mason et al., 2012). Although 
students can solve routine tasks, based on rules and procedures on some occa-
sions, challenges may occur when handling similar tasks in new situations when 
underlying structures are not discerned (Brown et al., 1988). Knowing about 
the inverses of addition and subtraction may be of importance, since subtrac-
tion is frequently declared in previous research as more difficult arithmetic 
than addition (e.g. Baroody, 1984; Brissiaud & Sander, 2010). Previous research 
has focused on addition and subtraction tasks, based on general structures as a 
part-whole structure (e.g. Carpenter et al., 1981). A part-whole structure can be 
depicted as the whole is built up by parts (Carpenter & Moser, 1982; Schmittau, 
2005). Attributing a part-whole structure as a relationship between numbers 
by general symbols and not by specific values, means there is nothing to calcu-
late, which may support students to focus on the general structures (Davydov, 
2008). Focusing on general structures requires first and foremost to notice the 
structure and to analyse relationships between quantities and between numbers 
(Cai & Knuth, 2011; Kieran, 2018).

In this paper, we will answer the research question What do students need 
to discern in order to master equations based on relationships between the 
numbers? The findings discussed in the paper are in conjunction with two 
other articles dealing with contents closely related to each other (Andersson & 
Tuominen, in progress; Tuominen et al., 2018). 

Methodology
The study was conducted with learning study as research approach, since it 
offers a basis for interventions building on systematical and iterative processes 
(Marton, 2015). This was of importance in order to identify what students 
need to discern in order to master equations based on relationships between 
the numbers. In order to address the research question, the notion of critical 
aspects was adopted (cf. Marton, 2015; Marton & Booth, 1997). Critical aspects 
is a core concept deriving from variation theory, a theory of learning. In order 
to learn the intended, in this case, relationships between numbers in equations 
(the object of learning), there are necessary aspects – critical aspects – to be 
discerned. Critical aspects are relational, which means there is an interconnec-
tion between the students, the object of learning, and in which ways the students 
experience the object of learning (Pang & Ki, 2016). In this study, we coordi-
nated variation theory (mainly critical aspects) with learning activity theory 
(Davydov, 2008). Eriksson (2017) claims that the two theories are possible to 
combine in relation to their focus on what students need to learn and how they 
manage the content. Learning activity theory was used as a theoretical guiding 
principle when designing the research lessons, and it also provided a lens with 
regards to the focus when identifying the critical aspects (see Analysis section). 
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Learning activity theory suited our research interest since it addresses the deve-
lopment of students’ consciousness and thinking regarding the theoretical know-
ledge accomplished through theoretical work. This kind of work is characterized 
by what Davydov (2008, p. 115) defines as ”[...] contentful abstraction and gene-
ralization and theoretical concepts, taken as a unity [...]”. Based on learning acti-
vity theory, a starting point is to introduce mathematical content based on general 
structures and subsequently to exemplify the content with specific numbers 
though still based on general structures (Davydov, 2008). In the case of our 
study, the theoretical work concerned relationships between numbers in equa-
tions, and, in order to capture and visualize the abstract properties, a learning  
model (see figure 1) was used (Davydov, 2008; Gorbov & Chudinova, 2000). 

The intention with using the model was to enable students to identify the rela-
tionship between a whole and two parts, and how the same relationship can be 
formulated in four ways (cf. Davydov, 2008). This, in turn, may enable students 
to discern addition and subtraction as inverses (Greer, 2012).

Students, 149 in total, from grades 3, 8 and 9, attending compulsory school, 
participated in the study. The different grades were chosen based on the 
researchers’ experiences as teachers. Initially there were two different pro-
jects, but as the researchers collaborated they noticed that the same tentative 
critical aspects were identified, regardless of grade. Due to this similarity, the 
researchers decided to collaborate in one research project. In total, nine video-
recorded research lessons were conducted, while each student participated in 
one research lesson. According to the students’ teachers, as well as findings 
from interviews with the students (see Tuominen et al., 2018), the students had 
no experiences of teaching based on relationships between numbers in equa-
tions, regardless of the students’ different ages. None of the students in grade 
3 had previous experiences of negative numbers as operands. 

The data material consists of transcribed video recorded research lessons 
and audio recorded interviews, as well as the students’ written expressions from 
the pre- and post-tests, and lessons. The pre- and post-tests were identical and 
consisted, largely of the same content, regardless of grade. Some of the students 
were interviewed after the pre- and post-tests. The intention was to explore how 
students grasped and managed the different tasks. 

-7

9x

Figure 1. The learning model used in our study, inspired by Davydov (2008)
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Initially, during the research lessons, a relationship between quantities was 
explored as a theoretical work. As depicted in figure 2, the whole a was divided 
into two parts by empirical material. 

The relationship between the quantities was formulated with general 
symbols, in this case, with a, c, and ö. The intention with using general symbols 
initially was to enable students to focus on the relationship, not on something 
to calculate. The model in figure 2, constructed by a participating teacher 
and some of the participating students, was used as a learning model. Addi-
tionally, during each research lesson, the model in figure 1, constructed by 
Tuominen and Andersson, was used when the students explored relationships 
between numbers in equations, since it is not straightforward to explore negative 
numbers using quantities. This means that the teaching went from the general 
to the specific, though still as a theoretical work. For example, the students in 
grades 8 and 9 explored equations such as -7 – x = 9 and subsequently formulated 
the same relationship in further three ways (see figure 3). Based on a part-whole 
structure, ”x” and ”9” constitute the parts and ”-7” constitutes the whole; that 
is, ”-7” is built up by ”x” and ”9” (see the second and the third formulations in 
figure 3). This relationship applies regardless of the four formulations. In this 
relationship, the whole assumes a lower value than one of the parts, which is 
valid when negative numbers are included.

Discerning that one relationship can be formulated in several ways is about 
the need to discover that ”[...] any mathematical operation has an unambiguous 
structure [...]” (Davydov, 2008, p. 148). When students discern that the same 
relationship can be formulated in four ways, it may enable them to choose a 
more convenient equation to solve. This can be particularly advantageous when 
negative numbers are included.

Figure 2. A relationship between quantities, formulated by general symbols

-7 – x = 9 
x + 9 = -7
9 + x = -7
-7 – 9 = x

Figure 3. A seemingly difficult equation, reformulated in three ways



Proceedings of Madif 12

Tuominen, Andersson and Björklund Boistrup

227

Analysis 
In order to identify critical aspects, an initial analytical question was formu-
lated: What are indications of critical aspects when exploring equations as a 
part-whole structure in theoretical work? During the process of analysis, the 
focus was on what students expressed, orally and in writing. It showed that there 
was an interplay between the data and previous research concerning critical 
aspects (Marton, 2015; Pang & Ki, 2016), concerning relationships between 
numbers (e.g. Davydov, 2008; Schmittau, 2005), and concerning the theoreti-
cal work (Davydov, 2008). The analysis was conducted as follows. First, the 
video and audio recordings were listened to several times in order to distinguish 
expressions regarding relationships. Second, the recordings were transcribed 
verbatim. Third, the transcripts were read several times and students’ expres-
sions regarding equations and numbers, known or unknown, and mathemati-
cal symbols were highlighted. Also the students’ written expressions from the 
pre- and post-tests, and lessons were analysed according to the same criteria. 
Fourth, whether, and in what way, the students expressed a relationship between 
the numbers in equations (cf. Davydov, 2008; Schmittau, 2005) was analysed, 
interpreted, and categorized. The guiding principle for this was how, in excerpts 
and elsewhere, there were qualitatively different ways (see Marton, 2015) of 
expressing a relationship. This process provided a basis for us to identify critical 
aspects regarding relationships. Finally, the analytical question What do stu-
dents need to discern in order to manage numbers in equations as relational? 
was adopted. This was to support the process of an additional analysis, where 
excerpts from students’ qualitative different expressions were compiled into 
five categories where each, ultimately, represented a critical aspect. 

An example of how we interpreted different expressions is how excerpt 1 
below was read as that Elli did not perceive that a relationship can be formulated 
in different ways, but rather that the two formulations were two separate equa-
tions with no connection between them. The excerpt was regarded as critical 
aspect number 4. Elli’s expression in excerpt 2 below was placed in the critical 
aspect number 5, since it was interpreted that she did not discern the relationship 
between the numbers. Further, it was interpreted as if she supposed that equa-
tions with addition always lead to a sum with higher value than the addends. 
The expression in excerpt 2 differs qualitatively from the expression in excerpt 
1. The five critical aspects are described in the Findings below. 

Findings
The five critical aspects will be presented and exemplified below, through 
descriptions, excerpts, or figures. The critical aspects concern Davydov’s 
(2008) discussion of students’ consciousness and thinking regarding theore-
tical knowledge and work; in the case of this study, exploring equations as 
theoretical work. Based on the fact that critical aspects do not concern what  
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students struggle with, but with what enables them to discern necessary aspects 
(Marton, 2015), there are examples in this section of when students discerned 
and when students did not discern necessary aspects. The order in which the 
critical aspects are presented does not imply the need for them to be discerned 
in that particular order. 

1. There is a relationship between all the numbers in an equation 
The critical aspect there is a relationship between all the numbers in an equa-
tion was manifested in different ways. An instance of when this aspect was 
possible to identify in the data was that several of the students, regardless 
of grade, did not express anything regarding the relationship between all the 
numbers. Rather, the students focused on the numbers in relation to the mathe-
matical signs or the position of the numbers in an equation, without considera-
tion of the other numbers included. One example of that is when students in the 
pre- and post-tests were supposed to formulate the equation x – 5 = 3 in several 
ways. Sometimes, students placed the numbers as, for example, 5 – 3 = x, which 
resulted in a different relationship. In these two equations, ”x” consists of diffe-
rent values. In the analysis, it was interpreted that the students in the theoretical 
work were not conscious of, and did not experience, the importance of focusing 
on all the numbers, simultaneously. 

2. Two parts together equals a whole with the same value
This critical aspect is based on a critical aspect identified in an analysis by 
Tuominen et al. (2018); two quantities together (two parts) build up a third quan-
tity (the whole) with the same ”value” as the two parts together. The critical 
aspect identified in Tuominen et al. concerns quantities (in the form of volume). 
An equivalent critical aspect was also identified in this study. Because it con-
cerns numbers in equations, instead of quantities, it is consequently formulated 
as two parts together equals a whole with the same value. In this analysis, we 
also formulated the same critical aspect, as if one of the parts is taken away 
from the whole the other part is what remains. Formulating the same critical 
aspect in different ways means that various perspectives are adopted, from 
parts or from a whole. An instance of when this critical aspect was possible to 
identify in the video data was when a teacher and students explored the rela-
tionships between quantities by using pieces of paper (figure 2) (cf. Davydov, 
2008). During a research lesson in grade 3, students denominated the whole by 
a and the two parts by c and ö (the letters were chosen by the students) and one 
student suggested expressing the relationship as c + c = a. In the analysis, this 
was interpreted as the student not experiencing how the whole and the parts, 
the quantities a, c and ö, were related to each other. Another student in grade 
3 expressed: ”if you take ö plus c it is equal to a” and later the same student 
expressed: ”a minus ö is equal c”. In the analysis, this was interpreted as the 
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student discerning a relationship between the three numbers and how the same 
relationship can be formulated in two different ways.

3. What constitutes a whole and parts, respectively
Another critical aspect identified in the analysis, is what constitutes a whole and 
parts, respectively. An instance of when the critical aspect was found in the data 
was when students in grade 8, were encouraged in the post-test to mark ”the 
whole” in four different equations. Below, there is a solution from one student, 
who marked the ”answer” as the whole. The student’s markings are depicted in 
bold and underlined (figure 4). Although the answer is the whole when it comes 
to addition, that is not the case when it comes to subtraction. 

In the analysis, the markings in figure 4 indicate that the student did not experience  
the whole based on a part-whole structure. The student rather experienced the 
whole as the answer in the four different equations. 

4. The same relationship can be formulated in four different ways
A further critical aspect is the same relationship can be formulated in four dif-
ferent ways (cf. Davydov, 2008; Schmittau, 2005). An instance of when this 
critical aspect was present in the data was when students in grade 3 were explor-
ing a relationship between the numbers ”x”, ”2” and ”3”. On the whiteboard, 
the teacher wrote two equations showing the same relationship as x + 3 = 2 and 
2 – x = 3. The students were encouraged to identify the whole and the parts, sup-
ported by the model (figure 1) and to formulate the relationship in four ways.

 

Excerpt 1, grade 3

Teacher: What is the whole? [The teacher points to the whiteboard] 
Elli: Ah, wait ... Are we talking about the first [equation] ?

The communication in excerpt 1 is an instance of this critical aspect. The 
example demonstrates indications of a student not expressing that the two equa-
tions represent the same relationship and thus, that the whole and the parts are 
the same regardless of the two shown equations. What the student expressed 
was interpreted in the analysis as the student rather experiencing the two  
separate equations as two different relationships. 

2 + 7 = 9
(-7) + 2 = (-5)
2 – 7 = (-5)

(-7) – 2 = (-9)

Figure 4. The whole experienced as the answer
Note. The equations are reconstructed due to the poor quality of the original. 
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5. The whole can assume a lower value than the parts
Finally, the critical aspect the whole can assume a lower value than the parts 
will be presented. An example of when the whole assumes a lower value than 
one of its parts is from the example above when students in grade 3 explored 
the relationship between the numbers in x + 3 = 2 and 2 – x = 3. The students were 
encouraged to identify the relationship supported by the learning model (figure 
1) and initially to identify the whole. What encouraged the students to formulate 
the relationship in four different ways was that the students were asked to find 
an appropriate operation in order to find the value of the unknown number ”x”. 
This is reproduced in excerpt 2 below.

Excerpt 2, grade 3

Teacher: What is the whole? [The teacher points at the whiteboard]  [...] 
Elli: We did so that we, the whole ... we thought the whole was five, since we 

turned it around so it instead became two plus three equals as something. 
We somehow turned direction [change the value of the whole and the parts]. 
We turned a little.

Excerpt 2 is an instance of the critical aspect. Based on Elli’s expression, the 
students in the group seemed to be aware that they had altered the equation. In 
the analysis, this was interpreted as if the students supposed that equations with 
addition always lead to a sum with a higher value than the addends. Similar 
examples were identified with students in grade 9. Further, it was interpreted 
that students did not discern a relationship. In another example, Ali, a student 
in grade 3, expressed: ”And that [points at x], ’one-minus’ plus three is equal 
to two”. In the analysis, this was interpreted as if the student discerned that a 
whole can assume a lower value than the parts, i.e. that the student discerned 
this critical aspect.

Summary of findings and concluding discussion
In the analysis, five critical aspects were identified when students participated 
in teaching inspired by learning activity theory (see Davydov, 2008). Previous 
research regarding relationships as a part-whole structure (e.g. Davydov, 2008; 
Schmittau, 2005), inspired us when exploring equations in order to identify cri-
tical aspects. So far, we have not found previous research regarding a part-whole 
structure where the whole assumes a lower value than the parts. For that reason, 
the critical aspect number 5, presented above, emerged in this empirical study. 
According to variation theory, an assumption is that in order to distinguish 
”new aspects”, the teacher needs to take the differences between respective 
critical aspects into account, when designing the teaching (cf. Marton, 2015). 
Hence, five critical aspects could be perceived as too many. However, we argue 
there are justifiably five critical aspects concerning relationships and equations  
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including negative numbers. One reason for including all five critical aspects 
may be that none of the students had previous experiences of being taught 
general mathematical structures. The assumption can be supported by Pang 
and Ki’s (2016) emphasis that there is an interconnection between the students, 
the object of learning, and the ways in which students experience the object 
of learning. 

Cai and Knuth (2011) claim there is a need for analysing relationships 
between quantities and between numbers and noticing structures. We argue it 
is not enough to notice structures. First, there is a need to experience that there 
is a relationship between the numbers in an equation. We also claim, that it is not 
enough to experience a relationship between two of the numbers, for example, 
between x – 5 in the equation x – 5 = 3. The numbers are not solitaires, which can 
be manipulated one by one when exploring equations as a relationship. Drawing 
on this, we state that students benefit from discerning the relationship between 
all the numbers in an equation. 

The critical aspect two parts together equals a whole with same value as the 
two parts together is based on a part-whole structure, which in turn requires 
that students need to discern what constitute the parts and the whole, respec-
tively, and further, simultaneously. When students are not already familiar with 
teaching based on general structures and the intention is to enable students to 
focus on a structure, there may be a need for initially exploring equations with 
quantities and using general symbols (cf. Davydov, 2008). Without anything to 
calculate, it may enable students to identify, for example, a part-whole structure 
(cf. Schmittau, 2005). 

When the critical aspect the same relationship can be formulated in four dif-
ferent ways was explored, the learning model (figure 1) came to play an impor-
tant role for some of the students. The learning model functioned as a mediating 
tool and enabled students to identify and formulate all four equations, reflect-
ing the same relationship (cf. Davydov, 2008; Gorbov & Chudinova, 2000). 
Nevertheless, some of the students did not experience that x + 3 = 2 and 2 – x = 3 
concern the same relationship. Although the critical aspects are many, they are 
intertwined. Maybe the critical aspect the whole can assume a lower value than 
the parts, stands out from the others. 

When analysing research lessons, it became clear that the choice of values 
in equations was important. When the numbers in the equations were too 
simple, the students did not focus on general structures as relationships between 
numbers, and thus the part-whole structure. Students rather tried to solve the 
equations as they were used to doing – by rules and procedures – which was 
not always advantageous, since some students did not remember the rules and 
procedures (cf. Brown et al., 1988). Further, when the values of the numbers 
were too simple, there was no need for a learning model, nor the four formula-
tions. When not challenging the students by using negative numbers, the whole 
always assumes a higher value than one or all of the parts. This can lead to an 
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undesirable experience (Bishop et al., 2014). For that reason, negative numbers 
were of importance in this study. Visualizing a part-whole structure and that 
one relationship can be formulated in four different ways, has been shown to 
be powerful in this paper, not the least when negative numbers are included 
in equations (figure 3). Further, when students are proficient in addition and  
subtraction as inverses and in additive structures, it may enable them to choose 
an appropriate (for them) and convenient operation when solving equations  
(cf. Greer, 2012; Vergnaud, 1982). 

There are limitations in the study. For example, the students participated in a 
teaching context concerning a content (general mathematical structures), which 
were unfamiliar. Despite that, we argue, there are implications for teaching. It is 
worth changing teaching from merely focusing on calculations based on rules 
and procedures, into teaching based on general structures. One reason is that 
the older students mostly focused on calculations based on rules and procedures, 
even despite (see Uziel & Amit, 2019) having attended school for many years. 
Another reason is that several of the younger students solved equations such as 
x + 3 = 2, supported by the learning model even though they had no experience of 
exploring equations as a part-whole structure or experience of negative numbers 
as operands. Although critical aspects are relational, teachers can use the criti-
cal aspects identified in our study as a starting point when planning lessons 
when teaching concerns relationships between numbers in equations. In order 
to determine whether the critical aspects need to be discerned in a specific order, 
more research is required. This can be seen as another limitation in this study.
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Eliciting pre-service secondary  
teachers’ initial ideas of sampling

Jonas Bergman ÄrleBÄck and Peter FreJd

This paper investigates secondary pre-service teachers’ strategies of sampling. The 
work of eight groups of pre-service secondary teachers asked to devise and imple-
ment a sampling strategy to answer two questions about three given populations 
of different sizes are analyzed. The result presented highlights the models devised 
and used by the groups. The paper especially discusses the pre-service teachers’ 
models of samplings in term of how the number of samples and sample size used 
were decided on in the model as fixed, interval-static, or dynamic. 

At the heart of statistics, or statistical thinking, ”is a general, fundamental, 
and independent mode of reasoning about data, variation, and chance” (Moore 
1998, p. 1257). A key activity giving access to, and capture, different types of 
variability in the phenomena being studied is sampling (Franklin et al, 2007). 
Indeed, ”[t]aking representative samples of data and using samples to make 
inferences about unknown populations are at the core of statistics” (Ben-Zvi 
et al., 2015, p. 292). In addition, sampling, giving rise to various types of varia-
bility, is an important aspect to consider in relation to the emerging field of Big 
Data (Manyika et al., 2011). 

Although statistics is part of the core content of the mathematics curricu-
lum for the Swedish secondary school, it is surprising that the concepts sample 
or sampling are not explicitly mentioned or listed in connection with learning 
goals or examination criteria. Nevertheless, in the lower secondary curriculum 
(Skolverket, 2011a) the students are supposed to conduct and work with their 
own statistical investigations, which by necessity have to include samples and 
sampling. In the upper secondary curriculum (Skolverket, 2011b), the students 
are supposed to examine ”how statistical methods and results are used in society 
and professional life” as well as use ”statistical methods for reporting observa-
tion and data from surveys, including regression analysis”, which both imply 
understanding and taking aspects of sampling into account.

However, as pointed out by Watson and English (2016), students’ difficulties 
related to ideas of single and repeated sampling, as well as sampling distribu-
tions, are well documented in the statistics education research. For teachers to be 

Jonas Bergman Ärlebäck, Linköping University 
Peter Frejd, Linköping University
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able to support their students’ learning and development to overcome their dif-
ficulties, they need solid and deep understanding of the concepts at hand (Ball 
et al., 2008). In order to prepare our pre-service secondary teachers (P-SSTs) 
for this task, a natural motivating question then becomes: ”What are P-SSTs’ 
understandings of sampling?”. To investigate secondary P-SSTs’ strategies and 
ideas of sampling, we in this paper analyze the work of eight groups of P-SSTs 
asked to devise and implement a sampling strategy to answer two questions 
about three given populations of different sizes.

Aim and research question
The study presented in this paper is part of a larger project focusing on design-
ing sequences of classroom activities facilitating the learning of statistical ideas 
and concepts, such as sampling. Our goal is to answer the following research 
question: What sampling strategies and mathematical models do P-SSTs use 
and develop when working on an activity of sampling?

The aim of identifying the approaches of sampling taken by the P-SSTs, is to 
facilitate the design of follow-up activities that potentially can support P-SSTs 
and students continued development of statistical ideas. 

Previous research on sampling 
Generally, learning statistics has proven to be a challenging endeavor for  
learners of all ages, and research has shown that students often learn statistical 
procedures that they understand poorly and they do not know when and where 
and why to apply them (Batanero et al., 2011; Shaughnessy, 2007).

With respect to sampling, difficulties among teachers and students to grasp the 
ideas of sampling and sampling distributions is well documented in the research 
literature (Watson & English, 2016). For example, some students struggle  
with describing the relation between an estimated population statistic and an 
increased numbers of statistic samples, whilst other students have developed 
ideas about the necessity of taking multiple samples in order to be able to make 
statistical inferences. In addition, regarding sample size, Ben-Zvi et al. (2015, 
p. 296) review of the literature points at ”students’ statistical intuitions as not 
always being incorrect, but they may be crude and can be developed into correct 
conceptions through carefully designed instructions”. Students tend to answer 
questions about which sample size is most accurate to use in a given setting 
more perspicacious, than questions on selecting a particular sample to generate 
a value in the tail of a population distribution. Also, difficulties in differentiat-
ing between the sample distribution and the population distribution is found 
among both students and teachers (Doerr & Jacob, 2011). 

Using surveys and interviews from 62 students in grades 3, 6 and 9, Watson 
and Moritz (2000) investigated students’ different sophistication in their deve-
loped concept of sampling. They identified and described six dispositions 
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taken by the students: (i) small samplers without selection; (ii) small samp-
lers with primitive random selection; (iii) small samplers with preselection of 
results, (iv) large samplers with random distribution or distributed selection, 
(v) large samplers sensitive to bias, and (vi) equivocal samplers. Disregarding 
the last disposition, Watson and Moritz found a progression from (i) to (v) with  
increasing grade. 

In summary, the findings above show that aspects related to sampling may 
cause students to struggle in different ways, both concerning the concept in 
itself and regarding what procedures to use for determining an accurate sample 
size. However, progression in students’ sampling techniques is also found. 

Some theoretical consideration on sampling
Determining a method of sampling can be challenging (Ben-Zvi et al., 2015), 
and in order to establish an appropriate model for sampling, factors like sample 
size, population size, the aim of the study being conducted, the risks of badly 
selected samples as well as sampling errors, need to be considered. Miaoulis 
and Michener (1976) describe and discuss these factors in terms of the level of 
confidence (risk level), the level of precision (sampling error), and the degree of 
variability of the properties being measured (the distribution of properties in the 
population). All these are important to consider when determining an adequate 
sample size, but there is always a risk that the sample selected does not scale 
up to represent the population. There are basically two approaches to samp-
ling, with clear connections to classical combinatorics and probability theory: 
single sample or multi-sample sampling – and in the latter case with or without 
replacement between samples. Single sampling methods are most common 
in many contexts (such as election polls) and have a theoretical basis built 
on proportionality or a given distribution. The mathematics of multi-sample  
sampling methods (with or without replacement) are technically generally much 
more complex, but thanks to the central limit theorem among other things, 
provide powerful approaches. 

There are different strategies for estimating sampling size, but to calculate a 
representative sample size for sampling (without replacement) either large and 
small populations, the Cochran’s formulas may be used (Cochran, 1963) (table 1).

Large population Small population

Table 1. Cochran’s formulas for large- and small populations

Notes. n = sample size, m = the desired level of precision, p = degree of variability, N = size of 
the population, z = the desired level of confidence, which can be found in statistical tables
connected to the area under the normal distribution curve.
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An illustration of the use of Cochran’s formulas to determine sample size is 
given below in the section The activity Polling. 

Methodology
For this study we adopt the models and modelling perspective on teaching and 
learning (Lesh & Doerr, 2003). This theoretical framework provides us with a 
tool for designing activities for the P-SSTs to work on, as well as a tool for ana-
lyzing the P-SSTs’ developed sampling strategies and models. Below we first 
elaborate on this perspective below, then describe the design of the activity, and 
the data collection and the analysis. 

The models and modeling perspective 
The models and modeling perspective (Lesh & Doerr, 2003), generally defines 
a model as a system consisting of elements, relationships, rules and opera-
tions that can be used to make sense of, explain, predict or describe some  
other system. In particular, a mathematical model focuses on the structural 
characteristics of the system in question. From this perspective, Lesh and Harel 
(2003) stress that learning is developing useful and generalized models that 
are made up of (1) a set of concepts used to describe or explain the mathemati-
cal objects relevant to the phenomenon studied, and (2) procedures that can be 
used or re-used to create useful constructions, manipulations, or predictions for  
achieving clearly recognized goals in a range of contexts.

Model development sequences are instructional sequence of modeling acti-
vities designed to support the development of learners’ use and understanding 
of a given model (Lesh et al., 2003), and are constituted of three types of model-
ling activities: model eliciting activities (MEAs); model exploration activities 
(MXAs); and model application activities (MAAs). The point of departure in 
a model development sequence is always a MEA, which is a meaningful and 
realistic problem situation aiming at eliciting the ideas learners already have 
with respect to the learning goal of the sequence. To facilitate this eliciting, Lesh 
et al. (2000) developed six design principles for MEAs (model construction-; 
reality-; self-assessment-; model documentation-; shareability and reusabi-
lity-; and effective prototype principle). In model development sequences, the 
initial MEA is then followed by one or more MXAs and MAAs. In MXAs, the 
focus is on the underlying mathematical structure of the elicited model, typi-
cally by exploring various ways of constructing, illustrating, interpreting and 
using different representation of the model. In MAAs on the other hand, the 
aim is to engage learners in adapting and applying their models in new contexts. 
All three types of activities are designed in such a way, that learners engage 
in an iterative process of expressing, testing and revising their ideas, which 
results in the learners developing and adapting their models (Lesh & Doerr, 
2003; Lesh et al., 2003). 
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The activity Polling
The activity the P-SSTs worked on was designed using the six design principles 
for MEAs to elicit P-SSTs’ approaches around sampling strategies. The activity, 
Polling, was designed as a cross-curriculum- and interdisciplinary topic with the 
social sciences in the context of election Gallup polls (the reality principle). The 
activity Polling included two questions asking the P-SSTs to devise a strategy 
and procedure (model construction principle) for taking samples of three diffe-
rent sized populations (the shareability and reusability principle) in order make 
an inference to the larger populations, and to write this down (the model docu-
mentation principle). In accordance with the effective prototype principle, the 
activity was designed around hands-on material simulating the three different 
population to facilitate and inspire the P-SSTs’ thinking about the problem situa- 
tion and the task. The activity included a closed envelope with data of the actual 
distributions of the three populations, which the P-SSTs were going to open in 
the end of the activity to be used as a reference to reflect and discuss strengths 
and weaknesses of their strategy and models (the self-assessment principle).

In short, the instructions given to the P-SSTs were to develop, describe and 
investigate statistical sampling strategies aimed at describing a given attri-
bute in given different sized populations, in terms of answering the following 
questions:
Q1. How many different categories of a particular attribute are represented in 

a given population of size N?

Q2. What is the distribution of a particular attribute in a given population of 
size N? 

In order to answer these questions, the activity included seven jars containing 
a predefined number of beads of different colors (see figure 1b). Each bead rep-
resented an individual in the population, and the different colors of the beads 
represented the different categories of the attribute being examined.

Three of the jars contained 20 beads, two jars contained 400 beads and two 
jars contained 10,000 beads. All jars had different distributions (one roughly 
uniform and one skew for each population size), and the population size 
explicitly written on the jars. The P-SSTs were allowed to freely explore and  

Figure 1a. P-SSTs enacting their sampling strategy; 1b: The seven jars of beads 
and the sample taking device SaTaDev
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investigate one of the jars containing 20 beads (an ”open” jar with known dis-
tribution) before applying their developed statistical sampling strategy on the 
other six jars which all were ”closed jars” (with, for the P-SSTs, unknown dis-
tributions until the very end of the activity). To facilitate the actual sampling of 
the beads the P-SSTs could use, the sample taking device SaTaDev, a plastic pipe 
of suitable diameter sawed in half length-wised with closed ends (see figure 1b).

Returning to Cochran’s formulas in table 1, we can determine the sample 
size for the populations of beads in the activity Polling as follows: The variabi-
lity is assumed to be unknown and we adopt the maximum variability of 50 % 
(p = .5). For our purposes, we chose a 95 % confidence level (z = 1.96) and ± 5 % 
precision (m = .05). The populations, the number of beads in the jars, are N =  20, 
400 and 10 000. Using the formula for large populations in table 1 to calculate 
the sample size produces n > 385 for all three populations. However, using the 
formula for small populations with finite population correction produces n > 19, 
193, 370. The calculated sample sizes above show the importance of consider 
the finite population correction, at least in the cases where N < 10 000.

The data collection and analysis
The study followed the Swedish Research Council’s ethical principles with the 
requirements of information, approval, confidentiality and consent. Twenty-five 
secondary P-SSTs enrolled in 2019 in a teacher training program for secondary 
mathematics teachers (grades 7–9 and 10–12 respectively) participated in the 
study. All P-SSTs had all taken at least one semester of mathematics courses 
on topics such as calculus, linear algebra, statistics and mathematics education 
before participating in the study. As part of an ongoing course in mathema-
tics education the P-SSTs worked on the activity Polling for 2 hours divided 
into eight groups of 2–4 P-SSTs in individual rooms. The P-SSTs were asked 
to think-out-loud what they were thinking during the activity. In addition to 
collecting the written work done by the groups, six of the groups were video-
taped (see figure 1a) and two groups were audio recorded. In this paper we 
focus the analysis on the P-SSTs’ written work, but consulted the video/audio 
when the details of the P-SSTs’ writing were non-conclusive. Based on their 
written work, the sampling strategies and models develop by the P-SSTs were 
analyzed and categorized with respect to sample procedure, sample size and 
method of inference, as well as if and how these varied for the different sized 
populations. The emerging categories describing the variation and commona-
lities the P-SSTs’ strategies and models, and the result of the analysis in terms 
of these, are presented below. 

Result
The analysis of the P-SSTs’ work shows that six of the eight groups used the 
same model to sample the populations to answer the two question Q1 and Q2 
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(see Q1/Q2 in table 2). Further, the fundamental strategy used by all groups 
to answer the questions were to make a statistical inference based on scaling 
up the proportions found through their sampling procedure proportionally to 
the whole population. Table 2 below briefly summaries the different models  
developed and implemented by the groups. 

Table 3 below summaries the three features of the P-SSTs’ models for making 
an inference about the given populations in terms of (1) whether or not the 
sampled beads were put back in the jars between samples (replacement – in 
the cases where this is applicable); (2) the number of samples taken; and (3) the 
sample size. The number of samples taken and the sample sizes in the models 
were both categorized as either fixed, interval-static or dynamic. In this context, 
fixed signifies that the number of samples or the sample size used in the model 
was fixed and independent of the population size. Interval-static means that pre-
defined intervals for presumptive studied populations were used to determine 
the numbers of samples or the sample size. Dynamic in this context means that 
the number of samples or the sample size used were determined by a (non step-)
function of the population size.

With respect to the number of samples taken (the column # of samples in 
table 3), all but three groups used a fixed number of samples in their models; 
two groups (2, 5) used an interval-static method, and one group (6) a dynamic 
method. The fixed number of samples taken varied between 1 and 10. Both the 
groups (3, 8) who used different models to answer Q1 and Q2 used the same 

Group Strategy/ mathematical model
1 Q1/Q2: For an N-sized population, take one sample of size √N  + 5.

2 Q1/Q2: Repeat a sample strategy of 10 beads with replacement; 4 samples for the jar 
with 20 beads; 8 for 400 beads and 16 for 10 000 beads. 

3 Q1: One sample of maximum 200 beads. Hence: for the 20 bead jar sample all; for the 
400 and 10 000 bead jars sample 200 beads (50 % or 2 %). 
Q2: Sampling strategy with replacement using 5 samples. The sample size for the 20, 
400 and 10 000 beads jars are 5, 20 and 20 beads. 

4 Q1/Q2: 10 samples with replacement of size 5. 

5 Q1/Q2: Sampling with replacement. For the 20 bead jar: 4 samples á 5 beads; for the 
400 and 10 000 bead jars: 3 samples using the SaTaDev (20–23 beads). 

6 Q1/Q2: For a population ≤ 20: sample, with replacement, 10 beads (population size 
x 4) / 10 times. For population > 20: sample with, replacement, 20 beads (population 
size x 4) / 20 times.

7 Q1/Q2: If the jar contains 1–100 beads collect 100 %; 101–999 beads collect 10 %; 
1000–9999 collect 5 %; and > 10 000 beads collect 1 %.

8 Q1: Five samples with replacement of size 1 % of the population (but at least 2 beads). 
Q2: One sample of (# colors found in Q1) x 10, but max half the population. 

Table 2. The eight models developed by the P-SSTs to answer Q1 and Q2 in the 
Polling! activity
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type of method (fixed) for determining the numbers of samples in both cases. 
The interval-static model of group 2 consists of a list of the number of samples 
for the different population sizes, whereas group 5 introduced a population 
size threshold dictating whether to take four or three samples. Group 6 used 
a dynamic model in which the number of samples taken is proportional to the 
population size (see table 2). All the groups taking more than one sample used 
replacement of previously sampled beads in their sampling models.

Turning to the sample sizes (the column Sample size in table 3) the P-SSTs 
used in their models, two of the groups (2, 4) used a fixed sample size regard-
less the size of the population, and three of the groups (3, 5, 6) used an interval-
static method (including group 3 who used it twice). Three of the groups (1, 7, 
8) used a dynamic model to decide what sample size to use. The interval-static 
model implemented by group 5 is based on the same threshold idea that the 
group adapted for determining the number of samples. However, in this case the 
group differentiated between taking samples of five beads or using the SaTaDev, 
which gave them a sample of 20 to 23 beads. The dynamic model applied by 
group 7 on the other hand is based on the sample size being a certain proportion 
of the population, but with a varying proportionality factor. In the case of group 
8, their dynamic model to determine the sample size to use in answering Q2 was, 
so to speak, ”Q1-dependent”, in that their answer to Q1 was an explicit factor 
in their model determining the sample size used for answering Q2 (see table 2).

Looking across what approaches the groups used in their models for deter-
mining the number of samples and sample size, we found 6 different combi-
nations. The most frequent combination of approaches taken was to combine 
a sampling model using a single sample and deciding the sample size using a 
dynamic approach (fixed – dynamic). The other combinations are (see table 
3): interval-static – fixed; fixed – interval-static; fixed – fixed; interval-static 

Group Same or different models Features of model
Q1+Q2 Q1 Q2 Replacement # of samples Sample size

1 x d.n.a. fixed ( = 1) dynamic

2 x yes interval-static fixed ( = 10)

3 - x d.n.a. fixed ( = 1) interval-static

x yes fixed ( = 5) interval-static

4 x yes fixed ( = 10) fixed ( = 5)

5 x yes interval-static interval-static

6 x yes dynamic interval-static

7 x d.n.a. fixed ( = 1) dynamic

8 - x yes fixed ( = 5) dynamic

x d.n.a. fixed ( = 1) dynamic

Table 3. Identified key features of the P-SSTs’ mathematical models

Note. d.n.a is an abbreviation of do not apply
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– interval-static; and dynamic – interval-static. Taken together, these models 
show how the P-SSTs attempted to develop a sampling method that would be 
sensitive to the size of the population studied. Most groups did this by adjust-
ing either only the number of samples taken (groups 2, 5 and 6 did this), or only 
the sample size (groups 3, 7 and 8 did this). Group 5 developed a model that 
uses an interval-static approach to account for the population size in both the 
number of samples taken and the size of the samples. Only one of the groups 
(4) provided a model that does not at all consider the size of the studied popula-
tion, but rather took 10 samples (with replacement) of sample size 5 regardless 
of population size.

It is interesting to note that the model for determining the one-time-use-only 
sample size in the sampling strategy developed by groups 1, √N + 5, the cor-
rection ”+ 5” was added to their originally suggested sample size of √N, as an 
attempt to achieve a better prediction for small finite populations. 

Conclusion and discussion
The models developed and used by the participating P-SSTs included sampling 
strategies based on both single and multiple samples, and considered situa-
tions both with and without replacement. The models developed to answer the 
two questions Q1 and Q2 were seen to be based on either fixed, interval-static 
or dynamic approaches to specify the number of samples to take as well as to 
determine the sample size. The most common sampling model the P-SSTs used 
ended up having a single fixed sample and the sample size was decided by using 
a dynamic approach (fixed – dynamic).

Our result shows, somewhat contrary to the claim by Watson and English 
(2016), that five out of the eight groups were comfortable in making an inference 
about the whole population based on a single sample. In addition, the models, 
developed by the groups using repeated sampling, did not build on ideas directly 
related to the central limit theorem. However, if this is due to the P-SSTs not 
having a solid enough understanding of the relationship between sampling dis-
tributions and population distribution (and how to exploit this) as suggested by 
Doerr and Jacob (2011), is an open question.

Although the activity Polling elicited a variety of models, they are all 
qualitatively different from more standard models used to determine sample 
size (such as Cochran’s (1963) formulas). Instead, the models displayed by the 
P-SSTs’ seem to be more ”homegrown”, but do however point to the awareness 
about how crucial the adaptation of the sampling procedure is for the validity 
of the end result. Nevertheless, given that the P-SSTs had taken a course in sta-
tistics, it is somewhat surprising that none of the important aspects according 
to Miaoulis and Michener (1976), and explicit in the Cochran’s (1963) formals 
related to sampling (i.e. the level of confidence, the level of precision, or the 
degree of variability), are discernable in the groups’ models. It should be noted 
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however, that we have only analyzed the written work of the P-SSTs, and that 
a more detailed analysis of the groups’ 2h-work and discussions most probably 
would provide a more nuanced picture; also with respect to what is pointed out 
and conspicuously absent above. This is a topic for future investigation and 
research. 

We do not generalize our results beyond our sample, but our experience 
and results are in line with the argument by Ben-Zvi et al. (2015), that stu-
dents in general have statistical intuitions and crude emerging ideas that can be 
expressed and used as a basis for designing productive learning experiences to 
further their understanding and abilities. Indeed, from a models and modeling 
perspective, the richness of ideas in the P-SSTs’ developed models of sampling 
suggest that there are potentially many productive ways to design MXAs and 
MAAs to follow up the activity Polling, and to further support the develop-
ment and learning of the P-SSTs. For sequential MXAs and MAAs one option 
could be to let the groups continue to explore their devised models by creat-
ing own simulations using programming in a suitable high-level language like 
Python or using a software especially developed for the teaching and learning of  
statistics like Fathom or ThinkerPlots.
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Methodological reflections of repeated interviews on 
teaching and learning mathematics 

Helena Roos

Linnaeus University

This paper is an exploration of what a qualitative method, interviews with 
students, can provide to mathematics education research and critical points 
important to take into consideration. In particular, if using repeated interviews 
with the same informants over time, what can be gained in relation to research 
quality? The argument made is that repeated interviews can provide with in 
depth knowledge and a grasp of students meaning(s). Critical points found 
were; person-dependency, ethical considerations, an interview re-interview 
effect, and a connection between interview as a method and the aim of the 
study. These critical points are of importance to discuss and reflect upon all 
through the research process. If doing so, all these critical points can be used as 
a quality criterion when producing in depth knowledge in qualitative research.

Sustainable assessment in mathematics: a matter of 
access and participation

anette BaggeR

Örebro University

Success in mathematics is closely connected to participation in mandatory 
national test-taking. Sustainable assessment in mathematics for students with 
disabilities has shown to be challenging. The purpose of this article is to inves-
tigate if and how a model on participation might be useful for promoting the 
opportunity to display knowledge in mathematics, for all students. A conclu-
sion drawn is that the kind of support given, the level of mathematical know-
ledge and participation pre-supposes each other for students with disabilities.
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Unpacking “Language as resource”– the case of  
mathematics education in Sweden

UlRika Ryan, PetRa svensson källBeRg and  
lisa BjöRklUnd BoistRUP

Malmö University

In this paper we unpack epistemological aspects of language and mathematics 
potentials embedded in the ”language as resource” discourse. We use research 
literature, policy, and interviews with a mathematics teacher and a multilingual 
student to illustrate the potentials and how they are realised in the material. We 
identified a ”lever potential” and ”one new whole” potential. To consider the 
potentials in a nuanced way, we propose an analytical model which contributes 
with theoretical conceptualizations that allows for grasping a relation between 
epistemologies of language and mathematics from the perspective of the  
language as resource discourse.
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Evaluating numeracy apps in 
different cultural contexts

AleksAnder VerAksA, CArme BAlAguer,  
silje ChristiAnsen And tAmsin meAney

The proliferation of mathematical apps available for young children requires early 
childhood teachers to be able to effectively evaluate their potential usefulness. As a 
result of a symposium on evaluating popular numeracy apps in three regions of the 
world, we describe the similarities and differences from using different evaluation 
tools. The results show that regardless of the evaluation tools used or the content of 
the local curriculum, the researchers focused on many of the same aspects, such as 
how the apps provided feedback to the children. Differences in the evaluations were 
to do with how much emphasis was placed on preparing children for school and on 
how mathematical understandings were represented.

In this paper, we bring together our experiences from evaluating popular nume-
racy apps in three different regions of the world, which we presented as a sym- 
posium at MADIF-12. Being able to evaluate apps is an important aspect of 
teachers’ work with digital tools in early childhood institutions. Research sug-
gests that teacher knowledge and competencies are important in determin-
ing if digital tools can ”act as a tool in the learning process for the children” 
(Alvestad & Jernes, 2014, p. 3). If early childhood teachers lack education and 
experiences in using digital apps with young children, then commercial deve-
lopers may gain more influence in educational practices than the curricula and 
policy documents intend (Alvestad & Jernes, 2014). The proliferation of digital 
apps, especially for young learners (Larkin, 2013), suggests that commercial 
developers do believe that there is a strong market for producing educational 
mathematical apps for young children. Consequently, understanding how to 
evaluate their potential usefulness is important for teachers who need to make 
choices in their work with children.

Currently, there are few evaluation tools available to teachers (Handal et al., 
2016), particularly for early childhood settings with a focus on mathematics  
(Papadakis et al., 2017). Of the evaluation tools that are available, many are not 
specific to mathematics (Handal et al., 2016) or do not include an awareness  
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Silje Christiansen, Western Norway University of Applied Sciences  
Tamsin Meaney, Western Norway University of Applied Sciences



Symposium

248 Proceedings of Madif 12

of cultural differences in curricula (see for example, Papadakis et al., 2017). 
Thus, in this paper, researchers in three different regions of the world evaluate 
common numeracy apps designed for young children in those regions. Although 
it is difficult to compare early childhood education and care (ECEC) in diffe-
rent education systems (Samuelsson et al., 2018), we considered that the diffe-
rences in our cultural contexts could provide valuable insights into the generic 
and specific aspects needed in app evaluation tools. Thus our aim for this paper, 
is to document the similarities and differences in our evaluations as a way 
of understanding which contextual factors might affect the identification of  
appropriate digital apps for specific situations.

Evaluating apps: issues to consider
To undertake the exploration, we focused on apps about number concepts and 
their relationship to regional curricula and cultural context (see figure 1) as they 
were considered in the evaluation tools, chosen by individual research groups. 
We focused on apps about number concepts, because much of the research in 
mathematics education for young children highlights the importance of these 
concepts, including in studies about digital tools (Rothschild & Williams, 
2015). Although regional curricula are affected by government policy, number 
understandings were a focus in curricula from the three regions, Norway, Cata-
lonia and Moscow. To allow for cultural and curricula differences, individual 
research groups chose an evaluation tool which they considered relevant for 
their contexts.

Curricula differences
The curricula used in all three regions required young children to engage with 
mathematical ideas. The Norwegian curriculum for early childhood, known as 
The framework plan, includes the learning area ”Quantities, shapes and spaces” 
(Ministry of Education, 2017), which is linked to Bishop’s (1988) fundamental 
mathematical activities (Reikerås, 2008). The Framework plan provides only 

Figure 1. analysing the alignment of early childhood curricula with digital apps 
and evaluation tools
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broad guidelines for early childhood teachers, with the pedagogy for introduc-
ing ideas to children also not described in detail. However, it does state, ”Play 
shall be a key focus in kindergarten, and the inherent value of play shall be 
acknowledged” (Ministry of Education, 2017, p. 20). This suggests that formal 
teacher-led ”lessons” would not be appropriate. 

In the Russian Federation, special emphasis is placed on the system-forming 
role of mathematics in education (Rasporyazhenie, 2013). Mathematical pro-
grams for preschool and primary school education, including the participation 
of the family, provide possibilities for mastering forms of activity, elementary 
mathematical notions, ideas and images, as well as the digital environment 
and conditions for extracurricular activities. The Federal state educational 
standards for elementary education (FSESEE) highlights the need to ensure 
continuity of learning experiences into the early years of school. FSESEE pro-
vides more detail that the Norwegian Framework plan. For example, in regard 
to number concepts, it states:

– To know: numbers from 0 to 9, the meaning of the signs ”+”, ”–”, ”=”, 
”>”, ”<”.

– To be able: to count forward and backward up to10, to name a number 
within a range of 10, preceding the one named and the one following it, 
to indicate the quantity of objects with the help of numbers, to solve and 
make simple addition and subtraction tasks up to 10, to compose numbers 
up to 10 out of ones

A review of the main mathematical manuals used in early childhood institu-
tions and/or those recommended by experts for this purpose in Russia (Veraksa 
et al., 2016; Novikova, 2018; Salmina, 1994; Fedosova, 2018) indicates that the 
main methods of number concept formation in preschool is:

– Visually figurative, symbolic;

– Visually active, practical;

– A sequential combination of the above methods.

Similarly, the curriculum for 3–6 years olds in Catalonia, known as Decree 
181/2008 2nd cycle (3–6 years) childhood education (structure), frequently 
refers to the importance of number knowledge as an integral part of the society. 
Children must recognise number (quantity and symbol) as a communicative 
tool for living in the world. Decree 181/2008 provides more detail than the 
Norwegian Framework plan, in that it lists specific skills and objectives that 
children should gain in early childhood institutions. For example, one skill is, 
”Think, create, elaborate explanations and get started on basic mathematical 
skills”. Although not stated explicitly in the curriculum, there is an expectation 
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that children will be presented with number understandings in a specific order, 
similar to the situation in Russia. First, the children need to identify quanti-
ties and their ordering; secondly, to make relationships between quantities or 
between quantities and symbols and thirdly to undertake operations (mental 
changes) (Alsina Pastells, 2007). As well the sequence of activities should move 
from concrete (manipulation) to abstract (mental representation). There are con-
nections to play as there is in the Norwegian Framework plan, although rather 
than being a source of pedagogical inspiration, the focus on its contribution to 
representations. For example, one objective is ”Represent and evoke aspects of 
the lived reality, known or imagined and express them through the symbolic 
possibilities offered by play and other forms of representation”. 

In this brief description of the curriculum for early childhood institutions in 
the three regions, it is evident that historical influences (Russia), the contribu-
tion that education makes to society (Catalonia) and the importance of teachers 
having autonomy (Norway) are part of the cultural contexts, that early child-
hood teachers work in. We assume that these experiences are part of researchers’  
understanding of what should be highlighted in the mathematical apps.

Evaluation tools and analysis
In this section, we describe the findings from evaluating numeracy apps with 
the different tools. After discussing the evaluation situations separately, we then 
discuss the similarities and differences across the three situations.

Norway
The two common numeracy apps in Norway, which were evaluated, were Dra-
gonBox number (https://dragonbox.com/products/numbers) and Tella (http://tella123.
org/#/). Both apps had been designed in Norway and were presented in Norwe-
gian, although neither relied only on children to understand verbal language to 
interpret what they had to do. 

The evaluation tool (available from https://dlgs.uni-potsdam.de/oer/acat-review-
guide) chosen by the Norwegian group was based on Artifact centric activity 
theory (ACAT) (Ladel & Kortenkamp, 2014). This model describes five nodes 
(see figure 2) that could influence the learning possibilities from each app:

– a subject (usually the child/student) (S),

– an object (the mathematical content or process) (O),

– the mediating artifact (in this case an app the learner uses to familiarize 
themselves with the mathematical content) (A),

– the rules (how the app should behave in order so that the mathematical 
object can be learnt) (R), and

– the group (i.e. the total class situation in the teaching) (G).
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In the evaluation tool, each node or combinations of nodes is connected to a 
series of evaluative questions and a brief theoretical background is provided. 
The evaluation tool considers the appropriateness of the app in relationship 
to a specific purpose. The questions are about: the mathematical object; how 
children were likely to interact with the mathematical object through the app; 
how the app develops the interaction around the mathematical object; the suit-
ability of the app for displaying mathematical meaning; and the use of the app 
in a class situation. 

The results from the analysis of Tella and DragonBox numbers are shown in 
table 1. From this evaluation, it seems that Tella is focused on number under-
standings but presents them in a linear fashion, providing few possibilities for 
play. It is difficult to determine if the children learnt something new or applied 
what they already knew. From watching children use the app, the ones who con-
tinued with it were the ones who already knew the answers or who were good 
guesses and wanted the confetti display, from getting a task correct. DragonBox 
numbers provided slightly more possibilities for children to play, through an 

Figure 2. ACAT model

Criteria Tella DragonBox numbers
Mathematical object Quantities and understand-

ings about number.
Number sense (part of Dra-
gonBox school).

Child(ren) interaction 
with mathematical 
object. 

By dragging and tracing 
numerals, children complete 
sets of tasks (similar to activ-
ity sheet tasks)

Each number is represented 
by a Noom, which acts as a 
dynamic cuisenaire rod.

Development of the 
interaction

Tasks are provided in a linear 
order and can feel quite slow 
so children can become 
bored.

Children engage in tasks 
about different aspects of 
number sense.

Suitability of app for 
conveying mathemat-
ical meaning

Children are channelled into 
getting the correct answer so 
little possibility for reflection 
about mathematical learning.

The dynamic nature of 
virtual environment supports 
understanding the relation-
ship between numbers

Use of app in class 
situation

Individual work, not tasks to 
develop discussion.

Individual work with chil-
dren having some control.

Table 1. Evaluations of  Tella and DragonBox numbers using ACAT
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activity called a sandbox where the children could explore number concepts. For 
example, the Noons, or animated number characters, can be sliced and squashed 
together showing how numbers are composed of other numbers. 

From the analysis, the ACAT evaluation tool seemed to focus on the mathe-
matical object that the children were supposed to engage with and how the app 
presented it. It did allow for connections to play to be highlighted, as part of 
identifying how the mathematical meaning was conveyed.

Russia – Moscow
Four popular apps, around number concept formation, were evaluated using four 
criteria: dialogue (potential for teamwork with an adult, where the app acts as a 
means of organizing the work); appropriateness for preschool age children; peda-
gogical considerations incorporated in the app; and continuity towards school 
education. These criteria were considered important because unlike traditional 
education, developmental education, based on the work of Vygotsky (1980) and 
his followers, occurs in the ”zone of proximal development” (ZPD), that is, in the 
space that opens up new opportunities for learning content through interaction 
with an adult. Traditional education, in contrast, is considered to be based on imi-
tation. Developmental pedagogy presupposes that number should be explored 
after mastering the system of relations of quantities, through measuring and 
counting. Each stage involves bringing the child to the ZPD connected to the 

Criteria Kids numbers 
and Math

Mathematics 
and numbers 
for kids  
Learning to 
count

Luntik  
Learning math 
Learning to 
count 

Funexpected 
math

Having a  
dialogue with 
children.

Instructions N/A Expanded 
instructions. 
The dialogue 
between the 
characters in the 
form of a game.

Instructions

Compliance  
with the 
method of 
number 
concept  
formation.

Combination 
of a visually 
figurative and 
visually active 
presentation of 
material.

Visually  
figurative 
(symbolic) 
presentation

Combination of 
visually figura-
tive and visually 
active ways of 
material  
presentation.

Visually  
figurative 
(symbolic) 
presentation

Methodology  
of concept 
introduction 

Traditional 
teaching  
methodology

Traditional 
teaching  
methodology

Traditional 
teaching  
methodology 

Traditional 
teaching 
methodology

Age appro-
priate

In full  
compliance

Does not 
comply

Compliance with 
age group

Does not 
comply

Continuity 
with school

Does not 
provide

Does not 
provide

Fully provides Partially  
provides

Table 2. Evaluations of 4 apps using Vygotskian developmental ideas



Proceedings of Madif 12

Veraksa, Balaguer, Christiansen and Meaney

253

subsequent stage and creating a need to establish a one-to-one correspondence. 
Number concept formation also recognises that for children of preschool age, 
figurative and visual thinking are the main forms of thinking, with play being 
the main activity for developing this. Dialogue with adults shapes the level of 
potential development and is, therefore, an important consideration.

Of the four apps, Kids numbers and math and Luntik were chosen by experts, 
whereas Mathematics and numbers for kids and Funexpected math were the 
most downloaded apps. In table 2, the most popular digital apps presented tasks 
in less appropriate ways than the apps recommended by experts. Neverthe-
less, the results in table 2 showed that none of the apps met the requirements 
for developmental pedagogy. Rather than utilising children’s potential ZPD, 
the apps focused them on imitating actions. In addition, most of the apps did 
not provide sufficient continuity with school and none of them supported the 
stimulation of the child’s dialogue with an adult.

The evaluation criteria included aspects not considered in the ACAT tool, 
such as continuity with school. This reflects the different histories of the evalua-
tion tools. It also seems that the Vygotskian criteria gave more attention to 
pedagogical aspects, such as the need for dialogue with an adult and the presen- 
tation of the mathematical ideas to the child than the ACAT evaluation tool. 
However, as is the case with ACAT, the mathematical focus on the development 
of number understanding steered the evaluation of these pedagogical aspects.

Catalonia
The criteria to analyse commonly-used apps in Catalonia come from a digital 
mathematical games expert, Jean Baptiste Huynh (2015) who designed Drag-
onBox numbers, which was reviewed in the Norwegian evaluation section of 
this article. The criteria that Huynh recommended for evaluating apps are:

1. Contexts: Are they likely to be familiar to children?

2. Digital manipulation: Are the children likely to be able to do the required 
actions to engage in the learning situation?

3. Educational value: Is the digital game presenting content according to the 
curriculum?

4. Autonomy: Is autonomy promoted? Who has the control?

5. Time on task: Are the expectations about how long the children will 
engage with the tasks realistic?

6. Individual learning experience: Does the digital game allow the children 
to learn through discovery?

Although these criteria were developed in a different context, they resonate with 
aspects of the Catalonian curriculum for early childhood, in that they focus on 
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the contexts in which the mathematical content are presented as well as how the 
children are expected to engage with the mathematical ideas.

Four apps were analysed, Shop & math, Kids numbers & math learning 
(not the same app as was evaluated in the previous section), Fiodor, and El 
lobo Matias (Matias’ wolf). The first two apps were commonly downloaded 
apps focused on numeracy ideas while the other two apps were specifically  
recommended on a Catalan government website.

All the apps focused on number concepts and children progressed by getting 
the correct answers. The apps funnelled children towards these answers, by 
making no other answers acceptable or by insisting the correct answer was 
given. The children could play the games individually, but an adult was likely to 
be needed if they were to understand mathematics they engaged with. Only the 

Criteria Shop & math Kids numbers 
& math

Fiodor Matias wolf

Context Not free 
No words  
About shopping.

Free with ads 
English  
Not based on a 
story

Medieval castle No specific 
context

Digital  
manipulation

Easy dragging  
Fine motor 
skills needed for 
writing numerals

Easy manipu-
lation, but ads 
need to be 
closed

Easy dragging 
but sometimes 
quick movements 
are needed 

Easy tapping, 
dragging but 
writing is more 
difficult 

Educational 
Content

Addition and  
subtraction 
Quantity  
Order  
Problem solving

Counting, 
comparing 
with symbols 
< = >), pat-
terns, order-
ing, addition, 
subtraction 

Memory with 
numbers, addi-
tion, ordering, 
quantities (0–10)

Quantity, 
comparing 
quantities and 
numbers, addi-
tion  
Three difficulty 
levels 

Autonomy Only correct 
responses 
accepted 
Some skills 
and knowledge 
required

Correct 
answer 
needed to pro-
gress 
Some skills 
and know-
ledge needed.

No set order, 
some skills 
and knowledge 
needed

Correct answer 
needed to pro-
gress  
No set order, 
some skills 
and knowledge 
needed 

Time on task No constraints No constraints No constraints No constraints 
Individual 
learning  
experience

Individuals are 
expected to enter 
all the shops and 
finish games 
No guarantee 
of mathemati-
cal understand-
ing, without adult 
interaction

Individual  
No challenge. 

Children can 
control the 
game but it is to 
be played with 
adults  
Explanations for 
adults about links 
to kindergarten  
curricula

Children can 
”sail” through 
the levels easily, 
but some indi-
cations inform 
adults  
Some curricula  
connections.

Table 3. Evaluations of 4 apps using Huyhn’s (2015) criteria
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app connected to shopping provide a semblance of a familiar everyday context, 
but as all the items cost the same, the children were likely to recognise that the 
app did not represent a real-life situation. None of the apps provided opportuni-
ties for learning by discovering, rather they appeared to rely on previously learnt 
knowledge and skills, with the app providing opportunities to practice them.

The evaluation criteria were different again, in that Huyhn’s (2015) crite-
ria considered aspects of the children’s interactions with the app, such as the 
required digital manipulation and the time needed for the game, which were 
not highlighted explicitly in the criteria connected to ACAT and Vygostsky’s 
ZPD. There was also a focus on using familiar everyday situations which did 
not appear in the other sets of criteria. However, these criteria can be consi-
dered as being in alignment with conveying mathematical meanings, through 
the interactions supported by the apps and thus connected to the pedagogy of 
concept introduction.

Conclusion
The results of our investigations indicate that most of the apps, either with high 
download figures or recommended by experts, evaluated in the three countries 
were unlikely to develop children’s number understandings in ways that were 
compatible with curricula documents. Many apps expected knowledge and 
skills to develop in a linear manner, with few possibilities to play, something 
particularly important in the Norwegian curricula. Possibilities for engaging 
with adults, important in the Russian curriculum, were also limited. As well, 
the use of familiar everyday context for developing number understandings, 
important in Catalonia, generally lacked connection to everyday situations.

Although the evaluation tools seem to have highlighted different aspects 
of digital apps, they all highlighted the mathematical focus in determining the 
potential of the apps for supporting learning. Pedagogical considerations were 
also part of each of the evaluation tools, although different aspects were high-
lighted, such as autonomy or dialogue. However, there were differences con-
nected to cultural contexts such as the importance of preparing children from 
school as well as how mathematical ideas were represented in the apps.
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Lärarutbildningens kunskapsbas – och hur vi kanske 
(inte) kan känna igen den

Lisa ÖsterLing, anna PanseLL and iben Maj Christiansen

Stockholms universitet

I Sverige förväntas lärarutbildningen ge en forskningsbaserad kunskapsbas 
(se till exempel, SOU 2018:19), och under VFU förväntas undervisningen 
motiveras utifrån teoretiska kunskaper (Christiansen et al., 2020). Samtidigt 
är lärare begränsade av den ”ekologi” i vilken läraren befinner sig (Pansell, 
2018), där val inte alltid är explicita. Detta kan göra det svårt att känna igen i 
vilken utsträckning en praktik är forskningsbaserad.

Symposiets tre frågor relaterar till TRACE-projektet 1.

1 Vilken ämnesdidaktisk kunskapsbas gör vi tillgänglig för studenterna? 
En studie av kurslitteraturen i lärarutbildningen visar att texterna  
behandlar matematik i relation till undervisning och till elever men på 
en relativt praktisk nivå. Det är få explicit teoretiska inslag där ord som 
teori, definition eller analys förekommer mer sällan än ord som anknyter 
till undervisningsmetoder som metod, bedöma, moment.

2 I vilken utsträckning relaterar studenterna sig till denna kunskapsbas?  
I VFU-portföljerna väljer studenterna sällan att använda explicita 
teorier, och ännu mindre forskningsresultat. Ämneskunskaper verkar 
vara viktiga för studenternas möjligheter att resonera om undervisning, 
däremot verkar skolans styrdokument bli viktigare än forskningsresultat 
och teori.

3 Hur känner vi igen kunskapsbasen? Eftersom teorin är så osynlig finns 
metodologiska svårigheter. I symposiet diskuterades olika ramverk och 
möjligheter för att kunna göra det till exempel kommognition (Sfard, 
2008) och Mathematical discourses in instruction (Adler & Ronda, 
2017). Problemen med att använda intervjuer för att få syn på de  
nyutexaminerade lärarnas användning av teori diskuterades också.

Note

1 Ett VR-finansierat forskningsprojekt om matematiklärarutbildning. https://www.
mnd.su.se/forskning/matematik%C3%A4mnets-didaktik/forskningsprojekt/trace 



Symposium, abstract

258 Proceedings of Madif 12

Referenser
Adler, J. & Ronda, E. (2015). A framework for describing mathematics discourse in 

instruction and interpreting differences in teaching. African Journal of Research 
in Mathematics, Science and Technology Education, 19 (3), 237–254.

Christiansen, I. M., Österling, L. & Skog, K. (2020). Images of the desired teacher in 
practicum observation protocols. Research Papers in Education, 1–22.

Pansell, A. (2018). The ecology of Mary’s mathematics teaching: tracing 
co-determination within school mathematics practices [Doktorsavhandling]. 
Stockholms universitet.

Sfard, A. (2008). Thinking as communicating human development, the growth of 
discourses, and mathematizing. Cambridge University Press.

SOU 2018:19. Forska tillsammans: samverkan för lärande och förbättring: 
betänkande. Norstedts Juridik.



259Proceedings of Madif 12

Short presentations

The role of figured worlds when student teachers 
become teachers

AndreAs ebbelind
Linnaeus University

This short oral reports on a study concerning conflicts emerging when student 
teachers, Evie and Lisa, engage in a teacher education programme. The theme 
relates to discursive engagement, where individuals negotiate a range of other 
past and present social practices. In discursive engagement a text is assembled 
through different textual units, for example figured worlds. The aim is to illus-
trate the role figured worlds play in immediate social interaction. A methodo-
logical tool, with the aim at uncovering why the speaker produces a particular 
wording rather than any other in a specific social practice, is used. The main 
point is that the figured worlds about teaching and learning mathematics are 
critical because they discursively inform every social practice that Evie and 
Lisa attend.

Student teachers’ content knowledge for solving  
elementary school fraction exercises 

Anne TossAvAinen
Luleå University of Technology

The aim of the on-going study is to investigate Swedish student teachers’ abili-
ties in solving elementary school fraction exercises. As a part of a questionnaire, 
59 elementary school teacher programme students were asked to solve nine 
fraction exercises taken from national tests and support materials for mathema-
tics teaching. The analysis of students’ solutions is based on Ball et al.’s frame-
work for mathematical knowledge for teaching. The focus is on how students’ 
common content knowledge is and whether it corresponds the requirements of 
elementary mathematics teaching. The preliminary results show limited frac-
tion content knowledge and unstable procedural abilities that do not support 
the deep understanding of fractions needed in teaching mathematics in a  
meaningful way.
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Pre-service teachers’ explanations of division by zero 
and denseness of the number line

KrisTinA JuTer
Kristianstad University

Students’ beliefs about division by zero and numbers on the number line were 
studied through explanations of the concepts in questionnaires and interviews 
during their teacher education to become primary school teachers in the years 
4–6. The concepts were chosen for students’ proven cognitive challenges in 
coping with them, with the aim to add to the existing knowledge in terms of 
specific and general explanation types. General and specific parts of the stu-
dents’ concept images were contradictory in several cases and the examples 
used for explaining were often based on other mathematical structures than 
the ones explained, e.g. 2/1 instead of 2/0 or a finite decimal recitation instead 
of an infinite one.

The incorporation of programming in mathematical 
education

AndreAs borg
Karlstad university

The presentation will describe an ongoing design research study concerning 
the use of programming as a mathematical tool among students in Swedish 
upper secondary schools. During classroom interventions, students with no 
prior experience of using programming in school mathematics are observed 
trying to solve mathematical problems with the help of programming. The 
Instrumental Approach is used as a conceptual framework and the concept 
of instrumental genesis is intended to describe the process whereby students 
develop (inferred) mental schemes which together with the material artefact of 
a programming environment may act as an instrument in order to solve mathe-
matical problems. During the presentation, results from the first intervention 
will be discussed.
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Algebraic thinking regarding different mathematical 
contents within early algebra 

HelenA eriKsson
Stockholm University and Dalarna University

An ongoing literature review is conducted regarding algebraic thinking and 
early algebra, delimitated to students younger than 12 years and to different 
mathematical contents. Questions asked to the review are how algebra can be 
used to enhance mathematical contents, and how algebraic thinking is mani-
fested together with these young students. A tentative result shows that among 
40 articles of totally 500 are presenting algebraic thinking regarding some spe-
cific mathematical content. Indications are that algebra is manifested as nota-
tions using other symbols than numbers, verbal arguments, and gestures that 
make these arguments more explanatory. Algebra related specifically to number 
sense is manifested as operations with unknown, general pattern, and variables.

 
Mathematical assessments for six-year-old students in 
Sweden and Norway

MAriA WAllA
Dalarna university

This paper presents a study focused on early mathematics assessments in 
Sweden and Norway. In many countries, including those in the Nordic region, 
there has been a growing trend towards measuring students’ knowledge and 
understanding, a trend that is seen even in early education. Since 2011, a mathe-
matics assessment tool has been available for six-year-old students in Norway. 
In Sweden, an assessment intended for students of the same age has become 
obligatory from autumn 2019. When a new assessment becomes obligatory in 
early mathematics, its content influences the present discourse on mathema-
tics education. In addition, as the discourse on mathematics education changes, 
the content that is taught, as well as the teaching and learning of mathematics, 
may also change.
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Kollegialt lärande kring lärsituationer för  
gymnasieelever med särskild begåvning 

elisAbeT MellroTH 1 And AndreAs bergWAll 2
1 Karlstads universitet and 2 Örebro universitet

Design research och Cultural-historical activity theory kommer i denna studie 
användas för att studera kollegialt lärande i matematik. Studien utförs med 
lärare som deltar i ett skolutvecklingsprojekt med ett delsyfte att utveckla 
undervisningen för elever med särskild begåvning. Forskningen syftar till att 
bidra med kunskap om kollegialt lärande som en hållbar utvecklingsprocess i 
en kommun.

Number sense vocabulary: reflections from a pre-school 
pupil

oduor olAnde
Linnaeus university

Pupils at a very early age are exposed to vocabulary expressing mathematical 
concepts. It is thus imperative in a teaching and learning process to gain insight 
into the different ways of relating to these concepts that pupils bring with them 
in a formal teaching and learning situation. In the present study a case of a six-
year-old’s reflections on number sense is analysed with the view of discovering 
embedded relationships thereof. Preliminary results indicated that while the 
pupil’s reflections are characterized by a procedural-applicational orientation, 
there is a provided opportunity to engage in deep aspects of number sense.

Gazing at mathematical reasoning

MATHiAs norqvisT
Umeå university

Eye tracking can be used to investigate how students perceive and solve mathe-
matical tasks. This short presentation will report on two such studies where task 
design, mathematical reasoning and students’ gaze are in the spotlight. Results 
show that task design has an effect on students’ reasoning, as well as on how 
they perceive the information given in a task.
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Balancing interests in a research project through  
internal ethical engagement

HelenA grundén And Helén sTerner
Dalarna university and Linnaeus university

In educational design research projects, there are long-term relationships 
between researcher and participants. Hence, in addition to external ethical 
engagement, researchers have to engage in internal ethical issues, which became 
evident when a researcher suggested mathematical content for an intervention. 
The suggestion was both appealing to and uncomfortable for the teachers, and 
this ambiguity made power relations between the researcher and the partici-
pants visible. In the moment, the researcher made decisions about the content 
that might not be the best. This situation made visible the importance of internal 
ethical engagement in advance, for example, by thinking about how we care for 
our participants and for what and whom we are responsible.

Sources of inequivalence in translated mathematics 
tasks identified with students’ reflections

FriTHJoF THeens
Umeå university

In multilanguage assessments, the validity of the results is threatened if the dif-
ferent language versions are not equivalent. In this study, task-based interviews 
with German and Swedish students were analyzed to identify possible sources 
of inequivalence between the language versions of mathematics PISA tasks.

The processing of mathematical symbols in working 
memory

eWA bergqvisT, berT Jonsson And MAgnus ÖsTerHolM
Umeå university

This empirical study examines how different types of symbols, familiar 
and unfamiliar, are processed in working memory; phonologically and/or  
visuo-spatially.
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Mathematics and physics at upper secondary school: an 
analysis of two lectures

KrisTinA JuTer, ÖrJAn HAnsson And AndreAs redFors
Kristianstad university

A physics lecture and a mathematics lecture, by the same teacher and partly the 
same students, were studied at upper secondary school. Both lectures covered 
ordinary differential equations. The main aim of the present paper was to inves-
tigate the teacher’s different and similar ways to handle related mathematical 
content in the two school subjects. The findings show a structural use of mathe-
matics with an analytical approach in mathematics and an applied approach 
in relation to formulas in physics. This study is part of a larger study about  
mathematics in physics education funded by the Swedish research council.

Socialt risktagande vid kritiskt tänkande

JoHAn PryTz 1 And HelenA isleborn 2
1 Uppsala universitet och 2 Tiundaskolan

Vår studie handlar om hur designen av gruppuppgifter i kritiskt tänkande i 
matematik (åk 9) kan påverka elevernas engagemang i kritiska resonemang. 
Mer precist undersöks hur uppgifter kan försätta eleverna i olika affektiva 
situationer – socialt riskabla situationer – och hur det kan påverka elevernas 
resonemang och övriga beteenden. Studien baseras på videoinspelningar från 
två undervisningstillfällen där eleverna har arbetat med, ur affektivt perspektiv, 
helt olika uppgifter. Analysen tyder på att uppgifternas design och den sociala 
risk de medför påverkar elevernas vilja att engagera sig i kritiska resonemang.

How mathematical symbols and natural language are 
used in teachers’ presentations

eWA bergqvisT, ToMAs bergqvisT, ulriKA WiKsTrÖM 
HulTdin, loTTA vingsle And MAgnus ÖsTerHolM
Umeå university

In this study, we examine how the use of natural language varies, considering 
the symbolic language in procedural and conceptual aspects of mathematics.
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Relational values in inclusive mathematics classrooms – 
an intervention study

MAlin gArdesTen 
Linnaeus university

The focus of this paper is on the methodological approach in a design research 
study. The aim of the study is to explore how primary mathematics teachers 
coordinate mathematical and relational proficiencies for education to make the 
mathematical content accessible for every student. The researcher together with 
the participating teachers (n = 5) identified the existing and desired teaching 
situation in two mathematical classrooms. An intervention was implemented 
and documented by observations, video recordings and interviews with the 
teachers and the students. The intervention explored the interactions between 
the teachers and the students, to explain possibilities of how students can be 
given access to the mathematical content.

Programmering för lärande i matematik – beskrivning 
av ett forskningsprojekt 

JoHAnnA PeJlAre
Chalmers tekniska högskola och Göteborgs universitet 

Här presenteras ett nyligen påbörjat forskningsprojekt med det övergripande 
syftet att bidra till forskningen kring den pågående implementeringen av pro-
grammering i gymnasieskolans matematik, genom att undersöka på vilka sätt 
programmering kan erbjuda möjligheter för lärande i matematik jämfört med 
en mer traditionell undervisning. Med utgångspunkt i Chevallards teori om 
didaktisk transposition undersöker vi dels hur verksamma lärare tillämpar pro-
grammering i matematikundervisning samt vilka möjligheter, utmaningar och 
svårigheter de identifierar, dels hur elevers kunskaper i matematik kan utveck-
las med hjälp av programmering. Ett övergripande mål är att lägga grunden 
för långsiktig och hållbar samverkan mellan universitetet och skolan via  
lärarutbildningen.



Short presentations

266 Proceedings of Madif 12

Research on the development of junior middle school 
mathematics teachers’ beliefs – from the perspective of 
history and pedagogy of mathematics

dAndAn sun
East China normal university

This research intends to explore the development of junior middle school mathe-
matics in-service teachers’ beliefs in an online programme based on the history 
of mathematics. More specifically, explore what is the change of the teachers’ 
beliefs of mathematics and mathematics teaching and how this happen. Ques-
tionnaire, reflection task and interview are used to collected data. It can be 
seen that these in service teacher’ beliefs about mathematics change, including 
their view on the characteristics of mathematics, the history and development 
of mathematics and the relevance of mathematics to society. Their beliefs about 
mathematics teaching change too, including their view on the goal and process 
of teaching, the history in teaching and so on.

Digitala verktyg som stöd för elevers sätt att uppfatta 
geometriska figurer 

PeTer MArKKAnen
Örebro universitet

Detta paper presenterar preliminära resultat från en större designstudie om 
undervisning och lärande i geometri. Designstudien fokuserar undervis-
ning i digitala miljöer och hur den kan erbjuda elever att bygga förståelse för 
geometriska figurer och deras uppbyggnad för att kunna nyttja dem i prob-
lemlösande aktiviteter och i geometriska resonemang. Resultatet visar att 
den digitala miljön med dess dynamiska egenskaper bidrar med möjligheter 
till att eleverna breddar sina sätt att uppfatta figurer och utifrån figurernas  
uppbyggnad förmår argumentera för geometriska satser och formler. 
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Velocity, acceleration and the experiences of the body – 
derivatives and integrals in real life

Ann-MArie Pendrill
Lund university

Derivatives and integrals are often seen as abstract concepts. In this work 
we study how the experience of the body, combined with graphs based on 
smartphone data, theoretical consideration and video analysis, can support 
student discussions of derivatives, as well as their understanding of integrals.  
Examples include vertical motion during trampoline bouncing and in a small 
amusement ride.

How epistemological characteristics influence the 
design of a course in projective geometry

olov viirMAn 1 And MAgnus JAcobsson 2
1 University of Gävle and 2 Uppsala University

In this short presentation, we report parts of an ongoing project building on the 
Anthropological theory of the didactic (ATD) to investigate how the epistemo-
logical characteristics of the topic to be taught influences the design of univer-
sity mathematics courses. We focus our attention on a course in Affine and pro-
jective geometry. Analysis is ongoing, but we present some initial observations 
and discuss them in relation to other courses previously analysed.

Critical aspects in mathematics teacher students’ 
writing of lesson plans

AnnA Wernberg, JonAs dAHl, ceciliA WinsTrÖM And 
lisA bJÖrKlund boisTruP
Malmö university 

This paper describes the design and preliminary findings of an ongoing study, 
where teacher educators tried to gain insight into their own practice, including 
teacher students’ learning, in order for improving it. Our research interest in this 
short communication is to identify critical aspects in relation to Mathematical 
knowledge for teaching (MKT), when teacher students develop lesson plans?
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How mathematical symbols and natural language are 
integrated in textbooks

eWA bergqvisT, ToMAs bergqvisT, loTTA vingsle, 
ulriKA WiKsTrÖM HulTdin And MAgnus ÖsTerHolM
Umeå university

In mathematical text and talk, natural language is a constant companion to 
mathematical symbols. The purpose of this study is to identify different types of 
relations between natural language and symbolic language in mathematics text-
books. Here we focus on the level of integration. We have identified examples 
of high integration (e.g. when symbols are part of a sentence), medium integra-
tion (e.g. when the shifts between natural and symbolic language occurs when 
switching to a new line), and low integration (e.g. when symbols and written 
words are connected by the layout).
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