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Preface

This volume contains a collection of papers from the Eighth Nordic
Conference on Mathematics Education, NORMA 17, which took place in
Stockholm, Sweden, from the 30th May to 2nd June 2017. The conference
was hosted by the Department of Mathematics and Science Education, at
Stockholm University.

The first NORMA Conference on mathematics education NORMA 94, was
held in Lahti, Finland, in 1994. Four years later, it was held in Kristiansand,
Norway, and since then it has taken place every third year. After each
conference, selected papers have been published in a proceeding.

The NORMA conferences are always organized in collaboration with
NoRME - the Nordic Society for Research in Mathematics Education.
NoRME is open for membership from national societies for research in
mathematics education in the Nordic and Baltic countries.

The scientific committee of NORMA 17 represented all Nordic countries
and one representative from the Baltic countries. There was also a mix of
junior and senior researchers. The members of the committee were:

« Eva Norén, Stockholm University (chair),

o Paul Andrews, Stockholm University,

o Hanna Palmér, Linnaeus University, Vixjo,
« Johan Prytz, Uppsala University,

e Martin Carlsen, University of Agder,

« Janne Fauskanger, University of Stavanger,
e Morten Misfeldt, Aalborg University,

« Lena Lindenskov, Arhus University,

e Markus Héhkioniemi, University of Jyvéskyla,
o Tomi Kérki, University of Turku

« Freyja Hreinsdottir, University of Island,

e Madis Lepik, Tallinn University.

The theme for the NORMA 17 conference was Nordic research in
mathematics education. Nordic and Baltic researchers in mathematics
education were given opportunities to introduce their research by regular
papers, short communications, working groups and symposia. At total 44
regular papers, 39 short communications, three working groups, and three
symposia were presented during the three days. There were also three
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plenary speakers. Thus, the conference offered a comprehensive forum for
the discussions and constructive meetings of researchers, teachers, teacher
educators, graduate students, and others interested in research on
mathematics education in the Nordic context.

The collection of papers presented in this book are a selection of the papers
presented at the conference. The collection contains mostly regular papers
but also includes several papers from the symposiums. The papers have
been selected based on the reviews, one before the conference and one after
the conference. Some participants at the conference chose to publish their
papers elsewhere.

Based on this selection the papers in this book cover the areas of:

e Early years mathematics

e Primary mathematics

e Secondary mathematics

e Upper secondary mathematics

e University mathematics

e Communication, language and texts in mathematics education
e Mathematics teacher education

o Continuing professional development

e Curricular aspects of mathematics education

e Mathematics Education in general

Although teaching and learning of mathematics is the common interest for
all participants, the papers make visible a great diversity in how this is
considered. They include a variety of mathematical topics as well as a
currency from preschool to university mathematics. Furthermore, various
methodologies and theoretical perspectives are used in the research
presented. This variation shows that the Nordic research in mathematics
education is a broad field and that the field was well represented at the
conference.

Stockholm July 2018
Eva Norén, Hanna Palmér and Audrey Cooke
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Publications from NORMA 17 1

Mathematics in Swedish and Australian
Early Childhood Curricula

Audrey Cooke
Curtin University, School of Education, Perth, Australia

Opportunities for young children to engage in activities that develop their
mathematical skills, understandings, and disposition are impacted by early
childhood education curricula through the ways early childhood educators
interpret the curricula. Investigating how mathematics is incorporated in early
childhood curricula can provide insight into these impacts. An investigation of the
Swedish Curriculum for the Preschool Lpfo 98 and the Australian Early Years
Learning Framework was conducted to identify the use of terms indicating
mathematics. The results for the two curricula are compared and discussed in
terms of their impact on the mathematical skills, understandings, and disposition
of young children.

Introduction

In the past, young children were viewed as incapable of engaging with
mathematics and thinking mathematically (Hachey, 2013). It is now believed that
“in their everyday interactions with the social and physical world, young children
engage in diverse types of mathematical thinking” (Hachey, 2013, p. 420). The
early childhood educator is responsible for creating experiences that enable the
child to use and develop mathematical skills and knowledge. Early childhood
curricula provide an orientation within which the educator can create these
experiences (Gasteiger, 2014).

Mathematics in early childhood

In contrast to previous beliefs, Baroody, Lai, and Mix (2006) claim that
mathematical understandings develop from early ages and pre-school children can
engage with mathematics. They describe this as informal mathematical knowledge
that comes from children’s everyday lives and underpins the successful
development of formal mathematics. The capacity for children to both bring
mathematical ideas and learn new mathematical ideas should be recognized in
experiences and activities that are provided in early childhood education settings.
This consideration reflects aspects of Lembrér and Meaney’s (2014) examination
of ‘being’ and ‘becoming’ in early childhood. They proposed that positioning the
child as ‘being’ acknowledges the mathematical understandings the child has,
whereas ‘becoming’ highlights the mathematical understandings to be developed.



The early childhood educator’s positioning of the child may impact on the
activities created and the mathematics enabled within those activities (Hachey,
2013).

Mathematics in early childhood curricula

Curricula

The Working Group on Early Childhood Education Care [WGECEC] (2014)
proposed that the curriculum is one of the five elements that can be evaluated to
help determine the quality of the care provided in early childhood. They described
curriculum as providing both content and pedagogy to enable children to engage
and learn. Although the Australian Early Years Learning Framework [EYLF]
(Australian Government Department of Education, Employment and Workplace
Relations [DEEWR], 2009) is called a framework, Arlemalm-Hagser and Davis
(2014, p. 5) considered the EYLF (DEEWR, 2009) and the Swedish Curriculum
for the Preschool Lpfo 98 [SCP] (Skolverket, 2011) as both steering documents
and curricula in their comparison of sustainability and agency in the two
documents. Following the lead of Arlemalm-Hagser and Davis (2014), this paper
will also use the term curricula for these documents.

Organisation of the curricula

The SCP (Skolverket, 2011) is organized into two parts - Fundamental values and
tasks of the preschool and Goals and guidelines, with the Goals and guidelines
separated into Sections then Goals (for children) and Guidelines (for educators and
team members). The EYLF (DEEWR, 2009) has six parts - Introduction, A vision
for children’s learning, Early childhood pedagogy, Principles, Practice, and
Learning outcomes for children birth to 5 years. The last part is divided into five
Outcomes and each of these has Key components with points for children and for
educators.

Domains of empowerment

Curricula learning outcomes and guidelines that incorporate mathematics
encourage the educator to view young children as maths-able (Hachey, 2013).
However, how the learning outcomes and guidelines address mathematics can
influence the experiences created by educators. One way of interpreting how these
address mathematics is via Ernest’s (2002) domains within mathematics. His
domains focus on the empowerment of the individual based on the sphere within
which mathematics could be engaged with. Specifically, mathematical
empowerment enables power over “language, skills and practices of using and
applying mathematics” (p. 1) within narrow settings (such as school); social
empowerment enables power over the use of mathematics in social settings; and
epistemological empowerment enables power over “the creation and validation of
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knowledge” (p. 2) and incorporates the individual’s identity. In terms of early
childhood education, the domains could be construed as focusing on children
developing specific mathematical language and processes (mathematical
empowerment); using mathematical ideas effectively in social situations, including
outside of the pre-school setting (social empowerment); and confidently using
mathematics and creating solutions through mathematics (epistemological
empowerment).

Connections between curricula, the educator, and domains of empowerment
The inclusion of mathematics within curricula may orient the educator, but the
educator still has choice in the mathematical activities that are developed, and this
choice can depend on the educator’s perception of mathematics (Ernest, 1989).
Ernest (1989) described three philosophical views of mathematics -
instrumentalist, where mathematics involves unrelated and unbending rules and
facts; Platonist, where mathematics is an external, static, and unified knowledge;
and problem-solving, where mathematics is a human, cultural creation that is
dynamic and expanding. Likewise, Grigutsch, Raatz, and To6rner (1998)
considered a static or dynamic view of mathematics. The static view incorporated
the aspects of formalism or schema and the dynamic view incorporated the aspect
of process. Benz (2012) described the aspects within the Grigutsch et al. (1988)
framework as comprising terminology that enables logical and exact application
(that is, formalism), concerned with calculations following rules (that is, schema),
a process involving problem-solving (process), and the practical or direct use
(application). Ernest’s (1989) problem-solving view or Grigutsch et al.’s (1988)
problem-solving (process) or practical or direct use (application) are most similar
to Ernest’s (2002) description of activities likely to result in epistemological
empowerment.

The incorporation of mathematical ideas in early childhood curricula may be
difficult for educators to act upon due to their past experiences with mathematics
(Anders & Rossbach, 2015). Some educators fear or hate mathematics or dislike
the idea of teaching mathematics (Bates, Latham, & Kim, 2013), and this can lead
to an avoidance of mathematical activities (Chinn, 2012). However, the inclusion
of mathematics in early childhood curricula reiterates the importance of young
children engaging with mathematical ideas in early childhood settings. Educators
must engage with mathematics themselves to improve the learning opportunities
for their children (Benz, 2012). The educators’ actions, when informed by the
curriculum, will impact on the activities created for children (Ernest, 1989), which
will flow into the types of engagement children will have with mathematics and
the domain of empowerment enabled within mathematics (Ernest, 2002).

The inclusion of mathematics in early childhood curricula will prompt
educators to see young children as maths-able (Hachey, 2013). This influences the
activities educators plan and implement (Baroody et al., 2006) and how the



educator observes and interprets what young children do in terms of mathematical
understandings (Anders & Rossbach, 2015). Educators with mathematical
understandings will ‘look’ for mathematics in their children’s play (Lee, 2014) and
will provide resources for play that enable children to bring their existing
mathematical understandings into the classroom and develop them further (Mixon,
2015). These perspectives can be influenced by whether the child is positioned as
‘being’ or ‘becoming’ in relation to mathematical understandings (Lembrér &
Meaney, 2014). The experiences that result from the educator seeing young
children as being maths-able and becoming maths-able, such as recognizing that
children create solutions using mathematics, are more likely to lead towards
epistemological empowerment (Ernest, 2002).

Research questions

An interpretive approach (Merriam, 2009) is used to investigate how the curricula
might orient mathematics for the educator. The focus is on how the terms
mathematics, math, maths, mathematical, mathematically (that is, the targeted
terms) are used within the curricula and how they might be interpreted within the
three domains of Ernest’s (2002) empowerment framework. Variations of the word
‘mathematics’ were used as this is the term Ernest (2002) used. ‘Numeracy’ was
not used as it includes confidence, initiative and risk taking (Geiger, Goos, & Dole,
2014), which reflects Ernest’s (2002) epistemological empowerment. The targeted
terms were searched for within the SCP (Skolverket, 2011) and the EYLF
(DEEWR, 2009) to determine:

1. Which sections or outcomes contain goals or points incorporating the targeted

terms?

2. How do the goals or points address mathematics in terms of Ernest’s (2002)
empowerment domains?

Method
The research focused on how the targeted terms (variations of the word
‘mathematics’) were incorporated within the SCP (Skolverket, 2011) and the
EYLF (DEEWR, 2009). As the researcher’s language was English, the official
English translation of the SCP (Skolverket, 2011) was used. Occurrences of the
targeted terms within the sections and goals of the SCP (Skolverket, 2011) and
within the key components and points of the EYLF (DEEWR, 2009) were noted.
Each goal and point were analyzed in terms of Ernest’s (2002) empowerment
domains. The author and a highly experienced early childhood educator colleague
used their understandings and experiences within early childhood education and
mathematics education to interpret how the two curricula incorporated the targeted
terms and how the goals and points could be met. This process reflected the
purpose of the interpretive approach in several ways, through describing and
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interpreting what was found and acknowledging that these descriptions and
interpretations were determined by the experiences and understandings of the
author and her colleague (Merriam 2009). Codes were developed to describe what
the analysis found:
Explicit (E) - the goal or point can only be met within the empowerment domain.
Potential (P) - the goal or point can be met both within and without the empowerment
domain.
Not needed (N) - the goal or point can be met without the empowerment domain.

Results

The targeted terms (variations of ‘mathematics’) were found in both curriculum
documents. In the SCP (Skolverket, 2011), the targeted terms were found within
three goals for children and two guidelines (one for educators and one for the team)
in one section, Developing and Learning (p. 10), of the SCP (Skolverket, 2011).
The targeted terms were found in two outcomes of the EYLF (DEEWR, 2009) and
in one key component within each of these. In Outcome 4Children are confident
learners, three points for children and two for educators in the key component
Children develop a range of skills and processes such as problem solving, enquiry,
experimentation, hypothesising, researching, and investigating (DEEWR, p. 35)
contained the targeted terms. In Qutcome 5Children are effective communicators,
one point for children and one for educators within the key component Children
interact verbally and non-verbally with others for a range of purposes (p. 40)
contained the targeted terms. The description for Outcome 5 included a discussion
of numeracy that used the targeted terms seven times. The targeted terms were also
found within two definitions for numeracy. This research focused on the goals for
children within the SCP (Skolverket, 2011) and points for children within the
EYLF (DEEWR, 2009) as these provided orientation (Skolverket, 2011) and
observable evidence (DEEWR, 2009) for children’s engagement with
mathematics.

The location of the goals and points were within sections and outcomes
addressing learning, Developing and Learning of the SCP (Skolverket, 2011, p.
10) and Outcome 4Children are confident learners of the EYLF (DEEWR, 2009,
p. 35) and communication, Qutcome 5Children are effective communicators
(DEEWR, p. 40). When considered in terms of Ernest’s (2002) three
empowerment domains, all of the three goals of SCP (Skolverket, 2011) were
coded E (considered to have been explicit) for all empowerment domains. All
goals from the SCP (Skolverket, 2011) and all points from the two EYLF outcomes
were coded E for Ernest’s (2002) mathematical domain.



Curricula Section or Qutcome Ernest’s (2002) Empowerment Domains

Goal or Point Mathematical Social Epistemological

Swedish Curriculum for the Preschool Lpfo 98 (Skolveket, 2011)

Section 2: Development and Learning

Develop their ability to use mathematics to investigate, reflect over and E E E
test different solutions to problems raised by themselves and others (p.

10)

Develop their ability to distinguish, express, examine and use E E E

mathematical concepts and their interrelationships. (p. 10)

Develop their mathematical skill in putting forward and following E E E
reasoning. (p. 10)

Australian Early Years Learning Framework (DEEWR, 2009)

Outcome 4: Children are confident and involved learners, Key component 2 - Children develop a
range of skills and processes such as problem solving, enquiry, experimentation, hypothesising,
researching, and investigating.

Create and use representation to organise, record and communicate E P P
mathematical ideas and concepts. (p. 35)

Make predictions and generalisations about their daily activities, aspects E E E
of the natural world and environments, using patterns they generate or
identify and communicate these using mathematical language and

symbols. (p. 35)

Contribute constructively to mathematical discussions and arguments. E E P
(p- 35)

Outcome 5: Children are effective communicators, Key component 1- Children interact verbally and
non-verbally with others for a range of purposes:

Use language to communicate thinking about quantities to describe E E P
attributes of objects and collections, and to explain mathematical ideas.
(p- 40)

Table 1: Analysis of curriculum goals and points

Discussion and conclusion

Both curricula refer to ‘develop’ or ‘development’ in the Section and Key
Components. The word develop is also included in each of the three goals, which
may focus more on becoming than being (Lembrér & Meaney, 2014). The EYLF
(DEEWR, 2009) focuses on create, make, and contribute, phrases that indicate
‘being’ more than ‘becoming’ (Lembrér & Meaney, 2014). The use of these terms
reflects concerns that early childhood education is moving towards a
schoolification of young children (Lembrér & Meaney, 2014). However, the
results do not necessarily indicate this as epistemological empowerment occurs
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when the child has ownership of their skills and is empowered in their knowledge
(Ernest, 2002). The goals of the SCP (Skolverket, 2011) were explicitly linked to
the three domains of empowerment outlined by Ernest (2002). When considering
the points from the EYLF Outcome 4 and Outcome 5, only one of the points was
considered to explicitly link to all of Ernest’s (2002) domains of empowerment,
compared to all the three goals for the SCP (Skolverket, 2011). Mathematical
empowerment (Ernest, 2002) was evident in all goals identified from the SCP
(Skolverket, 2011) and all points from the identified key components from
Outcome 4 and Outcome 5 of the EYLF (DEEWR, 2009), reflecting the role of
language children’s mathematical experiences (Hachey, 2013).

Of the three points from the EYLF Outcome 4and the point from the EYLF
Outcome 5, three were coded as potentially incorporating Ernest’s (2002)
epistemological empowerment domain. This represents a possible disconnect of
mathematics from the context of the child’s everyday life. When compared to the
goals of the SCP (Skolverket, 2011), the points from the EYLF (DEWWR, 2009)
could produce a narrower focus of the educators’ perceptions of the children’s
capabilities in terms of mathematical understandings and their application (Anders
& Rossbach, 2015). This is evident in the point under Oufcome 3, as the outcome
focuses on communication, which requires mathematical language (mathematical
empowerment) within social situations (social empowerment), but not necessarily
creation of ideas (epistemological empowerment).

The curricula provide an orientation for the educator but the educator chooses
how to enact it in learning experiences (Gasteiger, 2014; Geiger, Goos & Dole,
2014). The educators’ past experiences with mathematics, such as a lack of
engagement (Chinn, 2012) or a dislike of teaching mathematics (Bates et al.,
2013), will contribute to this. The educator’s philosophical views - instrumentalist,
Platonist, and problem-solving (Ernest, 1989) - or static and dynamic perceptions
of mathematics (Grigutsch et al., 1998), may also impact. Specifically, holding an
instrumentalist philosophy (Ernest, 1989) or a static view (Grigutsch et al., 1998)
may result in a focus on skills and practice within a formal environment leading to
mathematical empowerment (Ernest, 2002). In addition, the educator may only
look for or identify mathematics in these more formal situations (Lee, 2014) and
create fewer opportunities for children to engage mathematically (Hachey, 2013).

The inclusion of the targeted terms in early childhood curricula reiterates the
idea that young children are capable of engaging with mathematical ideas (Hachey,
2013) and encourages educators to provide opportunities for children to show their
mathematical understandings and participate in discussions (Mixon, 2015), and to
have confident mathematical dispositions (Baroody et al., 2006). Stating the
mathematical requirements assists the educator in determining how mathematical
understandings and skills can be addressed with children in early childhood in
ways commensurate with epistemological empowerment (Ernest, 2002). If this



occurs, the child is positioned as maths-able (Hachey, 2013) and concurrently
‘being’ and ‘becoming’ (Lembrér & Meaney, 2014).

Limitations

Although official translations are acceptable to use (Lembrér & Meaney, 2014),
use of the original text for the SCP may have added to the authenticity of the
method. In addition, although the search was for the targeted terms (all of which
were iterations of the term ‘mathematics’), it was noted that the term ‘numeracy’
occurred frequently in the EYLF (DEEWR, 2009) in the text providing the overall
description of Outcome 5. Finally, it is inherent in an interpretivist approach that
the perceptions of individuals are constructed versions of reality (Merriam, 2009).
Although much discussion was generated in the process involved in allocating
codes, this was dependent on the experiences the two educators brought to the
discussion. This was a clinical interpretation of the curricula that did not consider
human and environmental factors or their impact on the interpretation of the
curriculum in live settings. As a result, other educators may have alternative
interpretations. This final limitation highlights the impact of the educator, as it is
their own interpretation of curricula, developed from their experiences, that they
use when creating experiences.
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Paper of and digital: a study of combinatorics in
preschool class

Jorryt van Bommel' and Hanna Palmér?
Karlstad University, Sweden; >Linnaeus University, Sweden

In a design research study on problem solving conducted in Swedish preschool
class (six-year-olds) children were given the task “in how many ways can three
toy bears sit in a sofa?”. The focus of this paper is on how the children’s’
explorations and solutions of this task developed as they, in addition to the
analogue version, were exposed to a digital version of it. We compare the
documentation made by children who have used, respective not have used the
digital application. The results indicate that working with the digital application
led to more systematic documentation with fewer duplications. Further, the
children who worked with the digital application created more complete solutions.
The findings indicate that the digital version of the task enhanced children’s
understanding of what a combinatorial problem encompasses.

Introduction

Appropriately designed and implemented activities enable young children to
develop mathematical competencies that were earlier considered only attainable
by older children (English & Mulligan, 2013). The results in this paper derive from
an educational design research study of the implementation of problem solving in
mathematics. The focus in the paper is, however, not on the full study but on the
representations and systematisations young children spontaneously use when they
are solving a (for them) challenging combinatorial task and how both of these are
influenced by the use of a digital version of the task. The task given to the children
concerned how many different ways three toy bears could be arranged in a row on
a sofa. To make the task meaningful for the children, it was presented as a conflict
between the toy bears, where the bears cannot agree on who should sit at which
place on the sofa. One toy bear then suggests changing places every day. The task
for the children was to find out how many days in a row the bears could sit in
different ways on the sofa.

In a first design cycle, we noticed that children who used an iconic
representation when working on the task produced more duplicate combinations
than those using pictographic representations (Palmér & van Bommel, 2016). This
was quite surprising as iconic representations are considered to be connected to a
higher level of abstract thinking than pictographic representations (Hughes, 1986;
Heddens, 1986). We also noticed that children’s documentation lacked
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systematisation. Based on these findings, in the second design cycle we developed
and introduced a digital version of the task that the children were to explore before
they worked on the paper and pencil task similar to the first design cycle. The main
aim of the digital application was to make the children notice duplications.

The focus of this paper is if and how the use of the digital application
influenced the systematization and representation the children spontaneously used
when working on the combinatorial task. The paper is organised as follows: It
starts with a presentation of the study’s theoretical foundation, followed by the
study itself with the two design cycles and their results. Finally, several
implications for further research are given.

Theoretical foundation

To be able to work successfully with combinatorial tasks, you need to have
understanding about four important principles: systematic variation, constancy,
exhaustion and completion (English, 1996). The principle of systematic variation
means that a different combination will occur if at least one item is varied
systematically. The principle of constancy means that a different combination will
occur if at least one item is kept constant while at least one other is varied
systematically. The third principle, the principle of exhaustion, means that a
constant item is exhausted when it no longer generates new combinations when
the other items are varied. Finally, the principle of completion means that when all
constant items have been exhausted all possible combinations have been found.
English (1991, 2003) has showed that young children can develop understanding
of the four aforementioned principles and that a proper and meaningful context
makes it possible for young children to work effectively on finding permutations
in combinatorial situations.

Listing items systematically has been shown to be difficult for young children
when solving combinatorial tasks (English, 2005). A variety of graphic
representations can be used when solving combinatorics task (for example lists,
diagrams, sketches and tables), all of which can be made systematic or not. English
(1996) identified three stages of systematization when young children solve
combinatorial tasks; the random stage, the transitional stage and the odometer
stage. At the random stage, children use trial-and-error which is why constant
checking becomes important to succeed with a task. At the transition stage children
start to adopt a pattern in their documentations but the pattern is not kept
throughout the task, instead the children often revert to the trial-and error approach.
At the odometer stage, the children use an organized pattern for the selection of
combinations where one item is held constant while the others are varied
systematically.

When the children in this study were to work on the combinatorial task, they
were offered to work with paper and pencils in different colours and when
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documenting possible permutations, they were free to choose their own
representations. Historically, most studies on children’s representations have been
connected to quantity, with few studies on young children’s use of representations
when solving tasks within other mathematical areas. In relation to quantity,
Hughes (1986) distinguished between idiosyncratic, pictographic, iconic and
symbolic representations. Idiosyncratic representations are irregular and not
related to the number of objects represented. Pictographic representations are
pictures of the represented item. Iconic representations are based on one mark for
each item. Symbolic representations are the standard forms like numerals or equal
signs. Also, in relation to quantity, Heddens (1986) focused on the connection
between the concrete and abstract when analysing children’s representations. He
defined two levels, semi-concrete and semi-abstract, to describe representations
used in between the concrete (objects) and the abstract (symbolic). At the semi-
concrete level, pictures of real items, as a representation of the real situation, were
considered. The semi-abstract level concerned a symbolic representation of the
concrete items, with a constraint that the symbols would not look like the objects
they represented. Thus, what Hughes (1986) named pictographic representations
are semi-concrete in the wordings of Heddens (1986), whereas iconic
representations are semi-abstract.

When analysing children’s documentation produced when solving the
combinatorial tasks in this study, we used English’s (1996) notions trial and error,
transition and odometer combined with Hughes’ (1986) notions pictographic and
iconic representations.

The study

As mentioned previously, the results in this paper derive from an educational
design research study of the implementation of problem solving in mathematics in
Swedish preschool class (six-years-olds). In Sweden, the compulsory school starts
at age 7. Prior to that, children can attend a year in the optional preschool class
(will become obligatory in August 2018). Preschool class serves to make the
transition from preschool to school smooth since the traditions of play in preschool
and the focus on learning in school otherwise can become problematic (Pramling
& Pramling Samuelsson, 2008). Before 2016 there were no specific goals for
preschool class in the curriculum, which is why the mathematics content and the
design of the teaching differed a lot between preschool classes (National Agency
for Education, 2014, 2016).

The study has been ongoing for five years and is conducted through several
design cycles with the stages of defining, testing and adjusting interventions
(McKenney & Reeves, 2012). In this paper we focus on one of the tasks — the
combinatorial task described above — starting with the results from the initial
design cycle in which we found that children who used iconic representation when
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working on the task made more duplicate combinations than children using
pictographic representations (Palmér & van Bommel, 2016). We will compare
these results from the initial design cycle with results from a later design cycle
when a digital application, specifically designed for this study, was added to the
intervention (van Bommel & Palmér, 2017). The initial design cycle involved 123
children from ten preschool classes, the later design cycle involved 61 children
from eight preschool classes. The children’s guardians were given written
information about the study and approved their children’s participation in line with
the ethical guidelines provided by the Swedish Research Council (2011).

The initial design cycle

When introducing the task, the children were verbally told the task and shown three
small plastic bears, one red, one yellow and one green. After this introduction the
children worked individually. They were given white paper and pencils in different
colours but no instructions regarding what or how to do any documentation on the
paper. It is these documentations that we have analysed using English’s (1996)
notions of trial and error, transition and odometer together with Hughes’ (1986)
notions pictographic and iconic representations. When analysing systematization,
we looked at the order of the drawn permutations, for example, to see if one item
had been kept invariant, if one item had been varied or if the permutations seem to
occur randomly (see example figure 1).

B

Figure 1: Two examples of children’s documentation
Left: Pictographic & Iconic; Some permutations — no duplications (3 unique
permutations)
Right: Iconic; Some permutations — with duplications

Of course, the analysis on systematization is made from an observer perspective
and it is possible that children had systematizations not visible to us. Table 1 below
shows the categorization of the 123 documentations. Nine documentations were
not possible to categorize regarding systematization as they included only one
permutation or a picture of more than three bears, thus the table shows the
categorization of the remaining 114 documentations.
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Pictographic Pic/Icon Iconic Total Total

Trial and error —with duplications 7 B 21 31

68
Trial and errors — no duplications 19 2 16 37
Transition —with duplications 2 9 11

20
Transition —no duplications 9 9
Odometer - not all solutions 7 3 14 23

26
Odometer —all solutions 2 2
Total 35 8 71 114 114

Table 1 Categorization of children’s documentation in the initial design cycle

A total of 35 children used pictographic representations, 71 children used iconic
representations and 8 children used both pictographic and iconic representations.
Thus, the majority of the children spontaneously used an iconic representation.
Four of the 114 children found six unique permutations when they worked
individually with the task. These four children used iconic representations; two
with a trial and error approach and two with an odometer approach. Using a trial
and error approach implies that these two children had to check each of the new
permutations with all the previous permutations to figure out if each drawn
permutation was new or not. As shown in Table 1 the children made quite a lot of
duplications. Of the documentations using a trial and error approach or a transition
approach, 30 of the 55 iconic documentations, three of the five combined
documentations and nine of the 28 pictographic documentations included
duplications. In contrast, 19 of the 28 documentations using a trial and error
approach or a transition approach together with pictographic representation
consisted only unique combinations. Thus, there was less duplication in
documentations with pictographic representations. While at a first glance, it looked
as if iconic representations did not generate a higher level of solution of the
combinatorial task; quite the opposite occurred, as pictographic representations
resulted in less duplication. As long as a trial-and-error approach was used,
pictographic representations seem to work best. However, a transition approach
was visible more often in iconic (18) than in pictographic (2) documentations and
there were more iconic (16) than combined (3) or pictographic (7) representations
on the odometer level. Hence, the majority of children who showed
systematization in their documentations used iconic representations. The
development of representations and systematizations seemed to be somehow
synchronized however, an early use of iconic representations did not seem to
support the development of systematizations. This result led to the development of
a digital application to be added to the intervention in a new design cycle.
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The digital application

To further investigate possible connections between representations and
systematization, we developed a digital version of the task. This digital application
offers a semi-concrete pictographic representation (Hughes, 1986; Heddens, 1986)
together with a systematic way of documenting each permutation (van
Bommel&Palmér, 2017). The issue of duplications is included in the application
to the extent that if a previous documented permutation is selected again, the
application indicates this with a red frame (see third image figure 2). The images
in figure 2 show the semi-concrete representation within the digital application (an
image of bears on a sofa), as well as the documentation of the permutations in the
frames on the right hand side. In the first image, the child has only placed one bear
on the sofa, in the second image, the child has completed one permutation which
is visible in the little frame on the right hand side of the image. In the third image,
the child has accomplished three permutations and the fourth attempt resulted in a
previously obtained permutation which is made visible in the application through
the red frame to the right.

B Gl

Figure 2: Sequence of images of the digital application

Results - the later design cycle

In the next design cycle, we let the children work with the digital application before
introducing the paper and pencil version of the task. By doing this, we could
investigate if and how the use of the digital application influenced the
systematization and representation the young children spontaneously used when
they work on the paper and pencil version of the task. In total, 61 children from
eight preschool classes were involved in this design cycle. Table 2 below shows
the categorization of these children’s paper and pencil documentation of the task
(after using the digital application). The table is organized based on the children
making duplications or not.
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Pictographic | Pictographic & Iconic | Iconic | Total

Trial and error — with duplications 1 1 3 5
Transition — with duplications 2 5 7 o
Trial and error — some permutations — no duplications 2 1 2 5

Trial and error — all permutations — no duplications 1 | 2
Transition — no duplications 5 8 13 |49
Odometer — some permutations — no duplications 9 1 6 16
Odometer — all permutations — no duplications 3 1 9 13

Total 20 7 34 61

Table 2: Categorization of children’s paper and pencil documentation

After using the digital application, one could imagine that the children would not
find the paper and pencil part of the task interesting or challenging. However, still
few children “solved” the task (15 of 61) and even those who found all
permutations had to work quite a time to find the permutations. Unlike the first
design cycle, few children made duplications, only 12 of 61. Still, there were fewer
duplications among pictographic representations where only 1 of the 20
documentations included duplications. The 16 documentations categorized as
odometer — some permutations — no duplications consisted of exactly three
combinations, each bear sitting one time at each place. Notable is that 2 of the
documentations categorized as trial and error — some permutations — no
duplications as well as 6 documentations categorized as tramsition — no
duplications included five unique permutations.

Discussion — comparing the two design cycles

At this stage, it is interesting to compare the results from the initial design cycle
with the results from the later design cycle. The digital application was designed
to offer a semi-concrete pictographic representation together with a systematic way
of documenting each permutation, which seems to have created a different
understanding of the combinatorial problem. In the initial design cycle,4 of 114
children found the six unique combinations, in the later design cycle 15 of 61
children found the six unique combinations (two on a trial and error level and 13
on an odometer level). In the initial design cycle 42 of 114 children made
duplications (37%) while in the later design cycle only 13 of 61 children made
duplications (19%). In the later design cycle, 49 of the documentations showed a
transition or odometer level indicating the application promoting systematization
in the children’s paper and pencil work. 2 of the documentations from the later
design cycle categorized as trial and error — some permutations — no duplications
as well as 6 documentations categorized as transition — no duplications included
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five unique permutations. Documentations with that many permutations without
any duplications was unusual in the initial design cycle. In the initial design cycle
23 of the 114 documentations consisted of exactly three combinations, each bear
sitting one time at each place. in the later design cycle, such documentations with
exactly three combinations were found in 16 of the 61 documentations. According
to English (1996), this solution is common for young children working on
combinatorial tasks since the repeated selection in systematic combinatory goes
against the wording “different combinations”. Especially young children often
interpret “different” as different in all aspects. They do not think that keeping one
item constant and change the others ends up as a “different combination”. Instead,
when each bear has been sitting one time at each place they think of the problem
as solved.

Implications for further research

The digital application was developed to offer a semi-concrete pictographic
representation together with a systematic way of documenting each permutation.
Thus, the children who began with using the digital application started to work at
the semi-concrete level and had possibility to explore systematization. Based on
our analysis, we cannot claim that the digital application influenced children’s
paper and pencil documentation, but at the same time, nothing in the results speaks
against the use of the digital application influencing the systematization and
representation the young children spontaneously used when they worked on a
combinatorial task. One thing that was interesting with classes of children who had
worked with the digital application was that all but one of the children from two
of the classes used iconic representation in their paper and pencil documentations,
and in contrast, almost all of the children from a third class used pictographic
representation. This diversity is something that we intend to explore further by
interviewing children about their choice of representation, in close connection to
working on the task. Finally, we want to emphasize that we do not understand these
preliminary results as a choice between paper and pencil or digital application but
as the results indicate; paper, pencil and digital application. Based on this, we
consider it to be justifiable to proceed with a larger study, both to elaborate on how
the analogue and digital version of the task can be combined in teaching to
contribute to children’s understanding and to further explore the rationale for
children’s choice of representation
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“I find that pleasurable and play-oriented
mathematical activities create wondering and
curiosity”

Norwegian Kindergarten Teachers’ Views on
Mathematics

Trude Fosse and Magni Hope Lossius
Western Norway University of Applied Sciences, Faculty of Education,
Norway

This paper investigates the results of a questionnaire given to kindergarten
teachers in Norway. The focus is on the mathematical topics the kindergarten
teachers found important to work with and their arguments for doing so. The
Norwegian kindergarten tradition is play-oriented, with mathematics learning
during daily activities as a central part of this tradition. We analyze the
quantitative and qualitative data according to how the kindergarten teachers
positioned themselves with respect to play-oriented and school-oriented
mathematics. The findings demonstrate how different kindergarten teachers view
and rationalize potential learning opportunities in mathematics.

Introduction

Today in Norway, nearly all children attend kindergarten between the ages of one
and six years of age. The guidelines in the Framework Plan for the Content and
Tasks of Kindergartens (The Ministry of Education and Research, 2011) regulate
the rules, content and tasks that should be undertaken in Norwegian kindergartens.
However, the guidelines are not explicit about what teachers or kindergartens
should do of activities, resources, scheduling and so on. Therefore, interpretation
and implementation might differ from kindergarten to kindergarten. According to
Olsen (2011), the reason for this diversity might be tensions between what official
documents, including the Framework Plan, prescribe, and kindergarten teachers’
own perceptions, meanings and practices.

In Sweden, Lembrér and Meaney (2014) used the concepts of being and
becoming to examine how children were positioned in the newly-revised Swedish
curriculum in regard to their mathematics learning in preschool. From their
perspective, the concept “being” might be discussed in terms of democracy:
children’s right to express their views and children’s right to influence their daily
life in kindergarten. This positions the child as an active learner with his or her
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own initiative, imagination and sense of wonderment. They consider the concept
of “becoming” as describing the situation in which the child seems to be
incomplete and lack knowledge. The kindergarten teacher’s role is then to fill the
child with knowledge for the future. Lembrér and Meaney’s analysis suggested
that although the curriculum situates the children as both “being” and “becoming”,
the aims for mathematics are likely to suggest to kindergarten teachers that their
focus should be on children’s becoming. They considered this to be in alignment
with the strong schoolification forces operating on kindergarten (Lembrér&
Meaney, 2014). As this is in contrast to the Nordic tradition of kindergarten being
play-oriented, this may lead to teachers experiencing conflict about their planning.

Benz (2012) conducted a questionnaire survey among kindergarten teachers
and assistants in Germany. She analyzed educators’ statements about mathematical
domains or topics and views on teaching mathematics in kindergarten. The
educators” agreed mostly to statements related to scheme and formalism
competences instead of process and problem solving activities. Findings from the
study indicated that how the kindergarten educators view mathematics seems to
influence their beliefs concerning children’s learning of mathematics.

Ostrem et al. (2009) completed a national evaluation of the implementation of
the Norwegian Framework Plan. In the report, kindergarten leaders answered a
questionnaire survey on the implementation, use and their experience with the
Framework Plan. The findings indicated that the kindergarten leaders emphasized
activities concerning counting and shapes rather than mathematical activities
related to for example spatial thinking.

The aforementioned studies suggest that the implementation of mathematical
learning goals may be difficult for kindergarten teachers if they are perceived to
be in conflict with their own beliefs about the position of mathematics in
kindergarten. The following study investigates this issue within the Norwegian
context, exploring Norwegian kindergarten teachers’ thoughts on mathematics in
terms of their work with children and in relation to the curriculum (The Ministry
of Education and Research, 2011). At the time the data were collected, the
Framework Plan had been in place for nine years since the implementation in 2006
and had a revision in 2011. If we find differences between what the guidelines
provides, and the kindergarten teachers reports of what they do, then there may be
some inherent problems for the kindergarten system. Awareness of and knowledge
about the kindergarten teachers’ choices and reasons for working with
mathematics is important as it can help strengthen the kindergarten teaching
profession. According to Biesta (2011), it is essential “to understand what forms
and ways of learning are made possible through a particular learning culture and
what forms of learning are made difficult or even impossible” (p. 202).
Consequently, our research question focuses on this: What do Norwegian
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kindergarten teachers consider to be important in the implementation of potential
learning opportunities about mathematics?

Theory

To better understand mismatches that might occur between the curriculum and
teachers’ views about mathematics in kindergarten, we have drawn on theories
about socialization (Biesta, 2007; Giddens, 1979). Socialization might be
considered a part of kindergarten teachers’ preparation for children’s mathematical
learning. Investigating kindergarten teachers’ socialization and their views on
children’s learning of mathematics can provide a nuanced interpretation in terms
of what influences these kindergarten teachers. Socialization has been considered
in a variety of different ways. Biesta (2010) distinguishes between three functions
of education: qualification, socialization and subjectification. A major function of
educational institutions, such as kindergartens, lies in the qualification of children
through the development of knowledge, skills and understandings. In contrast,
Biesta (2007) considered socialization to be the “insertion of ‘newcomers’ into
existing cultural and socio-political settings” (p. 26). Thus, much of what occurs
in institutional settings, such as kindergartens, can be considered socialization, as
it is an institution in which young children come into contact with valued
understandings of how to participate in the society. From this perspective,
socialization is about making children become like ‘existing members’, usually in
the sense of becoming appropriate adults for the society in which they are situated.
Biesta (2007) points out that one of the dangers of socialization is that it also
reproduces, consciously or unconsciously, less desirable aspects of the culture. In
our case, for example, traditions about valued knowledge might be preserved even
though new policy documents indicate a change in the mathematical knowledge
that is valued. Kindergarten teachers are cultural agents, who, in working with
young children, socialize them in regard to the knowledge seen as valuable,
including understandings about mathematics.

However, teachers are not the only contributors to the socialization process.
Giddens (1979) stated that children need to be considered as active agents who
have relevant knowledge and skills for structuring their own participation. This is
in alignment with a “being” perspective of young children (Lembrér & Meaney,
2014). Children’s play, therefore, has an important role in the continuation of the
culture and of the kindergarten tradition as it enables children to control the
knowledge that is raised, and which is examined within an interaction (Biesta,
2010). The guidelines in the Norwegian Framework Plan (2011) emphasize the
importance of working with mathematics in children’s daily life experiences. As
socialization is an active process, participants in the culture have possibilities to
not just reproduce valued cultural knowledge but to also influence what becomes
valuable. For Biesta (2010), the possibilities of producing valuable cultural
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knowledge is no longer consist with socialization but with subjectification. “The
subjectification function might be understood as the opposite of the socialization
function. It is not about the insertion of ‘newcomers’ into existing orders, but about
ways of being that hint at independence from such orders” (Biesta, 2010, p. 21).
Subjectification is necessary if education is to lead to democracy, because in
subjectification children’s participation is given weight. The Norwegian
Framework Plan (2011) encourage these subjectification processes. Children’s
views shall be heard and influence the daily activities.

Method

This project investigates the views of Norwegian kindergarten teachers and how
these views might be affected by different societal influences, such as the Nordic
tradition for kindergarten education, kindergarten curriculum, social and cultural
settings. By studying the kindergarten teachers’ argumentation for their views
about the kind of mathematics that should be introduced in kindergartens, we
anticipate determining how they position children’s learning. For instance, do they
use arguments from the Framework Plan or do they use other arguments to justify
their practices regarding mathematics?

In order to answer the research question, 160 kindergarten teachers completed
a survey about their views on the mathematics that should be introduced to children
in kindergartens. The survey was conducted in 20142015 and given to 16 males
and 144 females from the western part of Norway. As the number of males is low,
we have combined the results of males and females and chosen not to analyze the
data with respect to gender. The survey contained questions that provided both
quantitative and qualitative data.

This paper discusses data from two of the nine questions in the questionnaire.
The first survey question, “Which topics do you find important to work with
related to the learning area ‘Number, space and shape’?”, was a multiple-answer
question where the recipients had to indicate one or more relevant answers from
the following set: patterns; locating; measuring; abstract thinking; sets; shapes;
concepts; classification; and counting. The potential answers reflect different
topics from the learning area “Number, space and shape”. In addition, a follow-up
open-ended question asked the teachers to indicate reasons for their choice. We
analyze the written responses concerning how the teachers position themselves
with respect to play-oriented and school-oriented mathematics. From the written
justifications, we discussed the answers and identified four categories; 1) no
written argument was provided, 2) arguing based on children’s interests, 3) arguing
based on school preparation or 4) a mix of arguments mention in categories 2) and
3). Three written justifications representative of categories (2), (3) and (4) are
discussed later in this paper.
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Results and discussion

All respondents answered the question “Which topics do you find important to
work with related to the learning area ‘Number, space and shape’?” Our findings
show that counting, classification, concepts and shapes were the topics identified
by most kindergarten teachers as important (see Table 1). 94 % of the kindergarten
teachers found counting to be important, whereas 88 % indicated that shapes were
important. In contrast, only 60 % of recipients found it to be important to work
with patterns, 63 % identified localization and 65 % considered measuring
important for working with mathematics (see Table 1). In the middle of the table
we find sets and abstract thinking with respectively 87% and 77%. These are
relatively high scored, and the majority of the kindergarten teachers say they
facilitate activities that support these topics.

Counting 94 %
Classification 92 %
Concepts 91 %
Shapes 88 %
Sets 87 %
Abstract thinking 77 %
Measuring 65
Localization 63 %
Pattern 60 %

Table 1: “Which topics do you find important to work with related to the learning area:

Number, space and shape?”
These results are comparable with studies by Ostrem et al. (2009). In their report,
kindergarten leaders also indicated that many counting and shape activities were
provided in the kindergarten, and there was less focus on localization. @strem et
al. (2009) did not ask about classification and concepts, yet they are mention in the
guidelines. These topics make a high score in our survey, and it may because they
are close to daily activities like sorting toys and mathematical conversations, for
example related to constructions activities (Fosse, 2016). Given that the
Framework Plan (The Ministry of Education and Research, 2011) emphasizes
space, it is possible that kindergarten teachers would identify localization as an
important part of mathematics. Similarly, the Framework Plan emphasizes the use
of everyday activities, yet activities such as measuring, which could be considered
as being more related to everyday activities than counting or shapes, are considered
important by fewer kindergarten teachers. This is in alignment with findings from
Benz (2012) where the German kindergarten educators mention counting and sets
as central content in mathematics in kindergarten and rarely mentioned activities
related to measuring.
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The results from this question made us want to explore the teachers’ reasoning
for their choices to see what might be influencing their views on what valuable
mathematics for kindergarten children was, and potential learning opportunities
about mathematics. Therefore, we had a follow-up question about their reasons for
identifying working with specific mathematical topics. The question: “I think
(one or more) topics are important to work with because...” had an 80% response
rate. This is in contrast to the 100% response rate to the multiple-answer question
regarding working with specific mathematical topics. The difference in the
response rate might indicate that kindergarten teachers are more willing to identify
what they are doing than their reasons for why they were doing it. Research on
doing surveys indicate that people are more likely to complete multiple-answer
questions than open-ended questions (Zhou, Wang, Zhang & Guo, 2017).

The first response is typical of an answer from kindergarten teachers’ which
highlights the importance of children’s interests (Category 2). Maria’s
(pseudonym) response (translated by the authors): It is important to work with
numbers and shapes, because children’s interests are often there.” To stimulate the
mathematical development of children related to the children’s interests is in
alignment with the Framework Plan (The Ministry of Education and Research,
2011) and it could be this part of the Framework Plan that teachers draw on with
this justification. According to Lembrér and Meaney (2014), Maria’s utterance is
in alignment with a “being” perspective, since her arguing is based on the
children’s interest that may also involve play-oriented activities. Nevertheless, if
this valuing of numbers and shapes as important mathematical knowledge is
restricted to being because it is what interest children, it may be problematic in that
it limits children’s possibilities to learn to only the ideas they themselves raise.

Maria’s responses to the multiple-answer question were in alignment with the
results shown in Table 1, in that she did not mark localization and measurement as
important areas of mathematics. This might influence her daily practice related to
mathematics and the children’s mathematical learning. As Biesta (2007)
emphasized, one of the dangers of socialization is that you could reproduce the
culture even if it is not what you intended. By following the children’s interests,
Maria may deprive the children of potential learning opportunities about
mathematics that can occur in daily life situations, for example, related to
measuring as described by Helenius, Johansson, Lange, Meaney, Riesbeck and
Wernberg (2014). In this way, she may limit the children in reproducing valuable
mathematical knowledge. Maria’s response could be seen as both subjectification
and qualification (Biesta, 2007): subjectification in that it reinforces children’s
interests as being important, and qualification in the way she encourages learning
about number and shapes, which are mathematical knowledge both in daily life
and for the future.
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Other respondents gave reasons linked to the children’s perceived
mathematical needs for school readiness. An example from the category school
preparation (Category 3), was offered by kindergarten teacher Helen (pseudonym):
“Counting, sets and concept, measuring. It is important for children’s school start
that this is automatized.” This statement indicates the importance of some
mathematical topics due to them being needed by children when they start school.
The teacher does not relate her work to expectations in the Framework Plan but to
wider societal expectations. The focus on children’s needs for school is interpreted
as an example of Biesta’s (2010) qualification because the kindergarten teachers
argued with respect to an outcome related to school.

This way of arguing is related to the concept “becoming,” described by
Lembrér and Meaney (2014). Helen focuses on children becoming
mathematicians, or at least school mathematicians, and in this statement, she is not
referring to the skills and knowledge that the children already had. Such a focus
might contribute to some teachers not recognizing and making use of children’s
current knowledge and skills. The many responses which connect specific
mathematical knowledge with preparation for school may be due to politicians
such as the Norwegian Minister of Education (Isaksen, 2014) suggesting that
children should focus on mathematics in kindergarten in order to prepare for
school. Kindergarten teachers’ perceptions of what mathematics children are likely
to meet when they begin school suggests that some areas are getting too much
focus. This means that other areas of mathematics, for example location and
patterns, may be ignored or only feature as a minor focus, even if they might
provide better connections to children’s existing knowledge and skills, a point
highlighted as important by the Framework Plan (The Ministry of Education and
Research, 2011).

The results also showed that there was another common type of response that
indicated that the kindergarten teachers valued many different topics as being
valuable mathematical knowledge. Ann’s (pseudonym) comment exemplifies this
type of mixed argument (Category 4), demonstrating children’s interests, play-
oriented activities and learning as part of being in a democracy.

I think that all the mentioned topics are relevant to work with in the kindergarten. I
find that pleasurable and play-oriented mathematical activities create wondering and
curiosity. We discover things together; the pleasure of discovering is great. It conduces
good communication between children and adults and provides an arena for mastery
and desire to learn — motivation. I think purposeful, systematic, pleasurable and play-
oriented mathematics activities might help to reduce social inequalities and give
children a sense of safety and curiosity that will be useful for them later. The activity
is meaningful in itself.

Ann indicated that she saw the child as an active agent with whom she worked
together to discover and wonder about different experiences. In doing so, she
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seemed to draw on statements about mathematics from the Norwegian Framework
Plan. This can be seen in how close her statements are to the description in the
Framework Plan that: “in order to work towards these goals, staff must listen and
pay attention to the mathematical ideas that children express through play,
conversation and everyday activities” (The Ministry of Education and Research,
2011, p. 42). We interpret Ann’s response as aligning with the “being” perspective
(Lembrér & Meaney, 2014), as she is consistently arguing for the child’s
participation in everyday activities and situations.

In the second last sentence where Ann emphasizes how mathematics might be
used to reduce social inequalities, she indicated that she was aware of the power
in social and cultural settings of learning. We interpret Ann’s response is an
example of all of Biesta’s (2010) three functions of education: qualification,
socialization and subjectification: Qualification by mentioning that all the topics
are important to work with and by arguing that “play-oriented mathematical
activities ... will get useful for them later”. Her arguments might be seen as a
qualification as they are about long-term need for mathematical competence.
Socialization in that Ann argued for a learning environment where the children
experience the social and culture setting. Subjectification in the way she argues for
children as active agents “We discover things together and to reduce the social
inequalities and give children a sense of safety — curiosity will get useful for them
later”. Qualification, socialization and subjectification are not seen as three
separate functions of education, but they are overlapping (Biesta, 2010). In our
research some teachers’ views seem to be drawn from different influences, but they
are able to blend them into a cohesive whole, rather than seeing them as being in
conflict.

Conclusions
The findings demonstrate how different kindergarten teachers argue about
potential learning opportunities in mathematics. Some kindergarten teachers did
not provide a response, others argued based on children’s interests, a third group
based their arguments on school preparations and a fourth group had mixed
arguments related to children’s interests, play-oriented activities, school
preparation and children’s possibilities to participate actively in a democratic
society. The data provided examples of kindergarten teachers’ justifications about
learning mathematics and these are related in different ways to Biesta’s (2010)
three functions for education: socialization, subjectification and qualification.
The diversity in the responses shows the tension between what official
documents prescribe and kindergarten teachers’ own perceptions, meanings and
practices that are affected by a range of different influences, some of which are
noted in the results. This has considerable influence in relation to the daily work
with children and mathematics in the kindergarten. This is in alignment with
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Biesta’s (2010) dimension of socialization as the kindergarten teachers’ views on
the implementation of potential learning opportunities about mathematics are
influenced by the culture. Biesta (2011) highlights how important it is to discuss
what forms and ways of learning opportunities are made possible through a
learning environment. The play-oriented guidelines in the Framework Plan (The
Ministry of Education and Research, 2011) give many opportunities for different
mathematical practices and supports the subjectification dimensions focusing on
child-initiated activities, participation and democracy. There is less focus on the
qualification functions, such as assessment and measurement. In our findings,
some of the kindergarten teachers argue for mathematical activities based on
children’s interests related to the subjectification dimension.

It seems that the necessity for mathematics in kindergartens as qualifying is an
argument for some kindergarten teachers in our research, even though this is not
reflected in the curriculum. Several respondents state that they will work with
mathematics because it is a way to prepare children for school. Others argue for
qualification as mathematics will become useful for children later, seen as
qualification for the future. Further studies might investigate kindergarten
teachers’ actual practice and how that is in accordance with their reasoning for
doing mathematics.
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Collaborative tool-mediated talk — an example
from third graders

Heidi Dahl, Torunn Klemp and Vivi Nilssen
Norwegian University of Science and Technology, Norway

The importance of language and social interaction in learning mathematics has
been widely emphasized the last decades. In this paper, we present a dialog
between two eight-year-old girls, working on a multiplication task. The study is
video-based and carried out within a sociocultural framework. The analysis shows
that the girls’ communication skills and their competence to use drawings and
other written representations are intricately interlaced. On one hand, the
mathematical progress is dependant of the girls’ ability to accompany their written
work with verbal explanations and gestures, on the other hand, the written
representations act as means to elicit the girls’ thinking. Our study thus adds to
the field throwing light on how representations like drawings, are necessary
mediational means in young learner’s collaborative talk.

Introduction

The base for this study is part of a larger research and development project called
Language Use and Development in the Mathematics classroom (LaUDiM). The
main objective of the project is to develop deeper knowledge of the learning
environment’s significance for developing young learners’ mathematical thinking
and understanding, as well as to develop their ability to express mathematical
concepts and ideas. Amongst the other aims, one is to understand more about how
young pupils collaborate on solving mathematical tasks.

Theoretically (Vygotsky, 1987) and research-based (Mercer & Sams, 2006),
the importance of language and social interaction for learning mathematics has
been emphasized. This is also a claim in the Norwegian national curriculum for
primary school (LKO06). There are, however, some precautions from researchers
arguing that just putting pupils together will not always work. The talk is then often
uncooperative, off-task, inequitable and ultimately unproductive (Mercer & Sams,
2006). Sfard and Kieran (2001) concluded that “interaction with others, with the
numerous demands on one’s attention, can often be counterproductive. Indeed, it
is very difficult to keep a well-focused conversation going when also trying to
solve problems and be creative about them” (p. 70). They argue that strong
motivation is necessary to engage in mathematical conversations and make it work,
and a prerequisite for a mathematical discourse to be productive is the
effectiveness of the communication among partners. Research claims that there is
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a need to find out more about what productive dialogs that support mathematical
thinking and learning entail (van Oers, 2013).

In this paper we present, analyse and discuss a dialog between two Norwegian
eight-year old girls, here named Kate and Beth, solving a multiplication task. The
dialog ended with the exclamation “Yes, we did it” which we took as a preliminary
evidence of a successful collaboration. Thus, the research question for this paper
is: What features of talk and communication stimulates mathematical progress in
the collaborative process of solving a task?

Theoretical framework

Two important features of sociocultural theory are relevant for our study
(Vygotsky, 1987). First, the claim that higher mental functioning, like reasoning
and problem solving in the individual derives from social life. Second, that higher
mental functioning and human actions in general are mediated by tools and signs.
Vygotsky’s accounts of mediation provide the bridge that connects the external
with the internal and thus the social with the individual. Vygotsky viewed language
to be the most important tool, both for the development and sharing of knowledge
among people and also for structuring the process and content of individual
thought. From a sociocultural perspective, it is particularly interesting to study talk
in educational settings and identify in what ways humans learn to handle and use
cultural tools effectively to solve problems.

Exploratory talk is a typification of a way of using language effectively for
joint, explicit, collaborative reasoning (Barnes & Todd, 1977, Littleton & Mercer,
2010). In exploratory talk knowledge is made publicly accountable and reasoning
is visible. It represents a form of co-reasoning where speakers share knowledge,
challenge ideas, evaluate evidence and consider options in a reasoned way.
Explanations are compared, and joint decisions reached. “It is a speech situation
in which everyone is free to express their views and in which the most reasonable
views gain acceptance” (Littleton & Mercer, 2010, p. 279). According to Barnes
and Todd (1977) exploratory talk depends on learners who share the same idea of
what is relevant to the discussion and have a joint conception of what they are
trying to achieve. Two other kinds of talk are presented by Littleton and Mercer
(2010). In cumulative talk, speakers build positively but uncritically on what the
others have said. It is characterized by shared information, joint decisions,
repetitions, confirmations and elaborations, but there are no critical considerations
of ideas. Disputational talk is characterized by disagreement and individualized
decision making with few attempts to combine resources, offer constructive
criticism or make suggestions.

Duval (2006) claims that all mathematical activity involves the use and change
of semiotic representations. He introduces a classification of semiotic
representation into four different registers; natural language, symbolic systems,
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iconic and non-iconic drawings, and diagram and graphs, based on the possibilities
for performing mathematical processes. Natural language has a special position
amongst the registers, as it can be used also for communication, awareness,
imagination etc. Duval denotes transformations between representations within the
same system as treatments, and transformations between different registers as
conversions. He claims that conversions are more complex than treatments,
“because any change of register first requires recognition of the same represented
object between two representations whose content have very often nothing in
common” (p. 112). Hence, the ability to change from one representation register
to another is often a critical threshold for progress in problem solving.

The dialog presented in this paper is taken from a teaching sequence where the
mathematical aim was to give the pupils experiences with different multiplicative
situations. A multiplicative situation is characterized as one where “it is necessary
to at least coordinate two composite units in such a way that one of the composite
units is distributed over the elements of the other composite unit” (Steffe, 1994, p.
19). Depending of the situation, four different multiplicative structures can be
distinguished; equal groups, multiplicative comparison, rectangular area, and
Cartesian product (Greer, 1992). The task involved in this paper concerns the first
structure. In an equal group situation, the multiplier counts the number of groups,
while the multiplicand tells the number of objects in each group.

Methodology
LaUDiM is an intervention project where two teachers from different schools and
researchers from the field of mathematics education and pedagogy plan and set
goals for the teaching of mathematics, which subsequently is carried out by the
teachers. In the classroom, whole class discussions and dialogs between selected
groups of pupils are video recorded. Parts of these video recordings, together with
pupils’ written work, are discussed by researchers and teachers. This represents
the first step in analysing data as interesting sequences are identified. The
presented dialog is chosen from video-recordings of six collaborating pairs
working on the same task. By carefully viewing all the recordings we chose this
dialog due to the task-focused content, and to the engagement and passion we
could see between the two girls. Moreover, the session ended as already told with
the exclamation “Yes, we did it” which we took as a preliminary evidence of a
successful collaboration.

The video-recorded and transcribed session is 7 minutes long, the two girls are
working on the task:

The 3rd grade will have a party at school. The day before the party, they are baking
muffins for the party. Anne is going to the store to buy eggs for the muffins. In the
recipe, it says that they need four eggs in one portion. The children have decided
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that they are going to bake twelve portions of muffins. How many eggs does Anne
need to buy?

The girls’ discussion is a collaborative effort to solve the mathematical problem.
According to Blum and Niss (1991), a mathematical problem is a situation that
challenges somebody intellectually who is not in immediate possession of direct
procedures sufficient to answer the question.

To address the research question, we started the analysis by looking for
keywords described by Littleton and Mercer (2010) as characteristics of the three
different types of talk. Further we asked questions to the material, e.g. how do the
girls respond to each other, how do they give reason, and how do they share ideas.
Due to the video-based design of the study, we were able to identify not only their
oral talk, but also use of gestures and other mediational tools. The second step was
to identify shifts of focus in the dialog. This helped us to divide the dialog into
sequences, which were analysed further with respect to the mathematical content.
In this process, uses and shifts of representations became visible. This turned our
attention to Duval’s (2006) work on this issue. In the third step, we analysed and
interpreted each sequence more thoroughly by combining these two analytical
perspectives. We have decided to present and analyse the dialog as it unfolds, just
leaving out a few utterances we found unnecessary.

Analysis of the dialog
The dialog starts by Kate reading the word-problem aloud, Beth interrupts her.

1 B: I’1l draw four eggs?
2 K: Wait, wait (continues to read the task aloud). (...)
7 B: I’1l just draw some circles (starts to draw a row of

small circles).
8 K: Draw four circles. There you are. Good. And then

we should..., and then we have twelve..., just write

twelve, no, forget it.
While Kate is still reading the word problem, Beth suggests a conversion from the
problem stated in natural language to an iconic representation (1, 7). Kate supports
this transformation, by monitoring and evaluating Beth’s action (8). She wants to
build on Beth’s drawing, but she does not know how to represent the twelve. It is
not likely that the girls recognize the problem as multiplication at this point. Kate
then goes back to the written task, and after some thinking time, the conversation
continues.

13 B This is an addition problem.
14 K No, (whispers) it is 12 times 4.
15 B: Oh, yes.

16 K: No, it’s 4 times 12
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17 B: (Laughs) Yes, that is the same.

18 K: It is 4 times 12, ...no, it is not the same. For if we
take 12 times 4, then we take 12 four times'.

19 B: Yes.

20 K: And that does not work here.

At this point, it seems as if the girls have given up pursuing the iconic
representation, instead they try to find a number sentence that fits the word
problem. Eagerness to explain the difference between 12-4 and 4-12 (18), is taken
as an account for that it is important to Kate to make her knowledge publicly
accountable, so that Beth can follow her reasoning. Beth is not given the chance to
explain her thinking, and she accepts Kate’s way of interpreting the problem
without further questions. This sequence has features of cumulative talk.
Recognizing the situation as multiplicative gives Kate some new input on how the
problem situation can be modelled, and so the problem-solving moves on.
22 K (Points at the four eggs) So that means four..., we
should get to... we are going to have twelve. (Takes
the paper from Beth.) If I draw twelve. (...)

25 B Just do it there (points right beneath the four eggs).

26 K I’ll draw twelve muffins® (starts to draw bigger
circles, stops to count).

27 B: That’s funny looking muffins.

28 K I know, but we can see, we can see what it is anyway

(completes the drawing of twelve muffins; two rows
with six circles in each row).

29 B: Now you have twelve.

30 K: Here we have twelve muffins, and then there should
be four in each muffin (points at the eggs Beth has
drawn at the top of the paper).

31 B: (Points at the four eggs) Then we put these down
here, these four in one, then we have to... (points
from the four eggs to the twelve muffins).

Kate identifies that the muffins are the essential units to start with in an iconic
representation, and she makes the crucial connection between the muffins and the
eggs by pointing at Beth’s drawing of four circles (30). This shows that she has
grasped the multiplicative structure of the problem, one unit distributed over the
other, and is thus a mathematical breakthrough. The gesture also serves as an
acknowledgement of Beth’s contribution. Beth is not challenging Kate’s

Kate is aware of the difference between 4-12 and 12-4, but her interpretation does not follow the usual
convention.

There is some confusion between muffins and portions, but that is not important for the solution.
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reasoning, but actively monitoring Kate as she draws the muffins (29).By
suggesting to “put down” the eggs (31) she lets her know that she both understands
the structure of the problem and approves of her representation of it, and the girls
are ready to proceed.
34 K Because in this, if we add them together we get
eight. (Points to the first muffin in each row, writes
the number 8). Because in each there is eight.

35 B: Here, just read from here again. Slowly. (...)
39 B: Stop. We need four eggs in a portion, right?
40 K: Yes, because one portion, that is one muffin for us

then (points at herself). So that means that in this one
there is four (points at the first of the muffins).

41 B: (Points at the four eggs) all of these circles here, just
draw a line down to... (Points at the first of the
muffins).

42 K: In one there are four, and in that one there are four,

so if we add them, we get eight.

43 B: I’ll take four of them in here (draws four small
circles inside the first muffin).

44 K No, just... I will... (takes the pencil from Beth).
Eight plus four, we do it like this, four, four, four
(writes the number 4 above each muffin).

45 B Can I do the last ones?

46 K Yes, you can do these four.

47 B Oh no (draws a negligent looking 4).

48 K That’s fine, that’s fine, we can see it anyway.

Having seen through the multiplicative structure of the task, Kate seems ready to
use the representation of the twelve muffins to start calculating. She attempts to
justify her reasoning by words and gestures (34, 40, 42). Beth interrupts her,
suggesting that they make a more concrete representation of the eggs (41, 43). Kate
agrees, and starts to write “4” over each muffin (44). This exchange contains
several characteristics of exploratory talk. Reasoning is made visible, and the girls
consider and compare different options of representations, before a joint decision
is reached.
52 K: No, look here, do you know what, wait, we have to
do it again now, because..., if we take... (Points to
and counts the six muffins in the first row) this is
six, right (writes 4+4+4+ on a line below the
drawing of the muffins). Now I have taken these
three (puts a mark after the first three muffins,
counts as she writes more +4°s) 1, 2, 3,4,5,6,7, 8.



Publications from NORMA 17 37

53 B (Counts the muffins silently.) Just take twelve of
those. Ok, I’ll just read (takes the problem sheet,
reads to herself, following the text with her finger).

54 K: (Counts aloud, finishes to write +4) 9, 10, 11, 12.
Ok, here I made a plus-problem with all these
(points to the muffins). Then we have twelve fours,
just that..., here we have the answer (writes =
below the row of +4°s).

Both girls are able to use the drawing of the muffins, combined with the rows of
4’s, to start a process of repeated addition, but they face some challenges keeping
track of the preliminary calculations. Kate takes the lead of transforming into a
more structured symbolic representation (52), making her thinking visible to
ensure that Beth agrees. There are no critical considerations of ideas here, hence
this sequence can be characterised as cumulative talk. However, Beth is not passive
in this process, she monitors Kate’s work, and checks once again that the
representation they have come up with is in line with the written task (53). After
some negotiation on the notation, the girls are ready to perform the needed
calculations.

63 B: It is 16 (points). (...)

66 K Ok, ok I believe you. Plus four, 16... (Draws more
vertical lines and writes 16), and here we have four.

67 B: 16

68 K/B: (Both counting on their fingers) 17-18-19-20 (Kate
writes 20).

69 B: 24 (Kate writes 24), 28 (Kate writes 28)

70 K (Counting on her fingers) 29-30-31-32 (writes 32)

71 B: (Counting on her fingers) 33-34-35-36 (Kate writes
36)

72 K/B: (Counting on their fingers) 37-38-39-40 (Kate
writes 40), 41-42-43-44 (Kate writes 44)

73 K Oh, that one, that one we could have done right
away.

74  B: 48 ... I think.

75 K: Yes, it is 48.

76 B Yes, it is 48. (Kate writes 48 behind =). So, we have

to buy 48. Yes, we did it!

The new representation works for calculating and the girls share the same strategy,
taking turns counting in fours. They trust each other’s calculations, so there is no
need to question or challenge ideas in this exchange. When there are only a few
more fours to add, they turn into a choral count, which indicates that they are
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enthusiastic as they approach an answer. Beth’s “Yes, we did it” shows pride of
having fulfilled their common project.

Discussion

To be able to address our research question, we first identify what comprises the
mathematical progress in the dialog. We then present the features of talk and
communication which stimulates this progress.

The solution process is not straight forward for the girls. Anghileri (1989)
claims that multiplication differs significantly from addition in complexity because
there are three pieces of information to coordinate; the number of sets; the number
of elements in each set; and the procedure for executing the product. The
mathematical progress in the dialog can be described in two steps. First, the
mathematical breakthrough happens when the girls identify the multiplicative
structure of the problem situation (30, 40-43). They recognize that the group of
eggs constitute a composite unit that is to be distributed over the muffins. The task
can then be solved by repeated addition of 4’s. The girls’ actual calculation
constitutes the second step of the mathematical progress. This, of course, leads
them to the final answer, but identification of the multiplicative structure is crucial
in order to be able to start the calculation. The analysis shows that when the girls
are stuck in the process of solving the task, they use two strategies to make
progress; they either re-read the task, or they perform a shift of representation
(Duval, 2006). By constantly going back to the written problem the girls check that
they have a joint conception of what they are trying to achieve (Barnes & Todd,
1977), while the changes of representations serve as a tool that helps them uncover
the structure of the task, to perform calculations, and to structure and communicate
their thoughts. The girls’ need of a model of the problem situation as a tool for
thinking is in line with previous research on young children’s pre-instructional
multiplicative strategies (Kouba, 1989).

First and foremost, the mathematical progress in the dialog is stimulated by
the fact that the girls have a common goal in solving the task (Sfard & Kieran,
2001). The repeated use of “we” instead of “I” indicates that they share the
responsibility for the project. There is an atmosphere of trust and
acknowledgement between them, visible for instance when Kate gives positive
feedback on Beth’s drawing (8), when they don’t mind that their drawings are not
perfect (28, 48), and when Kate trusts Beth’s calculation (66). Though not
sufficient, mutual acceptance is a necessary condition for co-reasoning and
exploratory talk, as it creates a space where the girls dare to share ideas.

Two features of the girls’ communication seem especially important for
stimulating mathematical progress; the girls’ ability to communicate their thinking
by words and gestures, and their eagerness to actively involve themselves in each
other’s reasoning. First, making their thinking public makes it possible to follow
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each other’s reasoning, to evaluate it, and build upon it. These are important
features of exploratory talk. An example is when Beth draws four eggs, stating
aloud what she is drawing. Kate then tries to build upon Beth’s work, but is unsure
of the role of the number 12 (1-8). Another example is the sequence where they
are considering different options of how to represent the four eggs inside each of
the twelve muffins (34-48). Putting thoughts into words also enables the one
sharing her idea to think it through more thoroughly, leading to a deeper insight
(Vygotsky, 1987). An example of this is when Kate explains the difference
between 4:12 and 12-4 (18). Almost immediately it seems like she sees the
connection between the pair of numbers and an iconic representation of the
problem, making her able to model the situation in a way that illustrates the
multiplicative structure.

Secondly, the girls constantly involve themselves in each other’s reasoning,
either by monitoring each other’s actions, as when Beth confirms that Kate has
drawn exactly 12 muffins (29), or by actively participating in the other’s
construction of a new representation (45). In exploratory talk, ideas are often
challenged or questioned. This does not happen often — if at all — in the dialog
between Kate and Beth, giving the communication a cumulative flavour. This does
not mean that they passively accept each other’s ideas, and their active
involvement is most important for mathematical progress. It ensures that the
reasoning is supported and understood by both participants, and hence serves as a
green light to continue.

The communication of ideas and reasoning in the girls’ dialog seems to be
especially interrelated with the use of drawings and other written representations.
It is striking that whenever a change of representation is performed, the girls very
carefully explain their actions. We see this when Kate makes the drawing of twelve
muffins (22-30), and later when she turns the problem into a repeated addition
problem (52-54). Making their thinking public in these situations is especially
important because the written representations are the dominant mediational means
in the solution process. On one hand, one can say that the mathematical progress
is dependant of the girls’ ability to accompany their written work with verbal
explanations and gestures, as this may contribute to a shared understanding, crucial
for keeping the solution process a common project. On the other hand, the
drawings act as means to elicit the girls’ thinking, giving their verbal reasoning a
necessary support. In a way, the drawings and the girls’ ability to communicate
their thinking seems to be interdependent. Hence the girls are involved in what we
will call a collaborative tool-mediated talk in order to solve the mathematical task.
They are using language and drawings effectively for joint, explicit, collaborative
reasoning. We claim that our study adds to the field throwing light on how
drawings are necessary mediational means in young learner’s collaboration.
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Narratives constructed in the discourse on early
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Fractions are one of the most demanding topics for teachers to teach and for
students to learn. In this paper, we examine narratives about general properties of
fractions constructed in a class when they were introduced through an equal-
sharing context. The students’ work and discussions constitute the starting point
in planning further teaching, moving from lesson to lesson. Three episodes are
presented in order to illustrate and discuss our findings. We argue that the analysis
of the narratives provides insights into opportunities for students to learn as well
as regarding the complexity of the topic.

Introduction and theoretical framework

The aim of this paper is to contribute to the understanding of opportunities and
constraints that may occur when teaching and learning fractions. A class of
Norwegian 4th grade students worked on fractions over a five-week period, which
was their introduction to the concept in school. In this study, we are particularly
interested in statements about general properties of fractions and the relations
between fractions that were discussed in the class when the topic was introduced
through a context of equal sharing. We analyze video recordings of lessons and
illustrate and discuss our findings through three selected episodes.

From a pedagogical point of view, fractions and rational numbers take on
many “personalities”. Kieren (1976) recommends that work on fractions should be
conceptualized as a set of interrelated meanings, which he calls subconstructs:
part-whole, ratio, operator, quotient and measure. Behr, Harel, Post and Lesh
(1993) have further developed Kieren’s model, connecting it to operations on
fractions, equivalence and problem solving. However, Olive and Laboto (2008)
argue that the model is a semantic top-down analysis, which represents the adult
view on fractions, and that it is not certain that it describes children’s construction
of fractional knowledge. Thompson and Saldanha (2003) have also been critical
of the model, but their critique arose from a mathematical point of view: the
mathematical motivation for rational numbers did not emerge from meanings, but
from arithmetic and calculus. They suggest that fractional reasoning is tightly
connected to multiplicative reasoning, arguing that fractional reasoning develops
concurrently with reasoning on measurement, multiplication and division.
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Nevertheless, Kieren’s model has had a great influence on developments in
the area of research. Lamon (2007) suggests that it can be important to choose one
of the subconstructs as a starting point in the instruction and gradually include the
others. In a realistic mathematics educational tradition (see Streefland, 1993), the
notion of fractions is usually introduced through the context of equal sharing, i.e.
as a quotient. Streefland (1993) argues that equal sharing gives rich learning
opportunities regarding different aspects of fractions and that part-whole and
operators appear naturally in this context. In their approach to fractions through
cognitively guided instruction, Empson and Levi (2011) also started by working
on equal-sharing contexts. In the class that is the focus of this study, the instruction
started with an equal-sharing context, but the direction of further teaching was not
decided a priori. Rather, each lesson was designed based on the students” work and
the classroom discussions that occurred in the previous lesson.

How do students learn mathematical ideas? Sfard (2008) takes the position that
learning mathematics is learning to participate in a particular discourse, where
discourse is a special type of communication within a particular community. A
discourse is made mathematical by a community’s use of words, visual mediators,
narratives and routines. The use of words in mathematics includes the use of
ordinary words that are given special meaning in mathematics, such as function
and ring, and mathematical words such as fractions and trapezium. In
mathematical communication, participants use visual mediators to identify the
object of their talk. These visual mediators are often symbolic, such as
mathematical symbols, graphs, illustrations (e.g. number lines) and physical
artefacts (e.g. centicubes). Within discourses, any spoken or written text that
discusses properties of objects or relationships between objects is called a
narrative. Narratives can be numerical, e.g. ' is equivalent to 2/4, or more general,
e.g. addition is commutative (see Sfard, 2015). Narratives are subject to
endorsement or rejection, which is labelled true or false based on specific rules
defined by the community. Routines are well-defined practices that are regularly
employed in a discourse by a given community. These include how one talks about
geometrical objects, how one performs calculations, how one substantiates a
calculation, how to generalize and justify as well as when to use a particular action.
A routine is called an exploration if it produces an endorsable narrative. Examples
of explorations are numerical calculations, such as 21-19, the generalizing of
patterns and the justification of these generalizations.

Several studies have reported on initial fraction learning through equal sharing
(e.g. Empson, 1999), but none have used Sfard’s framework for learning. We argue
that Sfard’s thinking—regarding the learning of mathematics as learning to
participate in a particular discourse—is suitable to describe and analyze students’
learning processes as well as opportunities for learning. Students gradually start to
use fraction words and develop routines and narratives about the properties of and
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relations between fractions as they engage in work on fractions. Constructions of
narratives and their rejections or endorsements are central to mathematical
discourse. We argue, therefore, that an analysis of constructed narratives can
provide insights into opportunities for learning in a given discourse. Narratives
about general properties and relations between objects are of particular interest
here, as they can be lifted above the numerical situations and used in new
situations. Aiming to gain additional insight into learning opportunities, our
research question is: “What narratives about general properties of fractions and
relations between fractions can be constructed in an early discourse about fractions
when they are introduced through an equal-sharing context?”

Method

The study stems from a collaboration between an elementary teacher and two
researchers, the authors of the paper. The teacher has been teaching the class in all
subjects from their first grade. She was concerned about the students’ participation
and understanding in mathematics. There were 20 9-10-year-old students in the
class, who attended a conventional Norwegian school.

The class worked on fractions over a period of five weeks: two 70-minutes
lessons per week. The teacher’s motivation for the collaboration was further
development of her teaching practice. She suggested that the researchers sketched
ideas for lessons. The ideas were then discussed with the teacher. The teacher’s
comments and suggestions on the researchers’ ideas were built on the students’
prior knowledge and the way of working they were used to. The instruction on
fractions began with a problem about a school trip, whereby different groups of
students shared sandwiches: one group of four students shared three sandwiches,
and another group of five students also shared three sandwiches, etc. (inspired by
Fosnot & Dolk, 2002). The first activity set the basis for the series of lessons, as
all other lessons, and are connected to the students’ work on this first problem. The
researchers were present as participants observers during the lessons, videotaping,
observing and sometimes talking to individual students or even leading the
instruction for short periods. After the lessons, the researchers and the teacher
discussed students’ work. Based on these discussions, they sought to identify areas
that should subsequently be emphasized and how.

Data and data analysis

The data that is the focus of this paper is the video recordings of the class
discussion. Starting the analysis together, we watched through the recordings and
marked out all utterances, spoken and written, that could be considered true or
false. These utterances made up the set of all narratives discussed in the class. Most
of the narratives were numerical, such as “one-fourth is half of one-half” or “three
children get more than four children when they share a chocolate”. As our research
question is about narratives concerning general properties of fractions or relations
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between fractions, the next step in the data analysis was to identify these instances.

We discussed the generality of each of the narratives marked out in the data and

ended up with five narratives:

A. When we share equally, we can express shares as fractions

B. When we talk about a fractional part of something, it is crucial to be aware of what
it is a part of

C. The more parts we divide something into, the smaller the parts that we get

D. When we want to express part of something as a fraction, the parts have to be equal

E. Fractions can be the same even though they do not look the same

Finally, in order to present our findings, we agreed on three episodes (not
sequential) in which all five narratives were evident to illustrate the way they were
constructed and discussed in the class. The first episode is from week two, the
second from week three and the third from week four.

Episode 1 is an excerpt from a classroom discussion on sharing two
chocolates among three children. Two solutions that the students worked out
before the discussion are presented in Figure 1.

v ] XX

Each child Each child gets one-half and

l:ljj gets two-thirds. I:]:I:I:J one-third of a half.

Figure 1: Students’ solutions to the problem of sharing 2 chocolates among 3 children

The teacher wants to discuss with the students whether the answers in the two
solutions are equal and how this is so. She also wants to discuss which fractional
part of a chocolate “one-third of a half” is. The teacher begins the discussion by
asking the students to talk about their solutions. Thomas suggests dividing the first
chocolate into three equal parts, giving one part to each child; the same with the
second chocolate. He concludes that each child gets one-third of the first chocolate
and one-third of the second chocolate. The other students agree. The teacher asks
how much of one chocolate one child gets in total.

John: I think it is two-thirds.

Teacher: Two-thirds of one chocolate? Is that what you think?

John: Yes... Two chocolates are divided in three parts [each], and each
child gets two of them.

Lena: Yeah, but... If we take them together, then each child gets two-
sixths too?

Some students agree with John, while some agree with Lena. If one considers the
two chocolates as one unit (as Lena suggests when saying “take them together™),
then the first picture in Figure 1 shows a unit divided in six parts, two of them are
shaded — so 2/6 of the unit. In order to emphasize this change in the unit, the teacher
writes both suggestions, “2/3 of 1 chocolate” and “2/6 of 1 chocolate” on the
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blackboard, one below the other, and asks whether both can be right. Lena suggests
that it is the same. John and several other students agree.

Teacher: So, two-thirds are the same as two-sixths? Can it be? Here, we
divide each chocolate in three parts (the first example in figure 1).
If we divide it in six parts, then the parts are smaller, right?
Remember that the question is how much of one chocolate each
child gets. In what parts is one chocolate divided?

James: Thirds.

Teacher: And how many of such thirds does each child get?

James: Two.

Teacher: So, each child gets two-thirds of one chocolate. We can say that

each child gets two-sixths, but then it is not of one chocolate.
Two-sixths of what is it?

Lena: If you take two chocolates [as a unit], then it is two-sixths. If you
take one chocolate [as a unit], it is two-thirds.

Teacher: Right. When we talk about fractional parts, then we have to say
parts of what. It makes a difference. If you are about to get one-
third of one chocolate, or one-third of a big bag full of chocolates,
it is different, right [students nod and smile]? Shall we try to find
out how much chocolate we actually get if we get one-third of a
big bag of chocolates, 100 chocolates in the bag?

The narrative “When we share equally, we can express shares as fractions” is
central in the given context. Two chocolates are to be shared equally among three
children, and the students share the chocolates in one of the two ways presented in
Figure 1. They have worked with similar tasks several times before in the series of
the lessons in this research, and the use of “fraction words” (two-thirds, one-half,
third of a half) to describe shares seems to have become part of their routine in
such tasks. They emphasize that each chocolate is shared equally among the three
children and that each part is one-third of the chocolate.

Thomas suggests that “each child gets one-third of the first chocolate and one-
third of the second chocolate”. In the written work, many students suggest that
“each child gets one-half of the first chocolate and one-third of a half of the second
chocolate”. There is nothing in the context that makes it necessary to consider these
parts together as a fractional part of “one chocolate”, which is emphasized by the
teacher in order to compare the two different solutions. The teacher presses on,
expressing the share as a fractional part of one chocolate, and another narrative is
being constructed in the process: “When we talk about a fractional part of
something, it is crucial to be aware of what it is a part of”. In other words, the role
of the unit is emphasized by the teacher.

In order to challenge the students’ claim that both “2/3 of 1 chocolate” and
“2/6 of 1 chocolate” can be right answers, the teacher points out that one-sixth of
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a chocolate is smaller than one-third. Here, she brings in another narrative, which
was discussed earlier in the context of sharing one sandwich among five and six
kids: “The more parts we divide something into, the smaller the parts we get”.

Episode 2 is an excerpt from a classroom discussion on a task in Figure 2.
Tasks of this type were designed to discuss problems regarding type “one-third of
a half”, which appear in the context of equal sharing (of chocolates and such), as
in Episode 1.

True or not true?

1
3

Figure 2: Task discussed in Episode 2

Nelly: Not true. Because... it is ... there are three parts, but if we are to
share equally, it will not be equal ... hmm ... it will be unfair
because one part is big.

Several students agree and suggest dividing the shaded part into two equal parts.
Martin says that he does not understand.

Teacher:  Ann, can you explain to Martin why we need to divide the big part
into two parts?

Ann: Mmm. Because that part is too big if it is to be shared equally.

Teacher: That part is too big ifiitis to be shared equally. Do you understand
it, Martin? [Martin nods.] Can you explain it in your own words?

Martin: Mmm. If it was one chocolate and three kids, then ... well ... two
kids would get equal parts, but the last one would get bigger than
the others.

Teacher: Yes. If it was a chocolate, as Martin says, it would be rather unfair
because one would get more. Exactly as you say, it would be
unfair.

The problem in Episode 2 is without context, but the students independently
connected it to an equal-sharing context. Nelly starts to talk about equal sharing
and uses the word “unfair” — the shaded part cannot be 1/3 because it would be
unfair. This is supported by Ann and expounded by Martin. This indicates that the
meaning of fractions for students is strongly connected to equal-sharing situations
and “fairness”. The teacher supports the argumentation, and the narrative
emphasized is that if we want to express part of something as a fraction, the parts
have to be equal.

Episode 3 is part of a whole-class discussion on “tell me what you see”. The
aim was to discuss different partitioning of a figure. The tasks were designed so as
to discuss solutions of the form: “each child gets one-half and one-third of a half”,
as in Episode 1. The students discuss Figure 3a) and find that it is “divided into
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two equal parts, one of which is shaded” and “we have one of two”. The teacher
then adds Figure 3b) so that both figures are on the blackboard.

Figure 3: Figures a) and b) discussed in Episode 3

Teacher: What does this one look like? Mary [meaning 3b]?

Mary: It is six parts, and three are shaded.

Teacher: Yes, what about you, Ben?

Ben: One of two [several students: What?]

Teacher: How do you see one of two?

Ben: I move the one shaded from the left down to the right and then
one of two.

Teacher: Ok. Someone disagrees? Nelly?

Nelly: I see three of six.

Teacher: You see three of six. But can it be both one of two and three of

six? Can it be? Is it the same figure? Lena?

Lena: Yes, it is true if the parts are equally big.

Teacher: It can be true if the parts are equally big [writes this on the
blackboard]. What does that mean, Lena? If all the parts are
equally big?

Lena: If the parts are not equally big, it is not a real fraction.

Teacher: Then I challenge you, one of two and three of six, they do not
look the same. How can they be the same?

Lena: If we move some parts, they become the same.

Teacher: So, one-half can look different; is that what you mean [Lena
nods]?

The discussion is about Figure 3b), which can be seen as three of six, but also one
of two if “we move some parts” and then “we erase some lines”, i.e. the idea of
equivalent fractions is discussed. The constructed narrative is “the fractions can be
the same even though they do not look the same”.

Results and discussion

In Episode 1, two earlier-discussed narratives came up again: When we share
equally, we can express shares as fractions and the more parts we divide something
into, the smaller the parts we get. Both narratives emerged from the equal-sharing
context that was initially used in the teaching. In addition, the narrative When we
talk about a fractional part of something, it is crucial to be aware of what it is a
part of was constructed as a consequence of an operator subconstruct appearing in
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the quotient context (one-third of a half chocolate). The constructed narrative
emphasizes the role of the unit, which is one of the critical aspects of learning
fractions (see, e.g. Lamon, 2007).

In Episode 2, the narrative When we want to express a part of something as a
fraction, the parts have to be equal was constructed and endorsed by the students
by referring to “fair sharing”. The task used in the episode was designed as it was
shown to be important in emphasizing partitioning so as to illuminate a challenge
that came up in a quotient context. The task can be seen as a part-whole
subconstruct, but the constructed narrative was endorsed by connecting the
situation to the equal-sharing, i.e. quotient, subconstruct.

In Episode 3, the narrative Fractions can be the same even though they do not
look the same was constructed. The idea of equivalent fractions, another important
aspect of fractions, were discussed in the episode. The need to discuss tasks as the
one in the episode is imbedded naturally in the equal sharing context, as different
ways to share two chocolates among three children. The task was given in a part-
whole context, and the students endorsed the narrative by partitioning.

The teaching period started with a quotient subconstruct of fractions (Kieren,
1976). However, both the operator (as one-third of a half) and the part-whole
construct (as one of three parts) appeared almost immediately in the students’
work. Their work and discussions were the starting point in teaching planning from
lesson to lesson. Moreover, looking back, we see an interplay between the quotient,
part-whole and operator subconstructs throughout, as illustrated in the three
episodes presented in this paper. This contradicts Lemons’ (2007)
recommendation that the initial instruction should concentrate on one
subconstruct, indicating that focusing only on one subconstruct can be restrictive
and unnatural in teaching. In our study, the context of equal sharing was shown to
be a rich starting point that brought out many important aspects of fractions, as
suggested by many researchers (e.g. Empson & Levi, 2011; Streefland, 1993).
However, it also seemed to be highly complex for teaching and learning for the
same reason, and one can say that the class worked on basically the same problem
for the whole teaching period, as the teacher tried to help the students delve deeper
into the emerging ideas.

It is well known that a teacher plays an important role in creating leaning
opportunities for students. The three episodes illustrate, in particular, the teacher’s
crucial role in the process of constructing narratives. The equal-sharing (like
sharing chocolates among some kids) situations were imaginable for the students,
as they constituted part of their everyday experiences, and they had no difficulty
suggesting a solution. However, as everyday experiences, there is no need for
students to dwell on moments as “what part of a chocolate is one-third of a half”
or “is one-half the same as three-sixths”. The equal-sharing situation was moved
into a new, mathematical, discourse in the teaching. It was the teacher who pressed
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with new questions in the situation and tried to emphasize narratives on properties
and relations between fractions, making the equal-sharing a context for learning
fractions.

In the process of discursive learning, the use of words, routines and narratives
developed in a community are in continual flux and refinement (Sfard, 2008). We
started our teaching on fractions by equal sharing, and after a while, it became a
routine for the students to use fraction words to denote shares. Fractions became
related to equal sharing and fairness, which constitute everyday experiences for
students. This made way for several explorations and narrative constructions.
Fractions are complex, both in terms of teaching and learning, and the question is
how to make the concept more accessible without oversimplifying it. We hope that
our paper and analyses of the general narratives constructed in the discourse can
contribute to research on this question. However, our study was conducted over a
short time period and further longitudinal studies on the construction of narratives
are needed to gain more insights. We suggest that the episodes presented in the
paper can be used in teacher education to discuss the complexity of teaching
fractions with pre-service teachers.
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Students’ written responses to an open task were examined to identify potential
indications of emerging number sense. Content analysis indicates that the number
of responses given by students varied, with addition tasks being more commonly
provided than tasks that involved other operations. Whereas several students refer
to place value, no students mention possible applications of the number. From
these findings, implications are discussed in terms of the mathematical demands
that teachers are faced with when presenting such tasks in a mathematics lesson.

Introduction and theoretical background

Definitions of number sense differ, but they often refer to students’ general
understanding of numbers and operations, as well as ability to use their
understanding in flexible ways to make mathematical judgements (Mclntosh,
Reys, Reys, Bana, & Farrell, 1997). Number sense is often described as a
prerequisite for students’ further development of mathematical knowledge
(Verschaffel, Greer, & de Corte, 2007). Children’s number sense has been
investigated for decades (e.g., Gelman & Gallistel, 1978; Verschaffel et al., 2007),
and understanding of the place value system is regarded as particularly important
in students’ development of number sense and eventually in their work with multi-
digit numbers (Kilpatrick, Swafford, & Findell, 2001). Students’ understanding of
place value develops over time, and it influences understanding of multi-digit
numbers, which includes a person’s general understanding of numbers and
operations (Jones et al., 1996). A fully developed number sense enables students
to flexibly operate on numbers and develop useful strategies (Mclntosh et al.,
1992). This includes understanding how numbers are ordered, how different
representations of numbers are connected, what effects and mathematical
properties different operations have, as well as understanding how the arithmetical
operations are related.

Jones et al. (1996) present four core components that constitute the process of
developing multi-digit number sense: counting, partitioning, grouping and number
relationships. They then distinguish between five different levels for each of the
four components: pre-place value (level 1), initial place value (level 2), developing
place value (level 3), expanded place value (level 4), and essential place value
(level 5). With reference to the competence aims of the national curriculum, we
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assume that students in grade 2 are in one of the first three levels. Whereas older
students develop more advanced counting strategies (Camos, 2003), students at the
level of pre-place value count by ones and know how to partition a number in
different quantities, for instance § = 6 + 2 = [ + 7 (Jones et al., 1996). In their
work, they indicate that students at these initial levels can tell if a number is bigger
or smaller than another number, but they cannot tell how big this difference is.
Students with an initial understanding of place value can think in groups and they
can count with tens and ones. To rationalize by counting by tens, the students
realize they need to group objects. They understand that they can partition two-
digit numbers, for example 24 = [5 + 9, and in addition they understand that
grouping facilitate estimation and counting. When the digits’ place change, the
students understand that it represents different numbers. Students developing place
value (level 3) know how to count by tens and ones and are capable of applying it
in operations. This level differs from the previous ones because of the ability to
think part-part-whole with two-digit numbers. Within grouping, the students can
estimate between which tens a sum of two two-digit numbers will be located, and
they master operations and comparing simultaneously (Jones et al., 1996).

Thompson (2003) describes two sub-concepts of the place value system:
quantity value and column value. One is more important in (written) mental
calculation and the other in using standard algorithms. For instance, the two-digit
number 24 can be decomposed into 20 and 4, which relates to the quantity value
of the number. Mental calculation is mainly based on quantity value. As an
example, 24 and 38 can be added as 20 + 30 = 50 and 4 + 8§ = 12. The sum is 50
+ 12 = 62. Column value is when 24 is considered to consist of two tens and four
ones. The standard algorithm for (written) addition focuses on column value by
putting tens over tens and ones over ones (two-digit), and then each of the digits
are added (Thompson, 2003)

In this paper, we investigate what Grade 2 students’ responses to an open task
about the number 24 may reveal about their emerging number sense. We consider
data material from two classes of Grade 2 students, who were given the open task
called “The number of today”.

The study

Our examination of Grade 2 students’ reflections about the number 24 is part of a
larger school-based research project focusing on developing in-service teachers’
knowledge. The first author of this paper has supervised the teachers in the
planning of the lessons, observed their teaching, collected material from the
students and discussed the teaching with the teachers in retrospect. Prior to the
study presented in this paper, the teachers participated in a half-day long in-service
course focusing on tasks that invite the students into discussions and different
solution strategies. The task used in this study is one example.
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The data material is collected from two different classes from the same school,
referred to as Group A (N=17) and Group B (N=21). The two teachers who taught
these groups used the task, “The number of today”, as one of four tasks that the
students worked on during a 60 minutes long session. Prior to this lesson, the
students have mainly been working with numbers between 0 and 20. Following
the textbook (Alseth, Arnas, Kirkegaard, & Reosseland, 2011) they have first
focused on the numbers 0-9. After this, they have spent time on the numbers from
10 to 20, which have been partitioned into tens and ones. They have worked with
numbers that add up to 10, addition and subtraction of numbers between 0 and 20,
and they have encountered the concept of numerical neighbours. According to the
competence aims of the national curriculum, they are supposed to know how to
“count to 100, divide and compose amounts up to 10, put together and divide
groups of ten up to 100, and divide double-digit numbers into tens and ones”
(Ministry of Education and Research, 2013, p. 5) by the time they finish Grade 2.

The students, who were in the first semester of 2" grade (seven years old),
worked individually for approximately 15 minutes on each of four different tasks.
All four tasks had been introduced in a previous lesson, and the students could
therefore start working on them without any further introduction in this lesson. The
students had been told by the teachers that the task (which is the focus of this paper)
was related to the question of what they know about the number 24. In each group,
the students provided written responses on a worksheet. The teachers made some
slightly different choices in how the worksheet was designed. In group A, the
worksheet was a blank piece of paper with the number 24 on top of it (Figure 1).

73 24 25
farto (L

[even number]

12+ 12:24
Hed+yyeyqiy =24

Figure 1. One example of student response from group A (Al).

In group B, the teacher had added eight arrows that were sticking out from the
number 24 (Figure 2), but he did not indicate that only eight pieces of information
should be provided. The first author of this paper was observing while the students
were working on the task. Although various data materials were collected, only the
written responses are analyzed for this paper.
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Figure 2. One example of student response from group B (BS).

The students had previously encountered similar tasks in whole-class discussions,
and they were now allowed to collaborate and use manipulatives to develop their
written responses. Unstructured material like milk caps and structured material like
multi-base material were available for the students to use, but few students used
the material. The teacher allowed them to work in groups, but most students
decided to work individually on the task.

The students’ responses were collected immediately after they had worked on
the task for 15 minutes. To ensure anonymity, each worksheet was assigned a letter
A or B to indicate what group the student was affiliated with and a number to
distinguish between students in each group. For instance, A3 is student number 3
in group A. The students’ written responses were analyzed using content analysis.
We began by identifying how what was written related to aspects highlighted in
previous research on children’s understanding of number (see theoretical
background), specifically. This was followed by a theory driven approach to
content analysis (Fauskanger & Mosvold, 2015; Hsieh & Shannon, 2005). The
theory driven analysis was based on 1) Thompson’s (2003) quantity value and
column value, 2) Mclntosh et al.’s (1992) aspects of fully developed number sense,
and 3) Jones et al.’s (1996) constructs of counting, partitioning, grouping and
number relationships.

Findings

The 38 students provide a total of 161 responses. Students in group A provide 61
responses, and students in group B provide 100. Table 1 presents an overview of
the different types of responses. Below we discuss these results with a focus on
differences among students and groups of students. Examples of student responses
are displayed to indicate the variation of responses given to the task.

Only one student (B4) does not provide any response to the task, whereas four
students provide eight responses (see e.g., Figure 2). The two groups of students
vary in the type of responses they give. In group A, 13 out of 17 students mention
concepts or characteristics of the number 24 (e.g., even number, numerical
neighbours, number of digits). The students in group B provide responses within



Publications from NORMA 17 55

all categories, but they have more focus on arithmetic operations than the students
in group A. Five students provide examples that involve a combination of
arithmetic operations. The two most advanced examples are /0 x 2 + 4 (B12) and
100 — 80 + 4 (B3). The responses contain few errors; 20 of the 38 students do not
have any incorrect responses. Five students have two incorrect responses (A13,
A16, B7, B16 and B21), but no students have more than two errors. Few responses
from a student does not necessarily indicate a lack of knowledge. For instance,
B13 only provides three responses, but these responses include three different
operations: /2 + 12,28 —4 and § x 3.

The teacher in group B added eight arrows from the number 24 on the
worksheet, and this adjustment might have influenced the students’ interpretation
of the task. For instance, 15 of the 21 students in group B appear to believe that
the arrows should point to examples involving arithmetic operations rather than
referring to place value. The students have some previous experience with the
place value system; seven students—from both groups—draw arrows towards the
digits of the number 24 or write about the value of the digits. For instance, students
B8 and A15 write about how many tens and ones the number consists of like “2
tens and 4 ones”, whereas student A3 write 10 above 2 and 1 above 4 to indicate
tens and ones. This corresponds with what is often referred to as column value
(Thompson, 2003). There are also examples of quantity value in the students’
responses. For instance, student A7 draws an arrow from 2 and wrote 20, and
another arrow from 4 and wrote 4. This student also write 10 and 1 over the digits
2 and 4.

Among the responses that include addition, many of these also indicate
knowledge of place value. For instance, some students partition the numbers into
tens and ones, or group numbers that add up to 10. Such responses are categorized
as relating to place value, although they also include addition. Several students
include 20 + 4 (six responses) and /10 + 10 + 4 (e.g., A2, A9, B1, B3, B4 and B6,
17 responses). Six students only include /0 + 10 + 4, whereas two students include
10 + 14. The responses of these students indicate that they have developed
understanding of quantity value (Thompson, 2003).

The responses that include addition also provide other examples of
partitioning. Examplesare 4 + 5+ 5 +5+ 5 (Bl)and 8§ + 2 + 8 + 2 + 4 (B12).
These responses indicate ability in partitioning as well as regrouping, which are
two important elements of Jones et al.’s (1996) model of number sense. Emerging
understanding of place value involves knowing that grouping in ones and tens
simplify the arithmetic operations (Jones et al., 1996). Two students’ (A3 and B5)
responses include tally marks or small circles that are grouped in fives. These are
examples of grouping without using numerals and illustrate use of different
representations of number (McIntosh et al., 1992). A response like § +2 + 8 + 2
+ 4 (B12) indicates understanding that one representation is more useful than
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another—in particular a representation that involves grouping of tens (cf.
Mclntosh et al., 1992).

Although addition is the most frequently used arithmetic operation in the
responses, there are also examples that involve subtraction, multiplication and
division. Some responses also combine arithmetical operations. An interesting
exampleis /12 + [2—2+2+5-5—1+ 1 (B5). This response indicates knowledge
of mathematical properties of operations, including awareness that adding and
subtracting the same number does not change the answer. By providing the
responses of both /10 x 2 + 4 and 10 + 10 + 4, B12 indicates understanding of
relationships between operations, and this might also be interpreted as indicating
emerging understanding of how multiplication can facilitate addition (cf. McIntosh
et al., 1992).

In group A, two students wrote down the numerical neighbours 23 and 25,
either by writing that 24 is “numerical neighbour of 23 and 25” (student A6), or
by writing 23 to the left of 24 and 25 to the right of 24 on the worksheet (A1). No
students in group B mention numerical neighbours, and this may be due to the
adjustment of the worksheet for group B that may not invite to mentioning
numerical neighbours.

Among the students’ responses, only occasional errors occur. For instance,
student B16 writes /0 + 10 above the 2 in 24. This is correct, but then the student
writes 8 and 4 + 4 above the 4. This might indicate an understanding that two tens
automatically mean that there must also be two ones.

Mathematical focus Gr.A Gr.B Examples (students) Incorrect examples (students)

Place value 3 1 2 tens and 4 ones (BS and Al5) Arrows from the digit 2 with 10 +10 and 20, arrows
Arrows under the number with 20 and 4, and arrows over from the digit 4 with 4 + 4 and 8 (B16)
the number with 10 and 1 (A7)

Concepts and the 21 4 Even numbers (B6)
number’s characteristics Numerical neighbors: 23 and 25 (A6)
Two digits (Ad)

[

24, 42 (B1) Wrote that the numbers were reverse.
Reversing the number 4 and the number 2 (B2)

Writing digits, reversing | 1

Addition

Two different addends 5 13 3+21(B1),9+15=24(B19),24=2+22(BI) 24=5+15(B2),12+2(Al6)

Some similar and some | 8 30 8+2+8+2+4(B12),24=4+5+5+5+5(B1),10+ |1+2+1+1+1+1+3+5+5(B5),10+3+4+1=
different addends 10+-4=24(A2) 24(A2),10+4+10+4=24(A9)
Only similar addends 12 2 12+12=24(A9),4+4+4+4+4+4=24(B6), 4+4+4+4(B1)

Subtraction 1 5 24-0(B11),28-4=24(A8),34-10(B17),25-1(B21) | 17-4=24(B19), 10086 =24 (A13)
Multiplication 0 5 4x6=24(B5),24x1(B12),8x3=24(B13)

Division 0 4 24+ 6=42and 24 + 4=6(B3), We divide by four (B17)

Combined arithmetical 0 5 100-80+4=24(B3),10+10+6-2(B10), 12+12-2

operations +2+5-5-1+1(B5),10x2+4(B12)

Different representations | 2 1 B A3

Wrong answers 8 8

Total 61 100

Table 1: Overview of responses to the task, “The number of today is 24”
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Concluding discussion

Analysis of students’ responses to this open task about the number 24 provide
indications of emerging understanding of place value. Many students are able to
group and partition the number 24, but we cannot conclude from this study that the
other students are lacking understanding in this respect. The students’ responses
might have been influenced by the way the task was presented, and it is important
to consider the possibilities and limitations of a task like this. We will highlight
five issues. First, arranging the worksheet like a blank piece of paper with the
number 24 on top (group A, Figure 1) or as eight arrows sticking out from the
number 24 (group B, Figure 2) might affect the students’ responses. With students
who fill in responses at the end of each of the eight arrows, the arrows may have
restricted them from providing more responses to the task. Second, there is an issue
related to the responses students give and if the responses are at a more advanced
level than recommended by the curriculum at the actual grade level. For instance,
when student B12 responds /0 x 2 + 4 and student B3 responds 24 + 6 = 4 and 24
+ 4 = 6, they include multiplication and division in their responses—concepts that
are in focus on a later grade level (Ministry of Education Research, 2013). Third,
there is an issue of how to interpret the lack of responses from some participants.
Some students do not provide any response or one response only, but there is not
necessarily a correlation between number of responses to an open task like this and
students’ knowledge and understanding of place value. Fourth, one might wonder
why so few students use the concrete materials that were available or work in
groups. Finally, one can ask why no students mentioned anything about
applications of the number 24, e.g. that 24" of December is Christmas Eve. The
reason can be that this was a written task, and the students may have interpreted it
as a task where they were supposed to make arithmetic problems. Following up on
the students’ responses by adding cognitive interviews might have provided
additional information about their number sense. An interview with the teachers
about their teaching in advance could also have given answers to some of these
questions.

Our focus in this study has been strictly on the students’ responses, but the
results of our study may also have implications for teachers. Investigations of
Grade 2 students’ mathematical reflections about the number 24 may indicate
some mathematical demands teachers are faced with when facilitating such an
open-ended activity. For instance, teachers must interpret students’ responses on
tasks like these and act upon them—often quickly. A teacher must also figure out
what students know and are able to do from looking at their responses to open-
ended questions like this. These are some examples of the mathematical demands
that are embedded in the work of teaching early number sense. To skilfully carry
out the work of teaching, teachers need a professional knowledge that includes—
but is not restricted to—knowledge of quantity value and column value (e.g.,
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Thompson, 2003), knowing models for examining important components of
number sense like counting, partitioning, grouping and number relationships (e.g.,
Jones et al., 1996; Mclntosh et al., 1992). Such knowledge is required to analyze
students’ responses and draw out their thinking through carefully selected
questions and tasks and to consider and check alternative interpretations of the
students’ ideas as visible in their written responses.
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In this paper, we report in terms of the expectancy—value theory and self-efficacy
from the experiences of utilizing tablet computers for the learning of mathematics
among primary and lower secondary students (N=256) in one school in Finland.
Our main findings are as follows. Using tablet computers seems to increase
especially boys' intrinsic values in studying mathematics, yet both boys and girls
preferably disagree than agree with the claim that tablet computers have made it
easier for them to learn mathematics. Girls clearly prefer to study mathematics
with paper and pencil. The utility value of using tablet computers in studying
mathematics does not depend on the students' beliefs about their competence in
mathematics.

Introduction

The latest national guidelines for curricula in the Finnish primary and lower
secondary schools, which have been implemented since August 2016, emphasize
the versatile usage of technology in teaching and learning. However, due to limited
financial resources, to which degree the schools have taken technology in use,
varies a lot. In 2013, the investigated school — among the very first ones in Finland
— provided an iPad for every student. Since then, tablet computers have been used
daily in the teaching of most subjects. In some subjects, iPads have replaced
printed textbooks completely, but in mathematics, students have used both iPad
applications and printed textbook side by side. Consequently, iPad has been a
primary medium for younger students and, for the lower secondary students, a
printed textbook has been their foremost learning material, yet they have used
iPads as a secondary medium for three or more years.

In this paper, we report from our survey on the students' experiences from
using tablet computers. Experiences were surveyed both at a general level and
concerning the teaching and learning of mathematics and mother tongue. We focus
on students' beliefs about how tablet computers have affected their motivation and
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learning in mathematics and their views of themselves as learners of mathematics.
The participants (N=256) are from the grades 1-8.

There are many theories on learners' motivation and some studies on how
bringing technology in school affects students' motivation. In the next two
sections, we review some earlier studies that are relevant to ours, and then discuss
our theoretical framework. The research questions and method will be given after
that, and the results are represented and discussed in the last two sections.

Review of earlier research

Earlier research has shown mixed results on the effects of the use of tablet
computers in mathematics education. For example, Henderson and Yeow (2012)
report from a school which was one of the first primary schools in the whole world
to adopt the use of iPads. They conclude that the main strengths that tablet
computers can provide are a quick and easy access to information and support for
collaboration. Attard and Curry (2012) also explored the use of iPads in engaging
young students with mathematics. After a six-month trial, students' engagement in
mathematics seemed to have improved. However, for example, Carr (2012) reports
from an experiment with a control group where fifth graders studied mathematics
with iPads and game-based learning approaches. The result was that no significant
differences in learning achievements occurred. A possible partial explanation may
be provided by Ravizza, Uitvlugt and Fenn (2016) who, in the context of
psychology education, found out that non-academic use of Internet during lessons
is common even among adult learners. In their study, the students' class
performance was even inversely related to the use of technology.

The above-mentioned studies do not discuss gender issues. Another typical
feature of previous research on the use of tablet computers in mathematics
education is that they focus on short-term teaching experiments; studies on the
enduring effects on motivation in mathematics are hard to find. All in all, previous
research suggest that tablet computers have potential to increase students' interest
in studying mathematics, but this effect may, at least, partly be explained by the
novelty value involved in introducing new technology in classroom. Our study
aims at proving a farer-reaching view of the situation since tablet computers have
been in use in our research context for several years, and at giving some
information whether boys and girls consider the value of tablet computers in
mathematics education in a similar or different way.

Theoretical framework

The theoretical perspectives in this paper base on two motivational theories: We
use the expectancy—value theory (Eccles et al., 1983; Wigfield & Eccles, 2000) to
discuss the participating students' motivation in mathematics. Further, we discuss
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their perceptions of themselves as learners of mathematics and as users of tablet
computers in terms of self-efficacy (e.g. Bandura 2012).

According to the expectancy—value theory, an individual's choices and
performance in studying a subject can be explained by her/his beliefs about the
possible success she/he can reach and the extent to which she/he values the subject.
A part of this model of individual's motivation are the subjective task values. These
values are usually divided into four components: attainment value (the importance
of activity), intrinsic value (interest in the activity or the liking of it), utility value
(the usefulness of the activity), and cost (how much effort an individual is ready
to pay for succeeding in the activity). Due to limited space, we focus in this study
only on the participants' intrinsic and utility values of studying mathematics and
using tablet computers. However, these two values depict students' motivation in
mathematics quite well also in general due to the correlations between the values,
cf. Tossavainen & Juvonen (2015).

Self-efficacy means the extent of an individual's beliefs in her/his own ability
to complete a task or reach a goal. According to Bandura (2012), perceived self-
efficacy varies according to different domains. Therefore, Bandura (2012) argues
that self-efficacy is better to be measured in a contextualized manner as human
behaviour is socially situated and richly contextualized. In this study, we use Likert
type items to measure students’ perceptions of their contextualized self-efficacy in
mathematics and using tablet computers.

Research questions

We are interested in knowing how the utilization of tablet computers support girls'
and boys' motivation and learning in mathematics, and how the use of tablet
computers is related to students' view of themselves as learners of mathematics.
Our research questions are as follows.

1. What kind of intrinsic and utility values related to studying mathematic with
tablet computers primary and lower secondary students do have?

2. Do tablet computers support boys' and girls' learning in mathematics in a similar
way?

3. How the use of tablet computers is related to students' sense of self-efficacy in
mathematics?

Method

Data for this study were collected using a questionnaire which contained a few
open questions and altogether 92 five-point Likert scales inquiring students'
general enjoyment and motivation to going to school, their views of themselves as
learners in various subjects both when tablet computers are used in education and
in the traditional context of teaching and learning, and information about students'
activities in knowledge acquisition and how the daily work in classroom is usually
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organized. Since the questionnaire became very large for young learners, we had
to avoid the use of multiple questioning. Consequently, the factors of motivation
in mathematics were measured only with single items. We acknowledge that this
solution reduces the reliability of our findings to some degree, yet previous
research has also shown that single items are sufficient to depict a general overview
of learners' motivation in mathematics, cf. Tossavainen & Juvonen (2015).

The Likert scales were coded as follows. 1 = "strongly disagree/never/not at
all", 2 = "disagree/only seldom/only a little", 3 = "neutral opinion/occasionally/to
a certain amount", 4 = "agree/quite often/quite a lot", and 5 = "strongly agree/very
often/ very much".

The students were given 45 minutes’ time to answer the questionnaire through
their iPads. For the younger students (1% and 2™ graders), teachers read the
questions out loud and students answered through a scale of smiley faces. Items
surveying enjoyment were developed as contextualized counterparts concerning
the use of tablet computers. Also, the students’ perceptions of self-efficacy were
surveyed in the context of mathematics as well as the context of using tablet
computers. The scale of task motivation and intrinsic value, in the context of
mathematics, was adopted from earlier studies (Nurmi & Aunola, 2005; Aunola,
Leskinen & Nurmi, 2006) and it included three items measuring the liking of
mathematics in different contexts. Further, two items measuring the liking of
studying mathematics with different devices were developed for this study (“How
much do you like doing mathematical exercises with iPads?” and “How much do
you like doing mathematical exercises with paper and pencil?”).

As already said, the participants of this study are students from one school and
from the grades 1-8. It is obvious that, due to the large variation in age, it would
require splitting the set of participants into two or more subgroups in order to make
reliable detailed conclusions. Due to the limited number of pages to use, we restrict
ourselves only to producing an overview of the role of tablet computers in
motivating students in mathematics and, therefore, we consider the participants as
one group, yet taking carefully this limitation into account in interpreting our
quantitative results.

In our data, the number of boys is 118 and that of girls is 138.Data were
analysed using SPSS software. In addition to applying standard descriptive
methods, Student's t-tests and Pearson correlation analysis were performed. In
order to avoid confusion in reading our results, we remark that there were some
younger students who did not answer all items. Therefore, the degree of freedom
may vary between the single items and tables. For example, in Table 1, "N=91-
118" for boys means that the number of the boys who answered the four items
reported in this table varied from 91 to 118 in the set of these items. To be able to
apply Student's t-test for comparing means, the most important thing is that there
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are, at least, twenty participants contained in each group to be compared. In all
items, this condition is clearly satisfied.

Results

We answer our research questions by recording first the descriptive measures for
the participating students' intrinsic values related to going to school and using
tablet computers in general, and their self-efficacy in mathematics and using tablet
computers (Table 1). Then we summarize their liking of studying mathematics at
school vs. at home and with vs. without tablet computers (Table 2) and give the
descriptive measures describing the participants' views, how useful tablet
computers are for their learning of mathematics (Table 3). Lastly, we study the
correlation coefficients between the included items (Table 4).

Table 1 shows that the participating students like going to school and they have
positive experiences from using tablet computers in studying at school (Items 1—
2). For the boys, the mean of the second item is a little higher than that of the first
item, yet the difference is not statistically significant (¢(91) = 1.55,p > 0.05).
Since the order of the means of these items is opposite for the girls, and, in Item 2,
the mean for the boys is significantly higher than that for the girls (¢t(253) =
2.05,p < 0.05), one may interpret that studying with tablet computers may have
a positive effect on the boys' enjoyment of going to school. Yet the effect size
(Cohen's d) for the difference in Item 2 is small (d = 0.26).

Item Mean Mean Tot
boys (N=91- | girls (N=107- | al Std.
118) 137) dev.

1. T like studying at school 3.78 3.86 0.85

2. We have fun at school as we study with iPads 4.08 3.77 1.20

3.Tam good at using iPads in studying 4.19 3.88 0.96

4. T am good in mathematics 3.97 3.59 1.15

Table 1: Students' intrinsic values and self-efficacy related to studying, using tablet
computers, and mathematics

Similar significant differences are found in the students' view of their competence
in using tablet computers (t(254) = 2.62,p < 0.01,d = 0.33) and in
mathematics (t(252) = 2.55,p < 0.01,d = 0.33) in favour of boys. In general,
one can conclude that boys are more enthusiastic about using tablet computers in
studying at school and they have a stronger sense of self-efficacy in using tablet
computers than girls although, in practice, the differences are not large.

The first observation from Table 2 is that the students' liking of mathematics
is quite modest. Further, the means for the boys are higher than those for the girls
in every item, except Item 5. However, the difference between boys and girls is
statistically significant only for Item 8 (t(250) = 2.17,p < 0.05). Again, the
effect size for this difference is small (d = 0.27).
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An interesting result in Table 2 is that the difference between the means of
girls' answers to Items 8 and 9 is highly significant (¢(134) = 3.36,p < 0.001).
The effect size can now be considered to be moderate (d = 0.43). So, the
conclusion is that girls clearly prefer studying mathematics with paper and pencil,
and for the boys, both ways suit equally well. Another noteworthy observation is
that both boys and girls like studying mathematics more at school than at home
(t(251) =4.97,p < 0.001,d = 0.21).

Item Mean boys | Mean girls | Total
(N=117-118) (N=135-138) | Std.
dev.
5. How much do you like studying mathematics? 3.51 3.28 1.24
6. How much do you like doing mathematical exercises at school? 3.38 3.28 1.16
7. How much do you like doing mathematical exercises at home? 3.14 3.04 1.25
8. How much do you like doing mathematical exercises with iPads? 3.32 2.94 1.39
9. How much do you like doing mathematical exercises with paper and | 3.31 3.51 1.34
pencil?

Table 2: Students' intrinsic values related to studying mathematics

To answer the second research question, we study the descriptive measures given
in Table 3.

Item Mean boys | Mean girls | Total
(N=91-118) | (N=107-137) Std.
dev.
10. iPads help me to learn mathematics easier 2.68 2.28 1.22
11. I have got better grades in exams with help of studying with iPads 3.07 2.74 1.06
12. With iPads I am able to concentrate on school work clearly better than | 3.45 2.99 1.34
without iPads

Table 3: Students' utility values related to studying mathematics with tablet computers

A somewhat unexpected finding is related to Item 10 in Table 3. Both boys and
girls have more negative than positive views of the help that tablet computers
provide for their learning of mathematics. The views of girls are significantly more
negative than those of boys (¢(172) = 2.28,p < 0.05,d = 0.33). This result may
be partly explained by the results in Item 12. Tablet computers seem to help boys
to concentrate on schoolwork better than girls; the difference is significant
(t(253) = 2.78,p < 0.01,d = 0.35). There is also a significant difference
between the means in Item 11 (¢(195) = 2.19,p < 0.05,d = 0.31), but a more
important finding related to Item 11 is that, in the participants' opinion, tablet
computers seem to have not helped the students to succeed better in their exams —
not only in mathematics but generally in all subjects. To sum up, using tablet
computers in studying seems to have increased boys' sense of self-efficacy to a
certain degree but, in their experience, this has not implied an improvement in their
performance in mathematics. Whether or not tablet computers have provided any
support to girls is not as evident. Actually, it appears that girls think that they
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benefit more in mathematics from studying with paper and pencil than studying
with tablet computers.

We complement our answers to the first and third research questions by
reporting from the Pearson correlation analysis of Items 1-12, cf. Tables 1-3. In
order to maximize readability in Table 4, we only show the significant correlation
coefficients with * = p < 0.05,** = p < 0.01,and **»x = p < 0.001.

Table 4 contains some interesting relations. First, the correlation between the
liking of studying at school (Item 1) and the liking of studying mathematics with
paper and pencil (Item 9) is two and half times higher than the correlation between
Item 1 and the liking of studying mathematics with tablet computers (Item 8). The
liking of mathematics (Item 5) and the sense of self-efficacy in mathematics (Item
4) both correlate highly significantly with Items 8 and 9, but again they are
remarkably stronger related to studying mathematics with the traditional working
methods than to using tablet computers.

Item | 2 3 4 5 6 7 8 9 10 11 12

1 0.14* 0.14* 0.37%** 0.46%** 0.51%** 0.48%** 0.19%* 0.45%**

2 0.25%** 0.15% 0.60%** -0.13* 0.48%*+* 0.41%%% [ (.59%*+*
3 0.24%%x 0.21** 0.26%** 0.27%%* 0.45%%x 0.24%* 0.38%**% [ 0. 4]%**

0.52%*%% { (.50%** [ (.42%** 0.28%*% | 0.40%**

0.82%** 0.75%** 0.42%%% | (,59%%* 0.13*

0.79%** 0.41%%% | 0.69%**

0.40%%* | 0.69%**

0.58%*+* 0.49%*% [ 0.64%*+*

-0.16* -0.15*

10

0.51%%% [ 0.67***

11

0.64%**

Table 4: Significant Pearson correlations between Items 1-12

It is not very surprising that the experiences from having fun with tablet computers
(Item 2) and the sense of self-efficacy in using tablet computers (Item 3) correlate
significantly with Item 8, the experience from having got help from using tablet
computers in studying mathematics (Item 10), the views of general success in
studying (Item 11), and the amount of help in concentration (Item 12). However,
it may be more interesting that these correlations are higher for having fun with
tablet computers than for being good at using them.
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The correlation coefficients between Items 1, 4, and 812 indicate that the
better a student performs in mathematics, the more she/he likes studying
mathematics both with tablet computers and with paper and pencil. Moreover, to
what extent tablet computers have provided support for studying mathematics and
other subjects seems to be independent of the self-efficacy in mathematics.
Combined with the relative low means in Table 3, these findings suggest that
success in mathematics depends more on other factors than on whether
mathematics is studied with or without tablet computers, yet boys’ experience from
having got help in concentration and high correlations between Items 10-12
indicate that tablet computers have some potential for providing support in the
engagement in learning.

Discussion and conclusions

The above results give a somewhat mixed view of the potential that tablet
computers may have in improving students' motivation in mathematics. In spite of
the limitations related to our data, it seems that boys may gain more motivation in
mathematics if tablet computers are used (Table 2). On the other hand, it became
clear that students do not agree with the claims such as tablet computers have
helped them to learn mathematics easier or to succeed better in exams (Table 3).

A possible reason for the latter outcome is that the quality and usability of
digital learning material in mathematics for tablet computers are not yet
sufficiently high. Tossavainen (2014) surveyed this issue by exploring and
analysing a hundred of the most downloaded mathematics applications for iPads
in AppStore and found out that more than a half of them are games with a limited
mathematical content, more than every fourth of them were tests or static tools
(e.g. calculators), and only one application (GeoGebra) contained genuine, non-
trivial interactive functions.

The facts that, in the participants' view, tablet computers have not helped them
to learn mathematics easier and girls prefer studying mathematics with paper and
pencil, may also be due to some technical or pedagogical problems in managing
learning environments in which technological devices are used. Genlott's and
Gronlund's (2016) study clearly shows that ICT must be integrated reasonably and
functionally into the pedagogical solutions in order to benefit from the use of it.
Similar observations were also made by Attard and Curry (2012) and Henderson
and Yeow (2012). Since students’ experiences were investigated in this study only
at a general level, an important topic for future research is to examine, how a
pedagogic design can support innovative use of technology and students’ learning
with tablet computers.

Table 2 showed also that both boys and girls like studying mathematics more
at school than at home. This result is in accordance with the results in
Tossavainen's and Juvonen's (2015) study, where this phenomenon was seen with
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even a larger effect size than in the present study. It can be interpreted as an
evidence for that the availability of a teacher and peer support is important for
students' motivation.

As already noted, in this paper, we have analysed primary and secondary
students’ data as a whole. Having done differently, we may have got a different
kind of perspective to the results. For instance, we know that motivation in
mathematics remarkably varies along the grades (e.g., Tossavainen & Juvonen,
2015). Further, interest and performance in mathematics have been found to form
a cumulative cycle in the early years of primary school (e.g., Aunola, Leskinen &
Nurmi, 2006). We also acknowledge that, in our data, the primary level students
have a more thorough experience from studying with tablet computers than the
secondary students, who have started their compulsory education without using
tablet computers. Concerning future research, there is an obvious need for
investigating the potential of tablet computers in supporting students' motivation
and learning in mathematics also across different age groups.
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Negotiating mathematical meaning with oneself
— snapshots from imaginary dialogues on
recurring decimals

Eva Miiller-Hill' and Annika M. Wille?
Universitit Rostock, Germany, *Alpen-Adria-Universitéit Klagenfurt,
Austria

In an imaginary dialogue study with students in grade 6 and preservice teachers,
twists in assigning meaning when passing over from proper decimal fractions to
recurring decimals are observed. These twists are modeled with regard to the
theory of domains of subjective experience by Bauersfeld, particularly helping to
explain the phenomenon of changeable impact of having concepts of limit and
sequence at disposal on the persisting perception of math learners that 0,9 < 1.
We also introduce Wille’s instrument of imaginary dialogues in mathematics
education, and Tall and Vinner’s “concept image/concept definition”-distinction.
Furthermore, we discuss our empirical data on the basis of Bauersfeld’s
framework. We particularly argue as a result, that learners need more explicit
instruction and guided analogy regarding issues of properly representing real
numbers in different modes and ways. Finally, we draw conclusions regarding
consequences of our findings for preservice teacher education.

Introduction
A frequently reported observation is that a majority of secondary school children
and first year students at universities or colleges think that 0, 9 is less than—instead
of equal to—1 (cf. e.g. Tall, 1977; Tall & Schwarzenberger 1978; Monaghan,
2001; Eisenman, 2008). Different reasons are given in the literature. For example,
Tall and Schwarzenberger (1987) argue that students misinterpret the number of
decimals of 0,9 as large but finite, that the limit concept is not sufficiently
understood, or that a verbal definition of limit suggests a sequence can never reach
a limit. Monaghan (2001) outlines differences between the world of mathematics
and the real world. Within the latter, one cannot add up infinitely many summands
and get a result. Similarly, Eisenman (2001) elaborates on difficulties of changing
the perspective from the process of adding on the one hand, and conceiving the
limit as an object, on the other hand.

In a study with preservice teachers for mathematics at the Alpen-Adria-
University of Klagenfurt, who participated in a university course on standard
analysis, and attended a course on didactics of school analysis where different
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alternative arguments backing the equality 0,9 = 1 were discussed, we observed
that despite their previous teaching, six out of fourteen preservice teachers argued
for 0,9 <1, or reasoned contradictorily or changeably. In this sense, the
perception 0,9 < 1 appears to be persistent. The research question that will be
pursued in this article is: How can the persistence of the perception 0,9 < 1 be
explained? To this end, we also compare the results with those of a similar study
with students in grade 6.

Theoretical framework

Regarding our research question, different theoretical lenses are conceivable. For
example, Tall and Vinner (1981) introduce the term concept image for the “total
cognitive structure that is associated with the concept, which includes all the
mental pictures and associated properties and processes”, and the term concept
definition for “a form of words used to specify that concept” (p. 152). They state
that “different stimuli can activate different parts of the concept image, developing
in a way which need not make a coherent whole” (ibid.) and speak of potential
conflict factors if a part of the concept image or concept definition conflicts “with
another part of the concept image or concept definition” (p. 153). In this sense,
they describe difficulties with 0,9 as a “typical phenomenon occurring with a
strong concept image and a weak concept definition image” (p. 159).

As we are particularly interested in understanding the functioning of such
potential conflict factors, and in the impact of different stimuli, we widen the scope
of our theoretical framework to include Bauersfeld’s theory of so called domains
of subjective experience (short: DSE) (Bauersfeld, 1985; Fetzer & Tiedemann,
2017) in order to fine-tune and differentiate the “total cognitive structure” of the
concept image. In short, a DSE contains the totality of what was experienced and
processed in its generating and reactivating situations, in all its perceived
complexity, including emotions and haptic and motor perceptions. A DSE is
generated essentially on the basis of the actions an epistemic subject is conducting
on and with certain objects, and the individual sense-making process
corresponding to those actions, which is navigated by social interaction. It is
important to note here that “objects” as constitutive elements of a DSE do not
necessarily coincide with what one might call the “mathematical objects” in the
background. In particular, a mathematical object like a decimal fraction can be
represented in various ways. Different representations can be the objects of
different, even isolated DSEs. We will then speak of DSEs with differing objects
and actions, though they are objectively dealing with the same “mathematical
objects” (whatever “mathematical object” really means).

From the perspective of Bauersfeld, the “total cognitive structure that is
associated with the concept, which includes all the mental pictures and associated
properties and processes” is organized into different, initially isolated DSEs.
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Learning can be described as building integrating DSEs by grasping similarities
in differing experiences and constructing analogies navigated by social interaction.
An integrating DSE can take over (and may also expand) the task domains of
several existing, but isolated DSEs, and allows the learning subject to encounter a
wider task spectrum more flexibly.

Hence, viewing concept images with the lens of DSE theory, a learner’s
concept image of recurring decimals can consist of different DSEs that can be
activated by certain stimuli, in particular, actions on certain objects, but also by
characteristic contexts, for example, the school context or the university context.
A potential conflict factor then means, e.g., a stimulus that may systematically
trigger the activation of a strongly consolidated, but task-inadequate DSE, and
hence inhibits the building or consolidation of a more task-adequate DSE. DSE
theory will be used below to explain the persistence of the perception 0,9 < 1.

Method
In the studies cited above, participants were first asked whether 0,9 < 1 or 0,9 =
1 holds and requested to give reasons for their decision afterwards. Regarding this
procedure, it appears to be less likely that the reasons given by the participants will
uncover the actual line of thought that brought them to make their decision,
embracing uncertainties, and perhaps dialectical or even contradictory “inner”
argumentations. In our studies, we chose a form of communication that allows for
more openness, and gives participants the possibility to ask questions, respond to
them, or change a viewpoint while writing. The method of imaginary dialogues
meets these requirements. It is a form of mathematical writing where a single
student writes a dialogue between two protagonists who discuss a mathematical
task or question (Wille, 2008). This form of communication allows the author of
an imaginary dialogue to perceive distance as well as closeness to the protagonists.
On the one hand, distance allows the author to write without the pressure of
writing something completely correct. Therefore, different thoughts or solution
processes can be tried out. Furthermore, the author can put different voices into
play. On the other hand, closeness allows the author to let the protagonists express
the author’s own thoughts and considerations. Thus, the author’s own voice can be
part of the imaginary dialogue. Though an imaginary dialogue is written, it
displays an imagined oral dialogue. It typically includes, e.g., qualifiers like
“probable” or “actually” as in spoken dialogues (cf. Wille, 2017) which will
potentially be used by the dialogue author as a means to express uncertainties.
Imaginary dialogues serve particularly well with regard to our theoretical
framework. As the building and consolidation of either isolated or integrating
DSEs is navigated by negotiating meaning in social interaction, imaginary
dialogues function as a medium to simulate and display corresponding “inner” or
intersubjective processes of negotiating and assigning meaning, and hence, make
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these processes observable. Assuming that preservice teachers have already
developed certain DSEs on fractions and decimals during their own school
education period before entering university courses, we compare our findings with
the results of a second imaginary dialogue study we conducted with secondary
school students at a German Gymnasium in Marburg. We analyzed each imaginary
dialogue by a two-step analysis (cf. ibid.). Due to space limitations, we cannot give
the concrete details of the analysis in the Findings section. In brief, the general
analysis procedure was as follows: In the first step, we assumed the dialogue to be
real and used interaction analysis (cf., e.g., Krummheuer & Naujok, 1999) to draw
conclusions about the dialogue author’s DSEs (for an interaction analysis of a
fictional dialogue, namely Plato’s Meno dialogue, cf. Struve & Voigt, 1988). Ina
second step, we additionally considered that it was a student or preservice teacher
who wrote what the protagonists “say”. In particular, we assume that if both
protagonists agree on an issue, it is indeed the author’s voice that can be heard,
because otherwise the author would give his differing voice to at least one
protagonist (cf. Wille 2017, p. 44).

Data sources

The imaginary dialogues that form our data base were written in 2016 from
students in grade 6 of a Gymnasium in Marburg, Germany, and preservice teachers
who study mathematics at the Alpen-Adria-University in Klagenfurt, Austria. All
students and preservice teachers got an initial dialogue which each student or
preservice teacher had to continue by him- or herself in written form. All initial
dialogues concerned the question if 0,9 = 1 holds, and how an explanation for this
can be given (cf. figure 1). The imaginary dialogues were written in German and
translated by the authors. The initial dialogues for the grade 6 students were created
by preservice teachers in a seminar at the Philipps-University of Marburg in
summer term 2016. The initial dialogue for preservice teachers at Klagenfurt was
created by one of the authors (A. Wille).

Two preservice teachers S1 and S2 are talking Two students S1 and S2 are talking to each other.
to each other. Continue the dialogue. Continue the dialogue

Sl: Can you help me to understand S1: Someone told me recently that 0,9 < 1,

something? but | always thought that 0.9 — 1. Now,

S2: Surc. What is it? what is right?

S$2: Why should it be I, actually, there is
always a missing piece from 0,9 to 1. It
would only work by rounding

S1: We know from school that 0,99999... is
equal to 1. But now, all of a sudden, I do
not understand why?

S1: But when you regard 0.9 and 1, no
number fits in between. So it must be
cqual.

S2: This has something to do with sequences
and it is not that simplc as you would
think at first.

@ . o S2: Ok, this sounds logical, too. But maybe

S1: It is not? ? o i y
we can show it differently so we can both

S2: No. Wait, I try to cxplain it to you. agree.

S1: Thanks, but I will often ask in between. S1: Good idea! Probably something from one

of the last maths lessons can help us. For
example, lets consider. ..

Figure 1: Initial dialogues that were given to preservice teachers (left) and to the grade 6
students (right)
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Findings

In the imaginary dialogues of the secondary school students Nick, Pia, and
Melanie, and the preservice teachers Leonard, Peter, and Anna, we can observe the
activation of DSEs on proper decimal fractions by certain objects, negotiation
processes of possible analogies between proper and recurring decimal fraction as
first attempts to build integrating DSEs, and the activation of different, isolated
DSE shaping one and the same imaginary dialogue.

Different objects activate DSE of proper decimal fractions
In Nick’s interchange, we can see how the action of /ocating on the number line
comes into play. He writes and draws:

S1: (...) let’ s draw a number line, thus:

O A 02

2 3 ¢ . R o §hoisy
i 4 it

Look, also at the number line, always one little piece is missing
so it must be smaller, namely if in the decimal system one number
has O in the front and the other 1, the number with 1 must be
bigger, no matter what comes after 0.

Nick draws 0,9 and 0,99 on the number line, then stops and lets S1 conclude that
“always one little piece is missing”. The representation on the number line appears
to activate a proper decimal fraction DSE, with regard to which of the concrete
perception of the “pieces”, the proper parts of the line between the 0,9- and 0,99-
strokes and the 1-stroke, is generalized to: “always one little piece is missing”. S1
infers that 0,9 has to be smaller than 1 (later in the dialogue, S2 reinterprets the
“missing piece” as just a “Tick”, so small that it cannot be described by a number).
Then he changes from the number line representation to the symbolic one, dealing
with 0,9 as if it was represented in the decimal system explicitly (which it is not,
due to the overbar). Now he disregards the decimal places when ordering 0, 9 and
1 and refers to a general rule which he seems to accept as valid in his proper
decimal fraction DSE. It appears that the notational element “0,”, which is a
familiar element from the proper decimal fraction DSE, plays the role of an
activating stimulus here.

Traces of negotiating possible analogies

The negotiation of possible analogies between the comparably consolidated DSE
on proper decimal fractions and the recently developing DSE on recurring
decimals by the students can be regarded as an attempt towards building an
integrating DSE. We observe such negotiation processes in the dialogues of the
students Pia and Melanie. Pia describes an iterative process of drawing number
lines:
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S1: How do you want to do it? It is a recurring decimal after all! Thus,
infinitely long.

S2: You are right. I simply make several number lines.

S1: I do not know what you mean...

S2: Very simple: First you make a number line from 0 to 1. There you

draw the 0,9. Then you make a second number line. But this time
from 0,9 to 1 and you draw 0,99 into it. So it goes on and still the
0,9 never reaches the 1. It just infinitely goes on.

Sl1: Now, I understand.

Pia uses the number line to illustrate a procedural interpretation of the sequence
0,9; 0,99; ... But this does not lead her to identify a limit. We can interpret this as
an attempt to find an analog for the action of locating proper decimals on the
number line within the developing DSE on recurring decimals.

Amanda’s imaginary dialogue displays a negotiation process regarding an
adequate analog for the criterion that a proper decimal fraction, a is greater than
another b if and only if there is a number that can be added to b in order to reach
a. Although Amanda concludes that there is no number (probably she omits
“unequal 0”) that can be added to 0,9 to yield 1, she states the inequality of 0,9
and 1:

Sl1: (-..) 0,999... and 1 are indeed not equal, but still, it fits nothing in

between. There is namely no number that you can add to 0,9 in
order to reach 1.
Melanie finds and uses analogies to conclude the equality of 0,9 and 1 by
analogizing operations with natural numbers, proper decimal fractions and
ordinary fractions and the operation operating with recurring decimals. She writes:

S1: Let’s take a number that fits well into 9, without rest. Like, for
example, 3 (3-3 =9).

S2: Exactly, and if'it is 3 for 9, it is 0,333... for 0,999...

S1: As a fraction, 0,333... would be § Because 1 whole (in German:

“l1 Ganzes”) is 2, g are missing. Thus, it would be 3-
0,333 ... and that is 0,999...

S2: From 0,333... to 0,999..., 0,666... are missing. It is just the same
with fractions.

S1: And because we have a similar calculation, probably (“wohl” in
the original) 0,9 and 1 are equal.
The first analogy is between multiplicative decompositions of 9 and 0,999..., the
second between additive decompositions of S and 0,999.... Altogether, Melanie is

not completely sure about her conclusion of the equality of 0,9 and 1, which can
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be read off the German word “wohl” (translated here with “probably”) that
weakens S1’s statement.

Preservice teachers activate different or isolated DSEs for school and
university mathematics

Peter’s imaginary dialogue employs changeable and ambiguous argumentation.
First, it is argued that a little piece is missing to 1 and concluded that 0,9 = 1 is
wrong. But the conclusion is then challenged again: S1 asks: “So, 0,9 # 1?”, and
S2 answers: “Yes and no”, and explains how 1 is reached at infinity. We interpret
the utterance “yes and no” as a sign that the dialogue author has already developed
an integrating DSE for the issue of 0,9 = 1 in school mathematics context and in
university mathematics context. At the same time, we suppose that this DSE may
be rather poorly developed, in the sense that it doesn’t allow Peter to resolve the
contradictory conclusions his protagonists draw.

Leonard’s dialogue starts with an argumentation on why 0,9 < 1 which is
quite similar to the arguments displayed in the imaginary dialogues of the
secondary students that were reported above. He concludes: “I realize that 0,9 can
never take the value 1, but it can approximate 1 arbitrarily, because 0,9 consists
of co- many 9-s.” This seems to express the idea that 0,9, being something that
can “approximate 1 arbitrarily”, is not a fixed number at all, but rather something
that can move towards 1. Then, Leonard appears to switch to an isolated DSE for
the concept of limit and writes: “I can understand 0, 9 as a limit and additionally 1
as a limit. Thus, itis 1 = 0,9.” In his dialogue, we find no traces of a negotiation
process on these two contradicting conclusions. The contradiction between 0,9
being equal and smaller than 1 at the same time is not even mentioned. We interpret
this as a sign for two isolated DSEs that are activated for the issue of 0, 9=1in
school mathematics context and in university mathematics context.

As well as the preservice teachers who conclude the inequality or switch like
Leonard and Peter, there are also students who conclude equality. For example,
Anna writes: “And therefore, we have 0,9 = 1. And it is the same!” The additional
sentence “And it is the same!” reveal that even after deducing equality by
argumentation, Anna has the need to reinforce that conclusion.

Compared to the grade 6 students’ dialogues, we infer from these observations
that for preservice teacher students, the perception 0,9 < 1 tends to be persistent.
Moreover, the persistence also affects the way they attempt to explain and give
meaning to this perceived inequality, despite their university mathematics
knowledge on sequences, limits and series.

Discussion

In the findings, it is exemplified how actions on certain objects and representations
that occur in dealing with recurring decimals activate DSEs of proper decimal
fractions, and how they are used in processes of transferring and negotiating
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meaning. In particular, the symbolic notation of recurring decimals resembles
those of proper decimal fractions. Moreover, the action of locating on the number
line, combined with a procedural reading of 0, 9 as an approximating sequence 0,9,
0,99, 0,999, ..., persistently triggers the perception of a proper segment of the
number line that is always between 0,9...9 and 1, and that will never vanish
completely. Referring to Bauersfeld’s theoretical conception of DSEs with objects
and actions as core constitutive components, these considerations may have
explanatory power with regard to the perception 0,9 < 1 itself, and also with
regard to its observed persistence, even after undergoing university mathematics
education. Such considerations also bring up the question in how far the emphasis
on the number line representation, with nested intervals as a method to locate
infinite decimal fractions, needs more explicit instruction and guided analogy to
other kinds of conceptualizations and representations of real numbers to form an
appropriate basis for further understanding.

It is also exemplified how imaginary dialogues can display inner negotiation
processes (and corresponding obstacles) of assigning meaning to a new domain of
experience by analogy, which is regarded as an initial step in building integrating
DSEs due to Bauersfeld. This highlights the usefulness of the method of imaginary
dialogues for diagnosis, but also as a means for planning accurate teaching
interventions regarding the individual processes of constructing meaning. In the
case of the preservice teachers, we observed that both ways of thinking, 0,9 < 1
and 0,9 = 1, can exist in parallel, indicating isolated DSEs on decimal fractions.
This points to another possible explanatory pathway with regard to the observed
persistence of the perception 0,9 < 1 within the theory of DSEs: A frequently
activated DSE becomes increasingly consolidated and isolated. It is reasonable to
assume that preservice teachers customarily built a strongly consolidated DSE on
proper decimal fractions during their own school education period. Moreover, a
DSE contains the totality of what was experienced and assimilated in its generating
and reactivating situations. Hence, the context of school mathematics (evoked,
e.g., by the mere representation “0,9 = 1” itself) may intrinsically activate an
isolated school mathematics DSE for dealing with the issue of 0,9 = 1, which
would hint at a lack of an appropriate integrating DSE that covers both the school
mathematics and the university mathematics point of view.

What are possible consequences for preservice teacher mathematics
education? Our considerations suggest that it is not sufficient, e.g., to merely teach
preservice teachers university proofs of 0,9 = 1 by means of the “toolbox” of
university mathematics in addition to their school knowledge. It might happen that
they are perfectly able to manage such a proof, but at the same time argue for
0,9 < 1 by means of school mathematics without even mentioning the tension.
We might suspect that this is not an appropriate basis for a sophisticated teaching
on real numbers in school. Hence, university education of preservice mathematics
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teachers should foster the building and sufficient consolidation of appropriate
integrating DSEs. This has to be addressed on the object-level of the relevant
mathematics itself but can also be backed up on a meta-level. Imaginary dialogues
may provide a valuable tool to both ends, by reflecting on self- or peer-written
dialogues as well as on dialogues written by secondary school students.
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Supporting students’ mathematical problem
solving: The key role of different forms of
checking as part of a self-scaffolding
mechanism

Joana Villalonga Pons' and Paul Andrews’
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University, Stockholm, Sweden

It is widely accepted that with appropriate scaffolding students are able to
overcome the obstacles they face when solving mathematical problems. In this
paper we describe the development and implementation of an orientation basis
(OB), a device for self-scaffolding Catalan first year secondary students’
mathematical problem solving. The OB comprises twelve problem solving-related
actions derived from the literature and earlier classroom observations. Three
unfamiliar and non-routine problems, spread over 3 months, were posed to
students alongside instructions for the use of the OB. Analyses of their responses,
to both the tasks and the OB, indicate that a necessary but not sufficient condition
for solving tasks is the completion of seven or more OB actions. In particular, the
quality of two actions connected to the checking of different parts of the problem
was seen as crucial in determining a student’s success.

Introduction

When children solve a problem without being explicitly conscious of the
relationship between their actions and their solution their ability to transfer their
solution process to new situations will be limited (Coltman, Petyaeva & Anghileri,
2002). However, appropriate adult intervention can help children become aware
not only of the obtained solution but also the processes which led to it (Coltman et
al., 2002). This adult, as an expert intervention is known as scaffolding and it aims
to support learners complete tasks not otherwise possible. It builds on what
learners already know in order to close the gap between current learner competence
and task objective (Bruner, 1985; Wood, Bruner & Ross, 1976). Further, it can
also be provided reciprocally by peers and, ultimately, students themselves (Holton
& Clarke, 2006). In this paper we describe the implementation of a device for
problem solving use in Catalan first year secondary students and discuss the
outcomes of a first longitudinal analysis of its use. Called an orientation basis
(OB), its role is to support the transition towards students being able to scaffold
their own mathematical problem solving actions.
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Problem solving

Problem solving is a dynamic and not necessarily linear activity requiring the
organization and activation of multiple strategies and skills (Mason, Stacey &
Burton, 1982; Polya, 1945). Therefore, it can be considered as an example of a
goal-directed human activity (Schoenfeld, 2013) that entails an appropriate
mathematical knowledge, an awareness and experience of solution strategies, self-
regulatory or metacognitive competence and beliefs especially regarding not only
that the problem is worth solving but also that the solver can solve the problem
(De Corte, Verschaffel & Op’tEynde, 2000; Schoenfeld, 2013). Evidence shows
that expert solvers continuously reflect on the state of the problem solving process
and spend more time understanding and analyzing the problem and solution
process than calculating, behaviours typically absent with weak problem solvers
(De Corte et al., 2000). This regulative competence, which includes reflecting on
existing knowledge and thought processes (Sanmarti, 2007), can be learnt with
appropriate support (Schoenfeld, 2013). In other words, students need scaffolded
support with respect to interpreting a task, identifying its sub-objectives and
planning a strategy (De Corte et al., 2000; Mason et al., 1982).

Scaffolding
Drawing on Bruner’s (1975) observations with respect to how parents scaffold
their infants’ learning, Wood, Bruner and Ross (1976) argued that knowledgeable
adults can scaffold students’ problem solving activity. Here, the adult seeks to
reconcile implicit theories of the task components, the necessary steps to solution,
and the child's capabilities (Stone, 1998). It is a socially imitative process
comprising six forms of assistance; recruiting the child’s interest, reducing the
degrees of freedom, maintaining goal direction, highlighting critical task features,
controlling frustration and modelling preferred solutions paths (Wood et al., 1976).
Through this process, whereby teacher and learner actively build a common
understanding (Stone, 1998; van de Pol, Volman & Beishuizen, 2010), learners
become incrementally independent (Smit et al., 2013). Indeed, the role of tutor (or
scaffolding agent) can be devolved from the teacher to the learners as the learners
scaffold their own learning —self-scaffolding— or other learners learning —
reciprocal-scaffolding— (Holton et al., 2006). However, much remains unknown
with respect to scaffolding’s processes and effectiveness (van de Pol et al., 2010).
As in the construction industry, where each scaffold is unique to a specific
building, learning scaffolding can be provided at different ages and in a variety of
ways, addressing learners’ knowledge gaps as part of an ongoing progress (Wood
et al., 1976). Hence, scaffolding is not a ‘technique’ that can be applied in every
situation in the same way (van de Pol et al., 2010). However, effective scaffolding
is thought to comprise three components (van de Pol et al., 2010):
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e Contingency: Support should be adapted to the student’s current level of
performance.

e Fading: Support is gradually withdrawn over time.

e Transfer of responsibility: Task completion is gradually transferred to the
learner.

Orientation Basis for Problem Solving
One means of scaffolding students’ problem solving-related self-monitoring skills
is to use an orientation basis (OB) (Sanmarti, 2007). We conceive a problem
solving-related OB as the necessary sequence of actions based on the problem
solving behaviour of experts that leads the learner to a solution in ways that
structure an emergent independence and problem solving autonomy. The OB is
not a ‘one size fits all’ tool but tailored according to learners’ requirements and
achievements. Then, at every age and according to the learner’s needs, the OB
should be presented through different statements. In this paper we present a first
longitudinal analysis of the efficacy of the OB shown in Table 1 for scaffolding
first year secondary students’ problem solving. By the start of secondary school,
Catalan pupils are typically expected to have acquired a minimum background in
problem solving. However, experience has shown that they lack regulative and
problem solving competence, especially in understanding and analyzing the
problem, and planning and implementing a solution process. The OB depicted in
Table 1, translated from the original Catalan, was designed to be a contingent, hint-
giving, feedback tool focused on facilitating both fading and transfer of
responsibility (van de Pol et al., 2010). It is structured by Polya’s (1945) four
principles, each addressed through three actions, to be tracked in the right hand
column. Each action derived from earlier observations of the problem solving
behaviours of Catalan pupils and the problem solving strategies found in the
literature (e.g. De Corte et al., 2000; Mason et al., 1982).

Dimensions Actions Track

Al. I have read the question twice, at least.
A2. I understand what the question wants.

T understand

thy bl
© provem A3. I have identified and understood the data.
. A4. T have played with the data from the question.
I devise a
plan AS. T have prepared a strategy.

A6. I have checked that my strategy fits the data.
L apol A7. 1 have implemented my strategy.
aPPY MY ["Ag T have recorded all my actions in ways that [ understand.

1
pran A9. I have recorded all my actions in ways others can understand.
. A10. When I get stuck I go back to the beginning.
I review my -
task All. When I have finished I have checked my answer(s).

A12. I have checked for other answers or better solutions.

Table 1: The orientation basis (OB)
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The study

Participants were 12-13 years old students in a first year of a Catalan secondary
school. They solved three mathematical problems P1, P2 and P3, shown
respectively in Figures 1, 2 and 3, at different points during the period March to
June of the academic year 2015-2016. The problems, each comprising two parts,
were posed during regular lessons and students invited to use the OB depicted in
Table 1. During other lessons in this period, students did not work on other atypical
mathematical problems or use the OB. During the first occasion of its use, the
teacher explained the purpose of the OB and together with the class discussed and
clarified the meaning and purpose of each element. This ensured, as far as is
practicable, that students understood its vocabulary and overall purpose.

Problem: Multiply two two-digit numbers

With the digits 5, 6, 7 and 9 we can make two two-digit numbers with non repeated digits.
For example: 67 and 59. We multiply these two numbers.
1. For which two numbers do we get the largest product? Explain how you found it out.

2. For which two numbers do we get the smallest product? Explain how you found it out.

Figure 1: Problem posed during the first session, in March 2016 (P1)

Students were each given a copy of the OB’s rubric, which included a grid in which
they should record their engagement with the OB as well as a paper copy of the
problem on which they had to write their own solution. They were instructed to
solve the problem, using the OB to guide their activity, and record the OB actions
they addressed. They were also told that their teacher would not intervene in the
problem solving process but check, as they worked, that they completed their OB
tracking. In the following, we compare and contrast students’ responses to three
problems and their OB use in order to address the question; what can be inferred
from students’ use of the OB with respect to their development as mathematical
problem solvers?

Problem: The USB price

Agnes and Jan want to buy the same 32 Gb USB, but none of them
have enough money to acquire it for themselves. Agnes is eleven ‘
euro short and Jan lacks one euro. P
If they combine their money to buy one of these USBs and share it, \.
they still have enough money to buy it.

1. Is it possible to know how much one of this USB is/costs? Argue why and, in affirmative case,
find its price out and explain how you did it.
2. So, do you know how many euro Agnes has got? And Jan? Explain why you know it and

argue why they have these quantities and no other ones.

Figure 2: Problem posed during the second session, in April 2016 (P2)
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Problem: The Sun-&-Moon big carpet

Alex bought a big carpet for the meeting room of his office. It is 6 m long and 3,6 m wide. The
image shows part of the enrolled carpet. As you can see, it is made by small squares containing

the drawing of a sun or a moon.

A

Width

1. How many squares do you see if the carpet is totally unfolded? Explain how you found it out.
2. Is it possible to know how many of these squares will contain a sun and how many a moon?

Argue why it is possible to know it and, in affirmative case, explain how you found it out.

Figure 3: Problem posed during the third session, in June (P3)

Results

Table 2 shows a selection of students’ use of the OB and summary data with
respect to their completion of each of the three tasks respectively. Just two OB
actions have been included as analyses, shown later, indicated that A6 and All,
both concerned with the checking of different aspects of the solution, proved
significant in determining later success. With respect to A6 and All, a mark of »
indicates that students completed the check. The table shows the number (OB) of
OB actions students completed and the number (CS) of correct solutions for each
problem, 0, 1 or 2. So, for example, it can be seen that student 4 solved both parts
of problem 3 correctly and undertook all 12 OB actions, including both A6 and
Al1l. However, the same student failed to solve either part of problem 1 and
undertook only 4 OB actions, none of which were A6 or All.

The figures of Table 2 show 13 fully correct solutions, 15 part correct solutions
and 44 failures. Not one student completed all three problems successfully, with
the 28 full or half solutions being distributed across 17 students. Further, every
student who attempted all three problems, with just two exceptions, failed
completely on at least one of them. Also, with just two exceptions (see students 4
and 7), not one student’s OB-related actions increased over time, with most
students showing considerable fluctuation in their OB use. Finally, where students
solved the two parts to a problem successfully those students always completed
seven or more OB actions.



84

Students
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P1 All| o o] « N § of o ;. . § ol o] o]« of oo .
OB |9]109]|4]|5|8]|7|8 581082”811@8991035116411
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CS [0]0[0]2 2 0[1]0 O[O|1|O[1|0O|1]2][0]0|0O]1 0

Table 2: Students’ problem engagement and OB-related data for each problem

As indicated earlier, informal analyses suggested that the two OB checking
actions, A6 and A11, appeared to be indicators of problem solving success. In this
respect, the figures of Table 3 show the relationship between the number of correct
solutions and students’ use of these two actions for each problem individually and
summatively. A Fisher exact probability test run on the summative data suggests
that the frequency distribution is unlikely to be due to chance. Indeed, it can be
seen quite clearly that students who complete the OB checking actions are more
likely to solve the problems than students who do not. That being said, there remain
15 occasions where students completed both checking actions and still failed
completely.

P1 | P2 [ P3 | An problems
Number of A6/A11 actions

0o 1 2J]0 1 2]0 1 2J]o0o 1 2
0 3 4 5|9 4 6|5 2 417 12 15

Numbelr of comrect| 0 3 6|0 o 1|2 1 212 4 o9
solutions 2 o 1 3|1 1 4]0 o 3|1 2 10

Fisher Exact Probability p=0.045
Table 3: Students’ OB-checking actions (A6 and A11) and achievement

However, as shown in Table 2, the majority of problem attempts, 44, ended in
failure, a result that led us to investigate in more detail their characteristics. The
figures of Table 4 show a comparison between the number of OB actions
completed and whether or not the students concerned had completed, albeit
incorrectly, a solution attempt. The figures show that students who completed six
of fewer OB actions were nine times as likely as those who completed seven or
more OB actions not to complete a solution attempt. The figures also show that
students who completed seven or more OB actions almost always completed their
attempted solution. In short, even when their solutions were incorrect, students
who completed seven or more OB actions were considerably more likely to
complete a solution attempt than students who did not.
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Pt | P | p3 | an
F (Finished attempt)/U (Unfinished attempt)
F U F U F U F U
. 0-6 4 0 6 5 2 4 12 9
OBacions | ;5] s o|s o6 1]22 1

Fisher Exact Probability p =0.003

Table 4: Failing students’ problem completeness

The figures of Table 5 show, also for the 44 failures, a comparison between
students’ OB actions and the extent to which they engaged with the checking
actions, A6 and A11. While the results for the individual problems hint at a fairly
strong relationship, the figures for the total show very clearly, at a level of
probability that effectively presents chance as an impossibility, that even when
their solutions are incorrect, students who complete the checking actions, A6 and
Al1 are highly likely to complete the majority of the OB’s actions. Alternatively,
students who do complete these two actions almost never complete more than six
of the OB’s actions. In other words, the two checking actions of the OB, A6 and
All, seem strong predictors of a student’s broader engagement with the orientation
basis, even for those students who fail on a problem.

P1 [ P2 [ P3 | All
Number of A6/A11 actions
1 2 0 1 2 0 1 2 0 1 2
OB-actions 0-6 3 1 019 2 0 5 1 0117 4 0
7-12 0 3 5 0 2 6 0 3 4 0 8§ 15
Fisher Exact Probability  p <10?

Table S: Failing students’ OB-checking actions (A6 and A11) engagement

Importantly, a qualitative analysis of the responses of those students in the second
row of Table 5, those who failed to provide correct solutions to a problem but
completed seven or more OB actions, revealed that their engagement with the OB
checking actions, A6 and A11, was shallow. For example, Figures 4 and Figure 5
show the answers of student 3 to the two parts of P1. For the first part he wrote,
“Ox7=63, because 9 and 7 are the biggest” and for the second, “5x6=30, because
5 and 6 are the smallest”. While both multiplications and his reasoning are correct,
he has clearly misunderstood the task, which requires him to produce a
multiplication involving two two-digit numbers. Our argument is that had he
undertaken either A6 or A11 more deeply, he may have realised the extent to which
he had misinterpreted the tasks given him.

7267 By of 1 AT Smdni pen

Figure 4: Student 3 solution to the first P1 question
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Figures 5: Student 3 solution to the second P1 question

Discussion

In this paper we have reported on the trial of an orientation basis, designed to
support first year secondary students’ problem solving-related self-scaffolding.
Our initial goal was focused on longitudinal changes in students’ behaviour, both
in terms of their problem solving competence and their use of the OB. However,
the results were not simple to interpret. Most students’ OB use fluctuated from one
problem to another with only two students showing an increasing usage. All others,
apart from student 21, who consistently addressed ten OB actions, appeared to
exploit the OB randomly, alluding to at least four possibilities related to the impact
of prior problem solving practices (Schoenfeld, 2013). Firstly, different students
respond differently to different problem types, secondly, the tasks were at the very
edge of students’ problem solving competence and, thirdly, in a related manner,
most students remained unsophisticated problem solvers throughout the
intervention. This latter issue, acknowledging the typicality of the study’s students,
is unsurprising in light of research that high achieving students may need as long
as two weeks to solve a problem in order for them to become competent, confident
and independent problem solvers (Sriraman, 2003). Fourthly, three problems may
be too few for students to have internalised the OB as a means of scaffolding their
problem solving activity. Such matters will inform our work in the future.

The remaining analyses represented a diversion from our original goal,
prompted by an emergent awareness that two of the OB’s actions, ‘I have checked
that my strategy fits the data’ and “When I have finished I have checked my
answer’ appeared to have a greater predictive impact than the others. In particular,
by focusing on students who failed to obtain correct solutions, the importance of
checking emerged as an indicator for both the number of OB actions addressed and
the likelihood that students would complete the problem, albeit incorrectly,
confirming earlier research concerning the importance of taking time to read and
interpret a problem before planning a solution strategy (De Corte, et al., 2000).
However, students’ written arguments, as exemplified in the comments of student
3, indicated a broad failure to interpret tasks correctly, findings that resonate with
a Dutch study, also of high achieving students, that found that students who had
checked their interpretation of task expectations continued to misinterpret them
(Elia, van den Heuvel-Panhuizen & Kolovou, 2009). Consequently, future work
will focus on ways of encouraging students to check more effectively both their
interpretation of task expectations and their results.

So, has the orientation basis supported the development of students self-
scaffolding behaviours? Well, the impact of any form of scaffolding is difficult to
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evaluate (van de Pol et al., 2010) and may in part be dependent on the nature of
the tasks presented to learners. Actually, we are not able to give a concluding
answer to this question, but we feel we can offer a tentative, yes, not least because
the data show that a necessary but not sufficient condition for a fully correct
solution is the completion of seven or more OB actions. More significantly, the
data also show, for successful and unsuccessful students, that the chances of
completing a task correctly are enhanced if students address the two OB checking
actions. However, as has been discussed above, the inadequacy of many students’
checking behaviours is an issue that will influence future project activity. Finally,
two of the three problems posed to students were presented in context. However,
unlike the findings of others’ studies (Coltman et al., 2002), students’ responses to
these were not discernibly different from their responses to the single
decontextualised problem. This, too, along with the aim of introducing the OB to
younger children as a non sporadic device will inform future project work.
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The paper points to the emergence of the phenomenon “mixed notation” as a result
of the use of Computer Algebra Systems (CAS) in upper secondary education. We
provide an illustrative example or “existence proof” of mixed notation consisting
in a student’s written answer to an exam question from the Danish national
mathematics exam as an instance of mathematical writing. Based on a qualitative
analysis of the student’s written answer, we discuss how mixed notation might
emerge as a result of the technological context and the classroom culture. We
argue that mixed notation calls for awareness in regard to how the ongoing
transformation of written mathematical activities, as a result of using CAS,
influence students’ mathematical learning and identity work.

Introduction

The increased use of digital media for students’ mathematical writing does
influence their mathematical work. One example is that students now hand in
various printouts and computer files rather than handwritten assignments. This is
also the case at the national exams in Danish upper secondary education. These
changes in the materiality of mathematical writing contribute to a change in the
specific notations and diagrams used by the students to signify mathematical
objects and processes. However, such a change might not be as superfluous and
innocent as one might think. Several theoretical and empirical contributions
suggest that there is a complex interplay between notation and other
representations and the cognitive processes, both in general and in relation to upper
secondary mathematics (e.g. Kieran & Drijvers, 2006). One reason is that the use
of different media for writing in mathematics might amplify and/or reduce the use
of specific semiotic resources in students’ responses, and that such semiotic
resources are associated with different cognitive processes (Duval, 2006; Mariotti,
2002).

In Danish upper secondary education there is a growing proportion of students
who use Computer Algebra Systems (CAS) as a medium for writing in
mathematics. Since CAS have a slightly different mathematical notation, and
strong interactive abilities (Lagrange, 2005), including the capability to black-box



90

certain mathematical processes (e.g. Nabb, 2010), it is worth focusing on how
CAS-related notation affects mathematics learning. Currently it seems likely that
CAS eventually take over as the common mathematical medium in Danish upper
secondary education, which has a number of potential problematic consequences
(Artigue, 2002; Jankvist & Misfeldt, 2015; Trouche, 2015). In this paper we focus
specifically on the influence on notation, discourse, learning and identity.
Knowledge about such influence of CAS on notation and learning is important —
and even more so, since we know from research on literacy that a change in
medium and language “transmitting” knowledge will affect other dimensions of
learning, education, and competence. As an example, Kolste (2010) and Vollmer
(2009) point out the importance of learning a subject’s subject-specific-language
as being closely related to learning the specific subjects’ certain ways of thinking
and doing. This point is also made in relation to mathematical discourse and
learning (Darragh, 2016; O’Halloran, 2005 Sfard, 2008; Sfard & Prusak, 2005;
Steentoft & Valero, 2009). Hence, a change in “notation” can have a deep
influence on students’ mathematical work. Of course, mathematical notation has
always been in some sort of flux, and in that sense the CAS influence on notation
is nothing but a natural continuation of such changes. However, the way CAS are
used in education in general (and in Danish upper secondary school in particular)
might have a specific influence that we find it useful to investigate.

In order to focus on this influence, we will augment the “instrumental
approach” literature on CAS in mathematics education with a lens from literacy
studies and focus on how CAS influence students’ identity work. Our ambition
with the present paper is to show how classical algebraic notation and CAS-related
notation is entangled by students in upper secondary education and affect their
identity work. We present this “mixed notation” as a phenomenon of relevance to
us as mathematics educators and present an illustrative case of one student’s
mathematical writing in order to aim at a first characterization of the phenomenon.
Hence, this paper is not to be viewed as a traditional empirical research study, but
rather as a theoretical piece providing an “existence proof” and characterization of
an observed phenomenon, and furthermore showing how the literature on CAS in
mathematics education may start to consider how change in practice and discourse
may affect students’ identity work, which is an underdeveloped aspect of this
literature.

Theoretical framework

As an outset for looking at mixed notation we will use the distinction between
epistemic and pragmatic mediations (Artigue, 2002; Lagrange 2005; Trouche,
2005), and augment it with a consideration of students’ identity work (Iversen,
Misfeldt & Jankvist, in review). An epistemic mediation is directed towards the
user’s cognitive system; the tool is used to create a different understanding or to
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support learning. For example, Lagrange (2005) refers to experimental uses of
computers, e.g. in relation to students’ mathematical concept formation. In
contrast, a pragmatic mediation is directed towards something external to the user;
the tool is used to create a difference in the external world. Lagrange (2005) refers
to the mathematical technique of “pushing buttons”. We augment this
understanding of the roles of technology with the concept of identity — or what we
will argue that we meaningfully can refer to as identity directed mediation.

Our focus on identity is based on socio-cultural perspectives of teaching-
learning processes. Ivani¢ (2006) argues that students’ learning is closely linked to
processes of identification, meaning the extent to which students identify with the
values, beliefs, goals, and activities that prototypical participants in the learning
activities represent. The view that identification is an important factor in learning
is shared by a number of scholars (e.g. Gee, 2001). In the words of Hyland (2009,
p- 70), “identity is something we do; not something we have.” All of us do identity
all the time, and this doing has been coined as identity work by Gee (2003). In this
way, identity can be understood as negotiated ways of participating in different
social groups, cultures and institutions, and of course identity work is mediated by
the tools, technologies and representational systems at hand. Hence, we apply a
theoretical lens based in the same sociocultural outset as the instrumental
approach, but we include identity work as a third type of mediation (in addition to
those of epistemic and pragmatic).

The basic insight from the instrumental approach is that there is a dialectics
between artefact and individual, when adopting artefacts as tools for work. In
relation to identity this means that students, on the one hand, are expected to use
artefacts (digital tools, forms of notation, etc.) to perform identity work in ways
not foreseen by teachers and technology developers. And, on the other hand, that
these artefacts change and affect the students’ identity work.

Presenting an illustrative case of identity work with mixed notation

The following illustrative case is taken from a longitudinal study of students’
mathematical writing in the subject of mathematics. This field study took place
over a two-year period (2011-2013) and consisted of several studies from different
types of Danish upper secondary education. One of the findings of the study was
that CAS are increasingly used as a medium for students’ mathematical writing
(Iversen, 2014). We present an excerpt taken from the student Anna’s reply to a
written examination in mathematics (see Figure 1). Anna’s answer serves as an
example of key differences between classical algebraic notation and CAS notation
as well as an example of their entanglement. Notice how the central formula used
in the solution of the task is written up in two different ways (line 4 and line 6 in
the excerpt of Figure 1).
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b. | denne opgave skal jeg bestemme koordinatsaettet til projektionen

af /E pa ;.

Jeg benytter folgende formel:

A_B.:»— Ab-a
(jal}?

a

Jeg beregner vha. Nspire:

dotP(Ab,a) s [_5]
(non’n[a]);Z 10

— -
Altsa er koordinatsaettet til projektionen af AB pa a lig [-5,10)

Figure 1: Excerpt of Anna’s written answer to a sub-question (7.b) in a written exam.

The text reads: (line 1-2) “b. In this task I am to decide the coordinates to the projection of

AB on d.” (line 3) “I use the following formula:” (line S) “I calculate using Nspire:” (line 7)
“Hence, the coordinates to the projection of ABond equals (-5,10)”

In the first two lines Anna paraphrases the formulation of the task. In line 3 she indicates
the mathematical formula that she is going to use to solve the task. The formula is firstly
written with algebraic notation as it typically occurs in textbooks and lecture notes as well
as in formula tables and task formulations. A deviation from this is that Anna indicates
the vectors included in the formula (to the right of the equal sign) in bold (Ab and a). As
seen in the first two lines, i.e. the paraphrasing of the exam text by the Danish Ministry
of Education, vectors are conventionally written using a notation of small horizontal
arrows above letters, AB and d.

We cannot know why Anna uses the notation of putting vectors in bold. Typically,
this is not taught in Danish upper secondary school, and to the best of our knowledge her
teacher did not introduce this notation. Putting vectors in bold is of course used in various
international sources, e.g. on the Internet, which Anna might have consulted. It does,
however, seem much more likely that is is because she previously defined d in her CAS
TI-Nspire — and TI-Nspire uses the notation a for a vector. (Notice that the problem Anna
is working on is a sub-problem of a larger set of problems, where the vector d has been
used previously). In that sense, one can argue that Anna is using elements of CAS notation
already in the formula in line 4 of Figure 1. We do, however, consider this formula mainly
as an example of algebraic notation. This makes sense if we compare the formula with
the version of the same formula shown on line 6. In fact, it illustrates some key differences
between algebraic notation and CAS notation. In the latter case, Ab - a is replaced by
dotP(Ab, a), and norm(a) is used instead of the typical | d |. In addition, Anna is using a
small triangle between the formula and the calculated result, whereas in algebraic notation
one would typically use an equal sign (=). The transition from line 4, where one single
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notational element from CAS moves into the students’ writing, to more full blown CAS
notation in line 6 captures what we mean by mixed notation. Namely, the fact that
elements from CAS notational conventions are imported into students written products.

How to understand the phenomenon of mixed notation

We now analyze the case of Anna presented above and aim at characterizing some
relevant dimensions in the phenomenon of mixed notation. In the case of Anna, the use
of CAS notation is not just a meaningless markup language used to document her work
with a CAS tool, which then ideally should be translated back to classical algebraic
notation. Rather we see elements of CAS notation being used as a natural part of the
communication around Anna’s solution of the problem. It appears that the two types of
notation assist each other in the construction of Anna’s argument — and hence also in her
identity work (Gee, 2003) as someone doing mathematics (see also Iversen, 2013). When
Anna for example indicates the length of the vector d, not by the algebraic notation |d|,
but by the more CAS-oriented and keyboard friendly norm(a), she is in part reporting on
her CAS-based calculations. But at the same time, she is also transforming her
communication with the teacher to include CAS notation. These types of notational
transformations are performed by students and are to a large extent accepted — sometimes
even endorsed — by mathematics teachers in Danish upper secondary education (Iversen,
2014).

Furthermore, elements of CAS notation and CAS use are contributing to the shaping
and molding of the mathematical identities of the students (Iversen et al., in review). That
mixed notation is part of students’ identity work and students’ learning — we argue — goes
counter to a first approximation of the role of CAS notation in upper secondary school
students” work, namely as a technical discourse related only to the instrument. This first
approximation of mixed notation, as a superfluous byproduct of the technical means that
students bring into play, would suggest that skilled students take out the CAS aspects in
the theoretical parts of their communication with their teacher and only provide the
teacher with a genuine algebraic translation of the CAS work. And this is not the case
(Iversen et al., in review).

In fact, it is obvious that one of the affordances of the mixed notation is that the
students are able to report on their CAS-based work in a direct manner. Line 6 in the
example (Figure 1) does have aspects of that in it. However, we do not see students or
teachers unanimously suggesting that CAS-related mathematical notation should only be
used for reporting the CAS work. In Anna’s case, line 6 actually provides the conclusion
on her investigation, whereas line 1 and 2 is her problem statement, and 3 and 4 describes
her approach. In other (empirical) cases, we see both teachers and students endorse the
use of CAS-related notation in a mix with algebraic notation. From a functional
perspective (O’Halloran, 2005), this means that the mixed notation potentially serves
purposes related to identity work and idea development work as well as functions related
to pointing to the state of things in the world. The case of Anna shows that CAS do more



94

than just the latter, i.e. point to state of affairs; CAS potentially change notation, create
identities, and influence learning.

Discussing the potential influence of mixed notation

Our previous work (Iversen, 2014), as well as the mathematics education literature (e.g.
Artigue, 2002), show that CAS can play an active and constructive role in students’
identity formation. The illustrative example presented in this paper confirms this by
showing how notational transformation may be induced by CAS and viewed as identity
work. Our analysis shows that mixed notation is not a superfluous phenomenon, if we
want to understand the way that CAS shape students’ conditions for leaning mathematics.
Rather we see that mixed notation has a diverse and complex influence. Mixed notation
can lead to misunderstandings, and to loss of skills regarding mathematical formalism
(for related examples, see Jankvist & Misfeldt, 2015). But at the same time, it could be
interpreted as an active part of students’ identity work and cognitive apparatus, in the
sense that it might open up the students’ potential ways to express mathematics (Iversen
et al., in review), and hence mixed notation should not a priori be considered only a
problematic phenomenon. We believe that the way teachers address and evaluate
students’ work involving mixed notation needs to be the object for further investigation
and dialogue, not least because it raises a number of important concerns for the teaching
and learning of mathematics. In the following, we outline four potential points of
awareness for such further investigation.

Firstly, the difficulties that students often encounter when having to handle multiple
representations in mathematics is well established in the semiotic approach to
mathematics education (Duval, 2006). Hence, the introduction of a new notational system
to be used for working in CAS is likely to lead to further difficulties for some students,
especially if this notational system is introduced in a covert manner and as a superfluous
and simple translation from “mathematics” to CAS notation and then back again. There
is a risk that such an approach may lead to the kind of learning difficulties for students
that Duval has described, i.e. that students see one of the representational forms as being
the mathematical object, and the other representations (for instance the CAS notations)
as being signs referring not to an abstract mathematical object, but merely to the
privileged representation.

Secondly, the introduction of CAS notation is in some sense redundant, which may
lead to both confusion and loss of meaning for the students. But more than that, it may
contribute to the creation of new “stumbling blocks” for students, who are already
experiencing difficulties related to mathematical symbols and formalism (e.g. see Niss &
Jankvist, 2017). It seems easy to imagine situations, where students who are mixing CAS
notation with mathematical notation ends up disabling themselves in performing, say,
algebraic reductions either with paper-and-pencil or in a CAS environment. Furthermore,
small discrepancies in the notations may lead to misunderstandings compromising the
usual mathematical rigor. As an example, 3a, where a is a number, is usually taken to
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mean 3 - a, and for that reason we regard it true that 3a = a3. However, as part of the
Danish “maths counsellor” program (see Jankvist & Niss, 2015), maths counsellors have
found that several upper secondary students consider this as false, because they read a3
to mean as due to the CAS-related convention of regarding this as such.

Thirdly, and as mentioned previously, notational transformation, including those
involving mixed notation, are not consistently evaluated by teachers, and the acceptance
and endorsement of “CAS notation” varies widely from teacher to teacher (Iversen,
2014). Of course, this is not unproblematic, and it may potentially challenge the didactical
contract (Broussau, 1997) regarding the use of CAS in the classroom. An unclear
didactical contract can lead to severe obstacles for the students, as described by Jankvist,
Misfeldt and Marcussen (2016). In a situation of teacher change in a second year upper
secondary mathematics class, it was observed that unclear contractual relations
concerning the role of CAS fostered misguided winning strategies on the students’ behalf
(in relation to Brousseau’s game metaphor), either by leading to students loss of
confidence in their own mathematical skills or by causing metacognitive shifts, where the
students’ focus was shifted away from the mathematical object to something else, e.g. a
CAS-related procedure.

Fourthly, we should not forget that digital technologies change and, in many respects
increase the “mathematical muscles” of the students. This has both obvious and relatively
well-described didactical potentials (e.g. Lagrange, 2005). If we want to capitalize on
these potentials, it requires that students are able to report on their CAS activities, which
is likely to involve some sort of reference to CAS notation in their mathematical writing.
Taking seriously that CAS constitute an important part of the mathematical environment
for today’s students, mixed notation is also a healthy sign of students’ leaning. When
students use notational elements from CAS in their written mathematical work, it may be
because they are expressing mathematics in a language that they find meaningful. In that
sense, CAS notation becomes a register of mathematical representation (Duval, 2006)
that has relevance, and mixed notation may become a somewhat meaningful
mathematical discourse. Mixed notation may assist students in clearly describing a
working process involving CAS, and it may provide students with a language for
expressing mathematical meaning. This “language” is of course slightly different from
the standard notation — which can lead to a number of problems as described above — but
nevertheless it is a language for mathematical meaning and as such writing with mixed
notation may in some respects potentially enhance students’ learning of mathematics.
Finally, mixed notation allows students a broader range of ways to present themselves as
mathematical writers, e.g. when answering mathematical tasks. They may also present
themselves as “CAS super users” (Iversen et al., in review), since mixed notation affects
students’ identity work by providing a larger range of possible mathematical identities
and possibilities for self-presentation (Iversen, 2014).
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Concluding remarks

We argue that it is important to consider the influence of CAS in upper secondary school
and suggest that an investigation of the resulting mixed notation is indeed a relevant
phenomenon to consider in future studies. Keeping in mind the growing proportion of
upper secondary students who make use of ICT as a medium for writing in mathematics
courses, it seems clear that the influence of CAS, and the use of mixed notation, is
growing. In the current situation in Denmark mixed notation exists, but norms and rules
for accepting CAS notation as part of students’ written work are neither systematically
negotiated among teachers nor described in learning standards or official curricular
materials. As discussed above, this can give rise to a number of difficulties for the
students. However, CAS notation is not a static thing and the technological development
is promising to slowly close some of the gaps between CAS-related notation and standard
algebraic notation, leaving mixed notation as a concept in flux. Still, since the potential
impact of this notation covers both students’ learning and their identity work, it appears
highly relevant to follow closely the emergence and development of mixed notation.
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Proof by mathematical induction is a conceptually difficult, but important form of
proof. The proof contains three steps and this study focuses the first one, the
induction basis. The aim of the studly is to explore how university students treat the
induction basis in a proving task. Data were collected from 38 students’ solutions
to a task in a written exam and were analysed using content analysis. The results
reveal that the students used different cases as the induction basis, the majority
chose n = 1 although n = 0 was the preferred choice for the given task. A majority
of the students used one case in their verification of the induction basis, but it was
also common to use more than one case, which is superfluous for this task. Among
the students who chose n = 1 as the initial number, a majority included more than
one case in the basis step. We discuss how students’ choices were influenced by
the course literature and the formulation of the current task.

Introduction

Mathematical induction is an important form of mathematical proof that university
students meet in the beginning of their studies. However, proof by mathematical
induction (PMI) is conceptually difficult and there are different kinds of
misconceptions that may cause problems for the students (e.g. Ernest, 1984; Ron
& Dreyfus, 2004; Stylianides, Stylianides, & Philippou, 2007). In this study we
focus on university students and how they treated PMI in a first course at
university. Before presenting the study, we focus the structure of PMI and what
previous research has taught us according to students’ ways of treating such proofs.

Proof by mathematical induction
Mathematical induction is useful when you want to prove a statement that can be
connected to the set of natural numbers. We exemplify this by the task used for
our data collection. The task comes from a written exam:
The number sequence a, is defined through the recursive formula a, = na,.1—n + 1 for
n>1;a=2.

a) Compute a1, a2, a3, a4 and as.
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b) Find an explicit formula for a, and prove by induction that it is correct. (Compare
with n!.)

In this task, one first has to solve problems not directly connected to PMI, namely
the whole a)-task and the problem to find an explicit formula in the first part of the
b)-task. Here this formula is a, = n! + 1. In the second part of the b)-task, PMI shall
be used to prove that formula. A proof by mathematical induction can be said to
contain three steps:

1) The induction basis aims to show that the statement is true for (in the
example above) n = 0.

i1) The induction step starts with the induction hypothesis, which here can be
expressed as “suppose k is a number for which the statement is true”. Then we aim
to show that this implies that k£ + 1 is a number for which the statement also is true.

ii1) If step 1) and step ii) hold, the induction principle claims the statement is
true for every n > 0 (where » is an integer).

That the proof in itself contains three steps does not mean that every task can be
solved with these three steps only. In the example above, one had to first find a
closed formula that seemed to give the same result as the given recursive formula,
before using PMI to prove that this closed formula actually gives the correct result
for every n. There are also variations in how the three steps are applied. In the most
common tasks the basis step deals with n =0 or » =1, but depending on what to
prove you have to adapt the starting point to an adequate number or include more
than one number in the induction basis.

Previous research

Ernest (1984) pronounces a number of conceptual difficulties experienced by
students, and we will here focus on two of those; difficulties related to the
induction basis and to the induction step respectively, and also how these two are
connected in the structure of the proof.

There are different kinds of misconceptions regarding students’ understanding
of the induction basis. One finding is that students fail to include or do not
understand the role of the induction basis. Getting the induction started, i.e.
verifying the first step, is often treated as a formality without any meaning and not
seen as really essential for the proof (Dubinsky, 1986; Ernest, 1984; Palla, Potari,
& Spyrou, 2012), or as a preliminary activity just checking the validity of the initial
case to give confidence that the statement to prove is true (Ron & Dreyfus, 2004).
However, there are many examples where the induction step can be proved, but
the proof fails in the induction basis, e.g. to prove that 2n + 1 is even. There also
exist uncertainties about where to start the basis step, as the misconception that the
induction basis must always contain the case n =1 (Stylianides et al., 2007).
Connected to this is a lack of understanding regarding how many cases you need
to include in the basis step and the consequences caused by the choice of starting
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point. Ron and Dreyfus (2004) have shown that it is not clear for all students that
one has to check only for the very first case and that other checking activities are
not necessary parts of the proof — except for more complicated examples where
the induction basis needs to include more than one case.

A second issue is the induction step. Students often construe PMI as a method
where you assume what you have to prove and then you prove it (Ernest, 1984).
However, in the induction step you neither prove the statement is true for # = k nor
for n = k + 1; in fact, the truth-values of these cases are irrelevant since it is the
implication “true for » = k implies true for n =k + 1” you need to prove.

The final step of the proof is setting the results from the induction basis and
the induction step together, which connects the understandings and
misunderstandings due to the induction basis and induction step. Previous studies
indicate that some students appear to conduct proofs without really understanding
the steps involved, and that a proof has to follow a very strict scheme. In a study,
some students admitted they view the basis step as nonessential, and something
they did just because it was a rule stated by the teacher (Harel, 2002). Other studies
showed that some students believed the induction basis had to be verified before
the induction step for the proof to be valid (Pang & Dindyal, 2012), or that the
basis step is always verifiable and thus one only needs to worry about the inductive
step (Stylianides et al., 2007).

This paper is an initial report from a study aiming to explore students’
understandings of PMI, and in forthcoming papers we intend to present results
according to all steps of the proof. However, several researchers have identified
the induction basis as one of the difficulties (e.g. Dubinsky, 1986; Ernest, 1984;
Palla et al., 2012; Ron & Dreyfus, 2004; Stylianides et al., 2007), hence we here
choose to focus exclusively on this initial part of the proof. Thus, this paper aims
to explore how university students treat the induction basis in tasks where PMI is
employed. This limitation made it possible in depth to uncover details in a crucial
part of PMI and through that produce a richer description of students’ different
ways of handling the first step in PMI.

The context of the study

In the syllabus for compulsory school in Sweden, the word proof'is not mentioned.
However, the students shall develop their ability to apply and follow mathematical
reasoning, which also is a preparation for conducting proofs. In Sweden, almost
all students (98 % year 2014) continue to upper secondary school and about a
fourth of the students follows the natural science or technological programme,
which contain up to five courses in mathematics. In the first and third course,
proofs are mentioned related to other parts of the core content, e.g. to prove and
use the sine theorem. In the fourth course different methods of proof in
mathematics is also an explicit part of the core content, mentioning proofs with
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examples from arithmetic, geometry or algebra. Although course 4 has
mathematical proofs as a core content, PMI is usually not a part of the topic.
However, in the fifth course one part of the core content is “Mathematical
induction with concrete examples from e.g. the area of number theory”
(Skolverket, 2012, p. 39). Thus, PMI is explicitly treated during course 5.

To apply for Mathematics I, the first mathematics course at the current
university for this study, a student needs a passing grade in at least course 4 from
upper secondary school. Hence, not all students have met PMI before they start
Mathematics I, although they repeatedly have met proofs in general.

Mathematics I is a full time one-semester course, given at the department of
mathematics at a university in Sweden. The students are aiming for a general exam
in mathematics or physics, or for a teacher exam. The course has two parallel
halves; algebra and calculus. PMI is included in the algebra part, which is
examined mainly by a written exam at the end of the semester. PMI is introduced
in one lecture (number 17), followed up by tutoring and task solving on PMI. In
addition, one or two written hand in tasks deal with PMI. However, PMI is rarely
used for proving theorems in other parts of the course. Thus, in Mathematics I, the
introduction of PMI is limited to learning the method for its own sake or for future
use. The current semester, the task presented in the introduction of this paper was
the only task dealing with PMI in the written exam.

Regarding what number to choose as starting point in the induction basis, the
course literature (Bogvad, 2014, p. 143) uses n = 1 when the induction principle is
established. » = 1 is also the most common starting point in the examples, but there
are also examples with other starting points, e.g. n =0 and » = 4. However, in 10
out of 13 exercises, the induction basis should be at » = 1 (including one task where
both n =1 and n = 2 are needed as basis), implying this is the usual case.

Method

In order to explore how students treat the induction basis, we chose to use data
collected from students’ solutions to a task of the written exam in the course
Mathematics I (the task was presented above in the introduction of this paper). In
total, 109 students took part in this exam, of whom eight students did not solve the
current task at all, and ten students’ solutions were marked with 0 points. We got
permission from 38 students to use their solutions in our analyses. Of these 38
students, one gave a partly correct proof, where however the induction basis was
missing; one student just presented an induction hypothesis and nothing more;
while three students did not start the b)-part of the task at all. Since the focus of
this paper is how students treated the induction basis, these five students will be
excluded from the following analyses, which then will contain solutions from 33
students.
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A content analysis (Cohen, Manion, & Morrison, 2011) of the students’ solutions
was undertaken. Aware of findings in previous research (e.g. Ernest, 1984; Ron &
Dreyfus, 2004; Stylianides et al., 2007), we read and re-read the students’
solutions, striving to identify similarities and differences in their treating of the
induction basis. This content analysis generated three themes, in which each of the
33 student solutions was categorised. The first theme was whether or not the
student presented a statement to be proved — recall the first part of task b) was to
find a closed formula, which validity then should be proved. The second theme
was what number the students chose as starting point in the induction basis (e.g.
n = 0), and the third theme dealt with how many cases the students included in the
basis step.

Results

In this section, we elaborate on the three themes mentioned above. We exemplify
the different categories by including parts of the solutions from some of the 33
students included in the analysis. The given excerpts were chosen as representative
examples of solutions in the respective category.

Did students clarify what they aimed to prove?

The first part of task b) was to find a closed formula, which was likely to give the
same result as the recursive formula given in the task. Remember that the students
had computed the values of a1 to as in part a), which was an obvious support when
they should find the closed formula. The correct formula is, as presented above,
a, =n! + 1. This formula was stated by 31 of the students, e.g. one student wrote

Student A: It seems like we get the following formula for a,, a, = n! + 1.
However, one student (C) started his/her proof without giving the closed formula.
That is, there was no statement to be proved, when s/he started the ‘proof’ by
writing:

Student C:  We first show the statement holds for a basis case. n =0 — ap =

2.
A few lines down the same student however gave the explicit formula referring to
part a), and then used this formula as induction hypothesis and in the induction
step. Another student (B) just began to show the (obvious) validity of the recursive
formula. The first two steps presented were:

Student B: 1. ap=na,.1 —n+1forne[l, 5] as shown above.

2. a1 =(n+1)a,— (n+ 1) + 1 is supposed to be valid for the
following n.
That is just repeating what was already given and student B also continued the
‘proof” by reasoning about what came out from the recursive formula.
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Starting point for the induction basis

As mentioned above, 31 students gave the correct formula (a, = n! + 1), which is
essential before starting the proof. However, since student B and C anyway started
their proofs (see above), they have been included in the following two
categorisations.

Even though it is not explicitly said in the task for which # the formula for a,
should be wvalid, it is implicitly given that it should be for » > 0 since the given
sequence in the task starts with ao. In the solutions analysed, 14 students included
n =0 in the initial step, while 17 students started at »=1. We here give two
examples starting at » = 0 and two examples starting at n = 1.

Student D:  Check whether P is true for n=0. P(0) =ao=0! + 1 =2. Pis true

forn=0.

Student J: Basis step: Valid for # € [0, 5]. (see above) [the student wrote “see
above”]

Student F: Basis case: We check forn=1: 1+ 1=2 =g so yes, it is true.

Student A: 1. The formula is proved for the cases 1-5. [referring to the first
part of the task]
Two students started at » =2. One of them did not give any motivation of his/her
choice of starting point. The other student starting at » = 2 wrote
Student G:  As basis we can use any number from task a). For example, a2 =
3=2+1=21+1
Student G did neither motivate his/her choice of # = 2 as starting point, nor include
that the formula anyway is valid for all #» > 0 since s/he already had shown the
equality for ao and a1, which in fact is necessary for his/her proof to be complete.
Despite this deficiency, the proof could be seen as valid.

The number of cases included in the basis step
As induction basis, 20 of the 33 students showed the validity of the formula for
one specific case (=0, n=1 or n=2). Two examples were student D and F
above, and two other examples are:
Student H:  Basis case: We show the formula is valid forn=1. !+ 1=2=
ai
Student I: 1) Basis step: the formula is true forn=0.0!+ 1 =1+1=2
Twelve students showed the validity for all elements from part a). Several students
showed that by simply computing ao (or a1) to as. We have above seen other forms
of examples by student A and J, and yet another example is:
Student L:  Basis assumption: The formula is valid for ao—as (even for ao,
since 0! = 1, which means 0! + 1 = 2. [referring to computations
in part a) for ai—as]

Finally, one student showed the validity for two cases.
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StudentK: £=0gives0!+1=2=ag,forn=0.k=1gives 1! +1=2=a,
forn=1.

Summing up the results, focussing on the second and third theme, there are some
differences in the students’ choices in their solutions. Almost all students used
either n=0 or n=1 as the first case in the induction basis. A majority of the
students verified the basis for one specific case, but it was also common to use
more than one case as basis. In Table 1, we combine the results from these two
themes. This is a cross-table where e.g. the first column shows that of the 14
students choosing #» =0 as induction basis, 10 included just that case, while 4
included at least one more case.

n=0 n=1 Sum

1 case 10 8 18
>] case 4 9 13
Sum 14 17 31

Table 1: Starting point and number of cases included in the induction basis (number of
students)

Here, we can notice that students who gave n=1 as the first number in the
induction basis also to a greater extent included more than one case in the basis
step. In fact, a majority of the students starting at » = 1 included more than one
case, while less than one third of the students starting at » = 0 did the same.

Discussion
The study presented in this paper is the initial part of a project about teaching and learning
of PMI. Since the induction basis is the initial step of a proof by induction and this step
has been identified as a difficulty (Ernest, 1984; Ron & Dreyfus, 2004; Stylianides et al.,
2007), we chose in this paper to focus on the induction basis only. This narrow focus
offered opportunities to a deeper exploration on students’ understanding of an essential
part of PMI, which is known as problematic for students.

One important finding was the variation in the students’ solutions, whether
n =0 orn =1 should be the case to verify in the induction basis. Since the recursive
formula had ao =2 as its initial value, » = 0 is to prefer as starting point for the
proof, rather than » = 1. There can be various explanations for why a majority of
the students anyway started with » = 1. Due to the course literature (Bagvad, 2014,
p. 143), the basis in the definition of PMI is conducted for » = 1 and most exercises
start at n = 1 too. Hence the students are used to proofs starting at » = 1 and some
might have the misconception that the proof always starts at checking for n = 1 (cf.
Stylianides et al., 2007). This misconception can also depend on that students have
memorised the structure of PMI and hence conduct their proof mechanically (Pang
& Dindyal, 2012; Ron & Dreyfus, 2004). The task formulation may also contribute
to this misconception, or at least not prevent it, since ao =2 is already given. In
addition, the task did not explicitly tell from what » to verify the formula, it just
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said verify for a,. Thus, it may not be obvious that ao is also computable by the
closed formula and hence should be verified in the proof. The misconception that
0! =0 could be another possible reason to skip the case n =0, since the closed
formula then would not give the result ao = 2. However, we did not identify any
signs of this misconception, although it cannot be ruled out.

A second finding is that over one third of the 33 students involved more than one
case in their basis step, although in the current task just one case (n = 0) is needed
as induction basis. This can possibly be explained by the conclusion that they are
not aware of the role of the induction basis. Including more than one case, when
not necessary, can be a matter of seeing the basis step as a formality (Ernest, 1984),
and not understanding that ...

checking the validity of the initial case is an integral part of the proof — not a
preliminary activity that is intended to shed light on the statement or to give
confidence that the statement to be proved is true. (Ron & Dreyfus, 2004, p. 114)

However, the current task might encourage the adoption of including more than
one case in the basis step. Before even starting the proof in the b)-part of the task,
the students had to find a (closed) formula which was likely to give the correct
result. Hence it is necessary to first be convinced that the formula found actually
seems to coincide with the given recursive formula, i.e. “to give confidence that
the statement to be proved is true” (Ron & Dreyfus, 2014, p. 114). In addition, the
a)-part of the task was to, by the recursive formula, compute a1 to as, which
automatically gave the student five cases where the closed formula a, =n! + 1
easily could be verified. Thus, that students gave more than one case as induction
basis could just be a matter of that the cases were already verified. Moreover, it is
not incorrect to include more than one case, though it is superfluous in the current
task. It would be interesting to give almost the same task, but exclude the a)-part,
give the closed formula a, = n! + 1, and just ask the students to by mathematical
induction prove it is correct. Possibly more students would then just verify one
case in the basis step, since the initial computations of ai to as are then not
requested.

Even though the design of the task possibly had an impact on the students’
tendency to include more than one case in the basis step, the results arising from
combining theme two and three indicate a lack of understanding of the role of the
induction basis. These results show that students who chose n =1 as the (first)
number in the induction basis, to a greater extent also included more than one case
in the basis step. Recall that n = 0 was to prefer as basis. Hence, students who made
one less appropriate decision were also more likely to make a second less
appropriate decision. The tendency to include more than one case in the basis step
indicates that the students connect the verification of the basis rather to the
computations in the a)-task than to the formula to be proved. This shows a lack of
understanding of the essential role of the induction basis (cf. Ernest, 1984).

Through this study, it has been possible to identify some issues about PMI.
What we found most interesting was that a majority of the students chose n = 1
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rather than » = 0 as induction basis and that those students also to a larger extent
included more than one case in the basis step. However, when analysing written
solutions to a task, it is not possible to draw deeper conclusions about how the
students have reasoned when solving the task. Anyway, this study has illuminated
some issues to be immersed in further research, e.g. through interviews get a
clearer picture of why students include more than one case in the induction basis.
Another view of the same issue is in what way the task design affects the students’
solutions regarding the number of cases included in the induction basis. Hence this
study has provided valuable information for the research to come.
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Interpreting teaching for conceptual and for
procedural knowledge
in a teaching video about linear algebra

Ragnhild Johanne Rensaa! and Pauline Vos?
'UiT The Arctic University of Norway, Norway; *University of Agder,
Norway

The aim of this study is to investigate teaching videos about mathematics, seeking
to uncover research-based foundations for their quality. By drawing on the notions
of procedural and conceptual knowledge, the research was operationalized by
asking professionals in undergraduate mathematics education (n=138) to interpret
sections of a teaching video. The video dealt with a topic in linear algebra. The
results indicate rather divergent interpretations of conceptual knowledge. This can
hinder a reliable evaluation of teaching in terms of aiming for conceptual or
procedural knowledge. It is recommended that the notions should be carefully
used, defined and explained when used to evaluate the quality of teaching videos
in particular, or of teacher’s explanations in classrooms in general.

Introduction

On public internet platforms such as YouTube, there are many teaching videos for
mathematics. In such videos a single, often invisible speaker teaches about
mathematical topics in a confined environment. These videos are meant to assist
students in their learning. They can also be resources for other people than learners,
for example to seek inspiration for and to compare with one’s own production of
teaching videos, or to do research on teachers’ explanations, whether it is in videos
or in classrooms. We belong to the first category, producing videos ourselves. Yet,
being researchers of mathematics education for engineers, we want to find
research-based foundations for such work. Therefore, we were interested in finding
research-based criteria for the quality of these videos.

Research on multimedia learning offers design principles that enhance
learning, such as: the use of visualizations, limiting surplus information,
personalization (a friendly voice, showing the teacher’s face) (Mayer, 2005).
However, these guidelines are not didactical, describing how mathematical topics
are or can best be taught in a video. By lack of tools for analyzing and evaluating
the teaching of mathematics in videos, we turned to the teaching in mathematics
classrooms in general, where one can distinguish between different activities, such
as activities that involve teacher-student interaction (e.g. probe, evaluate or extend
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students’ ideas) and an activity that does not necessarily involve 2-way-interaction:
explaining. Explaining of mathematical topics is a complex activity and research
on it is still ongoing (Baxter & Williams, 2010). Explaining aims at supporting
students, on the one hand to better understand mathematical ideas, and on the other
hand to better carry out tasks. To capture this distinction, we turned to the notions
of conceptual and procedural knowledge. These notions are widely used by
researchers of mathematics education, based on work by, among others, Hiebert
(1986). Backgrounds and definitions of these notions will be explained below. At
this stage, it suffices to say that procedural and conceptual knowledge are
connected to student’s learning and thinking, rather than to teaching, and that
“(t)he general consensus, in research on mathematical thinking and in mathematics
education, is that having conceptual knowledge confers benefits above and beyond
having procedural skill” (Crooks & Alibali, 2014 p. 345). In studying the quality
of teaching videos, we can look for whether the teacher is aiming at enhancing
procedural or conceptual knowledge. As an example, a teacher who aims at
procedural knowledge can emphasize how tasks are to be done by demonstrating
subsequent steps of the solution process. If a teacher rather aims at conceptual
knowledge, he/she can focus on why a procedure works, show different
representations, compare procedures or show how classes of problems have
similarities.

The purpose of the present study is to support the evaluation of teaching
videos, investigating whether the explanations offered in a video are aiming at
procedural or conceptual knowledge, and how this can be judged. We
operationalized our study by selecting from the web a video on linear algebra, in
particular about bases and dimensions of vector spaces. We selected this topic,
because (1) it is a topic that is part of many bachelor engineering curricula, and (2)
because of the interaction between procedural methods (Gaussian elimination,
finding pivots) and a connected network of concepts (vector spaces, bases and
dimensions). We watched a dozen YouTube videos on this topic. The majority had
an emphasis on the “how”, although not one could be indicated as “purely aiming
at procedural knowledge”. We selected a video with a high didactical quality,
clearly aiming at conceptual knowledge, for example by comparing between
different solution approaches and by jumping over tedious calculations. We
showed it to professionals interested in mathematics education, asking them to
judge sections of the video in terms of teaching for conceptual or for procedural
knowledge. Would they reach a common agreement? Would their judgment agree
with our own? How would they interpret conceptual and procedural knowledge?
In this paper we will report on the commonalities and divergences in participants’
interpretation of teaching for conceptual and procedural knowledge in
mathematics, with respect to the content presented in the chosen video. The
judgment could later be useful to evaluate teaching videos on didactical qualities.
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We formulated the following research question: What are, according to a group of
mathematics-interested professionals, the sections in a teaching video that
emphasize conceptual or procedural knowledge?

Theoretical Framework

The notions of conceptual and procedural knowledge in mathematics are widely
used by researchers. Hiebert (1986) characterized conceptual knowledge as a set
of connecting pieces of knowledge. Kilpatrick, Swafford, and Findell (2001)
explain conceptual knowledge as “an integrated and functional grasp of
mathematical ideas” (p. 118). Procedural knowledge includes familiarity with
symbols and representation systems in mathematics together with knowing rules
and procedures that are used to solve a class of tasks in mathematics (Hiebert,
1986).

Researchers agree on a dynamic interplay between conceptual and procedural
knowledge, showing that conceptual and procedural knowledge can grow
interactively (Baroody, Feil, & Johnson, 2007; Rittle-Johnson & Alibali, 1999):
“Linking procedural to conceptual knowledge can make learning facts and
procedures easier, provide computational shortcuts, ensure fewer errors, and
reduce forgetting” (Baroody et al., 2007, p. 127). However, it is warned not to
confuse or equate these notions with deep and superficial knowledge, respectively
(Baroody, 2003; Star, 2005). Conceptual knowledge is a basis for procedural
fluency, which differs from procedural knowledge. A superficial procedural
knowledge refers to disembodied task preforming procedures, most often
algorithmic computations, while procedural fluency may be of a deeper, richer
nature, for instance when knowing how to generate solution processes beyond
standard problem types (Kilpatrick et al., 2001; Star, 2005). A conceptual
knowledge type may be of a superficial quality if the building of schemas for
conceptual structures is weak and mainly related to primary level concepts.
Bergsten, Engelbrecht, and Kagesten (2015) investigated engineering students’
learning and they created the following working definitions: “Procedural
approach: Use and manipulate mathematical skills, such as calculations, rules,
formulae, algorithms and symbols. Conceptual approach: Show understanding by
e.g. interpreting and applying concepts to mathematical situations, translating
between verbal, visual (graphical) and formal mathematical expressions and
linking relationships” (p. 932).

Crooks and Alibali (2014 ) offer a review of research on conceptual and
procedural knowledge, explaining that this mainly focuses on students, and the
most frequently used instruments are written tests. The more rare studies about
deliberate teaching that aims at conceptual knowledge (e.g. Eisenhart et al., 1993;
Even & Kvatinsky, 2010) show that this kind of teaching requires, amongst others,
flexibility, diligence and conceptual knowledge from a teacher, and it does not
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necessarily lead to conceptual knowledge with students. These studies were case
studies of carefully observed teachers and how they offered the students inquiry-
based tasks, used different representations, made connections, asked the students
to discuss alternative approaches, and so forth. These studies did not offer
categories for the quality of the teaching in terms of conceptual and procedural
knowledge, and they did not specify whether a higher quality was reached through
student-student interaction, teacher-student interaction, or through teacher’s
explanations without teacher-student interaction. By studying mathematics
teaching videos, we can only observe the latter. We hope that studying the
didactical quality teaching videos can also contribute to research on classroom-
based explanations that aim at conceptual knowledge.

Methods

Our research design entailed a survey based on a mathematical teaching video. The
data collection took place at a Norwegian conference on Undergraduate
Mathematics Education. The conference attracted professionals in mathematics
education: mathematics education researchers, mathematicians with teaching tasks
and teachers of mathematics. Within this conference we conducted a workshop on
didactical approaches in teaching videos. Part of the workshop was to show a video
and collect judgments by participants in terms of teaching aiming at conceptual or
procedural knowledge. Because of time limitations, however, they could only
evaluate one video.

The video

From the wealth of videos freely accessible on YouTube, we selected the video
“Linear algebra, Basis and dimension” published by Massachusetts Institute of
Technology (MIT), available at www.youtube.com/watch?v=AgXOY gpbMBM.
We deliberately chose an English video as the Nordic mathematics community is
rather small and we run the risk of having the teacher of the video in our workshop.
Also, the MIT-video satisfied many guidelines for multimedia (Mayer, 2005): the
use of space is well-planned, we see the speaker’s face, the video is relatively short
(8:09 min.) and the user is activated: after having explained the task (Figure 1,
left), the teacher asks users to first hit the stop button and solve the task by oneself.

sion | MIT 18.06SC Linear Algebra, Fall 2011

Figure 1: Stills from the video “Linear algebra, Basis and dimension” from MIT
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The task in the video is to find the dimension and basis of a vector space spanned
by four given 5-dimensional vectors. The solution could be demonstrated step-by-
step aiming at procedural knowledge. However, there are several aspects
indicating that the teacher aims at conceptual knowledge: at the beginning the
teacher links to prior knowledge; before starting calculations, the teacher gives a
rough outline of the approach; towards the end she presents an alternative approach
for the given problem explaining how the two approaches are related. The
procedural aspects, such as carrying out the Gauss operations, are accelerated and
the teacher says she will go fast, because “you must have seen eliminations a
million times”. When she explains the alternative approach, she avoids losing time
on calculations and only shows the first and final matrix, indicating the
calculations by an arrow and dots (see figure 1, right).
We analysed the video by splitting it into sections and describing these with
cognitive steps:
1. Starts by giving the pre-knowledge (linearly independence, spanning, basis,
dimension).
2. Gives a rough outline — how to work on the given problem (1st: find basis,
2nd: find dimension).

3. Talks about linear independence (until after 2:00).

4. Takes two minutes to do the elimination of rows. At 3:58: one row of zeros.

5. At 4:05: Circles the pivots and talks for a minute about the last obtained
matrix.

6. At 5:04: Writes the basis on the right hand board; talks about alternative
bases.

7. At 5:50: Writes down the answer to the question: dim = 3.

Summarizes and talks about alternative approach (vectors as columns).

9. At 6:39: Moves to the right, where she had prepared some work (the same
vectors, but then as columns + the matrix after the elimination).

10. At 7:25: Stresses that she now cannot use the columns as basis.

*®

Data collection

We created a questionnaire consisting of two pages, on which the above ten video
sections were described with 4-5 cm space between, five on each page, in order to
provide space for comments. During the workshop, we introduced our interest in
the use of videos and gave illustrations of the variety of types of videos available
on the web. Then we outlined the content of the MIT-video, defining it as “rather
good” and giving the main headlines ‘pre-knowledge’, ‘elimination of rows’,
‘pivots and basis’ and ‘another strategy’ to describe its progress. The participants
were asked to watch the video and indicate about each section whether it was
aiming for conceptual or procedural knowledge, and additional comments could
also be given. We deliberately did not offer definitions of what is meant by the
notions of procedural and conceptual knowledge to avoid funnelling the
participants’ answers. These notions are frequently used by researchers, often
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without amplifying their meaning. By not giving the audience definitions, we
wanted to get a grip on how the audience interpreted the conceptual and procedural
notions - unaffected. Thereafter, we ran the video and the participants filled in the
questionnaire. After the video was finished, we initiated a discussion, with
questions: “What was good (both procedural and conceptual)?”, “What could have
been done differently?” We made field notes of the comments. As the participants
left, we collected 18 anonymous responses.

The data analysis process

To analyze the answers on the questionnaire we took advantage of the definition
of conceptual and procedural knowledge provided by Bergsten and colleagues
(2015). We first tried to organize the responses according to degrees of similarities,
this resulted in quite many groups of responses, as few were to a large degree equal.
Then, we discovered that most disagreements were on the first page. This made us
decide to let the second page on the final five sections of the video be more
important for coding. This choice could be supported by the argumentation that (1)
in the final sections of the video the teacher was aiming at conceptual knowledge
by explaining an alternative approach without losing time on calculations (see
figure 1, right), and (2) the participants needed time to get used to the video and
the questionnaire, thus the second page better represented their interpretations.
This refinement made three categories crystalize: (1) participants who had
interpreted most parts of the second half of the video as conceptual - the C-group;
(2) participants who had interpreted most parts as procedural - the P-group; (3)
participants who had answered either P-P-P-C-C or P-P-C-C-C, which we coded
as the PP-0-CC-group. The remaining participants offered blank responses, or
responses which were not written in terms of conceptual or procedural knowledge.
This group was named “Answering something else or not answering at all”.

We are well aware of methodological limitations of our approach. The
participants may have interpreted questions differently from what was intended,
and we may have interpreted their answers incorrectly. The participants may not
have been well enough prepared to characterize the sections in the video (some
did not remember well the linear algebra). The English language in the video, in
the workshop and in the questionnaire may have hindered (most participants
were Norwegian), and so forth. Therefore, we take our results with caution.

Results

The participants’ responses yielded four groups. Below we will present their

additional remarks in the questionnaire and their contributions to the discussion.
The C-group consisted of four participants. Their categorization of the

different sections of the second half of the video was ‘conceptual’ or as one

participant expressed: “conceptual about ‘what can a basis be?’”. There were also
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responses stating: “P—C, good: Clear about procedure, link to concepts”. In the
group discussion, one of the participants explained this view. He emphasized that
since there are linear algebra concepts, on which all the calculations in the video
are based, his reading of the video was that most parts were aiming for conceptual
knowledge. Here we observed an interpretation of conceptual knowledge as
knowledge based on the presence of mathematical concepts - even when
presenting only the “how?” of a procedure. Thus, because these participants
recognized the underlying concepts, they judged it as aiming for conceptual
knowledge.

The P-group consisted of five participants. They interpreted at least four of
the five final sections in the video as procedural. One of the participants in this
group interpreted nearly all ten sections as procedural writing: “Procedural, less
explanation — doing aspect. Non-concept” and “Discussing strategies — not
concepts”. In this group, a common view appeared to be that there was something
missing: “Presents alternative strategy; - no or little discussion of the general idea
behind” and “Procedural (relies on us to remember initial definition introduced)”.
In the discussion, several participants stressed that in the video mathematical
definitions were missing. They emphasized that definitions should have been given
greater attention in the video. The participants in this group considered definitions
as important constituents of teaching for conceptual knowledge.

The PP-0-CC-group consisted of four participants. They described the first
two sections of the second half of the video as procedural. These sections showed
the teacher concluding the first solution approach. The participants in the group
did however not have a common interpretation of the ensuing section in the video
(section 8), which we cannot explain. The final two sections in the video, referring
to how an alternative way of solving the task can be done, was by all participants
in this group interpreted as conceptual. An explanation offered was: “C: ‘What if
we did something else’”. This indicates that the participant apprehends the variety
in methods as a conceptual feature. The responses in this group seem to agree that
the alternative solution approach aims at conceptual knowledge.

Group 4 ‘answering something else or not answering at all’ consisted of five
participants. Some comments from this group were on quality of the explanations,
such as: “Necessary to write how to transform one step to another in elimination
process. But explanation was good”. There were also descriptive responses:
“explains a little”. Another participant in this group wrote: “General comment:
Linear algebra is outside my area, therefore lost focus and understanding of what
was going on. Did also lose track of where we were in the video, thus there are not
many fruitful comments here.” (translated). These responses could not be analyzed
in terms of aiming for conceptual and/or procedural knowledge.
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Discussion, conclusion and recommendations

Our research question was: ‘What are, according to a group of mathematics-
interested professionals, the sections in a teaching video that emphasize conceptual
or procedural knowledge?’ This question cannot clearly be answered because of
diverging apprehensions by the participants of what they recognize as conceptual
or procedural knowledge. We can discern several interpretations.

One interpretation is that teaching is judged as aiming for conceptual
knowledge, if it is based on mathematical concepts. For the participants who were
familiar with the concepts used in the MIT-video it was easy to relate the
discussions and processes in the video to the mathematical arguments founding the
processes. Thus, because these participants recognized the underlying
mathematical concepts, they judged it as conceptual. However, any sequence in
the video, whether aiming at procedural or conceptual knowledge, used linear
algebra concepts. According to this interpretation then, as there were underlying
concepts throughout, all sections were ‘conceptual’. With all mathematical
thinking and reasoning being based on mathematical concepts, this interpretation
of conceptual knowledge will blur any distinction between procedural and
conceptual knowledge.

A second interpretation is that a certain approach to teaching is judged as
aiming for conceptual knowledge, if it includes formal definitions. Such
definitions were lacking in the video, thus connections between concepts and their
definitions are up to the viewers of the video to draw themselves. Lack of formal
definitions made these respondents interpret the teaching in the video as aiming
for procedural knowledge. The importance of formal definitions to mathematicians
has been discussed by many researchers (0.a. Van Dormolen & Zaslavsky, 2003;
Vinner, 1991), writing that the organization and presentation of mathematical
content in textbooks and lectures are often based upon the assumption that
concepts should be ‘acquired’ through definitions. However, the definitions of
conceptual knowledge in the research literature do not mention formal definitions.
In fact, conceptual understanding may be informal or intuitive, as long as it is rich
in connections (Baroody et al., 2007; Hiebert, 1986).

Of the four groups in the study, it was only the PP-0-CC-group that made
interpretations of teaching aiming at conceptual knowledge as being about offering
relationships between concepts and solution approaches. One of the participants in
the PP-0-CC-group put up a definition of what (s)he meant: “Procedural — talks
about a method: What is going to be done first and last. How. Conceptual — short
about why, (but mostly about what one has to do and the order)” (translated). This
interpretation is quite in line with the definitions given in the literature on
mathematics education research.

We started with a need for didactical quality descriptors for mathematical
teaching videos and chose to study to what extent the explanations in videos can
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be judged as aiming at conceptual or at procedural knowledge. The dynamic
interplay between conceptual and procedural knowledge (Baroody et al., 2007;
Rittle-Johnson & Alibali, 1999) may at times make it hard for teachers to
distinguish between the approaches. However, at times these are simple to observe:
A teacher who just tells about the "how" is clearly procedurally oriented, and one
who jumps over a calculation is clearly avoiding procedures. Our study shows that
these notions do not yield reliable judgments at all when used by professionals in
mathematics education, without first explaining, discussing, defining and
explicating these terms. It can be assumed that a number of professionals in
mathematics education aren’t well aware of the definitions from the research
literature. In particular, mathematicians who strongly stick to formal definitions as
one of the bases of their explanations, may have misconceptions about conceptual
understanding.

What is illuminated by the present project is that there are a number of typical
combinations of conceptual and procedural interpretations of a mathematics
lecture. The rather diverging interpretations in the first three groups — along with
responses in the fourth group that mainly indicate uncertainty — illustrate that the
understanding of the notions conceptual and procedural knowledge is rather
diverging and, also, that these notions are ‘difficult’.

The present project embraces only a small number of responses gained from a
small part of the professional community. Thus, it is exploratory. Nevertheless,
locating such divergences in a small group of professionals sends a signal of
difficulties obtaining a unique apprehension within bigger communities. When
studying a teacher explaining mathematics, whether this is within a teaching video
or within a live classroom, the judgment of whether it is aiming for conceptual and
procedural knowledge should be done. Asking professionals in mathematics
education may yield unreliable results if the notions are not carefully defined,
explained and discussed.
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Proof belongs to university mathematics almost indisputably, but quite often it has
an important role in school mathematics, as well. In literature, several functions
for proof have been presented. In this study, university students’ views about the
importance of proof and its different functions were explored. 97 students in
Finland and 215 students from Estonia participated, all in the beginning of their
mathematics studies in university. These countries are interesting to compare
because earlier studies show substantial differences in how proof and proof-
related items are addressed in the school curricula of these countries. The results
show that the students in both the countries appreciate quite highly the importance
of proof both in school mathematics and in mathematics in general. Support for
understanding and development of thinking skills were reasons the students
considered most important for studying proof and proving.

Introduction
Proof and proving are often seen as essential elements of mathematics, especially
at the advanced level. Quite often the amount and importance of proving increases
considerably when a student starts mathematics studies in tertiary education
(Selden, 2012). It has been reported in several studies that university students often
have difficulties with proof and proving (e.g., Gueudet, 2008; Selden & Selden,
2003; Hemmi, 2006; Reid & Knipping, 2010). Learning of proving skills requires
different kind of mathematical thinking than, for example, training of calculations
based on algorithmic thinking. However, it is not so broadly studied how students
understand the reasons for why proofs and proving are studied in mathematics. In
this study the main focus is to explore the following questions:
1) Do Estonian and Finnish university students appreciate the role of proof and
proving in mathematics at the beginning of their mathematics studies?
2) How important do they consider different functions of proof?
3) Which reasons do they possibly state for studying proofs and proving in
mathematics?
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The study adds to our general knowledge about students’ relation to proof in the
beginning of their university studies. Moreover, the results between the countries
are also compared because the comparison helps us to interpret and explain
students’ views with respect to differences of proof-related approaches in
respective secondary curricula. The aim is to analyse if and to what extent
differences found in Finnish and Estonian curricular approaches (see Hemmi,
Lepik & Viholainen, 2013) are reflected in students’ views.

Hemmi et al. (2013) analysed and compared proof-related issues in the Finnish
and Estonian mathematics curricula. They found that proof and proving are
addressed in secondary school curriculum in both the countries but in different
manner. The Estonian curriculum explicitly states goals concerning proof and
proving: The primary introduction to proving issues is prescribed at the lower
secondary level, and there is a heavy emphasis on these topics at the upper
secondary level. The presentation style resembles the ’traditional’ way of starting
to work with proving within geometry and continues by presenting rigorous ready-
made proofs. Students’ solving of proving tasks is not stressed. The Finnish
curriculum is less explicit in terms of proving, proof is not explicitly present in the
Finnish upper secondary school curriculum. At the same time, the Finnish
curriculum addresses the proof-related competences from grade 1. In addition,
students’ justifying and investigative activities are emphasised from the primary
to the upper-secondary levels. The new approaches to proof-related competences
that could enhance students’ experience of meaning (e.g. de Villiers, 2010; Heinze
& Reiss, 2004) are strongly present in the Finnish curriculum.

During the last decades several researchers and mathematics educators (e.g. de
Villiers, 1990; Hanna, 2000) have presented that the most central function of proof
in mathematics is not to verify the truth of the statements. For example, de Villiers
(1990) suggests five different functions for proof. He stresses that beside
verification, proof has an important role in explaining: providing an insight why
something is true. Proof also systematizes various results into a well-organized
deductive system. It is also possible to discover new results through proving by
using deductive reasoning. de Villiers also proposes that proof may be seen as a
tool for communication, which means that mathematical knowledge can be
communicated via proofs. Hanna (2000) discusses various functions of proof and
emphasizes that enhancing of mathematical understanding is the most important
goal for the use of proofs and proving. Hemmi (2006) introduces transfer as an
important function of proof. She suggests that proofs may introduce techniques or
methods that are useful in other problems, and they may also offer understanding
for something different from the original context. Also, the development of logical
thinking skills can be included in this function. Researchers have also found the
functions of aesthetic experiences and intellectual challenges as important aspects
of proof to be considered (e.g. Hemmi, 2006).
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Method

In this study, a questionnaire was applied for data collection. The questionnaire
included 22 statements presented in Table 1 and one open question. The statements
have been tested and developed in our earlier studies (e.g. Hemmi, 2006). The
statements 1-6 focus on the role of proof in school mathematics and the statements
7-9 the role of proof in mathematics in general. The questionnaire included also
statements about the following functions of proof: verification, explanation,
transfer, aesthetics and intellectual challenge (statements 10-22). These functions
were chosen for the study, because they were assumed as the most relevant and
best known by the respondents.

Students were asked to respond how they agree or disagree with the presented
statements using a six-point-scale (1 = strongly disagree, 6 = strongly agree). An
even-point scale was selected, because it forces respondents to either agree or
disagree by omitting a neutral option (Allen & Seaman, 2007). In the case of an
odd-point scale, it might have been too easy to take a neutral view without
reflecting the statement. In the questionnaire, the statements were presented in a
mixed order. It was assumed that in this way the students might react to each
statement without comparing them to other statements, and, thus, responses
between statements might be more independent. However, mutual dependencies
between the statements are not studied in this paper.

After the survey there was also the following open question:

Please mention some reasons why students should familiarize themselves with proofs
and proving in school mathematics.

The aim of the survey was to measure how strongly students appreciated different
aspects of proof and proving. Furthermore, the open question explored what the
reasons are (the most important ones) for studying proofs and proving according
to the students. The term ‘school mathematics’ was used in this question, because
it was assumed that the respondents did not yet have experience in university
mathematics, and it was aimed that their responses would be based on their
experiences rather than preconceptions. Naturally, the respondents could get hints
from the statements presented in the survey to their responses in the open question.

97 students from one Finnish university and 215 students from three Estonian
universities participated in the questionnaire. Among the Finnish students, 38 (39
%) were majoring in mathematics, 21 (22 %) chemistry and 17 (18 %) physics. 47
out of the sample (49 %) were already studying in or planning to apply to a teacher
education program. 89 students (90 %) had studied the advanced syllabus in
mathematics in the upper secondary school. In the Estonian sample, 50
respondents (23.3 %) were majoring in mathematics, 24 (11.2 %) in mathematical
statistics, 33 (15.3 %) in gene technology, 24 in other natural sciences (11.2 %)
and 78 (36.2 %) in different areas of engineering or technology. 80% of Estonian
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students had taken the extensive mathematics course during their secondary
education.

The means and the standard deviations of the students’ response distributions
to the statements for both the Estonian and Finnish samples were calculated.
Significances of the differences between the samples were analysed by applying
the t-test. If the significance was under .06, Cohen d was also calculated. In the
significance analysis, the equality of variances was tested by Levene’s test. If
Levene’s test gave significance under .05, the equality of variances was not
assumed in the t-test. Otherwise the t-test was completed by assuming equal
variances.

To analyse students’ responses to the open question all the proposed motives
for studying proof and proving were listed and grouped by the similarity. Later the
number of responses in each motive- group was counted. Each detected motive
was, if possible, also related to a certain function of proof. Students’ responses
were first analysed by the research team member by the respective country, who
read texts in the original language and created initial categories to classify the
proposed statements. Then all the categories together with examples of statements
were translated into English. In the following the initial categorizations were
jointly discussed. After several cycles of similar analyses, the final list of
categories was fixed. Later the number of responses in each category was counted.
Each detected motive was, if possible, also related to a certain function of proof
(see Table 2 in Results).

Results
The results concerning the survey are presented in Table 1. Students in both the
countries were quite convinced that proof does not belong only to university
mathematics (S4) but it should also be studied at least at the upper secondary level
(S3). The Estonian students were a little bit more critical than the Finnish students
with respect to the statement about practicing proof and reasoning in the lower
secondary school (S2). In regard to practicing proof and reasoning also in the
primary school (S1), the variances of students’ responses were quite large in both
the countries. There was a significant difference between Estonian and Finnish
students’ responses about the idea of including problems related to proving and
derivations into the final or national examinations (S5). The Estonian students
tended to oppose the idea while the Finnish students were significantly more
positive toward it. When proof and proving were contrasted with the practical
applications of mathematical knowledge (S6), most of the students claimed that
practical applications are more important to learn. Among the Estonian students
this view proved to be stronger than among the Finnish students.

Students from both the countries tended to support the idea that in mathematics
no claim can be considered true before it has completely been proven (S8). The
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Finnish students tended to support also the claim that proof is the most central
activity for the mathematicians while the Estonian students stayed neutral (S7).
Students from both countries also lightly agreed (on average) that proving skills
are important in applying mathematics to practical problems (S9). Thus, the
importance of proof in mathematics was generally supported by the respondents.

Students considered proof to be a powerful tool in verifying mathematical
statements (S10). Among the Finnish students this belief was somewhat stronger
than among the Estonian students. However, students from both countries stayed
neutral towards the necessity of proof in convincing about the truth of
mathematical statements (S12). Instead, students were not very convinced about
the necessity to feel uncertainty about the truth of the claim before proving (S11).
With respect to the explanation-function, students from both countries seemed to
be equally supportive. On average, they agreed that proofs help to understand
mathematical connections (S13), they considered proofs to be important in
presenting answers to why-questions (S14) and they also agreed (at least lightly)
that proofs are needed in understanding how mathematical truths are derived (S15).
However, the nature of these statements has to be taken into account — it may be
difficult for students to strongly disagree with them.

The students considered proving exercises as an important tool for developing
logical thinking (S16). They also believed that proofs develop critical thinking
(S18). Students from both the countries tended to stay somewhat neutral towards
the claim that proofs teach students techniques that are valuable in other contexts
(S17). In the case of questions concerning the aesthetics of proofs (S19 and S20),
students did not have a strong opinion on average and the variances of their
responses were quite large. However, the results indicate that the Finnish students
were more supportive toward the statements on the aesthetic elements of proof
than the Estonian students. The students were also very convinced that proving
tasks offer intellectual challenges (S21), and that they are suitable for students who
like challenges (S522). Again, however, the Finnish students were more supportive
than their Estonian colleagues.

Estonia Finland
Mean |St.dev |Mean |St.dev (Stl-gtes 0 dCohen
Role of proof in school mathematics
1. Pupils should somehow practice proof and 34 15 37 13
reasoning in primary school (age about 6-12). )
2. Pupils should somehow practice proof and
reasoning in lower secondary school (age about |4.3 1.4 4.7 0.9 .008(-) 033
13-16).
3. Proof shf)uld be included in most mathematics 50 12 43 10
courses in upper secondary school.
4. Proof belongs only to university mathematics. 2.6 1.3 2.6 1.2
5. Problems related to proving or derivations
should be represented also in final 2.6 1.5 39 1.3 .000 (-) 1.06
examinations/national examinations.
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6. Itis more important for the students to learn
practical applications of mathematical 4.6 1.2 4.2 1.1 .003(-) |-0.42
knowledge than work with proofs and proving.

Role of proof in mathematics

7. Proofis thg most centr.al activity of the 39 L1 43 14 004(5) |033
mathematicians in their work.

8. In mathematics, no claim can be considered to 44 L5 47 13
be true before it has been completely proven. i ) ) i

9. Proving is an important skill when applying 40 13 49 L1
mathematics to practical problems. i ) ) i

Verification

10. Proofisa powerful tool in order to verify 47 11 50 08 033() |027
mathematical statements.

11. Students have to feel an uncertainty about the
truth of the claim; otherwise there is no use to 3.1 1.5 3.8 1.1 .000(-) |0.55
give a proof.

12. Proofis needed in order to become convinced 42 12 42 1.0
about the truth of mathematical statements. | | ) i

Explanation

13. Proofs anq proving hellp students to understand 46 12 47 08
mathematical connections.

14. Proofs are .1mp0rtant to present as answers to 48 12 4.9 1.0
why-questions.

15. Students need to always see the proofs in order
to understand how mathematical truths are 4.5 1.3 4.4 0.9
derived.

Transfer

16. Exercises in proving are important for students
to develop logical thinking skills. 47 12 48 08

17. Proofs tefach students techniques that are 42 12 43 1.0
valuable in other contexts.

18. Prpof and proving develop students’ critical 43 12 47 09 002() | 0.40
thinking.

Aesthetics

19. Through proofs and proving, students have a
possibility of experiencing the beauty of 35 1.4 4.0 1.2 .001(-) |0.44
mathematics.

20. The proofs suitable for school level have not the
potential of offering students an aesthetic 3.8 1.3 3.4 1.1 .003(+) [-0.34
experience.

Intellectual challenge

21. Proving tasks offer students intellectual 43 13 50 08 000(-) |0.74
challenge.

22. Proving tasks are suitable for students who need 46 12 50 L1 006() |0.38
challenges.

Table 1: The means and the standard deviations of students’ responses for the statements
in both the countries. Marking (+) after the significance of the t-test means that the
equality of variances was assumed and marking (-) means that it was not assumed.

In their responses to the open question (see Table 2) students dominantly
emphasized the explanatory power of proof. More than half of the respondents
thought that proof should be treated in the secondary mathematics because it
“explains the content”, “supports understanding” or “answers to why-questions”.
The second most popular motive suggested by the students was the development
of learners’ thinking, reasoning or argumentation skills. Almost one fifth of the
Estonian students and about one fourth of the Finnish students mentioned this in
their responses. In addition to reasons mentioned in Table 2, some students pointed
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out the importance of proof in the developing of problem-solving skills (2.8 % of
Estonian students and 2 % of Finnish students) or application skills (1.9% and 5 %
respectively). These reasons refer to the transfer-function. Only few respondents
indicated that the role of proof in the secondary mathematics is to establish the
truth of mathematical statements (0 % and 2 %). Also, motives related to the
discovery (0 % and 2 %) or intellectual challenge (0.5 % and 0 %)) were mentioned
only by very few students, and reasons referring to systematization,
communication or aesthetics were not mentioned at all. Not many students
questioned or denied the need to study proofs in their responses.

Reason to study proofs and proving Function Est (%) | Fin (%)
Support for understanding, explanations to why-questions Explain. 54.9 54
Development of thinking, reasoning or argumentation skills Transfer 19.5 25
Support for further studies in mathematics — 15.8 8
Learning about the nature of mathematics _ 7.0
Support for remembering or less things to remember _ 4.7
Need to study proofs denied or questioned _ 42 2
No reasons mentioned — 0.0 14

Table 2: The most frequently mentioned reasons to study proofs and proving in school
mathematics. Proportional distributions among the samples of Estonian (n=215) and
Finnish (n=97) students.

Discussion

Students in both the countries highly appreciated the role of proof both in the
school mathematics as well as in mathematics. In general, the Estonian students
seemed to be more critical toward proof and proving and to the usefulness of the
functions of proof than the Finnish students. A comparative analysis of curricula
(Hemmi et al. 2013) revealed that the Estonian approach to proving tends to be
more traditional while Finnish mathematics education has implemented so-called
developmental proof approach, which means that proof-related activities are
trained little by little so that word proof is necessarily not explicitly mentioned. In
addition, proving tasks are more common in the school mathematics in Finland
than in Estonia. These reasons may explain why the Finnish students saw proof
and proving in a more positive light than their Estonian colleagues. However, it
has to be noted that there were differences between the Estonian and Finnish
samples at least in students’ study programs and intentions with respect to studies.
These may also have an effect on the observed differences.

Students in both the countries agreed that proof should be treated in upper
secondary mathematics (S3). Differently from their Estonian counterparts, the
Finns also tend to support the idea of practicing proof and reasoning already in
lower secondary school (S2). According to the curricula the teaching practice is
contradictory to this result: Proof is explicitly introduced in the lower secondary
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level in Estonia and not in Finland (Hemmi et al., 2013). This might be explained
by the fact that students in these countries may have different views about the
nature of proof. Supposedly, many students in Estonia find the formal and rigorous
way, in which proof is introduced in Estonian schools, to be difficult and
unsuitable for younger pupils. On the contrary, if proof is introduced by applying
the developmental approach as prescribed in Finnish lower secondary curriculum,
proof may appear more achievable for pupils at lower secondary level.

Based on the results, the students highly appreciated the role of proof in the
understanding of mathematics and in the learning of logical thinking skills. These
refer to the explanation- and transfer-functions of proof. When reasons to study
proof and proving were explicitly asked, most often the students mentioned
reasons that also referred to these functions. Other functions were either not
mentioned at all or mentioned only in a few responses to the open question.
Explanations- and transfer-functions were also emphasized in Knuth’s (2002)
study, where secondary school mathematics teachers’ views about the role of proof
in school context were examined.

It is surprising that only few students mentioned the verification-function in
their responses to the open question, even though the students generally agreed in
the survey that proof is a powerful tool to verify mathematical statements. On the
basis of the survey, it seems that the verification-function is generally
acknowledged by the students, but at the same time they remain neutral toward the
claim that proof is needed to become convinced about the truth of mathematical
statements (S12). It seems that the students are ready to accept the results presented
in the textbooks without any proof, and the learning of ready-made proofs has
some other goals than ensuring the truth of presented mathematical results. This is
supported also by the result that the students were lightly critical towards the claim
that feel of an uncertainty would be a prerequisite for to give a proof (S11).
Therefore, they seem to accept that proof is a way of communicating mathematics
independently from the need to verify the truth.

In the case of questions concerning the aesthetics of proofs (S19 and S20),
students unanimously stayed neutral. The result tends to indicate that the way proof
has been treated in school has not provided students with the possibilities to
experience the beauty of mathematics. Also, support for further studies in
mathematics was mentioned by many as the motive to study proof-related issues
in school. Because the sample consisted of first-year students who all were
studying mathematics at tertiary level, probably the respondents felt personally the
difference in approaches between secondary and university mathematics,
especially that in university mathematics proof has a more central role.
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The national validation of Finnish mathematics
teachers’ lexicon

Markku S. Hannula
University of Helsinki, Finland

This report describes the national validation of Finnish mathematics teachers’
professional lexicon for describing events in the mathematics classroom. As part
of an international Lexicon project, we had created a lexicon of 104 terms and
their more extensive descriptions. This was then validated through the responses
of 72 Finnish mathematics teachers. Overall, the terms were very familiar to the
respondents, although some terms were somewhat less frequently in use. Some
terms were clearly problematic and require modifications. Overall, the teacher
responses suggest that the Finnish mathematics teachers’ terminology is more
focused on teacher-student interaction and lesson organization rather than
mathematics specific aspects of teaching.

Introduction

Our language often enables and limits our thinking in ways we are not fully aware
of (Lakoff & Johnson, 1980). Therefore, examining the professional language of
teachers is one method to examine the pedagogical thinking of teachers. A study
on the metaphors used by Finnish mathematics teachers (Oksanen, Portaankorva-
Koivisto & Hannula, 2014) reported that most of them saw themselves primarily
as experts in mathematics teaching (51%) while some saw themselves as experts
in pedagogy (14%), and only a few used metaphors highlighting their role as
experts in mathematics (6%).

In our current study we look at the Finnish mathematics teachers’ language on
a more fundamental level. What teachers see in a classroom situation, and even
more strongly, what they can think and discuss about is mediated by what they can
name. The richer and more nuanced the teachers’ professional language is, the
more elaborate reflections and discussions are possible (Mesiti et al., 2016). Clarke
(e.g. 2013, see also Mesiti et al., 2016) has pointed out that the language
differences have implications for international comparative research.

The international Lexicon project aims to identify and compare the lexica used
by mathematics teachers for describing mathematics lesson events in Australia,
Chile, China, The Czech Republic, Finland, France, Germany, Japan, and The
USA (Mesiti et al. 2016). The purpose of the research project is to identify how
mathematics teachers in different countries see the teaching-learning process and
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the terminology used by professional educators. The national lexica will improve
possibilities for international comparative research.

Our research question is: Which terms for describing educational events in a
mathematics classroom do the Finnish mathematics teachers recognize and use
frequently?

This presentation outlines the process for generating the first draft version of
the Finnish Lexicon and its national validation. At this stage the reporting is mostly
descriptive. However, there are some tentative conclusions at the end.

Method

The generation and development of the national Lexicon

For the generation of the lexical terms, the Lexicon project wanted to avoid too
strong influence of the academic research terminology. Therefore, experienced
practicing teachers had a key role in the process. In Finland, the lexicon was first
generated by a team consisting of the author and three experienced mathematics
teachers, who alternated between viewing and annotating video events and
discussing to find consensus on the relevance of each term. The team used lesson
videos from grade eight mathematics lessons from the nine participating countries
as a stimulus to identify activities they have a name for.

In Finland, this process of naming events led to a realization that many of the
important things that teachers name in the lessons are not activities, as suggested
by the original protocol. For example, the term “Revision” is not used primarily as
a name for an event, but rather as a qualifier for several different things, such as
“A revision lesson” or “A revision task”. Other terms that did not refer to activities
were “Realization” (The moment the student ‘gets it’), “Lesson plan”, and “Use of
humour”.

The first draft version was discussed at a Lexicon project meeting which
inspired generation of some additional terms that were later approved of by the
expert teachers. Moreover, we clarified our definition regarding the scope of the
lexicon. For example, we decided to exclude terminology that is specifically
mathematical. After these amendments, the Finnish Lexicon included 104 terms.
Each term was accompanied with a verbal description and two examples as well
as a non-example that was almost within the meaning of the term, but not quite.
The 104 terms were categorized under five categories: “Kasvatus”
(upbringing/education/fostering; in Swedish “Uppfostran”); Organizing;
Evaluation; Teaching methods; and Mathematical content

Procedure for validation

In Lexicon project each participating country was responsible to design and
implement their own national validation. In order to validate the Finnish lexicon
an electronic survey was conducted in November-December 2016. The validation
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study aimed at recognizing how familiar the terms were for the Finnish
mathematics teachers, how frequently they use these terms, and how well they
recognized the terms from the descriptions and examples. Moreover, they were
asked to suggest new lexical terms to be included and improvements for the names
and descriptions given by us.

The survey was influenced by the Australian survey for their national
validation, but it was made shorter by removing some sections. The Finnish survey
consisted of six sections: 1) Demographics, 2) Giving the term only and asking
four different questions about that term: a) How familiar is the term?; b) How often
do you use the term?; ¢) How often do your colleagues use the term?; and d) How
often does the phenomenon referred to by the term happen?, 3) After being
presented with the verbal description, examples, and the non-example, the
respondent was asked to suggest a lexical term matching the description, 4) After
being given a full description including the term, the respondent was asked the
familiarity of the term and to suggest improvements for the term or its description.
5) After presenting a list of all terms (including synonyms, alphabetically
arranged) the respondent was asked to suggest additions to the list, and finally 6)
a Thank you -page asking for contact information for future surveys and with
information about reward lottery. For sections 2 and 4 five point response scales
were used. Four parallel versions of the survey were developed, rotating all lexical
terms through sections 2 to 4. In each version each of the sections included 26
terms. Because we were worried about the length of the survey, we encouraged the
participants to skip the open response items and respond to the multiple choice
items, if in a hurry.

We first piloted one version of the survey to identify possible glitches with the
form and confirming that the survey is not too exhaustive for the respondents. We
got 6 responses in the pilot study, most responding only to the multiple choice
items. The careful completion of all items had taken one respondent 45 minutes
while those who responded to multiple choice items only were able to complete
the survey in ten minutes. Based on the pilot study we corrected a couple of minor
errors and these six responses are included in the pool of responses.

Data

The main validation survey and one reminder letter were distributed in November
—December 2016 through MAOL (mathematics teachers’ union) weekly
newsletter that has 4400 recipients. The four different versions of the survey were
randomized by asking the respondent to select one of the four possible links based
on the month of their birthday. The survey was also sent through the mailing list
of Finnish Mathematics and Science Education Researchers’ Association with
about 200 recipients. Moreover, | used my personal contacts to ask about 20
teachers to fill in the survey.
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Altogether we received 77 responses to the survey. Out of these responses 72
were by mathematics teachers and only these are analyzed for validation. The four
different versions of the survey received 24 /17 / 11/ 25 responses. Based on
uneven numbers and the geographical bias of different survey’s responses we
assume that the randomization was not always followed, and we suspect that some
participants have shared with their colleagues the links to a specific survey rather
than the randomization starting page. However, for our purposes this is not a
significant problem as the respondents in all four versions still represent a broad
variation of geographic regions and ages.

For the open response items, the number of responses was smaller. For naming
the Lexical terms based on the long description, we got fewer responses towards
the end of the survey. The number of suggested term names varied for the different
survey versions between 13-20/ 4-8 / 7-8 / 9-15. In addition, we received 140
suggestions to improve descriptions. Moreover, 17 persons made altogether 78
suggestions for adding in total 49 new terms to the lexicon. Out of these we have
selected 40 new terms that we will include in the next round of validation.

Analysis
Our data analysis consisted of three stages. First, we ran some descriptive statistics
on the respondent populations to confirm that there are no significant biases
towards certain types of respondents. Next, we computed the mean values and
standard deviations for each survey item type to get an overall feeling of the data
set. Finally, our main validation analysis was based on identifying the most
familiar and unfamiliar lexical terms based on the following criteria.

For familiarity, the validation results had to meet at least two of the following
four criteria:

. Rather or very familiar to over 90% of respondents

. Used frequently (2 highest options) by most (>50%) respondent or colleagues

. The respective event occurs frequently (2 highest options) in most respondents
(>50%) classes

. Most respondents (> 50%) are able to produce the correct term or its synonym

based on the description

For unfamiliar terms the validation results had to meet at least one of the following
four criteria:

. Very familiar for less than half of the respondents

. Most respondents (>50%) use the term seldom or never.

. Most respondents (>50%) identify the event happening seldom or never.

. Less than one third of the respondents (< 33%) are able to produce the correct

term or its synonym based on the description

In addition, we identified lexical terms that fulfilled at least one criteria for both
familiar and unfamiliar terms. We call these contradictory terms.
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Results

The results section includes a description of respondent demographics, an overall
summary of the responses, an analysis identifying the most familiar terms, an
analysis identifying unfamiliar terms and an analysis of contradictory terms that
were identified as both familiar and unfamiliar.

All respondents have studied mathematics either to master level (51
respondents) or to bachelor level (20 respondents). They all have the formal
mathematics teacher qualifications and teach mathematics. Nine of them teach
only mathematics, 50 also science (physics and/or chemistry), 22 also computer
science, and 1 teaches another subject. Most of them (45) teach at lower secondary
level, 26 at upper secondary level, 2 at elementary level, 6 at vocational education,
and 3 at tertiary education. Fifteen of these responses include teaching at more than
one level.

The overall outcome of the survey was that the teachers were familiar with the
given terms, but not all terminology was in frequent use (Table 1). We see that the
overall familiarity of the items (and the variation of responses) did not depend on
whether the respondent was given the term only or a longer description. Therefore,
we decided to combine the two survey item types for familiarity for further
analysis. Similarly, the frequency of usage of terms by the respondent and their
colleagues was rather similar and we decided to combine also these data in our
future analysis.

Survey item type X SD

Term only How familiar? 4.5 0.89
How often you use? 3.1 1.23
How often your colleagues 3.0 1.14
use?
How often this thing 3.7 1.14
happens?

Full How familiar? 4.5 0.85

description

Table 1. The mean values and standard deviations for different survey item types

Most familiar lexical terms
Altogether close to half of the terms (47) fulfilled at least two criteria for being
familiar and no criteria for being unfamiliar.

In the area of “Kasvatus” (Upbringing/education/fostering; In Swedish
“Uppfostran”) eight of the 15 terms were identified as familiar: Use of humour,
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Classroom climate, Good working climate, Maintaining good working climate,
Encouragement and pep, Caring, Bullying, and School rules.

In the area of Organizing 13 of the 23 terms were identified as familiar:
Communication between school and home, Distribution of material,
Differentiation, Opening the lesson, Lesson plan, Take Attendance, Material, Use
of technology, Use of material from the web, Student collaboration, Group work,
Scheduling, Seating order, Giving instructions, and Notebook work.

In the area of Evaluation 9 of the 16 terms were identified as familiar: Giving
homework, Checking homework, Explaining and discussing assessment, Setting
assessment goals, Self-evaluation, Giving feedback, Providing positive feedback,
Test, and Returning assessed tests.

In the area of Teaching methods, 10 of the 38 terms were identified as familiar:
Orienting, Independent work, Student raises their hand, Student response, Student
question, Request for justification, Summary, Revision, Worked-out example,
Guidance, Realization.

Finally, in the area of Mathematical content, 4 of the 12 terms were identified
as familiar: Word problem, Exact mathematical language, Mental calculation, and
Application task.

Although a large part of the terminology was confirmed to be well recognized,
some of these terms or their descriptions still need to be reconsidered, because the
names generated by the respondents did not always match the name we had chosen.
For example, most suggested the names “Class spirit” or “Group spirit” for our
description of “Classroom climate”. As another example, 91% of the respondents
recognized the term “Exact mathematical language” as familiar, yet none of the
respondents was able to produce the same exact term based on the description.

The unfamiliar lexical terms

Altogether 17 terms were identified as unfamiliar. Their validation results are
presented in Table 2. The results indicate that even the unfamiliar terms are
familiar to and used by quite many of the respondents, highlighting the important
difference between teachers’ active and passive vocabulary. Moreover, even the
least familiar terms are very familiar to a significant share of the respondents.
Therefore, the question is not so much whether these terms are not part of the
Finnish mathematics teachers' lexicon, but, rather, whether they are more essential
than many others that we have not thought of. For example, the poor validation
results for the specific terms of teacher response to student answers (confirming,
amending, or rejecting) suggest some kind of bias present in the process of
generating the lexicon.

After a closer examination, we consider removing only four of the items
(Orienting students for a work mode, Brainstorming, Confirming a response,
Rejecting a response). However, we plan to rename some terms and revise some
description and then include all these unfamiliar items in the second round of
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validation to get more data for deciding which terms to leave in. Moreover, we
plan to combine the term “Hurrying a student” with a very similar term “Prompting
a student to work™ that appears as one of the contradictory terms.

Lexical term Very Not Not Naming
familiar used (%) | occurring | success*/attempts
(o) (%)

Education of good 56 43 24 2/6

manners

Orienting students for a 27 95 90 2/15

work mode

Student assisting the 42 67 57 2/4

teacher

Getting the attention of 73 62 40 2/15

the class

Encouragement by peers 55 59 60 5/14

Teacher lecturing 65 45 24 1/7

Hurrying the students 48 68 21 3/10

Reading the textbook 78 52 7 6/12

Debate 59 74 64 3/14

Checking the result from 81 55 21 3/14

a “solution book”

Going through the group 45 73 60 7/15

work outcomes

Brainstorming 45 74 71 2/6

Confirming a response 27 91 30 5/14

Amending a response 55 59 10 6/16

Rejecting a response 27 95 60 3/13

Routine exercise 59 53 14 3/13

Table 2. Validation results for unfamiliar terms. *A naming is considered successful, if the
respondent produces the correct term or a synonym of it.

Contradictory lexical terms

The validation indicated 22 contradictory terms that met at least one of the criteria
for both being familiar and for being unfamiliar. Of course, the contradiction is
only apparent, as the criteria for familiarity address different dimensions. A term
may fall into this category, for example, if it is well known by teachers, but the
event happens very seldom.

These include four terms that describe an undesirable event in the classroom:
Mocking a student, Teacher’s pet, Cheating in test, and Cramming. These terms
are not used, and these do not occur (except for cramming). However, teachers are
very familiar with these terms and especially they were surprisingly successful in
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naming these events. We believe that it is important that the lexicon includes also
terminology for undesired events and we intend to keep these terms in the lexicon.
However, we use the validation information to make some modifications (e.g.
replace “Mocking a student” with “Embarrassing a student”).

Another five of these terms related to events that occur very frequently and the
term is recognized, but the event is perhaps so uninteresting that the term is not
used: Repeating a response, Closing a lesson, Mathematical content, Connecting
to earlier, Paralleling ideas.

Two of the contradictory terms were specific pedagogical practices that seem
to be unevenly distributed among teachers: Flipped learning, Personal feedback
discussion.

There are also terms, where we have chosen a rather extraordinary concept
rather than a better known alternative. For example, the respondents recognize the
term “Lesson structure” but they prefer using the term “Lesson plan”. In a
comparable vein, we suggested “Teacher question” while the respondents
preferred a broader term “Teaching discussion”. Moreover, we suggested terms
“Evaluating student solution” and “Checking lesson task”, while our respondents
seemed to prefer a more general term “Going through solutions”. Lastly, we had
used a specific term “A hint”, but our respondents suggested the more general term
“Guidance”.

Finally, there were four terms, where we had either chosen an unfamiliar name
for a familiar concept, or our description of the term was misleading. As the
problems with these terms were specific to Finnish language, we cannot describe
them here in detail. Nevertheless, we intend to revise term names and descriptions
and revalidate the terms.

Conclusion

The national validation of the Finnish mathematics teachers’ lexicon was quite
successful. Teachers were very familiar with most terms and we have identified
more than 50 key terms for a national lexicon for Mathematics Teachers. There
was a slight tendency for the terminology for organizing and evaluation to be more
familiar to the teachers than the terminology for teaching methods and
mathematical content.

Among the most familiar terms there were many and specific concepts relating
to the good teacher-student relationship, including “Use of humour”, “Classroom
climate”, “Maintaining good working climate”, and “Caring”.

There are also specific terms related to how the lesson can be organized. For
example, the following terms more or less define a typical Finnish mathematics
lesson: “Checking homework”, “Orienting”, “Worked-out example”, “Giving
instructions”, “Distribution of materials”, “Independent work”, “Guidance”,
“Differentiation”, “Summary”, “Giving homework”. Of course, there is some



Publications from NORMA 17 137

variation, as the terms “Student collaboration”, “Group work”, “Use of
technology”, “Revision”, and “Notebook work” indicate.

With respect to teacher-student interaction during guidance, we see here some
interesting specific terminology: “Student question”, “Request for justification”,
and “Realization”. It is also worth noting, that the Finnish word for Guidance,
“Ohjaus”, means “To steer”. As the Finnish term relates to movement rather than
building, we have decided to not use “Scaffolding” as the English translation.

On the other hand, few words specific to mathematics teaching met the criteria
of familiar terminology. There were three terms for specific types of mathematical
task, and the term “Exact mathematical language”. Furthermore, the terms
“Mathematical content”, and “Paralleling ideas” we recognized quite well, but
used very little.

Taken together, this all suggests that the Finnish mathematics teachers
conceptualize their teaching primarily through their relationship and interaction
with their students, rather than through the teaching of mathematical content. One
might argue that the extent of terminology related to a topic is not necessarily an
indication of the perceived importance of that topic. However, if there is significant
and continued attention and discussion on a topic, would that not inevitably lead
to a more detailed vocabulary to foster such discussions?

We realize that the number of responding teachers was not high, especially
regarding the least popular version of the survey (11 respondents). Therefore, it is
important to get additional validation data to make more informative judgement
regarding unfamiliar terms.

When comparing these results with the earlier metaphor study (Oksanen et al.,
2014), we can see that the results of both studies suggest a primary focus on the
expertise in organizing and orchestrating mathematics teaching, while some
attention is given to general pedagogy (“Kasvatus™), and rather little attention is
placed on the content knowledge. Taken together, these studies indicate that the
main focus of Finnish mathematics teachers — at least in their language — is on
teaching. They do pay some attention on educating the child, but quite little on the
content itself.
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A correlation study of mathematics proficiency
VS reading and spelling proficiency

Arne Kare Topphol
Volda University College, Faculty of Education, Norway

This study tested the connections between different elements of language
competence and mathematics competence. We tested the proficiency in
mathematics, reading and writing/spelling for 2376 Norwegian students in grades
5, 6, 8 and 9. We found a correlation between proficiency in mathematics and
reading comprehension as expected from previous studies. More interesting is that
spelling, tested with a dictation, seems to correlate stronger with mathematics on
grades 5 and 6 than comprehension does. This supports an assumption that the
correlation between proficiency in language and mathematics is not simply a
matter of the ability to read and understand the mathematical task.

Linguistic skills, reading, writing and mathematics.

It is important for a student to have proficiency in reading comprehension when
solving mathematical tasks (Adelson, Dickinson, & Cunningham, 2015; Fuchs,
Fuchs, Compton, Hamlett, & Wang, 2015; Nortvedt, Gustafsson, & Lehre, 2016;
Pearce, Bruun, Skinner, & Lopez-Mohler, 2013). The student has to read and
comprehend the task in order to solve it. The effect of language and linguistic skills
are prominent when students solve mathematics word problems (Abedi & Lord,
2001; Nortvedt, 2010; Vilenius-Tuohimaa, Aunola, & Nurmi, 2008), but are also
related to solving other types of mathematics tasks (Vukovic & Lesaux, 2013). In
the present paper, the correlation between reading comprehension and results on a
mathematics test is studied.

Studies of mathematics and reading have mostly dealt with comprehension.
Comprehension means to understand both what the words and the sentences mean.
The process of reading is more than comprehension. We can roughly split it in two
parts, decoding and comprehension. Decoding means to be able to identify the
characters and combine them into words that are pronounced. Reading speed can
be used as a measure of decoding. Gough and Tunmer (1986) and Hoover and
Gough (1990) suggested The simple view of reading (SVR) as a measure of a
person’s ability in reading. They claimed that reading could best be understood as
a combination of decoding and comprehension, and proposed the SVR-formula for
reading, reading = decoding x comprehension (R = D x C). Later studies give
support to the SVR model (Adlof, Catts, & Little, 2006; Kendeou, Savage, & van
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den Broek, 2009). In this paper, we will also compare the SVR scores with
proficiency in mathematics.

In Norway, we often test students’ proficiency in spelling with dictations. The
teacher reads a text, sentence by sentence, and the students write down the sentence
from memory. This rather complex process relies on listening comprehension,
short-term and working memory and writing. It has been shown that short-term or
working memory (Baddeley & Hitch, 1974) influence language comprehension
(Daneman & Merikle, 1996) and comprehension of oral messages and ability to
follow directions (Engle, Carullo, & Collins, 1991). Solving a mathematical task
is in some ways a similar process. It relies also on comprehension, this time
reading, on memory, and on writing. Studies show that the capacity of short-term
or working memory (Baddeley & Hitch, 1974) has an influence on mathematics
achievement (De Smedt et al., 2009; Gersten, Jordan, & Flojo, 2005; Raghubar,
Barnes, & Hecht, 2010; Siegel & Linder, 1984). It has also been shown that
measures of short-term memory at the age of 4 is a good predictor of later
proficiency in mathematics (Bull, Espy, & Wiebe, 2008). These factors predict a
possible correlation between scores on mathematics test and scores based on
dictations.

The research questions are:

How do results on a mathematics test correlate with results from reading
and writing tests?

How do these correlations compare to each other?

Method and data sources
The analyses in this paper are based on data collected by the Norwegian SPEED
project (The Function of Special Education) (Haug, 2017). The project’s principal
aim was to study special education, not as an isolated subject, but as an integrated
part of the overall education. We studied both special- and ordinary education, and
both students with and without special needs, with a variety of instruments. The
SPEED-project is a rather large study with a sample of more than 2500 students
and their teachers and parents. This large sample is one of the strengths of the study
reported in this paper. The students covered a wide range of both mathematics and
language skills, and were tested with general mathematics and language tests,
making it possible to study relations between these two over a wide range of skills.

This paper use data from a mathematics test and a language test comprised of
both a reading and a spelling test. Results from all students was included in the
analysis, regardless of their level in mathematics or language, in order to bring to
the fore results that are valid for the entire proficiency span.

For a more comprehensive account of the whole project see Haug (2017) and
of the methods used see Topphol, Haug, and Nordahl (2017). Only the parts
relevant for this paper will be explained here.
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The sample

The SPEED-project collected data from 29 schools in two medium sized
municipalities. The two municipalities were from different parts of Norway,
representing a variety of cultural, social and other backgrounds. We invited all
students in grades 5, 6, 8 and 9 to participate during winter and spring 2013. A
total of 2376 students completed both the mathematics and the language test, 70
% of all the students, and 86 % of those who had consented to participation.
Although the sample did not meet the requirements of randomness needed for
statistical generalization, we will argue that the broad coverage in background
makes the results valid for a larger population than the two municipalities only.
Analysis also showed that our data conformed to national statistics on important
factors (Topphol et al., 2017).

The mathematics test

All students were given 40 multiple-choice tasks. Students in grades 8 and 9 were
given 12 additional multiple-choice tasks. Every task had seven response
alternatives including “do not know”. One of the alternatives was the correct
answer, and the rest were so-called distractors. The assignments were paper-based
with check boxes making digitizing through optical scanning possible. Researchers
in the SPEED-project developed the tests. The tasks covered mathematical topics,
and had a level of difficulty, that was in accordance with the Norwegian
curriculum. The majority of the tasks were based on situations the students could
meet outside the classroom, in their daily life, such as understanding the clock, bus
schedules, fractions, decimal numbers, geometry, arithmetic and statistics. There
were a mixture of word problems and non-word problems. The construction of the
mathematics test is discussed in more detail in Opsvik and Skorpen (2017).

For each student we used his or her percentage of correct answers as the
mathematics score. In order to eliminate the effect of grade, and of the two tests
being slightly different, the scores were normalized to have mean value equal to
zero and standard deviation equal to one for each grade separately, z-scores.

The language test

We used Norwegian spelling and reading test for compulsory primary and
secondary school’ (the Carlsten-test) (Carlsten, 2002) to measure the students’
proficiency in reading and writing. Carlsten developed this test primarily as a
screening test to identify students struggling with vital areas of the Norwegian
language, and not as a research tool. Nevertheless, we chose to use this test mainly
by two reasons. First, the test has been widely used in Norwegian schools for many
years. The teachers know the test well and can easily relate our results to their

3 The author’s translation of “Norsk rettskrivings- og lesepreve for grunnskolen”.
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classroom situation. Secondly, the test’s aim fitted well with the SPEED-project’s
goal and with the aim of the mathematics test.

The test estimated reading proficiency as both reading speed and reading
comprehension. The students read a narrative text, and the unit of speed was words
per minute. We measured comprehension through multiple-choice questions. In
several places in the text, the reader was supposed to pick the correct word from
three alternatives. An example from the 6 grade test: “Hard as (stone-wool—
tree)™. We used percentage of correctly chosen words as a measure of
comprehension.

The reading proficiency in this context was related to verbal text. The test
provided information about parts of the students' literacy but gave us no
information about the students’ reading skills related to interpretation, evaluation
and reflection.

We tested the writing proficiency with a dictation. The teacher read a text,
sentence by sentence, and the students wrote down each sentence from memory.
The test was thus more than a pure writing test. It relied on both listening
comprehension, and on the ability to remember the sentence. We calculated two
dictation based scores from the number of errors the student made. The number of
spelling errors made a spelling score. The total number of errors, both spelling
errors and missing words or sentences, made what is called the dictation score.

As with the mathematics test, scores were normalized to z-scores for each
grade separately. Reading score understood as simple view of reading was
calculated as the product of the speed and comprehension scores and normalizes
as above.

Analysis

Ordinary Pearson’s product moment correlation coefficients between the
mathematics score and the different language scores were calculated. Linearity
was tested with simple scatterplots, which revealed no indications of non-linearity.

The distributions of the reading comprehension and the two dictation based
scores were rather skew, with an accumulation towards the high values. They were
negatively skew and in addition rather narrow. This was a result of the Carlsten
test’s aim towards the less proficient students. A substantial part of the students
reached the maximal score. This could give smaller correlation coefficients than a
test that also challenged the best students would do.

I used statistical tests to compare correlation coefficients. Since all the
coefficients were calculated with the mathematics score as one of the variables,
the null hypotheses were of the form px. = py.. This means tests of equality of
dependent correlations. William’s (1959) formula was used to calculate p-values,

4 The author’s translation
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in accordance with Steiger (1980) and Chen and Popovich (2002) suggesting to
use this formula for such tests.

Results

Table 1 contains Pearson’s correlation coefficients between the students’
mathematics results and their results on the language tests; the reading scores:
decoding, comprehension and simple view of reading, and the two dictation based
scores: spelling score, based solely on spelling errors, and dictation score, based
on all errors. Results are presented for all the students together and split by grade;
5,6,8,and 9.

Grade | N Reading Reading Reading Dictation Spelling
decoding compre- (Simple View of | score score
hension Reading)

All 2376 317%* 397** 388%* 453%* A28%*

5 560 A403** 354%%* A459%* A491%* A478%*
6 626 279%* 346%* 317%* 443%* A3T7H*

8 619 202%% A469** 395%* A491%* A446%*

9 571 303** 415%%* .388** 387%* 352%%*
**_ Correlation is significant at the .01 level (2-tailed).

Table 1: Correlation coefficients (Pearson) between mathematic results and five different
language scores
All the correlation coefficients were significantly higher than zero with all p-values
smaller than 10711,

From Table 1 we can see that, except for 5" grade, comprehension correlated
more strongly with the mathematics score than reading speed did. This was as
expected. When a student faces a mathematical task, there is no use in speed if she
does not understand what she reads. The difference between speed and
comprehension correlation was statistically significant for all students (p =.0005),
for grade 8 (p <.0001) and for grade 9 (p =.015).

The correlation coefficients between mathematics and simple view of reading
fell in between those with speed and with comprehension. This was not surprising,
since it was constructed as the product of them. This will not be followed up any
further in this paper.

We found interesting results when comparing the correlations between the
mathematics score and the two dictation based scores, with the correlation between
mathematics and the different reading scores. Except for the 9" grade, the two
results from the dictation scores seemed to correlate at least as strong with the
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mathematics score as reading did. For the 5" and 6" grades, the dictation score
correlated significantly more strongly with mathematics than reading
comprehension did (p-values < .001). For the 8" grade, the difference was too
small to be statistically significant. There seemed to be an age dependent effect,
strongest with the youngest students in our sample. The same effect was present if
we restrict the dictation data to the spelling score only, but now the difference was
statistically significant only for the 5" grade (p = .0009). The dictation score
correlated slightly more strongly with mathematics than the spelling score did.

Discussion

This paper examines the correlations between proficiency in mathematics and
proficiency in reading and dictation. The correlation between mathematics and
reading was found to be as expected from previous studies (Adelson et al., 2015;
Fuchs et al., 2015; Nortvedt et al., 2016; Pearce et al., 2013). This agreement with
earlier research serves primarily as a validation of the study and will not be further
discussed.

In this study student competency to write sentences from dictation correlated
as strong as, and even stronger for grades 5 and 6, with mathematics score than
reading comprehension did. Correlation with reading can partly be explained by
the necessity of reading and understanding a mathematics task before solving it.
Correlation with the dictation scores, a writing test, cannot be explained in a similar
way, by the necessity of writing to solve these tasks. The mathematics tests
required just a small amount of writing. The tasks were multiple choice and the
writing was thus limited only to some drafting on a separate paper. The relation
between mathematical task solving and dictation must therefore be of a more
complex nature. I will bring to the fore one possible explanation based on
similarities in the process of solving mathematical tasks and in taking down
dictations, similarities involving memory and memory effects.

Solving mathematics tasks, taking down a dictation and reading are all
processes that are affected by the student’s memory, through how working
memory influences comprehension (Daneman & Merikle, 1996; Engle et al., 1991)
and proficiency in mathematics (De Smedt et al., 2009; Gersten et al., 2005;
Raghubar et al., 2010; Siegel & Linder, 1984). Working memory capacity and
memory function will thus contribute to the correlation between all three of them.
I will now argue that memory is a more crucial factor in mathematics task solving
and dictation than in reading.

Solving mathematical tasks and taking down a dictation starts with an element
of comprehension, one with reading and the other with listening to oral messages
or instructions, both previously shown to be affected by memory capacity
(Daneman & Merikle, 1996; Engle et al., 1991). This contributes indirectly to the
correlation between them. The next step in both processes involves a more direct
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use of memory. When taking down a dictation the student has to remember the
sentence, with the exact wording, long enough to be able to write it down, and
when writing the words with correct spelling, she has to remember the words not
written down yet. The mathematics student must remember the task, both the
structure and the pieces of information, during the solving process. The last thing
she does is to “write” down the answer by placing a mark in the correct check box.
Of course, short-time memory is also involved in the reading process: the entire
sentence has to be “remembered” to be understood, but this memory use is not to
the same extent competing with other mental processes.  The processes of
mathematics task solving and dictation make in this way a more direct use of
memory, and relies more heavily on it, than reading does. Memory will thus
contribute more to the correlation with dictation than with reading. This can
explain why the mathematics score correlated more strongly with the dictation
scores than with reading. The result that the dictation score, with missing words
and sentences, correlated more strongly with mathematics than the pure spelling
score did, supports the assumption that memory plays a part, since missing words
and sentences can be related to memory.

In Norway, one can often hear teachers complain about too extensive use of
word problems in mathematics. They claim that students with reading difficulties
get extra difficulties with mathematics because they struggle reading the tasks,
especially tasks with a lot of text. This could of course be part of the explanation,
but there are probably more to it than that. The results in this paper show that the
relation between a student’s proficiency in language and mathematics is more
complex than the student’s ability to read and understand the mathematical task. It
involves also factors that influence the students’ proficiency in taking down
dictation. Memory can play a substantial part. If teachers do not take the influence
of memory into consideration, the may miss an important factor.

Concluding remarks

Based on a large sample of students, covering a wide range of mathematics and
language skills, this study has revealed that students’ scores on a dictation
correlated more strongly with mathematics than did their scores on a reading test.
Based on similarities between the two activities, one possible explaining factor,
working memory, has been discussed. More dedicated studies should be done to
investigate this further.
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Students with low reading abilities and word
problems in mathematics

Hilde Opsal and Odd Helge Mjellem Tonheim
Volda University College, Norway

In this paper we explored whether text in word problems is extra challenging for
students with low reading abilities in 5" and 6" grade. We analysed data from four
tasks, which were part of a larger survey sample, and compared the results of
students with low and students satisfactory reading abilities. Our findings indicate
that text might be a barrier for students, but the context can also be a possible help
for students in solving word problems.

Introduction
Word problems (WPs) in mathematics are not a recent notion. Some of the earliest
example of human writing take the form of WPs (Swetz, 2009). “The term word
problem is used to refer to any math exercise where significant background
information on the problem is presented as text rather than in mathematical
notation” (Boonen, Van der Schoot, Van Wesel, De Vries, & Jolles, 2013, p. 271).
Since most students face mathematics-related problems in written form in an
out-of-school setting, it is natural that they should be taught and evaluated on their
ability to solve WPs (Helwig, Rozek-Tedesco, Tindal, Heath, & Almond, 1999).
When students solve a WP, they first have to read the text and then solve the
problem. Students draw on both mathematical competence and general reading
strategies when they solve WPs (Nortvedt, 2013). There has been a discussion
about whether or not the extensive use of WPs makes it more difficult for students
who have problem to read to learn mathematics. The purpose of this paper is to see
if students with low reading abilities (LRA) struggle more with WPs in
mathematics than students with satisfactory reading abilities (SRA).

Theoretical background

Students confronted with WPs in school “are engaged in a peculiar kind of activity
wherein they typically solve these problems in a stereotyped and artificial way
without relating them to any real-life situation” (Verschaffel, Greer, & De Corte,
2000, p. 12). According to Boaler (2009), students should not be involved in
solving WPs that are in a context that requires them to engage partly in the real
world while at the same time ignoring everything they know about the real world.
Also Greer, Verschaffel, and Mukhopadhyay (2007) claims that student in
mathematics learn to play what they call the “Word Problem Game” where one of
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the rules is “violations of your knowledge about the everyday world may be
ignored” (Greer et al., 2007, p. 92). We agree with Boaler, that real world context
is important. Still, students will meet WPs which are not in a real world context in
school and in assessments, therefore it is important to study if students are able to
solve these WPs and, if not, find explanations as to why.

In the Norwegian curriculum for the common core subject of mathematics
(LKO06), reading is one of five basic skills. The basic skill reading in mathematics
is defined as:

. understanding and using symbolic language and forms of expression to create
meaning from texts in day-to-day life, working life and from mathematics texts. (...)
Reading in Mathematics involves sorting through information, analysing and
evaluating form and content, and summarising information from different elements in
the texts. (Utdanningsdirektoratet, 2013)

According to Nortvedt (2010), there is a strong positive correlation between
numeracy and reading comprehension. She has studied how 8™ grade students in
Norway are responding on multistep arithmetic WPs on the national test in
numeracy and compared this result with students’ responses on the national test in
reading comprehension. “Student’s reading levels explained 44 % of the variability
in their scores on the multistep arithmetic word problem scale” (Nortvedt, 2010,
p- 33).

Normally, a mathematical problem is defined as a task where no standard
procedure is known to the students (English & Gainsburg, 2016). With this
definition, not all WPs are a mathematical problem (Bjorkqvist, 2003). We can
have WPs which are/are not a problem solving task and problem solving tasks
which are/are not WPs. There are several ways of defining level of difficulty in
WPs. When solving a WP, the students first have to translate the text into an
internally represented model of the problem. “The translation phase is related to
linguistic and factual knowledge and requires the skill of number selection to solve
word problem” (Kingsdorf & Krawec, 2014, p. 66). Students who create a visual-
schematic representation of the situation to be solved seem to benefit from it, while
a production of a pictorial representation is negatively related to WP solving
performance (Boonen et al., 2013). In a study of 128 6™ grade students in the
Netherlands, “the production of visual-schematic representations explains 21 % of
the relation between spatial ability and word problem solving performance”
(Boonen et al., 2013, p. 276). This can explain why some students can solve WPs
and other cannot, but we do not have data to investigate this further. However, this
is still relevant, since many students can solve common arithmetical tasks and they
show good text comprehension skills, and yet they fail to solve WPs correctly,
indicating other factors must be involved (Daroczy, Wolska, Meurers, & Nuerk,
2015).
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What makes WPs challenging for students? One can separate problems by
looking at the number of steps required to solve them, one step is normally easier
to solve than multistep WPs (Nortvedt, 2012). But since two-steps tasks are often
more difficult linguistically, we cannot conclude that the reason for them being
more difficult is arithmetical complexity (Daroczy et al., 2015). Another way of
distinguishing easy problems from more complicated ones is to look at the actual
text in the WPs. For example, by counting the number of words, whether difficult
of easy language is used in the text, if there is unnecessary information, or if there
are words that point to a particular arithmetic operation (Kingsdorf & Krawec,
2014). A WP in a familiar context or in a context the students have a relationship
to can also be crucial if students manage or fail to solve the problem. Daroczy et
al. (2015) conclude that difficulties in solving WPs are influenced by the
complexity of linguistic and numerical factors, and their interrelation. In this paper,
we will discuss some of these factors.

Methods

In this study, we used data taken from a survey sample of mathematics from the
project: The Function of Special Education (SPEED) (Haug, 2017), a joint
research project between Hedmark University College and Volda University
College. The mathematical survey in the SPEED-project had 40 multiple-choice
items, with 7 possible answers including the possibility to answer, “I do not know
the answer”. Some of the wrong answers on these items are related to well known
misconceptions. In this paper, we have chosen four tasks from the survey that relate
to each other in form of multiplication (See Figure 1). In the SPEED-project, the
students also responded to the Carlsten reading test (Carlsten, 2002) as a measure
of whether the student has LRA or SRA. In this test, a student is classified as
having a functional literacy if he could read more than 80 words per minute with
less than 15 % error on a reading test. On the 5™ grade reading test there were 25
possible correct answers making more than 22 acceptable, for the 6™ grade the test
had 27 correct answer making more than 23 acceptable. This mean that a student
with a SRA have both a satisfactory reading speed and is able to de-code
satisfactory. A student with LRA fail in both of them or only one of them.

In our study, 593 students from 5% and 660 students from 6" grade
participated. For each of the students, their teacher provided an assessment of their
academic achievement on a scale from 1 to 6, where 1 stands for very low skills
and 6 for extraordinary skills in mathematics. Since we compared students
according to their reading ability, we removed students rated at an academic
achievement level equal to one or two in mathematics. In addition, we have also
removed any students not assessed by their teacher. This left us with 475 students
in 5™ grade and 552 students in 6 grade.
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In our study, 348 students in 5™ and 475 students in 6" grade was classified as
having SRA, leaving 127 and 77 with LRA in 5% and 6™ grade, respectively.
According to the curriculum in Norway, students after 4" grade are supposed to be
able to do multiplication in practical situations. The focus is on the standard
multiplication table, but also on using different methods for multiplication. After
7t grade students should be able to “reckon with positive (...) whole numbers,
decimals, ...” (Utdanningsdirektoratet, 2013). Since Norway has not divided the
competencies between the 5™ 6™ and 7" grade, it is difficult to tell whether the
students have learned about multiplication with decimal numbers yet. We argue
that if the students have not learned about it, then both the students with LRA and
the students with SRA still have equal conditions.

Analysis and discussion

In our analysis we present results from task 7 first (see Figure 1). It is a standard
multiplication task with single and two-digit numbers, used here as a control task.
Since this task has no context and only two words, the reading ability should not
be a decisive factor. Both in 5™ and 6™ grade the students with SRA scored notable
better than the students with LRA (Table 1). There is a significant difference’
between the two groups for 6™ grade (x*>=5.38, p=0.02), but not for the 5™ grade
x*=2.76, p=0.1).

Task 7: Calculate 7x26 =

-
©

En vennegruppe mtes til filmkveld. Hver person spiser en halv pizza. Til sammen gikk det med
seks hele pizzaer. Hvor mange personer var med pa filmkvelden?

Vet ikke []

9 12 6% 18 3 5%

O O O O O Cl
Foreldrene til Johan driver et hanseri. Johan pakker egg i kartonger
med plass til seks egg i hver. Deretter pakker han 12 slike kartonger

i en pappeske. Hvor mange egg er det i pappesken? Vet ikke []

6 18 12 72 144 60

O O O O | |5

7.|Regnut  7-26= Vet ikke []
142 33 82 58 re a Task 16: Lise returned
O O O O O O seven 1.5-liter bottles and
fifteen 0.5-liter bottles. For
each 1.5-liter bottle, she gets
16.| Lise panter sju 1,5-litersflasker og femten 0,5-ltersflasker. NOK?2.50 and for every 0.5-
For hver 1,5-litersflaske far hun 2,50 kr, og for hver 0,5-litersflaske liter bottle, she gets NOK. L
far hun 1 kr. Hvor mange kroner far Lise til sammen? How many NOK does Lise
Vet ikke (] get for all the bottles?
25,50 kr 18,00 kr 7,50 kr 25,00 kr 24,00 kr 32,50 kr Task 19: A group of friends
O O =] meets for a movie night.

Each person eats half a
pizza. In total, they ate six
whole pizzas. How many
people were involved in the
movie night?

Task 28: The parents of
Johan run a chicken farm.
Johan is packing eggs in
cartons that holds six eggs
each. Then he packs 12 such
cartons in a cardboard box.
How many eggs are there in
a cardboard box?

Figure 1: The four different tasks. The number of the tasks indicates the tasks
number in the test

*Chi-Square test ( X>-test)
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Task 16 is a multistep WP with decimal numbers. The situation in the task is
familiar for most students and it is a money-problem, which is often seen to be
easier than other contexts. There are almost 30 words in the text, some of them
“unnecessary” decimal numbers, which makes the WP more complicated. Of
students in the SRA group (both 5% and 6™ grade), only 57 % answered correctly
on this task, making this the problem where students most frequently respond
incorrectly. For students with LRA, 38.5 % and 44 % of the students in 5" and 6%
grade, respectively, answered correctly on this item. There is a significant
difference between the SRA and LRA students in 5 grade (x* =12.54, p<0.001)
and 6™ grade (x*> =4.71, p=0.03). Like Daroczy et al. (2015), we cannot conclude
that the reason for students answering this task incorrectly is that the linguistics
are more difficult or the task more arithmetical complex. This task might also be
outside the curriculum for 5" and 6™ graders. Whatever the reason, students with
SRA scored better than students with LRA.

5t orade 6™ grade

SRA LRA SRA LRA
Task number N % N % N % N %
7 (Calculation) 343 61,5 | 121 [52,5 |464 |778 |72 |653
16 (Bottles) 341 572 122 38,5 [465 |[57.4 |75 |44,0
19 (Pizza) 339 [77,0 | 119 [63,9 |[460 83,0 |75 |66,7
28 (Eggs) 341 862 120 [650 |462 918 |71 |64,8

Table 1: Percentage (%) of students in our population (N) that answered the
different tasks correctly, split by SRA and LRA

Both task 19 and 28 are single step arithmetic WPs with no extra numbers in the
text. This makes these two WPs easier for the students to solve correctly. Task 19
comes from a familiar situation for students, but it has a twist. It is more common
to know how many people there are, and then find out how much you need to buy.
Here it is the other way around. The question wording in itself can contribute to
making this task more difficult. They also have to relate to non-integers. Task 28
is probably derived from an unknown situation for most of our students. Although
this item is from an unknown context, it is still the easiest because it only consists
of multiplication with known numbers and integers. On both of these two tasks,
there was a significant difference between students in the SRA and LRA group
both for 5" and 6™ grade students. (Task 19, 5" grade: x> =7.81, p=0.005; 6 grade:
x> =11.13, p<0.001; Task 28, 5" grade: x> =25.65, p<0.001, 6" grade: x> =43.00,
<0.001).

Furthermore, there are more students with SRA answering correctly on the last
two of the WPs (task 19 and 28) than on the control task (7). The tasks 19 and 28
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contains lower numbers which makes the multiplications easier. For the students
in the SRA group, it looks like reading text does not need to be an obstacle. It can
also be a help for the students to get the right answer. We find the same pattern for
the LRA students in 5" grade, but not as strong. For the students in 6™ grade with
LRA, approximately 65 % responded correctly on all these three tasks. By looking
at the size of the numbers in the multiplications, we would expect more students
answering correctly on task 19 and 28 than on task 7. This is not the case for this
group (LRA 6" grade), therefore indicating that the text is a barrier for these
students.

On all three WPs, there are a significant difference between students with LRA
and SRA. This result indicates that there is a connection between students’ reading
abilities and ability to do mathematics, just as Nordtvedt (2010) stated.

So far, we have looked at the result for 5% and 6" grade separately. Is there
progress from 5" to 6™ grade for students with SRA and students with LRA? If we
take a closer look at task 7, we find that 61.5 % of the students in the SRA group
in 5™ grade and 77.8 % in 6™ grade answered it correctly, which is a significantly
better result (x> =8.26, p=0.004). Also on the task 19 and 28 there is a significant
difference between 5 and 6™ grade for this group of students (Task 19: x* =4.55,
p=0.03; Task 28: x*> =6.40, p=0.01), but not for task 16 (x> =0.004, p=0.95). For
students in the LRA group, there are no significant differences between 5™ and 6™
grade on any of the task (p between 0.09 and 0.98).

As noticed, the 5" graders perform better in two of three WPs than in the
calculation task. This is another factor that indicates that it is not necessary the text
in the WPs that are the difficulty. Actually, it looks like students with LRA can
have a good informal mathematical understanding and have difficulties with doing
the calculation/algorithms. By taking a correct answer on task 7, as an indication
that students can multiply, is there then a difference between students with SRA
and LRA when it comes to solving WPs? By picking out only those students who
have a correct answer to task 7 (Table 2), there are a significant difference between
the SRA and LRA students in 6" grade on task 19 and 28 (Task 19: x> =9.58,
p=0.002; task 28: x*> =10.47, p=0.001). On task 16 the difference is not significant

2 =1.05, p=0.3). For students in 5" grade there are no significant difference
between the SRA and LRA groups (p between 0.14 and 0.49).

As indicated before, it might be that the text actually helps the students with
LRA, just like it helps the students with SRA. Another interesting finding, is that
we cannot find the same difference in 6 grade. The student in 6 grade with SRA
have an improvement from task 7 to task 19 and 28, but not the students with LRA.
This difference can be explained by either easier numbers in the calculations or
that the context (reading) in the tasks help them. According to the curriculum, the
algorithm for multiplication is introduced during 5" or 6™ grade. The question is
then why do not students in 6™ grade with LRA have the same pattern as the other
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group of students? This might be explained by reading being a larger barrier than
first realised.

Our result shows a difference in percentage of students with SRA and LRA in
solving task 7 correct although this is not a WP (significant difference for student
in 6™ grade, but not for students in 5™). This points towards students with SRA
performing better than students with LRA on tasks where reading is not a primary
part.

5% grade 6" grade
SRA LRA SRA LRA
N % N % N % N %
16
(Bottles) 192 68 56 57 330 66 43 58
19 (Pizza) | 207 80 63 76 352 87 46 70
28 (Eggs) 206 90 61 85 351 97 44 86

Table 2: List of how many of our population that answered task 7 (calculation)
correctly (N), and how many percentages of these that answered the corresponding
task correctly (%). Divided in SRA and LRA

On one-step WPs, there are a significant difference between students with SRA
compared with those with LRA. The reason for this might be that students with
LRA have difficulties making a visual-schematic representation (Boonen et al.,
2013). Both task 19 and 28 should be possible to make such a representation, for
instance in task 19 by drawing circles divided into two parts. Our results indicate
that it does not seem that unknown context is as important as calculation with
decimals or integers for students with SRA since the calculations in task 28 are
easier than those in task 19. For students with LRA, there are roughly equal
numbers of students who answer correctly to both of these two tasks. By looking
only at students that are solving task 7 correctly (Table 2), we find that there are
more students solving the task with whole numbers (28) correctly, than the task
with decimal numbers (19).

Closing remarks

In our study, students with better reading skills were better at answering both word
problems and purely symbolic computations than students who do not read well.
Another interesting result is that among students in 5" grade there are more
students answering correct on two word problems than there are students
answering correct on the calculation task. This might imply that the text, also for
those students with low reading ability, can be a help in solving multiplication
problems when students are not completely competent in multiplication. Another
explanation can be that the calculations in these WPs are easier. When students are
more competent in multiplication (6™ grade), this assistance in the text and easier
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calculations are not as prominent. The result of the student in 6™ grade indicate
that the text might be a barrier.

Nordtvedt (2010) concludes that there is a strong positive correlation between
numeracy and literacy, and our data supports Nordtvedt’s findings. Like Daroczy
et al. (2015), we conclude that students who do not read well have both linguistic
and numerical difficulties with word problems. Our data implies that the students
who have problem reading also have bigger difficulties with mathematics all over,
and not only word problems.
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Attending to and fostering argumentation in
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Prior studies highlighted the importance of whole class discussion after student
activities and have focused, for example, on teacher moves in supporting
discussion. We characterize two processes in teacher-students interaction in
argumentation discussions: attending to and fostering. These processes describe
how student argumentation feeds teacher talk that in turn feeds student
argumentation. We analysed video recordings of one whole class 7" grade lesson
when students made geometric constructions and engaged in argumentation
discussion. We elaborated on four themes in how the teacher talk attended to and
fostered student argumentation. We argue that the concepts of attending to and
fostering help to understand how teachers can orchestrate argumentation
discussions.

Introduction
This study focuses on the relationship between teacher talk and student
argumentation in mathematics learning in lower secondary school. Often
argumentation in mathematics education is considered from the cognitive point of
view of what students consider as a proof or how they construct proofs or
justifications (e.g., Harel & Sowder, 2007). Another line of research focuses on
collective argumentation and consider argumentation as a social phenomenon in
which students and the teacher together present rationale for their actions
(Krummbheuer, 1995). Often Toulmin’s model is used to recognize argumentation
components such as claim, data and warrant (e.g., Conner, Singletary, Smith,
Wagner, & Francisco, 2014; Berland & McNeill, 2010). Some studies have also
identified teacher moves that support students’ work related to argumentation
components (Conner et al., 2014). In this study, we continue to focus on collective
argumentation and study argumentation as discussion in which students and the
teacher pose claims, defend claims and criticize others’ arguments.

Teacher talk is one of the key elements in facilitating argumentation discussion
as teachers orchestrate classroom work by harnessing and interweaving students’
contributions and making shifts between what is foregrounded and what is
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backgrounded in pursuit of overall pedagogical goals (Littleton & Kerawalla,
2012). Orchestrating productive classroom discussion after student activities has
been recognized as an important but challenging phase in mathematics teaching
(Stein, Engle, Smith, & Hughes, 2008). We think that this phase of a lesson may
be even more important when the aim of the lesson is to engage students in
argumentation discussion.

Previous studies have identified different types of teacher talk on the basis of
how different points of view are discussed and who participates in the discussion
(e.g., Lehesvuori, Viiri, Rasku-Puttonen, Moate, & Helaakoski, 2013). Some
studies have characterized specific teacher moves that stimulate student thinking.
For example, Temple and Doerr (2012) created categories for mathematics
teachers’ initiation (comparing, defining, describing, evaluating, hypothesizing,
recounting, representing) and feedback (clarification requests, -elicitation,
evaluation request, expansion, explicit correction, justification request,
metalinguistic feedback, recast, reinforcement, repetition) moves. Similarly, Chin
(2007) identified questioning approaches (Socratic questioning, verbal jigsaw,
semantic tapestry, and framing) with subcategories that stimulated productive
thinking. Both Temple and Doerr (2012) and Chin (2007) found that the teacher
moves depended on the purpose of the episode. However, relatively few studies
(Conner et al., 2014) have explored the relationship between teacher talk and
student argumentation in mathematics. As a result, research providing a more
thorough understanding of the relationship between teacher talk and student
argumentation is still needed.

To study the relationship between teacher talk and student argumentation, we
draw on the concepts of attending to and fostering by building on previous research
(Lobato, Clarke, & Ellis, 2005; Sherin, Jacobs, & Philipp, 2011). Teacher talk
which atfends to student argumentation is sensitive to the students’ arguments, for
example, by drawing out the students’ ideas in a dialogue or by reviewing the
arguments in a lecture. Attending to refers to a process in which student
argumentation influences teacher talk. Fostering means that the teacher intends to
move student argumentation forward, for example, through questioning or using
examples. In fostering, the teacher’s talk influences the students’ argumentation.
The same teacher utterance can indicate both the processes of attending to and
fostering. For example, when a teacher rephrases students’ argument using formal
mathematical notation, this indicates that the teacher talk attends to the students’
argumentation and fosters argumentation by introducing new notations.

The aim of this study is to elaborate on the concepts of attending to and
fostering and to examine how these concepts may enrich the analysis of teacher
orchestrated whole class argumentation discussion. One mathematics lesson was
selected for this study. The following research question guided the data analysis:
How does the teacher’s talk attend to and foster students’ argumentation?
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Methods

The reported study is part of a two-year research project investigating how the
participating classes develop in argumentation discussion when using
argumentation tasks regularly in mathematics and in physics. For this study, we
selected one 7™ grade mathematics lesson from the project database for a more
detailed analysis. The criteria for selecting the lessons was that it included
relatively high level whole class discussion in which students talked mathematics
to each other. The participants were informed about the study and gave research
consents. The results are reported using pseudonyms.

Data collection

The lesson was the fifth lesson of the teacher and the students in the project. The
students (n = 25) were seventh grade students. The teacher was an experienced
mathematics and science teacher. The topic of the 45 minutes long lesson was
geometric constructions. Students were working in six groups (A, B, C, D, E and
F) to construct a quadrangle that has four equal sides (a rhombus) and prepared to
explain why their construction was valid. During the group work, the teacher
circulated in groups. The students produced posters of their constructions. Then,
the students observed other groups’ posters and prepared to comment on them in
the forthcoming whole class discussion. Finally, several posters were discussed
during a whole class discussion.

The lesson was video recorded with a handheld video camera which followed
the teacher from the back of the classroom. The camera was connected to a wireless
microphone on the teacher. In addition, each student group had a small wide angle
GoPro-camera attached to their desk. Students’ verbal comments were recorded
on the video’s audio. Students’ posters were collected.

Data analysis

The analysis started as two researchers observed the lesson live. Afterwards, the
lesson video and particularly the whole class discussion were watched several
times. In the data driven analysis, data was reduced into segments around each
teacher utterances, the segments were then divided into groups and the groups were
elaborated (Miles & Huberman, 1994). In detail, for every teacher utterance, it was
considered how the utterance related to the ongoing student argumentation that
preceded the teacher utterance. In addition, each input the teacher utterances gave
for student argumentation was analysed. By comparing these instances with each
other similarities and differences were noted and the episodes were divided into
groups. The episodes in each group were compared to each other and common
features were characterized. Through this, we composed four themes in how
teacher talk attended to and fostered student argumentation.
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Results

In the following, we elaborate on the four themes adressing how the teacher’s talk
attended to and fostered student argumentation. The given exerptcs are from the
whole class discussion.

Supporting students to direct their talk to other students

In the beginning of the whole class discussion, when discussing the solution of
Group A (Fig. 1), the teacher tried to get the students to talk to each other instead
of talking just to the teacher.

1 Alex At least it looks like a pretty good square.

2 Teacher It looks like a good square. What is it Joe?

3 Joe Why there is a circle? (...)

4 Teacher Why there is a circle? (Directs the question to
Rebecca.)

5 Rebecca Because it had to be done by compass. Then we

started do the square with the help of the circle. It
had to be done geometrically, and so, we did the
circle and then it was easier to do it.

6 Teacher Did that answer you Joe?

7 Joe Yeah.

8 Teacher Anything else?

9 Robert How did you do those that go up there and to the
side. Those lines in the middle. How did you get
them exactly in 90 degrees angle?

10 Rebecca Well, we turned the ruler?

11 Robert So you cannot prove in any way that.

12 Rebecca We estimated it by eye.

The teacher talk attended to Alex’s statement by repeating it (turn 2). This
indicated that the statement had been heard. The teacher did not evaluate the
statement, which fostered the discussion to continue. In turn 4, the teacher directed
Joe’s question to Rebecca. Here teacher talk attended to the fact that students were
talking to the teacher instead of talking to each other. The same teacher utterance
also fostered the students talking to each other. In turn 6, the teacher reinforced
that the purpose is for students talk to each other by asking Joe to comment on
Rebecca’s response. After this, the discussion continued, and the teacher
highlighted that estimating by eye is not accepted method in geometric
construction. Thus, the discussion in this episode included important elements of
argumentation as ideas were critically analysed and weaknesses were found.
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Figure 1: The solution of Group A

After the above episode, the teacher fostered student-to-student discussion by
talking about discussion rules:

Wait a minute. I have one thing that I would like to say. The first thing is that if you
come up with an idea, you don’t have to ask my permission. Clearly, Alex had
something in his mind. So discuss, and others will listen, what one has to say. Alex.

In the excerpt above, teacher talk again attended to the need to get the students to
talk to each other and fostered this by explicitly pointing this out. Later, when
discussing the solution of Group B (Fig. 2), the teacher again supported student—
student discussion:

14 Teacher Carl, tell us.

15  Carl Why there are two circles there?

16  Oliver I can come to explain.

17  Teacher You don’t have to come to explain. Just answer

Carl’s question. Why-

18 Oliver Carl, well, first we draw the outer circle and then the
inner circle is just because of the angle bisectors
because we did not want to draw all the small arcs
separately, but we draw the full circle. It was easier.
(Turning toward Carl and talking to him. Carl is
nodding.)

Carl, who was not part of Group B, asked a question about the work of Group B.
Oliver from Group B offered to answer the question. In turn 17, the teacher forbade
Oliver to come in the front of the class to explain but instead wanted Oliver to
answer to Carl from his own seat. The teacher attended to the potential of student
explaining an idea to another student and fostered this by requesting Oliver to
response directly to Carl. In this case, Oliver turned toward Carl, mentioned his
name and explained to him. Thus, the teacher move was successful in promoting
student-student discussion.
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Figure 2: The solution of Group B

Seizing the potentially fruitful student utterances and using these to feed the
argumentation

When Oliver continued to answer other students’ questions there was a point in
which Robert challenged the need to draw a certain circle:

19  Oliver Yes you need to have those circles
20  Robert I challenge that.
21 Teacher Why do you challenge that?

The teacher talk attended to Robert’s expression that he did not agree with Oliver
and also fostered Robert to explain reasons for why he did not agree. In other
words, the teacher talk attended to a disagreement and fostered counterargument.
In addition, the teacher highlighted that when challenging ideas, reasons have to
be explained. After the teacher’s question, Robert explained how he would have
modified Oliver’s drawing. When Oliver responded, it became clear that his group
had thought differently than Robert.

After the above discussion, Rebecca said that she did not understand anything:

22 Teacher Do the others have something to comment on?

23 Rebecca I don’t understand anything of that.

24 Teacher You don’t understand anything. Good. Great. What
do you not understand?

25  Rebecca I don’t understand anything.

26  Teacher You don’t understand anything.

27  Rebecca I don’t get the logic. (...)

28  Teacher Do you know what? That is a brilliant answer. That

is a brilliant answer. Do you know Oliver, you have
a small problem.
29  Oliver I know.

30  Teacher Rebecca did not understand anything, and you
should explain so that Rebecca and I too will
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understand, because 1 too have not understood

anything yet.
In the turns 24, 26, 28 and 30, teacher talk attended to Rebecca’s difficulties in
understanding and to the need to explain in more detail. The teacher seized on the
Rebecca’s genuine expression of not understanding and used this as a springboard
to foster Oliver to explain their line of reasoning in more detail. Furthermore, the
teacher again attended to and fostered discussion rules by expressing that it is good
to say when something is not understood and that others can be asked to explain
in more detail.

Guiding the discussion to focus on the mathematical content of the argument
After the above episode, Oliver continued to explain their construction method,
and there were more questions from the students.
31 Mike Why did you bisect those angles?
32 Oliver To get, u-hum. We bisected them to get like exactly
90 degrees here. So if this had been here and this
here, then it would not have produced a square.

33 Robert Is the angle in those radius 90 degrees?

34 Oliver I’'m not sure.

35  Teacher Argh. Argh.

36 Oliver Let’s agree that it is. (Teacher laughs friendly.)

37 Robert Oliver, Oliver, if it is 90 degrees, then how did you
do it?

38  Oliver Estimating by eye (with laughing voice).

39  Teacher Argh.

40  Oliver I know. We should have done it differently.

In turns 35 and 39, the teacher made sounds that signalled that something went
wrong. The teacher did this in friendly manner. He attended to the insufficient
justification and fostered students paying attention to this relevant issue of
geometric constructions.

The teacher talk attended to and fostered the mathematical content of the
argument in other points of discussion too. For example, he asked why-questions
to get the students to discuss reasons, asked about specific steps to help students
to describe what they did in their construction and asked to think about the
construction instead of how the result looks like.

Not attending to a potentially relevant issue

Besides attending to several relevant and evidently productive issues in student
argumentation, the teacher did not attend to all potentially relevant issues. One
such episode happened when discussing the already mentioned solution of Group
A.
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41 Mike After you draw the first line to the circle, if you had
done a perpendicular line-

42 Robert No, perpendicular bi-

43  Mike perpendicular bisector to that line in the middle, then

you would have got 90 degrees angle there, and you
would have been able to connect the vertices as a

square.
44  Olive What is a perpendicular line?
45  Rebecca What is a perpendicular bisector?

In this case, the teacher did not say anything about Mike’s idea of correcting the
construction of the other group. With Mike’s correction, the construction would
have been exact and there would have been a potential to construct other
rhombuses than squares with the same technique. The attention of the teacher was
potentially directed to the fact that some students did not know what a
perpendicular line is even though that had been studied. The teacher also
mentioned that the students should know this by now.

Discussion

In this study, we have analysed one lesson that included whole class argumentation
discussion in which students talked mathematics to each other. The teacher talk
played an important role in the discussion. The teacher used talk to attend to
relevant points in the discussion and foster students to direct their talk to other
students. In addition, the teacher spotted potentially fruitful student utterances and
used these to feed the argumentation. He also guided the discussion to focus on the
mathematical content of the argument. These three themes illustrate three
dimensions of teacher orchestration: student-student dialog, argumentation
components and content of argumentation. Previous research has studied
classroom dialogue (e.g., Lehesvuori et al., 2013), components of argumentation
based on the elements in Toulmin’s model (1958/2003) and content of argument
by examining if the argument is based on deductive or other forms of reasoning
(e.g., Harel & Sowder, 2007). This study points to the need to include all these
dimensions in the analysis of argumentation discussions. As shown in the results,
the teacher in this study orchestrated the discussion in all these aspects. If focusing
only on one dimension, we may miss important contribution of teacher talk.

In orchestrating the discussion, the teacher talk attended to the ongoing student
argumentation and fostered it. Attending to meant that the teacher picked up ideas
in students’ argumentation and used these in his talk. When fostering, the teacher
gave input to the students’ argumentation. This relationship between teacher talk
and student argumentation resembles to the concepts of uploading and
downloading by Tabach, Hershkowitz, Rasmussen and Dreyfus (2014). According
to Tabach et al., the ideas that students have developed during group work can be
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uploaded to the whole class discussion. Students can also download ideas from
whole class discussion to their group work. Similarly, when attending to, the
teacher downloads something from students into his talk. When fostering, then
teacher is uploading something into students work. The difference between
attending to/fostering and downloading/uploading is that the same teacher talk can
be attending to and fostering. Thus, attending to and fostering are like two sides of
the same coin. This also differentiates the concepts from eliciting and initiating, as
proposed by Lobato et al. (2005). Another difference is that when a teacher is
attending to, he or she does not necessarily try draw out students’ ideas. There are
also some similarities to the framework by Conner et al. (2014) who consider
teacher moves that are related to different components of Toulmin’s model. A
difference is that attending to and fostering do not focus only on argumentation
components but also to student—student dialog.

We found the concepts of attending to and fostering helpful in examining how
the teacher orchestrated the whole class discussion. In particular, through attending
to and fostering, we recognized the bi-directional flow of ideas from students to
the teacher and from the teacher to the students. However, this study focused only
on one lesson. Thus, the concepts of attending to and fostering are still preliminary
concepts which need to be further elaborated in other lessons and in different
contexts. In the ongoing project, we continue to study teachers’ practices and
investigate subtle differences in attending to and fostering.
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The roles of mathematical symbols in teacher
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Mathematical symbols are essential in communicating, employing, and
generalising mathematical knowledge. In this study, we develop a method for
examining teacher instruction; specifically, how mathematical knowledge is
presented to students in secondary school by means of symbols. Four
Jundamentally different roles of symbols are identified as: a label, taking part in a
role-play, setting up contentual expressions and enabling transformations. By
combining these with the building blocks of teacher instruction it is possible to
detect certain patterns in the instruction with respect to how mathematical symbols
occur and thereby obtain information about the character of the mathematical
knowledge students meet in instruction. Looking at the transition from lower to
upper secondary school as a case study, the method is used to recognize some of
the transition problems experienced by students caused by a change in how
mathematical symbols are employed.

Introduction

In mathematics classrooms, signs are used in many different roles such as
communicating and operating mathematical knowledge (Steinbring, 2006).
Research into symbolizing in mathematics classrooms is comprehensive and often
addresses the learning process, e.g. how students interpret mathematical signs
(Cobb, Yackel, & McClain, 2012; Radford, 2013), and how knowledge is
constructed in classroom interaction (Steinbring, 2005). But how do mathematical
signs appear in mathematical teacher instruction? In what ways do teachers employ
mathematical symbols and expect students to read them? The understanding of
symbols depends on what the student “is prepared to notice and able to perceive”
(Sfard & Linchevski, 1994, p. 88), but what opportunities are students given to
notice and to perceive? In this study we will develop a framework for studying
teacher instruction with respect to the different roles of symbols. As a case study,
we will look at instruction at both sides of the transition from lower to upper
secondary education in Denmark. This transition is interesting in a Scandinavian
context as it appears late (when students are 16—17 years old), and because the
teacher education in lower and upper secondary education differs significantly in
particular in Denmark.
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Theoretical framework

In this paper, a mathematical sign designates 1) a numerical sign, a number symbol
which can refer to a context, e.g. the length of a side or an angle in a triangle, or it
can be context free; 2) an algebraic sign, often a letter that stands for either a

number or an object e.g. a line or a plane; and 3) an operation such as +,— and V.

In a school context, a mathematical sign is often called a (mathematical)
symbol. This notation will be used henceforward except when referring to
references that are using the word ‘sign’.

All mathematical knowledge needs a system of signs, which carry no meaning
of their own but acquire meaning through the relation with the object the sign refers
to (Steinbring 1999). Steinbring states that signs are a source of information about
the conditions for constructing new mathematical knowledge, simultaneously
carrying this knowledge and being the means of communication about it.
According to Steinbring (2006), signs have two major functions: 1) a semiotic
function as “something that stands for something else” — a mathematical
object/reference context; and 2) an epistemological function as vehicle for
knowing the object of knowledge. This is illustrated in the epistemological triangle
on figure 1. The horizontal arrow shows the semiotic relationship stressing the
sign’s representational character. The epistemological characteristics of the
underlying basic mathematical concept shape the resulting relation between the
sign and the object.

Object/ Sign/
Reference <

Symbol
context

Concept
Figure 1: The epistemological triangle (Steinbring, 2006, p. 135)

Steinbring’s (2006) epistemological triangle provides a framework for modelling
how mathematical knowledge is developed by means of signs/symbols. The
learning process is influenced by the way in which the relationship between object
and sign is mediated, which includes teacher instruction. In this study we will look
further into how symbols are employed in classrooms - that is, which roles they
play in teacher instruction. The more explicit consequences for student learning
are beyond the scope of this paper. The presented categories are identified from
literature inspired by observations of the problems experienced by upper secondary
students when working with symbols that was completed by Mogens Niss
(personal communication November 29, 2016), and they are related to the different
ways Janvier (1996) interprets mathematical symbols.



Publications from NORMA 17 171

Classifying the roles played by mathematical symbols
Four roles have been identified. The first is derived directly from the
epistemological triangle as the semiotic function of the symbol. Steinbring (1999,
p. 116) notes: “Mathematical concepts are constructed as symbolic relational
structures and are coded by means of signs and symbols that can be combined
logically in mathematical operations” (italics added). Symbols act as codes or
labels for objects, which is what Peirce (1965) calls an index. Some labels always
mean the same thing e.g. m, e or ‘+’ whereas others change their meaning
depending on the context. When working with triangles, a is a side or the length
of a side, whereas it stands for the slope of the straight line in y = ax+ . In Arcavi’s
(1994) notion of symbol sense, which is described by various qualities, “sensing
the different roles symbols can play in different contexts” (Arcavi, 1994, p. 31) is
mentioned as one such quality. In this first category symbols merely act as ‘a label’
L).

When more symbols are combined in expressions according to the
‘manuscript’ or conventions of formal mathematical language, the semantics of
the expressions is of less importance. The meaning of the symbols cannot be

deduced from reasoning but are defined by notation. f(x)=a-e"+b says nothing

about a, b, for x and although a(bh) = f-e’ + x means exactly the same, the symbols
play completely different roles. The category treating how symbols are used in
formal mathematical language we call ‘the role-play’ (R).

In the earlier mentioned quote, Steinbring (1999, p. 116) states: “Mathematical
concepts are constructed as symbolic relational structures”. These structures can
be propositional formulas like equations, or propositions and theorems. In
Pythagoras’s Theorem a” + b° = ¢, where c is the hypotenuse and a and b are the
other two sides in a right-angled triangle, the verity of the theorem does not depend
on either the symbols themselves or the role-play in which they participate but
rather on the mathematical substance they refer to. Activities concerning the
symbol sense: “how and when symbols can and should be used in order to display
relationships, generalisations, and proof” (Arcavi, 1994, p. 31), can be recognized
in the generational activities in Kieran’s (1992) GTG-model for algebraic activity
and further this function. When symbols are playing this role, they belong to the
category ‘contentual expressions’ (C).

The final category concerns how symbols take part in the manipulation of
expressions following a set of rules, which make some transformations valid while
others are not. Steinbring refers to this when he says, “symbols that can be
combined logically in mathematical operations™ (1999, p. 116). A transformation
results in a new expression that is identical to the previous one. This is what Duval
(2006) calls ‘denotations’. While performing the transformation, the mathematical
content referred to by the symbols need not be visible but can be detached from
the context, if any, where it appears. From the result of a transformation, new
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knowledge can evolve, such as where the revising of an expression provides
information about an unknown quantity. Teacher instruction comprising symbols
in this category are connected to the symbol sense “An ability to manipulate and
to ‘read’ symbolic expressions” (Arcavi, 1994, p. 31). This fourth and last category
we call ‘transformations’ (T).

Aim of study

Symbols and the roles they take on are essential to mathematical knowledge
(Steinbring, 2006). The aim of this study therefore, is to establish a framework for
exploring the use of symbols in teacher instruction. By teacher instruction, we
mean any activity planned by the teacher and carried out in the classroom such as
presenting theory or examples on the blackboard, going over problems, class
discussions, students solving problems, reading a mathematical text or performing
inquiry activities, etc. The framework was developed by combining theoretical
considerations and classroom observations. The connection between teacher
instruction and mathematical knowledge is mediated by symbols through the
symbol categories defined above. As identifying which category is employed
directly from observations can be ambiguous, we make use of the (building) blocks
of instruction that are easily observable. Each block is dominated by one main
symbol category, and thereby the teaching can be examined through the relation
between instruction and symbols as illustrated on figure 2.

Teachc?r <«—>| Blocks |«— Symbql <«—> Symbols
Instruction Categories

Figure 2: The developed framework

Method

As a case study, the framework was set up and used to look at the transition from
lower to upper secondary education. Four classes in lower secondary school were
observed during the /ast three months before the final exam for a total of 15 lessons
comprising 80 minutes each. Three classes were followed during their first three
months in upper secondary school for a total of 14 lessons comprising 100 minutes
each. The observed instruction did not necessarily provide an indication of how
teacher instruction was carried out generally but instead reflected the shift in
instruction at the transition.

Three of the lower secondary classes came from the same city school but were
different year groups (9th and 10th grades); the last class came from a rural school.
The upper secondary classes came from three different schools in the same city;
one from the city centre, one from a suburban area, and one from a technical high
school. To make the observations as representative as possible, the seven
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participating teachers were chosen to provide a range in terms of experience
(Iength of time teaching), qualifications (level of teacher education), and gender.

The empirical data consisted of both observations and artefacts. Field notes
from classroom observation addressed a) the type of representation employed
verbally or in writing, b) a description of the activity, and c) notes from the
blackboard and further observations. Artefacts included textbooks and worksheets
from the lessons. These were used to qualify the coding of the field notes. This
coding was carried by the author and, in part, by a second researcher. A subsequent
discussion resulted in a revision of codes and a re-coding.

Identifying blocks for the framework
Using a qualitative content analysis (Hsieh & Shannon, 2005) of classroom
observations, a number of blocks in the instruction were identified.

Symbol

Block Description of Block
category

A Attaching a numerical or algebraic symbol to another representation (sketch, diagram,
table, text, etc. L
| Inserting a numerical or an algebraic symbol in an expression

Defining a mathematical object by the style of writing, e.g. “a quadratic polynomial is
defined by p(x)=ax’+bx+c*

Introducing mathematical notation; “a-a-a= a”
Obtaining knowledge about the meaning of a symbol by using a graphical tool, such
as when seeing b as the y-intercept by using the slider tool in Geogebra

Q |z <

Setting up a mathematical proposition or expression, which can and sometimes are
proven by mathematical arguments. The expression can be algebraic or numerical as

o - _ 107 SEK » C
in “Amount in SEK = 50 DKK 00 DEK

Writing up a formula from the book that could have or has been proven earlier

=

Manipulation, reduction, factorising, calculating, etc.
Obtaining new knowledge from a manipulation or calculation

= R ==

Using a computer program like Geogebra, Exel or Nspire for construction,
manipulations, etc. by “clicking”.

All

Table 1: The blocks and their connection to the symbol categories

Examples of teacher instruction are 1) “sketching a triangle stating the lengths of
the sides”, and 2) “attaching symbols x,, y,, x. and y. for the coordinates to a drawing
of two points”. Both belong to the same block, denoted A, that is defined by stating
arelation between a symbol and a second representation. The ten identified blocks
is explained in table 1. In the right column the dominating symbol category
corresponding to each block is stated. This correspondence is deduced from the
definitions of the symbol categories. Notice that the block-category P differs from
the others by containing a mix of symbol-categories. P describes the act where
technology is used with a mathematical program for multiple purposes more or
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less simultaneously and without addressing the underlying mathematical content.
This makes the interpretation of the instruction based on classroom observations
too complex and therefore the P-blocks have been omitted in this study.

Coding data

Each of the 29 lessons (15 in lower and 14 in upper secondary school) was divided
into scripts consisting of a consecutive sequence of one or more blocks forming a
coherent whole. When coding, the blocks of each script were written in a row, e.g.
A E I M, showing the sequential order in which they occurred during the
observation. When different blocks happened simultaneously in the same script,
such as when students could choose from different activities or problems, the
blocks were separated by a semicolon, e.g. A; E I M. In the examples from the
previous section the symbols are numerical in 1) and algebraic in 2). To distinguish
between numerical (n) and algebraic (a) symbols, the noted category was added an
index, e.g. A, or A..

The example below shows how a script consisting of more blocks was inferred
from observations (figure 3): A class from upper secondary school was shown how
to find the distance between two points A and B. The teacher began by drawing a
sketch of two points (x,,y,)and (x,,y,) attaching algebraic symbols to a second

representation (A,). The formula was then re-deduced (the students had seen it done
before) using Pythagoras’s Theorem (E.). Finally, the numerical coordinates of the
points A and B were inserted in the formula (L) and the distance calculated (M,).
The resulting sequence is A. E, I, M.

Oct. 22, 2015 Uppu Secondary school
The stuight line

RQPF&SM'/‘O!’\'OA Ac/{vi 1,L:/ OA.M vations
f1
Szm belce The kache Shows an 2xanpk Teachs draws (xq,y)x" Yy,
Finding M gisiance | Th frmula: KXy

betwun two pocat |Abl= (KL‘K:]""G’-'JS

AC1D) and B(2)| 5 Stk fom dmenrg. Coorsinates am inirkd
1

Shudents Cilenlate oistana

Figure 3: An example of field notes

This concludes the development of a framework for describing the use of symbols,
and thereby the character of mathematical knowledge, seen in teacher instruction.
The connection between the roles taken by symbols and how they enter into the
building blocks of instruction is shown in table 1. By applying the framework on
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data from the case study, possible patterns and differences in patterns with respect
to the use of symbols in the observed teacher instruction can be revealed.

Results

The occurrence of blocks and the roles of symbols

In table 2, the number of each type of block is summarised. In lower secondary
school, 88 blocks were observed. The corresponding number for upper secondary
school was 159. A main finding is that students meet all four roles of symbols on
both levels although with different frequencies. More important, though, is that the
context in which they meet them changes immensely at the transition. Where labels
are concrete numbers in lower secondary school they become algebraic symbols
in upper secondary. Equivalently mathematical propositions are set up as
particulars using numbers in lower secondary but as generals with symbols in
upper secondary school. The pattern reiterates for transformations where algebraic
manipulations are much more frequent in upper secondary as opposed to the
calculations at the lower level.

Block| A, [ A | L[LD, [D./N|IN|G|G[E|E[FR]|F[M]IM]K
S.C. L R C T

Low 10.2%] 4.5% | 1.1% [ 0.0% [ 2.3% [10.2%] 0.0% | 4.5% [ 2.3% | 3.4% [20.5%] 1.1% [ 3.4% [ 4.5% [25.0%] 6.8% | 0.0%
' 15.8% 2.7% 29.4% 31.8%

U 44%[8.8% [ 9.4% [ 0.6% [ 0.6% [ 44% [ 63% [ 3.1% [ 0.0% [ 0.0% | 3.1% [ 7.5% [ 3.1% [11.9%] 18.9%[ 15.7% ] 1.9%
Pp- B2% 144% 25.6% 365%

Table 2: The frequency of the appearing blocks in lower and upper secondary school

Numerical and algebraic symbols

The result above suggests that the use of numerical and algebraic symbols change
considerably at the transition. Adding up the number of blocks reveals that the
frequency of blocks employing numerical symbols is = 65% in the observed lower
secondary classes and = 45% in upper secondary school. More interesting, though,
is the order in which the two kinds of symbols appear. In table 3 and 4 all the
identified scripts are listed: 45 in lower secondary and 74 in upper secondary
classes.
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Lower secondary school | Upper secondary school Lower secondary school | Upper secondary school
D.AF, |Bbh PD, A [ ™, D,AF, |EM, |PD, re N, M,
G, A, M, P N, E, M, M, Na G. AuM, P N.E, M, M, N,
EP N, BN |V N,E, M, M, M, F.P NEM (M, N.E.M, ™, M,
P E M, M, My M, A, P E. M, M, M, M, A,
D,N, P A, N, D, A, M, M, M, N, | LA D,N, P AN, D, AM, M, M, N, F,F,
E.M, E. M, M., M} N |MAE E.M, E, M, M, M, NM,  [MF,
D My E, M, M, F, As M, D,; M, E. M, M, F, A, M,
D, DG, [MyF;A, |E;MEM, M, A A, F. M, D, D,G, [MiF;A, |E.MEM, M, AA, F, M,
D.F, E.M,  [AF, E.M, MM,  |F.LM D, F, EM, |AF, E.M, MM, |RLM
D, G, E, M, A E, M, M. M. M, D, M, D, G, E. M, A, E. M, M, M, M, D. M,
D, M, AcGoE:M, (A D, LM, P M, M, D, M, A, G EgM, |ADLM, P M, M,
E, M, E.M;; A, A E, LMy F.M, M, E,M, E,M; A, AELM, F,M, M,
Ay AE,M, AF, N2 N, A, A,E,M, A,F, N, N,
E. M, E, M, A, F, LM, A E, LM, (F, By E.M, E, M, AFILM, AELM, |F.F,
P G.A]l  [N.DE, P& F, LMVLE] (M, N P.G,A, [N.D,E PARLMIK, |M, N,
P M, E.M, E. D. F, BN P M, EM, E, D, F.LM,
A, F, VR E. M, AJEE, |DyM,D,M, AR LM, E.M, AEE,  |[D,M,D,M,
F,E, M, F, M, D, LM, |EE, F,E, M, F, M, DM, E,E,
F. [M; P A AEE, [EM, FLM: P AAEE, [EM,
A.F.N.N|  |D. N. ALF, NN b. N
A F. LM, M, F, M M, AFILM, M, F. I M;: M,
AF LM, N P e AFLM, NP F,
A, E,M, P F, [ ™, EM, P ¥
fir.GNoe (ED. NN [ P
Al F. ML i F. [ AKLV; K, M,
Table 3: The use of algebraic (yellow) Table 4: Scripts containing certain

and numerical (green) symbols in blocks characteristic scripts (blue and grey)

The three cells in the two left columns show the scripts for each of the three 9th
grades, the third column presents the 10th grade, and the three columns to the right
show the scripts from each of the three upper secondary school classes. As stated
earlier, the order of the scripts represents the temporal presentation of the blocks.
Table 3 indicates that in lower secondary school, the two kinds of symbols are
usually not connected. The scripts are characterized by the use of either numbers
or algebraic symbols. In upper secondary school the opposite is the case; most
scripts contain both types of symbols, and often with the same relation between
algebraic and numerical symbols: first the letter and then the number. Only a few
times do the numbers act as a starting point for the setting up of a general
expression stated by algebraic symbols.

The structure of the scripts

Looking at the order of blocks in a script (table 4), we see that especially one
combination occurs frequently in upper secondary school: F, or E. followed by L
and in most cases M.. Sometimes an A or D is added in the beginning and
sometimes the symbols inserted and manipulated with are algebraic. But the
conception of mathematics underlying the script is the same: a (general)
expression, e.g. a propositional formula or a functional expression exists or can be
found, numbers related to a specific problem can be inserted and the result
calculated. The appearance of this kind of script is marked with blue in table 4. It
is worth noticing that the script becomes more and more common at upper
secondary level after the first few weeks of introduction. At the lower level, a
different script is seen frequently: E, M.. The script, which is marked with grey,
indicates that expressions are set up in a specific context with known numbers and
argued for in this context instead of leaning on previous work. Most problem
solving was completed this way at the lower level.
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Conclusion and discussion

This study show that a classification of the different roles played by symbols in
mathematics combined with an identification of the building blocks of teacher
instruction makes a useful framework for looking at how school mathematics is
presented to students, and thereby which opportunities the mediation between sign
and object is given in the learning process.

Applying the framework to teacher instruction on either side of the transition
from lower to upper secondary school reveals patterns in the use of symbols that
signifies some potential problems students might meet when moving from one
educational level to another. One main finding obtained is in how symbols take
part in contentual expressions: In lower secondary school, numbers are widely
used in setting up expressions and argumentation emerges from the context of a
concrete problem. At upper secondary level, algebraic symbols are used for
proving or proposing general relations in a context free setting and applied again
and again in specific situations afterwards. The analysis emphasizes a challenge:
in lower secondary school, students are taught how to solve particular problems
but not how to ask the general questions. In upper secondary school general
questions are asked but the linking to meaningful contexts seems deficient.
Teachers at both levels can make use of this finding in their instruction. However,
at this case study care must be taken not to generalise results excessively. The
limited amount of data makes the results vulnerable to for instance atypical teacher
instruction.

The developed framework only looks into teacher instruction and only around
the transition. When it comes to how students learn, mathematics knowledge from
other research areas should be taken into account: the social aspect, the use of
everyday language, the role of technologies, classroom activities, the teaching
design, etc. Many of these also influence instruction but have been omitted here,
which could give rise to somewhat simplified results. The outcome of the case
study confirms that the framework has the capacity to point out important issues
concerning teacher instruction and how mathematical symbols appear in
instruction. This could be taken further by carrying out classroom observations
during a longer period at one or both levels and identifying ideal types of teacher
instruction (Bikner-Ahsbahs, 2015), enabling a deeper understanding of the
opportunities students are given to notice and to perceive as noted in the
introduction of this paper.
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Second language students’ achievement in
linear expressions and time since immigration

Joran Petersson
MND, Stockholm University, Sweden

This study investigated how 259 grade 9 students solved two test items in algebra
involving linear expressions. Some students were early or newly immigrated
second language students in Sweden. The findings are based on a categorization
of students’ written responses. The results show that for the more advanced test
item on linear expressions and unknowns, early arrived second language students
achieved worse than newly arrived and other second language students, while
there was a minor achievement difference when solving an elementary linear
equation. The interpretation of the results is that the early arrived immigrants
suffer from having larger parts of their mathematics education as second language
students and thus struggle with advanced mathematics

Introduction

In research, second language immigrants are often described in the two
perspectives of being second language learners and of their present socioeconomic
status (Ufer, Reiss, & Mehringer, 2013; Hansson, 2012). Following Cummins
(2008), the present study acknowledges that early arrived immigrants have been
second language students, large parts of their schooling while newly arrived
immigrants likely have been first language students most of their schooling. Here
their knowledge in linear expressions is explored.

First and second language students’ achievements in mathematics

In large scale studies such as TIMSS, second language students in many countries
are reported to, on average, achieve below first language students (Mullis, Martin,
Foy, & Arora, 2012). Petersson (2017) observed that in national tests in
mathematics in Sweden, there was a smaller achievement gap between first and
second language students in algebra than in other mathematical content areas.
Petersson hypothesized that students immigrating in late school years have
contributed to that result. In TIMSS students are defined as second language test
takers depending on the test takers’ self-reported estimation of how frequently they
speak the language of test at home (Mullis et al., 2012). In Swedish school, the
students are assigned to follow one of the courses ‘Swedish’ and ‘Swedish as
second language’ based on regulations stated in the school act (Skolférordning,
2011). Based on empirical and linguistic arguments, Cummins (2008)
distinguished between conversational and academic proficiency in the language of
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instruction and found the academic proficiency to take much longer time to
develop than conversational proficiency. Cummins indicated that an approximate
time span for reaching conversational proficiency in a second language is about
within two years and academic proficiency in about five to seven years. This means
that second language students that have immigrated early in compulsory school,
have experienced most of their mathematics education without full access to
academic school language. This may have negative effect on their success in
learning mathematics. For example, Ufer et al. (2013) found small achievement
differences between first and second language students for algorithmic tasks, but
large achievement differences for conceptually demanding mathematical tasks.
Another explaining factor is a positive correlation between having high
proportions of second language students in the school and having a larger
proportion of individual school work in the mathematics classroom, which is
known to correlate with lower achievement (Hansson, 2012).

Mathematical background

Linear expressions are a part of algebra. It occurs frequently in various problems
in school mathematics. Good knowledge in working with linear expressions and
unknowns is a gateway for the individual student to continued studies in
mathematics since much of upper secondary school mathematics and mathematical
modelling builds on linear expressions. The mathematical area of linear
expressions, cover several mathematical ideas. There is the concept of unknown.
The perception of unknowns has been described as a hierarchy of seeing unknowns
as a multiple number, a specific number, an unknown digit etc. (Asquith, Stephens,
Knuth, & Alibali, 2007). There is the concept of algebraic syntax. Students’
difficulty in parsing algebraic expressions have been explained as a difficulty in
making productive use of the information and relationships carried in algebraic
expressions (Humberstone & Reeve, 2008; MacGregor & Stacey, 1997). For
example, some students might confuse the implicitly given multiplication in ‘2x’
with an explicit addition ‘2+x’ or with a power 2*. MacGregor and Stacey (1997)
explained the confusing with a power with a combination of the following three
arguments. First it is necessary that the students have been taught about powers.
Secondly, some students may not have learnt to clearly distinguish between
repeated addition and repeated multiplication. Thirdly, some students may think
that the test items is too easy for them and expect to use more advanced
mathematics.

Research question

Combining the results from Cummins (2008), Petersson (2017) and Ufer et al.
(2013), the present study suggests comparing second language students’
achievement in algorithmic versus demanding test items in algebra. Since there
might be a large span in experience of Swedish language and schooling among
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second language students, the students were divided in the following categories,
where ‘2L student’ denotes those following the course ‘Swedish as a second
language’ in school.

Newly2L: Second language student, who due to immigration entered the
Swedish school system during school years 8-9 and thus is newly
immigrated.

Early2L: Second language student, who due to immigration entered the
Swedish school system during school years 1-7 and thus is early
immigrated.

Other2L: Second language student that have immigrated before school start
age or have not immigrated at all.

SwelL: Student following the course ‘Swedish (as a first language)’ in
school.

Formal linear expressions with unknowns are introduced late in compulsory school
mathematics in Sweden. This implies that second language students, with the
possible exception of some newly immigrated students, have experienced probably
most of their teaching in this area in their second language. Moreover, before
immigration the newly immigrated students may have experienced most of their
mathematics education in their first language. Given that second language students
may have different length of experiences of the language of instruction in the
country of immigration, the present study asks the following question: When tested
in both algorithmic and demanding test items involving linear expressions, what
differences, if any, are there in achievement between second language students
with different length of experiences as second language mathematics students in
Sweden?

Method
Test responses from 259 students were analyzed together with a survey used for
categorizing the students as Newly2L, Early2L, Other2L and SwelL.

Test instrument
To answer the research question, the author composed a test using old national test
items since these have been piloted by the Swedish national test group. The
following two test items involved working with linear expressions.
Item A: Solve the equation 2x+3=/]. (Original formulation in 2009
mathematics national test in school year 9, item B7 was “Solve
the equation /7=3x+5").
Item B: 4x+5y=11. What is [2x+15y? (Original formulation in 2009
mathematics national test in school year 9, item B15 was “How
much is 4x+6y if 2x+3y=127).
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Test item A can be solved by direct substitution 2-4+3=11 or by inverse operations
x=(11-3)/2. For test item B, the context of a mathematics test implies a
proportional relation between the two expressions. This relation can be used
explicitly by solving as 3-77/=33 or implicitly by finding values of the unknowns
that solves the equation (e.g. y=I & x=1.5) and substitute these into the linear
expression. The students’ written responses to the test items were compiled into a
database and were categorized by solution strategy. Test items A and B have the
same mathematical structure as the source formulations in the 2009 national test,
but the coefficients have been altered. Though language gives meaning to e.g.
mathematical tasks, it might also be a source of added challenges for second
language students and could obscure the mathematical meaning of the test
problems (e.g. Campbell, Davis, & Adams, 2007). With the aim to minimize
context and language obstacles, the test items were chosen to have problem
formulations with low text intensity. Calculators were not allowed on the test. Test
time was about 40 minutes.

Student sample
The participants in the present study were chosen from the last year of the
compulsory school since this school year can be expected to have the largest span
of experiences from Swedish language among newly arrived and early arrived
immigrants. One reason for separating between Newly2L, Early2L and Other2L is
their different proficiency in Swedish language, see table 1. Another reason is that
while Early2L probably have had all their algebra lessons in their second language,
Newly2L are likely to have met some algebra lessons in their first language before
immigration. Other2L and SwelL have experienced all their schooling in Sweden.
In the study a total of twelve entire classes of a possible thirteen, in five schools
with a high proportion of immigrant students, agreed to participate in the study.
Information about the students’ migration background was collected in a written
survey, to which the students gave their written consent. Among SwellL no
students had immigrated during school years 1-9. The sample was purposive in
choosing schools with an above average proportion of immigrant students. When
making a purposive sampling, there is a risk of losing external validity since the
purposive sample may have other properties than a random sample (Kruuse, 1998).
To control for this, the students in the present study were compared to a national
random sample with respect to achievement on the written part B1 on the national
test. While the purpose of test items A and B is to answer the research question,
the purpose of measuring their national test achievement is different. It is to make
it possible to discuss the generality of the results in this study — to compare the
students in the present study with other students. The national random sample was
collected by the Swedish National Agency for Education and is a part of the annual
evaluation of the national test (Skolverket, 2013). The author received data from
the national random sample from the National Test Team. The random sample only



Publications from NORMA 17 183

categorizes students as first or second language students and has no information
about the students’ school year of immigration. In the national random sample, the
second language students achieved 46% correct responses. This is identical to the
average of all second language students in the present study, whose results are
given in Table 1. The first language students in the national random sample
achieved 60% correct responses, which is similar to the achievement of the first
language students in the present study.

Students’ background Newly2L | Early2L | Other2L | SwelL
Number of students 23 67 56 113
Proportion of students with leaving grade in | 529/, 78% 86% 97%
Swedish language > passed

Proportion of correct responses in national | 499, 439, 48% 56%
test in mathematics

Table 1. Participating students’ achievement in Swedish language and in national
mathematics tests

The research question was implemented as comparing the achievement of the
Early2L students with that of Newly2L and Other 2L students using Cliff’s d for
measuring the effect size and a Mann-Whitney test, corrected for the occurrences
of equal ranks, for measuring the statistical significance.

Results

Responses to item A

The responses to item A are summarized in Table 2. A majority of the students in
each student category gave correct response to item A by giving a series of inverse
operations or substituted the solution into the original equation or just gave the
solution. Only three students gave both a series of inverse operations to find the
solution and substituted the solution into the original equation. Of students giving
an incomplete or erroneous solution, most used a series of inverse operations. One
group of responses was various incomplete responses similar to that in Figure 1a.
These students had responded 2x=8 or x=8 or made a calculation error
corresponding to 2x=9 or 2x=7.
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Figure 1a: Incomplete / Figure 1b: Confusing 2x with  Figure 1c: Confusing 2x with
erroneous solution 2+x A
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In the students’ attempts to make a series of inverse operations during the solving
process, many responses contained algebraic errors. One kind of error was to
confuse the implicitly given multiplication of coefficient and unknown with an
addition instead as in Figure 1b. The student in Figure 1b started with a correct
subtraction of the constant term from both sides of the equality. In the second row
the student erroneously confused 2x with 2+x with a consequential error. Some
students made multiple errors. For example, one student first stated that
2x=11+3=14 and then continued with setting x=/4-2, that is, confusing 2x with
2+x as in Figure 1b. Moreover, there were three responses of confusing the
multiplication with a power as in Figure 1c.

Response category Newly2L | Early2L Other2L SwelL
Correct 14 (61%) | 40(60%) |39 (70%) | 82 (73%)
Incomplete or only calculation | 2 (9%) 3 (4%) 2 (4%) 3 (3%)
error (2x=11-3; x=11-3; 11-

3=9 or 11-3=7)

Algebraic error 3 (13%) 9 (13%) 4 (71%) 10 (9%)
Unclassified 0 (0%) 1 (1%) 2 (4%) 2 (2%)
No response 4 (17%) 14 (21%) |9 (16%) 16 (14%)

Table 2. Response categories and proportions per student category for test item A

A Mann-Whitney test, found the achievement differences for test item A to not be
statistically significant neither between Early2L and Newly2L (p = 0.46) nor
between Early2L and Other2L (p = 0.13).

Responses to item B

The responses to item B are summarized in Table 3. Less than 40% of the students
in each student category gave correct response to item B. The students who
responded correctly to item B gave three kinds of responses. One correct response
was to substitute for example y=1 into the first expression and then solve this
equation for the other unknown, followed by substituting the values for the
unknowns into the linear expression /2x+15y and evaluating it. Some students
made calculation errors during this substitution procedure. Another correct
strategy was to explicitly calculate //-3=33, where 3 is the ratio between the
coefficients in the linear equation and the linear expression in test item B. A third
alternative was to only give the answer 33. Just as for test item A, some students
confused the multiplication of the coefficient and its unknown with an addition.
The main idea in the response in Figure 2a is to sum the coefficients 4+5=9 in the
linear equation in item B and from this suggest that x+y=2. The next step is to sum
the coefficients /2+175=27 in the expression and add the number 2 from x+y and
get 29. This algebraic error led to several different responses such as 27, 27xy, 30
and setting 3(12x+15y)=81xy. Figure 2b gives an example of the response 30,
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where a student added three, which is the ratio relating the coefficients in the linear
equation and the expression in item B.
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Figure 2a: Confusing 4x with 4+x etc.
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Figure 2b: Erroneous use of factor 3

Response category Newly2L | Early2L Other2L SwelL
Correct answer only 1 (4%) 4 (6%) 7 (13%) 21 (19%)
Correct substitution 1 (4%) 1 (1%) 3 (5%) 7 (6%)
Correct factor 7 (30%) 8 (12%) 11 (20%) 14 (12%)
Incomplete or only calculation error | 1 (4%) 2 (3%) 2 (4%) 3 (3%)
Algebraic parsing error 5 (22%) 21 (31%) | 9 (16%) 18 (16%)
Unclassified 0 (0%) 4 (6%) 2 (4%) 4 (4%)
No response 8 (35%) 27 (40%) |22 (39%) |46 (41%)

Table 3. Response categories and proportions per student category for item B

Table 3 shows that the students in Early2L achieved less well than the other student
categories and made more of especially algebraic errors similar those in Figures
2a and 2b. A Mann-Whitney test found the achievement differences for test item
B to be statistically significant with low effect size between both Early2L and
Newly2L (p = 0.03 Cliff’s d = 0.28) and Early2L and Other2L (p = 0.013,
Cliff’s d = 0.22).

Discussion and conclusion

The research question in the present study was to explore relations between
achievement in linear expressions and having different length of experiences being
second language students, here exemplified with on the one hand Early2L students
and on the other hand Newly2L and Other 2L. The main pattern in the results is
the following: For the more demanding test item B the Early2L. achieved
significantly below Newly2L and Other2L, while the achievement difference was
small for the elementary test item A, as seen in tables 2 and 3. Newly2L and
Other2L achieved as SwelL on the more demanding test item B. While in tables 2
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and 3, the proportions of incomplete or only calculation errors and of unclassified
errors were about the same for both test items in all student categories, the
proportions of algebraic errors and ‘no response’ were larger for test item B.
Especially Early2L students had large proportions of algebraic errors on test item
B. The algebraic errors were essentially the same as have been observed in earlier
research (MacGregor & Stacey, 1997). Test item B was a challenge for students in
all categories and many used the algebraic information in a pragmatic way to reach
some erroneous answer (Humberstone & Reeve, 2008; MacGregor & Stacey,
1997). Choosing substitution as solution strategy in item B corresponds to seeing
unknowns as carrying specific values while the strategy of identifying the factor 3
disregards any specific value of the unknowns (see Asquith et al., 2007). In all
student categories similar proportions chose a correct substitution strategy, though
calculation errors were common. However, Early2LL had a smaller proportion of
the factor 3 strategy than Newly2L. If ‘Correct answer only’ in table 3 was
interpreted as a factor 3 strategy, Early2L had smaller proportions of factor 3
strategies than Other2L. and SwelL as well. Under this assumption, a smaller
proportion of Early2L students reached the high level in the hierarchy of variable
perception of Asquith et al. (2007).

Now, Petersson (2017) observed that second language students had an
achievement profile emphasizing algebra when compared with SwellL and
hypothesized that newly arrived students may have contributed to that result. The
present study followed up this hypothesis by separating between Newly2L,
Early2L. and Other2L for the case of linear expressions. Despite Early2L on
average achieved higher than Newly2L in Swedish language as seen in table 1,
Early2L students seem to face added challenges in advanced algebra learning. One
interpretation is that this might be related to Early2L having received large parts
of their mathematics education as beginner second language students, while
Newly2L may have received a major part of their mathematics education and some
of their algebra education as first language students before immigration. The
results might also be interpreted as related to organization of the teaching for
second language students due to socio-economic segregation (Hansson, 2012).
With the first interpretation, the results are in line with Cummins (2008) and also
with Ufer et al. (2013), who saw achievement differences between first and second
language students for conceptually demanding mathematical tasks. The author
suggests that the results, despite the use of only two test items, have some degree
of generality at least in Sweden, since the test takers in the present study achieved
similarly in the national test to a national random sample. However, there is a need
of a larger study to confirm this suggestion.
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Prospective class teachers’ attitude profiles
towards learning and teaching mathematics

Tomi Kiirki and Harry Silfverberg
University of Turku, Finland

We have measured prospective class teachers’ attitudes, towards learning
mathematics and, towards teaching mathematics. We used a previously validated
questionnaire called ALM (Attitudes toward Learning Mathematics), and we
constructed another questionnaire called ATM (Attitudes toward Teaching
Mathematics). In general, the observed attitudes were quite positive and the
attitudes towards teaching were more positive than towards learning. Component-
wise differences between ALM and ATM were found. We also compared attitude
profiles between two class teacher programs. Prospective teachers’ attitudes were
more positive in the more mathematically focused program, which had a test of
mathematics skills in the entrance examination.

Introduction

In Finland, prospective class teachers (PCTs) are educated in master’s degree
programs in eight universities, all of which have their own teacher education
strategies and curricula that makes the best use of the local university’s resources.
These teacher education programs must contain 60 European Credit Transfer and
Accumulation System (ECTS) credits of minor studies in subject didactics with a
focus on the teaching and learning of subjects and themes in basic education
(Sahlberg, 2010). The degree qualifies class teachers to teach all school subjects
in the Finnish primary schools (grades 1-6). Since mathematics in primary schools
is usually taught by a class teacher who does not have a major or minor in
mathematics, we find it relevant to explore PCT’s attitudes towards learning and
teaching mathematics (see also, e.g., Boyer & Mailloux, 2015; Hourigan, Leavy,
& Carroll, 2016).

At the University of Turku, the Department of Teacher Education operates in
two units in two cities, Turku and Rauma. Both units have their own class teacher
programs with different curricula and different entrance examinations reflecting
the profiles of the units. In Turku, the emphasis is on mathematics and natural
sciences, and the students have to pass an entrance examination containing a test
of mathematics and natural sciences skills. In the Rauma unit, the student
admission does not take mathematical skills into consideration, and the unit
specializes in arts, crafts, and physical education. Hence, we are interested in
studying whether there are differences in PCTs’ attitudes concerning mathematics
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between the two degree programs. The selection process for class teacher
education is under constant review in Finland, and therefore scientific information
concerning the effects of the entrance examination and different degree profiles is
valuable as a basis for discussion.

There is no overall agreement concerning the definitions of the concepts like
attitudes, believes and conceptions in the domain of mathematics-related affects
(e.g. Goldin et al, 2016; Hannula, 2012). In this paper, attitudes are “manners of
acting, feeling, or thinking that show one’s disposition or opinion” (Philipp, 2007,
p- 259). We interpret that this definition covers the components of Wong and
Chen’s (2012) attitude scale, which will be used in the empirical part of this study.
The Checking solutions component is related to the looking back feature of Polya’s
problem solving framework. The Confidence scale measures respondents’ self-
conception about their ability to learn mathematics. Enjoyment deals with the
degree to which students enjoy mathematics, and the Use of IT component enquires
how much respondents believe that information technology supports their learning
of mathematics. The Multiple solutions component measures students’ tendency
to look for multiple solutions for mathematical problems. Usefulness of
mathematics is related to respondents’ beliefs about the usefulness and relevance
of mathematics to their daily life.

The affective domain plays an essential role both in teaching and learning
mathematics. The research suggests a reciprocal causality between the learners’
achievement and affect (Hannula, 2012). Hence, promoting the students’ positive
attitudes should be reflected in their improved mathematical performance (Ignacio,
Nieto, & Barona, 2006). According to Atnafu (2014), students’ academic
achievements in mathematics are associated with their teachers’ attitude to
teaching mathematics. Namely, teachers’ pedagogical practices are aligned with
their attitudes regarding mathematics, teaching, and learning (Boyer & Mailloux,
2015; Hourigan et al., 2016). Self-confident teachers who see mathematics
interesting, pleasant and useful are likely to improve students’ positive attitudes
towards mathematics (Boyer & Mailloux, 2015). Prospective teachers’ attitudes
towards mathematics may originate from their early schooling years, and these
attitudes, together with prospective teachers’ conceptions about teaching
mathematics, seem particularly difficult to change (Boyer & Mailloux, 2015;
Philipp, 2007). Unfortunately, PCTs have been reported as having rather negative
mathematics-related attitudes, but current research also indicates some positive
indications. PCTs are found to hold positive beliefs about mathematics, find it
interesting and enjoyable and value its role in the sciences and in the society
(Hourigan et al., 2016).

Many aspects of the affective dimension have been examined also in the
Finnish mathematics education context (see, e.g., Hannula, Bofah, Tuohilampi, &
Metsamuuronen, 2014; Holm, Hannula & Bjorn, 2017; Kaasila, Hannula, Laine,
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& Pehkonen, 2008; Sorvo et al., 2017). The studies are mostly focused on the
affective factors of the students. More research on teachers’ attitudes, especially
prospective primary teachers’ attitudes, are required (Philipp, 2007; Hourigan et
al., 2016).

Research questions and methodology

We formulated the following research questions for this study: 1) What kind of
attitudes do the prospective class teachers have towards learning mathematics and
towards teaching mathematics? 2) How do the prospective class teachers’ attitudes
towards learning of mathematics relate to their attitudes towards teaching of
mathematics? 3) Are there differences in the prospective class teachers’ attitude
profiles between the two class teacher programs with different emphasis on
mathematics?

In this study, we measured PCTs’ attitudes towards learning mathematics
using the Attitudes toward Learning Mathematics (ALM) scale developed and
validated by Wong and Chen (2012). The scale was originally designed in the
Singapore Mathematics Assessment and Pedagogy Project to be used with lower
secondary school students. We chose to use this scale for several reasons. First, the
test has a very concise form, and therefore it is plausible that the respondents will
consider and answer the items carefully. Second, the components seem to have a
practical orientation relevant to the Finnish context. Third, the test has been
carefully validated by its developers, and we did not find any cultural features
which would prevent us from using it. In our questionnaire, the variables were
measured on a 5-point Likert scale ranging from strongly disagree = 1 to strongly
agree = 5.

According to Wong and Chen (2012), the psychometric properties of attitude
scales towards learning may be culture dependent. Therefore, the translated scale
ALM from English into Finnish was validated by confirmatory factor analysis
(*(194) = 446.36, p <.001, CFI = 0.92, TLI = 0.91, RMSEA = 0.054, SRMR =
0.067). In order to examine the interconnections between PCTs’ attitudes towards
teaching and learning mathematics, we constructed a new questionnaire, the
Attitudes toward Teaching Mathematics (ATM) scale, with the aim of measuring
the same attitude components as in ALM. For this purpose, we rephrased the items
of ALM to focus on teaching instead of learning. Examples of the rephrased items
are exhibited in Table 1.

Component | Example item of ALM Example item of ATM
Checking When I know I have made a I encourage my pupils to find mistakes
solutions mistake in solving a problem, I | from their incorrect solutions by
will try to find out why. themselves.
Usefulness I think mathematics is useful in | In my teaching, I regularly emphasize the
solving real world problems. usefulness of mathematics for solving real
world problems.
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Enjoyment Solving mathematics problems | Most of my (future) students think that
is fun to me. solving mathematics problems is fun.

Use of IT IT has been helpful to my IT is helpful to my (future) students’
mathematics learning. mathematics learning.

Multiple I often figure out different ways | During my lessons, I often emphasize that

solutions to solve mathematics problems. | there may be several ways to solve a

mathematics problem.

Confidence | I am confident in solving I am confident in teaching mathematics

mathematics problems. well.

Table 1: Example items for the components of the questionnaires ALM and ATM

Based on exploratory factor analysis, the new ATM scale was divided into six
components. The rephrased items did not entirely fit into the components for which
they were originally designed. Some of the rephrased items were omitted, and
some were regrouped with other components. However, the components could still
be interpreted to measure similar aspects as the components of ALM. The
components Checking solutions and Multiple solutions measure teachers’ attitudes
towards guiding their pupils to check the correctness of their solutions and to figure
out alternative solutions, respectively. Usefulness is related to teachers’ attitudes
towards highlighting the relevance of mathematics for solving practical problems
in their teaching. Enjoyment measures teachers’ impressions of whether or not his
or her pupils enjoy learning mathematics. Use of IT is related to respondents’
believes that information technology can be used to help pupils to learn
mathematics. Confidence deals with teachers’ self-reliance on teaching
mathematics. Furthermore, The ATM scale was validated by confirmatory factor
analysis (¥’(120) = 162.40, p =.006, CFI = 0.94, TLI = 0.92, RMSEA = 0.045,
SRMR = 0.060). The Cronbach’s alpha values for the six components of both
questionnaires and the number of items related to each component are given in
Table 2. Some of the alpha values are rather low indicating weak internal
consistency of the corresponding component. In particular, in order to increase the
internal consistency of the Usefulness component, we abandoned one item of the
original ALM scale leaving only two items remaining for that component.

Components of the | ALM ATM

questionnaires No. of items | Cronbach’s a No. of items | Cronbach’s a
Checking solutions 4 0.616 5 0.663
Usefulness 2 0.651 2 0.522
Enjoyment 4 0.889 4 0.735

Use of IT 4 0.670 3 0.731
Multiple solutions 4 0.740 2 0.752
Confidence 4 0.830 2 0.759

Whole test 22 0.863 18 0.785

Table 2: Internal consistency of the items for the components of ALM and ATM
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The data was collected using Webropol-questionnaires from the two units of the
Department of Teacher Education at the University of Turku during the years 2015
and 2016. In both units, all PCTs take 6 ECTS credits compulsory mathematics
education courses during their first and second year of studies. In the more
mathematically focused program in Turku, the response rate was around 63% (n =
70) and in the less mathematically focused program in Rauma around 61% (n =
105).

The data was analysed using IBM SPSS Statistics 22 software. The negatively
worded items were reverse-coded, and the composite variables Checking solutions,
Usefulness, Enjoyment, Use of IT, Multiple solutions and Confidence were formed
by calculating the mean values of the items of the corresponding components for
both questionnaires separately. Moreover, the composite variables ALM and ATM
were formed by calculating the mean value of all items of the corresponding
questionnaire. These variables were used to describe the students’ overall attitudes
towards learning and teaching mathematics. Each variable was measured on a 5-
point Likert scale where 1 corresponds to strongly negative attitude and 5
corresponds to strongly positive attitude.

Results

Considering our first research question, we observed that prospective class
teachers’ attitudes towards learning (ALM: M = 3.47, SD = 0.546) and teaching
(ATM: M = 3.77, SD = 0.411) of mathematics were, in general, positive. The
values of ALM ranged from 2.18 to 4.86 and the values of ATM from 2.39 to 4.89.
Based on Shapiro-Wilk normality test, both variables ALM and ATM were
normally distributed. By one-sample t-test, the mean values of ALM (#(174) =
11.394, p < .001) and ATM (¢(174) = 24.832, p < .001) were statistically
significantly greater than the neutral value 3. Furthermore, the mean values of the
six components of both questionnaires differed statistically significantly from the
neutral value 3, except for the ALM components Confidence and Multiple
solutions. The mean values of the components are depicted in Figure 1.

The composite variables of the ALM and ATM components Checking
solutions, Usefulness, Enjoyment, Use of IT, Multiple solutions, and Confidence
were not normally distributed. Friedman test revealed statistically significant
differences among the components of ALM (¥°(5) = 411.87, p <.001) and ATM
(Y’(5) = 250.92, p <.001). Post hoc analysis with Wilcoxon signed-rank tests was
conducted with a Bonferroni correction applied, resulting in a significance level
set at p < 0.0033. Statistically significant differences were found between all the
components of ALM except for the pairs Confidence—IT and Confidence—Multiple
solutions. Similarly, almost all components of ATM differed statistically
significantly from each other. Only between the components Confidence, Use of
IT and Multiple solutions were no statistically significant differences found.
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Hence, PCTs responded differently towards the different components of the scales.
The highest mean values were obtained by the components Usefulness and
Checking solutions in both questionnaires. The only component with the mean
value below the neutral value was the ALM component Multiple solutions.

In order to examine our second research question, we compared the data from
the two questionnaires. First of all, the attitudes of the respondents towards
teaching (47M) were more positive than towards learning mathematics (4LM),
#(174) = 8.646, p < .001. The Spearman’s rank-order correlation was used to
examine the relationship between the components of learning and teaching. In the
component-wise comparison, the r-values ranged from 0.321 to 0.631 at
significance level p < .001. A strong positive correlation was found between the
Use of IT components of ALM and ATM (r«(173) = .631, p <.001), as well as
between the Confidence components of the two questionnaires (r4(173) = .619, p
< .001). There was also a strong, positive correlation between the ALM
components Confidence and Enjoyment (r«(173) = .694, p <.001). Moreover, the
scatterplot of the variable Confidence of ALM and ATM revealed that a PCT who
is not confident in learning mathematics may nevertheless be confident in teaching
it. However, confidence in learning mathematics seemed to imply confidence in
teaching mathematics. Even though there were correlations between the attitude
components of teaching and learning, statistically significant differences between
the distributions of each of the components of ALM and the corresponding
components of ATM were found by Wilcoxon signed ranks test. The components
Checking solutions, Confidence, Multiple solutions and Use of IT obtained higher
mean values in teaching than in learning, whereas the attitudes towards Usefulness
and Enjoyment were more positive in ALM than in ATM (see Figure 1).

When comparing the prospective class teachers’ overall attitudes towards
learning mathematics between the two class teacher programs, we noticed that the
students in the more mathematically focused program had higher scores of ALM
than the students in the less mathematically focused program, #(173) = 4.626, p <
.001. However, no statistically significant differences were found between these
programs when considering attitudes towards teaching mathematics (4TM).
Descriptive statistics of the components of both questionnaires for the class teacher
programs are given in Table 3. We noticed that the distributions of the components
Enjoyment (ALM: U = 2030.5, p <.001, r = .38; ATM: U=2946.0, p =.025, r =
.19) and Confidence (ALM: U =1960.5, p <.001, r = .40; ATM: U=2571.5,p =
.001, r=.26) differed in both scales between the two programs, the attitudes in the
more mathematically focused program being more positive than in the less
mathematically focused program. There was also a statistically significant
difference in the attitudes of using IT in mathematics teaching (U = 2798.5, p =
.007, r = .20), this time in the favour of the less mathematically focused program.
Moreover, the differences in the distributions of Checking solutions (U = 2982.5,
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p = .033, »=.16) and Multiple solutions (U = 2761.0, p = .005, r =21) in ALM
were statistically significant between the programs.

ALM ATM
pgem | | S| lE ]SS5 |Ss]ole|5]s]s
< X s < g,
| 8|S LS T I I - (S S | &

Turku M 454 [416 |4.05 ([3.18 |3.52 (3.11 |4.10 (432 |3.30 [3.46 |4.04 [3.61
SD [0.423 | 0.686 [0.815 |0.872 [0.890 |0.877 | 0.611 | 0.447 [0.627 |0.734 | 0.788 | 0.826
Rauma |M 441 (397 1334 (325 [2.75 12.75 [4.11 1426 |3.09 [3.76 |3.55 [3.56
SD [0.661 | 0.695 [0.953 |0.741 [0.897 10.741 | 0.676 | 0.584 [0.685 | 0.723 | 0.970 | 0.833
Table 3: Descriptive statistic of the components of ALM and ATM for the
mathematically-focused program (Turku) and the non-mathematically-focused program
(Rauma)

We used K-means cluster analysis to group the students into classes with different
attitude profiles. The clustering was based on the twelve composite variables of
ALM and ATM. After exploratory analysis, the number of clusters was fixed on
three. According to the attitude profiles of the clusters depicted in Figure 1, Cluster
1 contains the students with the most positive attitudes. The prospective class
teachers in Cluster 2 have the lowest confidence both in learning and in teaching
mathematics. Interestingly, the use of IT for teaching and for learning mathematics
was higher in this group than in the other clusters. Cluster 3 contains the students
with the lowest mean values of the components, except for the ALM components
Confidence and Enjoyment and the ATM component Confidence. Cross tabulation
of the clusters revealed that the class teacher programs differed from each other
(¥*(2) = 19.43, p < .001). For the more mathematically focused program, 71% of
the PCTs belonged to Cluster 1, 10% belonged to Cluster 2 and 19% to Cluster 3.
For the less mathematically focused program, 39% belonged to Cluster 1, 33% to
Cluster 2 and 28% to Cluster 3.
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Figure 1: Mean values of the components of ALM and ATM in the whole sample and in
the clusters
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Discussion and conclusions

Based on our analysis, the PCTs seemed to have quite positive attitudes towards
teaching and learning mathematics. We interpret that PCTs consider mathematics
useful and emphasize its usefulness in their teaching. When learning mathematics,
they want to check the correctness of their solutions and also guide their pupils to
do so. They enjoy learning mathematics, and they believe that their pupils enjoy
learning mathematics as well. To some extent, they have a positive attitude towards
using IT for learning mathematics. In particular, they see the potential of using I'T
in order to foster their mathematics teaching and their pupils’ learning. They also
emphasize the importance of finding out multiple solutions when they are teaching,
but do not so much report doing so when learning mathematics themselves.
Although PCTs have formerly been reported as having negative mathematics-
related attitudes (Philippou & Christou, 1998), our findings are in line with recent
positive indications (Hourigan et al., 2016).

There are recent results showing that mathematics education programs may
have positive effects on PCT’s attitudes (Hourigan et al., 2016). Based on this
study, we cannot draw any conclusions whether the PCTs’ attitudes have changed
during our programs. However, we noticed that PCTs’ attitudes were more positive
in the program which has a mathematics and natural sciences test as a part of the
entrance examination. It seems reasonable to think that by selecting students with
good skills in mathematics and natural sciences, we also select students with
positive attitudes towards learning and teaching mathematics. Indeed, studies
suggest a reciprocal causality between achievement and affect (Hannula 2012).
Moreover, students with less skills and less positive attitudes towards mathematics
will probably apply to teacher education programs which have no entrance test in
mathematics. Hence, as a contribution to the reforms of the student selection
processes of the Finnish class teacher education, we may say that from the
perspective of PCTs’ attitudes towards mathematics our findings support using a
mathematics and natural sciences test in the entrance examination for the
mathematically focused programs.

Furthermore, we found out that attitudes towards teaching mathematics were
more positive than towards learning mathematics. It seems that the PCTs are more
willing to emphasize the use of information technology, checking the correctness
of solutions and finding multiple solutions in teacher’s work than in solving
mathematical problems personally. The PCTs had also higher confidence in
teaching than in learning mathematics. In addition to earlier studies (see, e.g., Unlii
& Ertekin 2013) showing a positive correlation between mathematics teaching
self-efficacy and mathematics self-efficacy, the similarity between the structures
of the instruments ALM and ATM has enabled us here to compare the different
components of the learning and teaching scales. We consider this comparison the
most important theoretical aspect of our study.
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We acknowledge the limitations of the new ATM scale, which should be
further developed to better correspond to the components of ALM. Although the
scales were validated by confirmatory factor analysis, some original items had to
be omitted from the composite variables and the Cronbach’s alpha values were still
quite low. In addition, the low response rate may compromise the external validity
of our results. Finally, we note that in the cluster with low mean values of
confidence and enjoyment, the PCTs’ attitudes towards the use of IT for both
learning and teaching mathematics were higher than in the other clusters. More
investigations about teacher’s attitudes towards the integration of IT and
mathematics teaching are needed (Goldin et al., 2016) and this interesting finding
should be further examined.
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An 1nitial analysis of post-teaching
conversations in mathematics practicum:
researching our own practice

Suela Kacerja and Beate Lode
Western Norway University of Applied Sciences, Norway

An initial analysis of post-teaching conversations about mathematics in a school-
based practicum setting is presented. Using data from the practice of mathematics
educators, insight is sought on ways for directing reflections to be more
mathematics-based. A scheme for planning teaching was introduced to student
teachers beforehand to bring into attention different aspects of mathematics
teaching. It was possible to detect some features in the conversations that have a
potential to develop into reflections about the mathematics. These features make it
possible to identify a potentiality zone, in addition to the evaluation-based and
subject-based discussions as suggested from earlier research. This paper fills a
gap in the research about student teachers’ reflections in practicum.

Introduction

The school-based practicum has an important part in training Student Teachers
(STs) which goes beyond the role of the university based courses. Grootenboer
(2005/2006) pointed out the need for it to include and induce critical reflections on
STs in order to make their experiences meaningful and helpful. Despite the
accepted importance of a good practicum, Haugan (2011) in his systematic review
of research about Norwegian General Teacher Education found out that there is a
dearth of research about STs’ reflections in their practicum period. @strem (2008)
as quoted in Haugan (2011) concluded in her study that STs look at the practicum
and their lectures at university as two separated practices, and that it is the teacher
education programme’s task to connect them both so that experiences from the
practicum can be used in teacher education. Zeichner (2010) pinpointed some
problems regarding the missing connections between teacher education and the
practicum, such as the STs’ missing feedback about their teaching practice as
learned in teacher education courses, and the missing connections between content
in the teacher education program and the teaching in practicum.

The field of practicum further triumphs over the field of teacher education
because its rules are familiar and comfortable for the STs (Nolan, 2012). Similar
results are described in a literature review (Haugan, Moen & Karlsdottir, 2013)
where surviving in the classroom and managing it are primary, while pupils’
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learning and its facilitation, and STs’ reflections about own learning become
secondary or are often missing (Bjuland, Jakobsen & Munthe, 2014; Brown &
McNamara, 2011; Rowland, Thwates & Huckstep, 2005).

We have noticed that STs tend to focus on the general pedagogical aspects of
teaching during the post-teaching conversations in school-based practicum. Such
aspects are what Shulman (1987) defined as ‘‘broad principles and strategies of
classroom management and organization that appear to transcend subject matter’’
(p- 8), but also learners and learning, assessment, educational contexts and
purposes (Blomeke et al, 2008). This is an important aspect of the teaching practice
and important knowledge for STs. But we as teacher educators are more concerned
about the STs’ developing thoughts about important aspects in preparing and
teaching a mathematics lesson such as the mathematical content, representations
used, and choice of examples.

We aim therefore with our research to find ways to integrate the course content
with the practicum and help STs to reflect on their own mathematical learning by
setting the scene for such reflections. One place where such reflections can develop
are the post-teaching conversations in practicum which we focus upon in this
paper. In order to search insight into features of the conversations that have a
potential to empower STs in their reflections about mathematics, we present and
analyze empirical data from the observation of our STs’ teaching and the post-
teaching conversations afterwards. In the next section we present a scheme for
planning mathematics teaching we have developed, that the students bring with
them in practicum.

The scheme for planning mathematics teaching and the Knowledge
Quartet
The aim for developing the scheme was to make students aware of the important
aspects a teacher of mathematics should take into account when planning teaching.
For this, we looked at the Knowledge Quartet (KQ), a framework that presents
four dimensions that can be used to observe STs’ mathematics-related knowledge
in practicum (Rowland, Thwates & Huckstep, 2005). The four dimensions are
employed in our study to inform the scheme that students use in their practicum.
The scheme starts with the mathematical theme to be taught, the aim stated in
the curriculum and translated in concrete mathematical ideas/points the teacher
wants to achieve with the current teaching. One of the dimensions from KQ is
transformation, and it is about preparing the mathematics content for teaching in
ways that help pupils understand it. Elements of this dimension are the different
representations such as oral explanations, written symbols, manipulatives, real-
world events or pictures (Lehr, Post & Behr, 1987) that are appropriate to achieve
the aims. Representations, and how they can give mathematics learners more
experiences with different sides of mathematical concepts, are an ongoing theme



Publications from NORMA 17 201

in our own teaching with STs. The choice of examples to bring about a
mathematical point, and their connection to the ideas the teacher wants the pupils
to work with, are included with the aim of making students aware of the importance
of intentionally and carefully choosing examples to use in mathematics teaching.

The connection dimension from KQ in our scheme is related to: questions
about what pupils have worked with earlier that can influence the present teaching,
and thoughts about the future teaching topics to which the current theme is
connected, different ways to solve the problems, and mathematical challenges
pupils can have with the concept at hand. The two latter are also connected to the
contingency dimension in KQ as a way to prepare STs about unexpected situations
in the classroom. Other elements connected to contingency (KQ) are: the different
questions to ask for developing good discussions in the classroom, for helping
pupils if they are stuck, for evaluating them and for planning further teaching. The
foundation dimension, students’ knowledge and beliefs about mathematics and its
teaching, is not explicitly placed in the scheme, but we encounter it in our
reflections.

Mathematics-based reflections and evaluative reflections

Johnsen-Hgines and Alrg (2010) identified two approaches of communication in
the classroom: the evaluative and the subject-based (here mathematics-based)
approach. Earlier, Johnsen-Heines and Lode (2007) used these approaches to
describe and analyze the post-teaching conversations that they as MEs conducted
with STs and Mentor Teachers (MTs). We use the two concepts similarly in our
study. In addition, we have integrated the scheme for planning mathematics
teaching in our lectures before the practicum period.

In our study, an evaluative approach is connected to those parts of post-
teaching conversations where participants point to what did go well or wrong in
the observed lecture, why choices were made, and how it could be done better.
Johnsen-Heines and Lode (2007) call this a retrospective perspective. While
Heines and Alra (2010) point to this approach as positive when used to learn from
mistakes, they also argue about obstacles it can bring for STs’ empowerment.

On the other hand, we aim to create possibilities for more mathematics-based
reflections with our students, reflections about the teaching and learning of
mathematics, as a way to connect the course content to the practicum. A subject-
based reflection is an “educational approach that aims to explore how the situation
might generate discussions for further development” (Johnsen-Hoines & Lode,
2007, p.321-322). These are the kind of reflections that take a future-oriented
perspective (Johnsen-Heines & Alrg, 2010), where critique toward the knowledge
is not seen as critique against the person itself. In terms of our study, such an
approach would focus more on what didactical possibilities offer the examples
chosen for teaching, what implications do the representations have for learning the
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current mathematical concepts, as well as other elements from our planning
scheme and KQ.

Using the two approaches, which we see as being a continuum where the
discussions flow, as tools for analyzing the post-teaching conversations, helps us
in identifying features that indicate potentials for empowering students in
mathematics-based discussions.

Background for the data collection

The aim with our research is to find ways to make the post-teaching conversations
in practicum more mathematics oriented and connect them to the teaching at our
institution. For this, we discuss in our own teaching about the important points in
planning a teaching session in mathematics and the planning scheme developed.
We use the scheme as one way to make STs aware of those points, but also as a
tool for supporting them in reflecting upon the mathematical content in the post-
teaching conversations. We might focus on one or more points from the scheme,
without aiming to go through all of them, and without allowing it to be limiting
our reflections. In the meetings before the practicum period, we shortly presented
the scheme for the MTs and expressed our expectations for the post-teaching
conversations to be mathematics-based.

The course we teach is a compulsory one in mathematics (30 ECTS) for all
elementary school STs in their second year. In our teaching, we look at areas of
mathematics for elementary schools from a perspective of teaching and learning,
with a focus on relational understanding (Skemp, 1976). Two school-based
practicum periods of 3 weeks each are organized in two semesters. STs are placed
in groups of 3-4 in different schools under the supervision of a MT from the school.
Both authors of this paper teach the course and are in charge of visiting them in
their practicum period in schools. We observe the STs while they teach
mathematics, we get the plan for the teaching beforehand, and after the
observation, we have a conversation with the whole group of STs and the MT if
available. In our observations, we focus on episodes that can be fruitful to discuss
with the students.

Data for our project were collected during practicum periods in primary
schools. In this paper we use data from one group of four STs. This is the first
practicum period for the year, a few weeks after the course start. STs have therefore
had little teaching in mathematics education at our institution beforehand. In our
observations they taught about word problems in two different fourth grades. Then
we audiotaped the post-teaching conversations with the STs and two MTs. We
focus here on the analysis of the conversation and use observations where needed
to inform the analysis.
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Analyzing post-teaching conversations

Both authors analyzed the data starting from the two approaches, the evaluative
and the mathematics-based conversations. In addition, we wanted to look for
features of the post-teaching conversation that can help us as Mathematics
Educators (ME) to direct the conversation towards reflections about the
mathematics, its teaching and learning. We differ therefore between the concrete
elements from KQ being discussed. The chosen excerpts represent such elements.

Different ways to solve a problem- a potentiality zone in a continuum
between an evaluative and a mathematics-based discussion
In our analysis of the post-teaching conversations, it was sometimes difficult to
categorize an excerpt as being evaluative or subject-based. Such a categorization
would not be our final aim either, as we want to find out more about potential
features to foster mathematics-based reflections. In order to identify such features,
looking for elements from our scheme that were adapted from the KQ dimensions,
helped us find the focus and lead the conversation towards the desired direction.
We discuss such an example here, bringing our perspective in how we use the
scheme with dimensions from KQ to spot such potential and help the STs to use
that potential.

Often the conversation starts by pointing at what happened in the classroom.
In the excerpt, a student (ST1) is talking about different ways of solving a word
problem.

ST1: They solve it in different ways...They solve it in different ways.

They think in different ways. Some do it in their head.
ST2: Yes.
ST1: Some line up the numbers. Some do it mentally...in (laughs)
some special ways.

In the first sentence, ST1 points to the different ways pupils can choose to solve a
problem. This can connect to several dimensions from the KQ, as used in our
scheme. It is related to connection: thinking about different solutions can be a way
to precede the cognitive demands of the task; transformation: it can foster thinking
about the choice and the potential of the example; contingency: it can to some
degree help students to be prepared for unexpected solutions; foundation: it tells
about students’ knowledge, understanding and beliefs. This is not a mathematics-
based discussion as it does not discuss the mathematical and didactical details, but
it remains on a general level. It is not an evaluative discussion either; the student
is not giving any evaluation of the situation. We identify here a zone between an
evaluative and a mathematics-based discussion, where the excerpt can temporarily
be placed, a potentiality zone. Such a zone is recognized by the possibilities it
offers for the participants to inquiry the topic at hand and discuss in depth the
didactical aspects of the concept or task. The sentence’s potential could be
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developed by discussing for instance the chosen task and how it responds to the
goals that STs had with their teaching as connected to the transformation
dimension (KQ), thus becoming mathematics-based. Instead, the ST in the other
sentences further explains what she means by the different ways: the ways of
setting up the numbers to get the answer to the problem, focusing on the
calculations, the technicalities of the task, not on its structure. It can be interpreted
as if the ST thinks of some special pupil when she laughs about “special ways”
they solve problems. This can be one kind of evaluative discussion, and the first
sentence's potential is not fully used. Thus, one ME tries to direct attention into
being more specific, in order to realize that potential, and asks about the text of the
word problem students were working with: A marching band is lined up in four
rows. There are nine children in each row. How many children are there altogether?

The discussion continues with STs telling what they did in the classroom when

they drew on the smart board different solutions that pupils presented. These are
elements of an evaluative discussion, helping to make the conversation more
concrete. The ME asks again, in order to conduct a mathematics-based discussion,
about the different solutions STs had thought of, and answers are:

ST1: In the drawing we didn’t have...there we had these four...but
when you actually calculate it, then you can take...Ok there are
four, right? And they know...they know how to multiply by 4, so
four times nine. But you can also do it 9+9+9+9, right, if you want
to do it. Or 9+9 is 18, and 9+9 is 18, and so 18+18, right? And
they had...

ST2: Yes. Or multiply by 2.

At first, ST1 starts by pointing back to the drawing they had on the smart board,
where four rectangles represented the four rows. This can serve as a concrete
example that later can be taken up to further reflect about mathematics. She then
pulls out some information about the pupils: they have learned to multiply by four,
so they could use that as one way to solve the problem. Here the ST moves back
and forth between a retrospective and a future-oriented perspective. Next, she
thinks of multiplication as repeated addition as a possible approach. She then adds
the repeated addition but using the associative rule, by grouping two and two nines,
and then adding up the two eighteens. ST2 mentions multiplication by two as an
alternative to adding the two eighteens. Now the discussion is based on concrete
examples of mathematics, the student is not into evaluating pupils’ responses. It is
a mathematics-based discussion to a certain degree. In more depth, the ST could
e.g. reflect upon pupils’ mathematical knowledge by looking at the different
solutions.
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Pupils coming with a new solution- two levels of conversation as experienced
by participants

During the observations, one ME heard one pupil use 40-4 as a solution to the
marching band problem, but the STs missed the pupil’s suggestion, and they are
stuck as if trying to excuse themselves for this. It is not what the ME wants, as the
aim is to reflect upon potentially fruitful situations, in this case discuss how the ST
should make sense of pupils’ answers. Thus, the ME asks again in an attempt to
direct the discussion towards the suggestion itself, and how STs would follow this
up with the rest of the pupils:

ME: ... Is that a way to solve it?

ST1: Yes, because he can round it up. He can take 10 times, or 4 times
10.

ST2: Mmmh

ST1: Is that you were thinking about? He gets 40 and then...

ME: ... yes, for example...

ST1: ... takes minus 4. Because then he must subtract one?

After approvals from the MT and other STs, ST1 adds in a questioning tone:
ST1: So ... but that is also a way to solve it. Right?

ST1 is now trying to answer the question, but she is often asking for confirmation.
It seems as if she feels like she and her reasoning are being evaluated. On the other
hand, the ME is trying to use the situation where a pupil presents an unexpected
solution as contingency (KQ), in order to invite STs into a mathematics-based
discussion. There are clearly two levels and two different ways of experiencing the
conversation by the participants, the ST and the ME. However, some reflection
can be found in the conversation, and thus a potential for mathematics-based
discussions, as ST1 tries to make sense of pupil’s reasoning. A feeling of safety
can be a condition for the student(s) to fully participate. The knowledge is not set
free, the ST experiences it as connected to herself. The ME chooses not to continue
with the topic. Maybe inviting the other STs into the conversation from the
beginning would have helped ST1 to feel safer in reflecting upon the example.

Pupils’ solutions of word problems and equations- premises to participate in
a discussion
The example presented below is about highlighting the connections between
different concepts in mathematics (related to the connection dimension in KQ). In
the excerpt, pupils have worked with another word problem: Alex payed 1400
NOK for a pair of trousers, one T-shirt and a sweater. The trousers cost 620 NOK,
the sweater 590 NOK. How much did the T-shirt cost?

The ME and the MT have already discussed together the connection of this
word problem to equations during the observations. Now the ME tries to invite
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STs in the post-teaching conversations. After re-reading the task, the ME tries to
connect it to the solution drawn on the smart board.

ME: It was drawn very nice on the table ... (STs are nodding, saying
yes ...)
ME: Because it was... It was one of the pupils that drew three boxes

first, 620 in the first one, 590 in the next one, and a question mark
in the third. Right? And then a new box that goes under all three,
that will then be as much as (those). What is missing here, I mean
under the question mark? I mean it is...it is almost a written
equation, right?

620 590| ?
1400

Figure 1: The representation of the word problem on the smart board

This is an example of connection (KQ), where MEs try to link the word problem
and pupils' work to equations, which they will meet later. Our aim as MEs was to
direct the STs’ attention to the connections between mathematics concepts and
structures. The ME starts with an evaluation about the nice drawing of the
problem’s solution on smart board. This evaluation is a positive reinforcing of ST’s
work to encourage them to participate in the conversation. They participate by
nodding, saying yes, or that they will try it next week. A more active participation
could have occurred, but, in order to participate in mathematics-based discussions,
both parts need to have the right premises, such as the knowledge needed.
Algebraic thinking had yet not been addressed in the course. In terms of KQ, this
is an example of foundation; it is likely that STs did not see the connection the ME
is pointing at, as they do not participate in elaborating it. Still, this conversation is
valuable for MEs as it informs about what MEs need to focus at in the lectures.
This excerpt can be placed in a potentiality zone and be used to talk about
connections in mathematics, but its potentiality cannot be fully exploited now. This
will be used further to reflect upon algebraic thinking as a part of our lectures in
mathematics.

Conclusions

From the analysis of the post-teaching conversations, we conclude that the
questions we ask during discussions are influencing the reflections and their
direction into being mathematics-based. In addition to the evaluative and subject-
based discussions used by Johnsen-Heines and Lode (2007), we identified a
potentiality zone, as a crucial moment to ask appropriate questions. The zone is
possible to spot when looking for different elements from the planning scheme.
These zones cannot always be fully used in the moment they occur. As identified
in the analysis, necessary conditions for fully participating in a mathematics-based
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reflection are related to feelings of safety for the STs as in the third excerpt, and
knowledge of mathematics and its teaching, as in the last one. We can invite
students to discuss about mathematics, but it is up to them to accept the invitation
to reflect.

Other potentiality zones could have been used to conduct reflections. Such an
example are the representations chosen for the problem solved, which belong to
the transformation dimension (KQ). Drawing was constantly used in the
classroom. A potential for mathematics-based discussions would be to address the
influence drawing and visualization have on pupils’ problem solving and learning.
This is also connected to the foundation dimension, as it is in the content of our
mathematics course.

The use of the planning scheme inspired by KQ resulted helpful in both
holding the focus on the mathematics and defining the potentiality zones, and to
further analyze the data in addition to the two conversation approaches (Johnsen-
Hoines & Alrg, 2010). Similarly, Turner (2012) found that using KQ to support
beginning teachers in focusing their reflections on the mathematical content of
their teaching, in collaboration with others, brings about improvement of their
mathematical knowledge for teaching. The potentiality zone, combined with the
scheme for planning teaching, helps us to get more insight into when and how to
ask questions to foster STs’ reflections about mathematics.
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The mathematics discourse in instruction (MDI) framework was developed in
South Africa, but it may be useful also in other contexts. This framework was
developed to provide nuanced interpretations of the mathematics made available
for students to learn. In this paper, we discuss possible opportunities and
challenges of using the MDI framework for research in a Norwegian teacher
education context. Overall, we suggest that the framework provides opportunities
for highlighting the complexities of mathematics teaching. However, two
challenges emerged from using the MDI framework for data analysis. First, the
MDI framework does not clearly define what should count as formal mathematical
language, and this makes it difficult to distinguish between subcategories. Second,
the MDI framework does not distinguish between mathematically valid and invalid
responses in teachers’ classroom discourse, and this might limit its usefulness in
some situations.

Introduction

Among the numerous frameworks for investigating mathematics teaching, this
paper has a focus on the mathematics discourse in instruction (MDI) framework.
This framework was developed to provide nuanced interpretations of the
mathematics made available for students to learn (Adler & Ronda, 2015), and it
represents a shift of focus from investigating knowledge for teaching mathematics
(e.g., Hoover, Mosvold, Ball, & Lai, 2016) to analyzing mathematics embedded in
the work of teaching (e.g., Ball & Forzani, 2009). Simultaneously, it illustrates a
turn towards grounding teacher education in practice (e.g., Zeichner, 2012). The
framework has previously been used to examine connections between examples,
tasks and their accompanying explanations (Adler & Venkat, 2014; Venkat &
Adler, 2012). It has also been used to investigate whether and how exemplification
and explanatory talk enable or constrain students’ opportunities to learn (Adler &
Ronda, 2017a). Furthermore, an adapted version has been used to analyze
textbooks (Ronda & Adler, 2016). Recently, Adler and Ronda (2017b) discussed
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how and why the framework might influence professional development of
mathematics teachers.

In their presentation of the MDI framework, Adler and Ronda (2015)
recognize that the framework was developed in a specific context—the South
African educational context—and they query its potential beyond this context.
With this as a point of departure, we recently discussed a possible use of the MDI
framework in a Norwegian teacher education context (Fauskanger & Mosvold,
2017). Focusing on exemplification and student participation, we suggested that
the MDI framework could support mentoring conversations in the field placement
of pre-service mathematics teachers and help pre-service teachers as well as
mentor teachers focus on the mathematical content. In this paper, we extend these
results and investigate opportunities and challenges of using the MDI framework
as analytic framework in a Norwegian teacher education context, focusing on
explanatory talk (shaded in Figure 1). We approach the following research
question: What opportunities and challenges emerge when using the MDI
framework to analyze data from a Norwegian teacher education context?

Theoretical framework

In recent years, mathematics education research has been influenced by
sociocultural theories that investigate learning and development in terms of
communication and discourse (e.g., Sfard, 2008). The MDI framework is situated
in this tradition, as it aims at capturing the complexity of mathematics teaching by
concentrating on the discourse involved in the work of teaching mathematics
(Adler & Ronda, 2015). The framework characterizes mathematics teaching as a
sequence of examples and tasks along with the explanatory talk that follows (Adler
& Ronda, 2014). The object of learning (Figure 1) is often announced explicitly
and relates to the mathematical content and/or skills that students are expected to
learn in a given lesson (Adler & Ronda, 2015). An example, or a sequence of
examples and related tasks (i.e. exemplification), is often used to focus students’
attention towards the object of learning. Explanatory talk is another integral part
of the interaction between teacher and students, and amongst students (student
participation). Student participation relates to what the students are invited to say,
and if they are invited to speak and reason mathematically. In the MDI framework,
student participation is seen from the point of how a teacher engages with the
students during whole class discussions (Adler & Ronda, 2015, 2017a). In Figure
1, the four interacting components of the MDI framework are presented:
exemplification, explanatory talk, student participation (“learner participation” is
used by Adler and Ronda (2015)), and the object of learning. These components
characterize mathematics teaching across classroom practices and contexts.
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Object of learning

l

) . . . Student
Exemplification Explanatory Talk Pasticipation
I Examples l I Tasks l l Naming l I Legitimations I

Figure 1: Constitutive elements of MDI and their interrelation (adapted from Adler &
Ronda, 2015, p. 239, shading added).

Even though each element of the framework is inevitably connected with the other
two, we focus only on explanatory talk in this paper (shaded in Figure 1).
Explanatory talk is crucial in teachers’ presentation of the mathematics that
students are supposed to learn, but explanatory talk also includes analysis of the
naming of objects as well as legitimation in episodes of a lesson (Adler & Ronda,
2015). In the MDI framework, the emphasis on explanatory talk draws on
Bernstein’s (2000) insight that continuous evaluation is at the core of pedagogic
practice. The discourse in a mathematics lesson thus continuously transmits
criteria as to what counts as mathematics (Bernstein, 2000; Adler & Ronda, 2015).
The transmission occurs “through messages that are communicated as to what is
valued with respect to the object of learning” (Adler & Ronda, 2017a, p. 69). The
purpose of explanatory talk is naming and legitimating the mathematical issues
discussed in examples or tasks (Adler & Ronda, 2015).

The MDI framework distinguishes between different domains of legitimation.
For instance, legitimation can be reached within the mathematical domain, but also
in non-mathematical domains. Legitimation can be based on the authority of the
teacher, or it may refer to the curriculum. In the mathematical domain, Adler and
Ronda (2015) distinguish between what counts as mathematics in a particular or
local instance (L), and mathematics that has some generality. In the latter, a
distinction is made between partial (GP) and full generality (GF). Non-
mathematical criteria (NM) are also identified, as everyday knowledge or
experience (E), non-mathematical visual cues (V) and if what counts is stated
assigning authority to the position (P) of the teacher. The criteria for what counts
as mathematics across episodes in a lesson relate to “the opportunities they open
and close for learning” (Adler & Ronda, 2015, p. 244).

Naming of mathematical objects focuses students’ attention in certain ways.
Based on the assertion that a critical element of talk in the mathematics classroom
is how objects focused on are named (Sfard, 2008), Adler and Ronda (2015, p.
244) define naming as “the use of words to refer to other words, symbols, images,
procedures or relationships.” Within episodes across a lesson, naming is
categorized as either colloquial (NM, non-mathematical) or mathematical (see
Table 2). In relation to mathematical naming, mathematical words used as labels
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or to read a string of symbols (Ms) are distinguished from formal mathematical
language used appropriately (Ma). The summative judgment related to the level of
naming “depends on movement across colloquial and formal mathematical naming
in the lesson” (Adler & Ronda, 2015, p. 244).

Methods

In the present paper, our focus is on the process of using a particular analytic
framework rather than on the results that emerge from analyzing data with this
framework. The empirical data are thus used for the purpose of highlighting some
possible opportunities and challenges of using the MDI framework in a certain
context. We draw upon data from a cross-disciplinary project in Norwegian teacher
education: Teachers as Students (TasS). The TasS project has a focus on teacher
learning in field practice and involves student teachers from four subject areas —
including mathematics. We draw upon classroom observations of one of the
student teachers from the TasS project. At the time of data collection, Martin
(pseudonym) was in the fourth semester of his teacher education program. In the
previous semester, he had completed all required courses in mathematics. In the
Norwegian education system, there are differentiated primary and lower secondary
teacher education programs for years 1-7 and years 5-10. Martin attended the
program for years 5-10. Based on analyses of data from group interviews, Martin
stood out as a special case (Yin, 2003). He was one of two student teachers in the
project who selected mathematics because they liked it and were good at it.

To describe the mathematics made available to learn during student teachers’
instruction, the unit of study is a lesson (Adler & Ronda, 2014). We focus on a
lesson taught by Martin in field practice. The object of learning in this lesson is
multiplication of fractions, constituted by an algorithm for multiplying fractions,
and the students are expected to learn how to multiply two fractions. To focus the
students’ attention towards the object of learning, Martin presented a sequence of
examples and accompanying tasks. Based on shifts in content focus in these
examples, we have divided the introductory part of the lesson into three
mathematical episodes (see Table 1).

Episodes and codes Examples
Episode 1. Content from a previous lesson. Example 1: 3 X S
20
Example 2: 3 X 2%
Episode 2. Multiplying fractions and representing Example 1: 1.3
fraction multiplication using the area model. 3 4
Example 2: 3%3
Episode 3. Multiplying fractions. Example 1: 3
77 2
Example 2: 4 X %

Table 1: Examples used in Martin’s lesson (see also Fauskanger & Mosvold, 2017, p. 47).
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These three episodes were then analyzed by use of the MDI framework. For this
paper, we selected an excerpt from episode 1 as empirical example. The excerpt
was selected because it illustrates the variation of opportunities and challenges that
emerged when we used the MDI framework to analyze the data—focusing in

particular on explanatory talk (Table 2).

Explanatory talk

Naming Legitimating criteria
Within and across episodes Legitimating criteria:
word use is: non-mathematical (NM) visual (V), e.g. cues are

colloquial (NM), e.g. everyday language and/or
ambiguous pronouns such as this, that, thing, to
refer to objects in focus;

math words used as name only (Ms), e.g. to
read string of symbols;

mathematical language used appropriately
(Ma) to refer to other words, symbols, images,
procedures, etc.

Use of colloquial and mathematical words:
Level 1—NM, there is no focused math talk, all
colloquial/everyday;

Level 2—movement

between NM and Ms, some Ma;

Level 3—movement between colloquial NM
and formal math talk Ma

iconic or mnemonic;

positional (P), e.g. a statement or assertion,
typically by the teacher, as if ‘fact’;

everyday (E).

Mathematical criteria:

local (L), e.g. a specific or single case (real-life or
math), established shortcut, or convention;
general (G) equivalent representation, definition,
previously established generalization, principles,
structures, properties, which can be

partial (GP) or ‘full’ (GF).

Criteria for what counts as mathematics that
emerge over time in a lesson and provide
opportunity for learning geared towards scientific
concepts.

Level 0—all criteria are NM, i.e. V, P, E;

Level 1—criteria include L, e.g. single case;
Level 2—riteria extend beyond NM and L to
include generality, but this is partial GP;

Level 3—GF math legitimation of a concept or
procedure is principled and/or derived/proved

Table 2: Short version of the analytic framework (adapted from Adler & Ronda, 2015, pp.
242-243).

Analysis and discussion

Martin introduces the lesson by reminding the students of how they multiplied
whole numbers with fractions in the previous lesson. He repeats that they can write

. 5 .
any whole number as a fraction. As an example, he presents 3 X % and explains
that 3 can be written as the (improper) fraction % Upon request, one of the students

explains how to continue by multiplying numerators and denominators, and the
episode continues as displayed in Table 3.
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Line, code Transcript*

given to

Martin’s talk

7-14 7. M: (repeats what a boy said that 3 can be written like the (improper) fraction %) We take three

times five and one times twenty (NM/Ms/L). or like we did it yesterday (P). no, last week.

Criteria: Thursday, yes, Thursday. (writes 3 x %) Three times five over twenty (NM/Ms/P). (Turns towards

P. Pi. the students, and then walks back towards the blackboard and wipes out the example)

VL 8. M: Another thing that is also important, and that some of you don’t always remember, is if we

» L Liaw, had (starts writing on the blackboard while looking down at his notes. Writes 3 x 2 %. i.e. a whole

GPiay number times a mixed number). Like that one. If we have three whole fimes two whole and a
quarter. Then I observed that many of you ook three times two and three with one. (Ms). Then we
get six and three quarters (Ms/L). That is not completely correct (Pinv/GPinv). What you must

Naming: remember, is fo convert it (points at the number 2), so that we get (first writes down a number 3)

(GPigy). Can anyone tell me what fraction we get (Ms)? (points at the mixed number)
NM.Ms.Ma 9. S3: Nine fourths (Ms).

10. M: Yes, nine fourths (Ms). Four fourths one time, p/us four (Linv) more, plus one fourth, is
nine fourths (Ms/L) (writes 3 x ;). And then we get? (asks a boy)

11. S4: Eh?
12. M: Nine times three (Ms)?
13. S4: Twenty-seven (Ms).

14. M: Twenty-seven (Ms). (writes, 24—7) And then we can convert it back again (NM/P), and then
we see that it is the same as (L) ... (walks over to write it on the blackboard, but then he hesitates a
little bit. Writes 6> (M), which is correct, but he just said that they could not calculate this directly)
Eh, yes. (thinks a little bit) That is not completely right (Pinv). but, anyway. you must remember to
convert (NM/Piny) (circling in the mixed number with his hand (V)). because if we had
something else here now (NM/Piny) (points at 2 % (V)) (wipes out what he wrote on the blackboard

to take a different example). I know that some of you fail at this too. That is. if we had (wipes out
the number 4 in the denominator of the mixed number and writes 2 instead) two here now, then
many of you manage to write the fractions as a whole number (Ms) (writes 1 on the other side of the

blackboard) plus for instance three over two (Ms/NM) (writes, 1 ; Steps to the side and points at

what he just wrote). Then you can take away two more here (points at the number 3 in the
3 1
numerator), and then you get the same as two and a half (writes 1 5 2 E) (Linv).

*Key: M, Martin; S, student; italics for colloquial, underlining for formal language and bold type for legitimating criteria.
In addition, bold types are used for MDI codes.

Table 3: Analysis and coding of explanatory talk from excerpt of episode 1.

When focusing on Martin’s use of colloquial and mathematical talk (naming), we
notice from the codes that Martin’s non-mathematical talk (NM) involves
everyday language like “convert” (line 14)—in Norwegian, he said “gjore om”—
and other utterances includes use of pronouns (e.g., “like that one™). The non-
mathematical talk is frequent throughout the lesson, but there is also some
mathematical talk that involves use of mathematical words as labels (Ms, e.g., line
7), reading strings of symbols (Ms, e.g., line 12), and naming fractions (e.g., line
10). From this, we suggest that Martin’s use of colloquial and mathematical talk
in this excerpt appears to be on level 2 (see Table 2), since there is a certain
movement between non-mathematical talk and use of mathematical words as
labels (Ms). Formal mathematical language is rare in Martin’s lesson.
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Although the MDI framework provides some interesting opportunities to
observe and evaluate the mathematical talk in a lesson, some challenges are also
involved. For instance, we find it difficult to distinguish between colloquial
language (NM), mathematical words used for naming (Ms), and appropriate
mathematical language (Ma). For instance, in line 7, Martin explains: “We take
three times five and one times twenty,” and later in the same utterance he says,
“Three times five over twenty”. Reading a string of symbols by using the number
words “three”, “five” and “twenty” can be interpreted as mathematical words used
for naming (Ms). When Martin uses the word “times” instead of “multiplied by”
however, it can be argued that this is more of a non-mathematical, or colloquial,
language. On the other hand, this word use is quite common, and even
mathematicians might say it like this. The challenge then is to decide if this is non-
mathematical word use (NM), use of mathematical words for naming (Ms), or
perhaps even appropriate mathematical language (Ma). This might not be a major
issue, but the MDI framework does not define what counts as formal mathematical
language, and coders are left to make a decision based on their interpretation.
Analysis of naturally occurring talk in mathematics classrooms involves frequent
challenges in making such analytic decisions. A further development of the
definitions of codes in the MDI framework might be necessary. On the other hand,
the discussion of what counts as formal mathematical language is an ongoing
discussion that might yield different results across historical and cultural contexts.

When considering the next element of explanatory talk in the MDI framework,
we observe that Martin uses a variation of mathematical and non-mathematical
legitimating criteria. The non-mathematical legitimating criteria are visual (V, line
14) and positional (P, lines 7 and 14). Applying the MDI framework for analyzing
Martin’s lesson clearly indicates that Martin’s way of legitimating mathematics for
his students is positional. We also observe that visual legitimating criteria are
frequently used, and these observations illustrates some of the opportunities of
using the MDI framework.

However, our analysis of legitimating criteria in this excerpt from the
transcripts also displays some challenges. We observe that parts of Martin’s
explanatory talk contain invalid responses and statements. For instance, in line §,

Martin suggests that multiplying 3 with 2 i by first multiplying 3 with 2 and then

with the fraction (%) is incorrect. It appears to the observer that Martin himself has

misunderstood this, and the explanation he presents to the students is thus invalid.
In line 14, Martin repeats this invalid explanation (Pinv), and he argues that the
students must always remember to convert a mixed number into an improper
fraction before multiplying. The mathematical legitimating criteria used by Martin
are both local (L, lines 7, 10 and 14) and general (level 2). Full generalization (GF)
was visible in other parts of the lesson, but the extract presented in this paper only
includes partial generalization (GP). In line 8, his partial generalization is incorrect
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(GPinv) when he contends that the students must always remember to convert the
whole number into an improper fraction before multiplying. We have introduced
the use of subscript in our codes (e.g., GPiy) to indicate incorrect or invalid
responses. The MDI framework does not include this option.

Conclusion

The MDI framework was developed in a South African context, but Adler and
Ronda (2015) called for further explorations of its use outside this context. We
have previously argued that the MDI framework may be useful for supporting the
development of ambitious mathematics teaching in the Norwegian teacher
education context—possibly as a tool for mentoring student teachers (Fauskanger
& Mosvold, 2017). In the present paper, we have investigated opportunities and
challenges of using the framework to analyze data in the Norwegian teacher
education context. Overall, we found the application of the MDI framework to be
successful. Most of the codes seem to work well across contexts, and we suggest
that the framework might be useful for highlighting the complexities of
mathematics teaching also in a Norwegian teacher education context. The coding
allows for evaluating the level of the mathematical content made available for
students to learn, and this is also a benefit of the framework. Our analysis also
indicates some challenges of using the MDI framework for data analysis, however,
and we highlight two of these in the following: 1) lack of definition and difficulty
in making distinctions between subcategories, and 2) dealing with invalid
responses.

First, the MDI framework does not clearly define what should count as formal
mathematical language, and this makes it difficult to distinguish between
subcategories—in particular related to naming. The question of what should count
as formal mathematical language is complex, but it should be faced when the
degree of formal mathematical language is used for the coding of levels. Second,
the MDI framework does not involve a way of dealing with invalid responses in
teachers’ classroom discourse. For instance, Martin’s legitimating criteria
involved both local and partial generalization, which indicates level 2. However,
his partial generalization was incorrect, and we suggest that the framework should
include a way of dealing with this in the coding.

The results from our investigations of using the MDI framework in analysis of
data from a Norwegian teacher education context might provide some relevant
information regarding future development and use of the MDI framework. Some
of the observed challenges may be local, and we are aware of the limitations of the
study and the example presented here, but we suggest that the observations made
in the context of this study are relevant also beyond the Norwegian teacher
education context. In their initial presentation of the framework, Adler and Ronda
(2015) indicated that it may be difficult to distinguish between some of the
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categories in the MDI framework, and our experiences confirm these challenges
in a different context and provide some possible explanations and implications for
extending the framework to avoid such challenges.

Finally, it might be argued that the episode analyzed in this paper represents a
kind of teaching where the MDI framework is less relevant to use. From our
experience, invalid responses and misleading statements frequently occur in the
mathematical discourse of pre-service, and we have reason to believe that this is
not only so in the Norwegian teacher education context. The MDI framework has
a potential to evaluate the mathematical content made available for students to
learn and highlight areas of problems and possibilities for improvement (e.g.,
Fauskanger & Mosvold, 2017), and we therefore suggest that it is relevant to use
also for analysis of classroom discourse that is problematic—Ilike the empirical
example that we discuss in this paper.
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This paper reports on a study that measured development of Mathematical
Knowledge for Teaching (MKT) in preservice teachers by using a pre-post design
before and after a mathematics course in initial teacher education. The sample
comprised all pre-service teachers from 8 teacher education colleges in Malawi
and were tested using adapted measures from the Learning Mathematics for
Teaching project in the United States. A paired sample t-test, using N = 1,223 of
the pre-service teachers’ pre-test (M = -0.069, SD = 0.950) and post-test (M =
0.070, SD = 1.044) MKT scores, showed a significant improvement in the pre-
service teachers MKT (t(1,222) = -4.476, p < 0.001). There is also a significant
correlation between pre- and post-test scores (r = . 419, p <.001).

Introduction

In Malawi, students’ achievement in Mathematics is low at both primary and
secondary school levels and has been an issue of concern for the past decade
(Kazima & Mussa, 2011). The low achievement has been demonstrated in national
examinations and in the Southern and Eastern African Consortium for Monitoring
Educational Quality (SACMEQ) tests for grade six. For example, in the SACMEQ
IIT tests, Malawi was one of the two lowest performing countries (SACMEQ,
2010). Looking at the details of the performance by Malawi grade six students, it
was found that more than 90% of the students were operating at basic numeracy
level, which is three grade levels below their expected level of achievement. Many
factors contribute to Malawi’s low achievement including large class sizes, limited
teaching and learning resources and quality of teachers (Kazima, 2014). Although
these factors are connected and need to be addressed together in order to improve
the quality of education in Malawi, the quality of teachers is most important
because a well qualified teacher will be able to cope and teach better within the
limited circumstance of Malawi context than unqualified teacher (Kazima, 2014).
Furthermore, the other factors also affect countries like Lesotho and Zimbabwe
that scored higher than Malawi on the SACMEQ 1II test, hence teacher quality
seems to be the main factor for Malawi’s low achievement (Kazima, 2014;
SACMEQ, 2010).
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The quality of teachers has been a challenge for Malawi since the introduction
of free primary education in 1994 as this resulted in more than 65% increase in
enrolment in primary school within one year; from 1.9 million in 1994 to 2.9
million in 1995 (Kazima, 2014). The enrolment has continued to increase over the
years such that it rose to 3.6 million in 2008 and currently is estimated at 4.5
million (Ministry of Education, Science and Technology, 2016). Consequently,
there was a huge shortage of qualified teachers resulting in the employment of
many unqualified teachers. Furthermore, the Malawi initial primary teacher
education (IPTE) program was changed in both duration and structure, reducing
from three to two years and with the first year full-time at the teacher education
colleges and the second year full-time at a school completing teaching practice.
There are eight public teacher education colleges in Malawi, and they are all
boarding schools.

We are interested in this IPTE program and how well it prepares teachers to
teach mathematics in primary schools in Malawi. Our interest is informed by
research that long established that teachers’ knowledge is crucial in teaching
(Shulman, 1986; Ball, Hill & Bass, 2005) and that students’ achievement is
positively correlated to teacher’s mathematical knowledge for teaching (MKT)
(Hill, Rowan, & Ball, 2005). Therefore, in this study, we investigated whether or
not the Malawian IPTE program develop pre-service teachers’ MKT through the
first year of mathematics course in the program.

Background and related literature

It is now well known that teachers need various forms of knowledge for teaching
effectively. Since the seminal work of Shulman and his introduction of the term
pedagogical content knowledge (Shulman 1986), many researchers all over the
world have studied teaching in an attempt to understand what this knowledge
entails. The earlier works of Ball and colleagues at the University of Michigan in
the United States (e.g., Ball, Hill & Bass, 2005) and of Adler’s QUANTUM project
at University of the Witwatersrand in South Africa (e.g., Adler, 2005) focused on
examining what this knowledge is in Mathematics. They described in detail
Mathematical Knowledge for Teaching (MKT), what it is, why it is important, and
what it looks like in specific mathematics concepts such as fractions,
multiplication, probability and functions (e.g., Kazima, Pillay, & Adler, 2008).
What was not clear at the time and what is still debated, is how teachers would
acquire such knowledge. Ball, Thames and Phelps (2008) further categorized
Shulman’s subject matter knowledge into three; Common Content Knowledge
(CCK), Specialized Content Knowledge (SCK) and Horizon Content Knowledge
(HCK). This study focuses on only CCK and SCK. CCK is described as
mathematical knowledge that is used in teaching, for example how to perform
some algorithms, which is also common to other professions that use mathematics.
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While SCK is described as the mathematical knowledge which is unique to the
work of teaching and not needed in other professions. An example of SCK is
knowing why one can ‘invert and multiply’ when dividing by fractions. A teacher
should be able to explain this and demonstrate with examples to students. As Ball
et al. (2008) demonstrated, CCK and SCK are two of the six sub domains of MKT.

The work of Ball and colleagues extended to the Learning Mathematics for
Teaching (LMT) project where they developed measures of MKT—called the
LMT-measures. These measures have been adapted and used in other countries
and in different contexts, for example, Norway in Europe (Fauskanger, Jakobsen,
Mosvold, & Bjuland, 2012), Indonesia in Asia (Ng, 2012) and Ghana in Africa
(Cole, 2012). The LMT measures have been found to be useful in exploring
teachers’ mathematical knowledge and mathematical reasoning in teaching
scenarios of specific concepts (Adler & Patahuddin, 2012). We adapted some of
the LMT measures for use in the Malawi context to measure the development of
some aspects of MKT through the first year of the pre-service teachers’ IPTE
program.

Later and recent work of Adler and the Wits Maths Connect project has
progressed from describing MKT to using the knowledge in teaching (Adler &
Ronda, 2017). They offer a conceptualization of how MKT can be used in teacher
education, especially through professional development of mathematics teachers.
They suggest a Mathematical Discourse in Instruction (MDI) framework that
shows how teacher knowledge can be used in planning and implementing
mathematics lessons (Adler & Ronda, 2017). Thus, they are making clearer how
the knowledge for teaching can be acquired by teachers, which was not clear
before. This is important to us because our overall aim is to improve quality of
teacher education in Malawi, and we can do that if we find ways of developing the
student teachers” MKT through initial teacher education. Furthermore, we learn
from our own previous work (Jakobsen & Kazima, 2015) and that of other
researchers that mathematics teacher education that is centered around MKT can
be effective (e.g. Adler & Patahuddin, 2012). As research has shown, students
taught by teachers with a high MKT score did better on tests compared to students
taught by teachers with lower MKT score (Hill, Rowan, & Ball, 2005; Kane,
McCaffrey, Miller, & Staiger, 2013), even when the teachers in proceeding years
were randomly assigned students and the students were retested (Kane, McCaffrey,
Miller, & Staiger, 2013). Hence, this motived us to measure student teachers” MKT
in Malawi before and after the mathematics teacher education course to see the if
it had an impact on the development of their MKT.

Design and Methodology
We applied a pre- and post-test design to measure teachers’ mathematical
knowledge for teaching. The measures used for this purpose were adapted LMT
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measures with number concepts and operations items. Number concepts and
operations was chosen because it is one of the main focuses of the Malawi IPTE
program as defined in the Malawi national curriculum for IPTE. Adaptation of the
measures was completed in three stages. The first stage was to select the most
appropriate itmes for our pupose from the available LMT instruments. This
included aligning items in each available LTM form to Malawi’s mathematics
curriculum for IPTE. We found that the LMT form A from the 2001 instrument
(NCOP-CK _2001A) had the closest and the most extensive range of items that
covered the curriculum (Kazima, Jakobsen, & Kasoka, 2016). For this reason we
selected this form and the corresponding form B (NCOP-CK _2001B) as a starting
point for adaption. We selected a total of 88 items in two parallel forms A and B.
The second stage was adapting the items to the Malawi context, for example, by
changing some words and names of people to suit Malawi context. The third stage
involved checking the mathematical content of the items and modifying where
necessary to reflect the Malawi curriculum. This involved what Delaney, Ball,
Hill, Schilling and Zopf (2008) call “changes related to school cultural context”
and “changes related to mathematical substance”. Thereafter, the two forms were
piloted on 351 pre-service primary school teachers from one of the teacher training
colleges in Malawi. The forms were distributed on papers. After the pilot further
modifications were done following the pilot findings. In particular, we analysed
difficulty level of each item and removed all items that were not around the mean
ability of zero (for more details of adaptation process, see Kazima, Jakobsen, &
Kasoka, 2016). The final from had a total of 67 items in two parallel forms; Form
A and Form B. Form A contained 38 items and Form B 35 items, of which 6 were
anchoring items. To minimize the test-retest effect, we used the split-half method
and randomly gave half of the sample Form A for the pre-test, and the other half
Form B. In the post-test, this was swapped (Cohen, Manion, & Morrison, 2007).

Sample
All pre-service teachers enrolled at one of the eight public teacher colleges in
Malawi and not released from teaching on the test day (all colleges are boarding
schools, but sick student are released from teaching) in September in 2015
constituted the sample (N = 1733). They were all students in IPTE. During the
first term running from September to December of the academic year, their
curriculum for this first term covered number concepts and operations, and we
expected that the pre-service teachers had been introduced to tasks of teaching like
‘how to teach’ number concepts and operations during the first term. During term
two, the pre-service teachers are mainly taught basic application of what is covered
in term one. In addition, they are introduced to shapes and some basic financial
mathematics.

In total 1,733 students participated at pre- and post-test. However due to some
unforeseen logistical incidents at the colleges during the pre-test, we have had
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problems to pair pre-test and post-test scores for all participants. For this study,
only 1,223 pre-service teacher students out of the 1,733 participants are paired.
This is partly due to the unforeseen incidents at pre-test where some students did
not provide enough identification information on the paper test. It was also partly
due to the fact that some participants dropped out of college before post-test (e.g.
some students were accepted at other study programs early in the term), while other
students enrolled at the college after pre-test and we only had post-test data
available for them. Table 1 shows the number of pre-service teachers we have been
able to pair so far. We labelled the colleges as C1 to C8.

Age/Gender Teacher college Total
Cl |C2 |C3 |C4 |C5 |[C6 |CT |C8

<21 years 68 |103 |56 (44 |42 |74 |55 |38 |480
21-25 97 | 136 |84 |27 |63 |108 |44 |21 |580
26 - 30 20 |26 |26 |4 13 |17 |6 4 116
>30 years 9 12 |1 3 6 7 6 3 47
Female 102 (147 |36 |78 |37 |105 (48 |30 |583
Male 91 | 126 |130 |0 83 |[101 |61 |36 |628
Gender not provided | 1 4 1 0 4 0 2 0 12

Table 1: Number of paired pre-service teachers by age and college.

Data collection and scoring

The pre-test took place in the third week of term one, after the newly enrolled pre-
service student teachers had just started their teacher training (September 28—
October 2, 2015). In order to avoid that the pre-test directly affected the post-test,
we placed the post-test the second week of term three (May 16-20, 2016). The
time between the two tests also assured us that content would have been taught at
all colleges, as all the colleges use the same books and curriculum material.
However, we were aware that occasionally content planned for term one can end
up being taught in term two due to unforeseen circumstances and delays in the
colleges.

The test was distributed on paper by the researches, and it was not possible for
us to test all students on the same day because of logistical reasons. The eight
colleges are located across the country such that the two farthest are more than
900km apart. We therefore administered the tests to the colleges on different days
but within the same week. For both pre- and post-test, each of the two forms were
administered in four colleges but different colleges each time to ensure that those
that wrote Form A for pre-test should write Form B for post-test, and vice versa..
The test took place during class time and without any incentive. We started by
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informing participants about the objective of the study, and that it was voluntary
to attend, but none of theo participants withdrew.

Due to the relatively large sample, we used a two-parameter Item Response
Theory (IRT) (Edwards, 2009) model to estimate the pre-service teachers MKT
score—often called ability—and we used the software BILOG-MG for this
estimation. An IRT scales a person’s MKT (ability) and item difficulty on the same
continuum. This means that a pre-service teacher with the MKT (ability) of ® has
a 50% chance to answer an item with the difficulty® (Edwards, 2009). MKT
(ability) and parameters are scaled so that the average @ for the whole sample is 0
and the population standard deviation is 1. The MKT scores were then entered into
IBM-SPSS for analysis.

Results and discussion

Before comparing the pre-service teachers” MKT score at pre-test and post-test we
tested the data for normality. Q-Q plots, estimated skewness and Kkurtosis
confirmed the assumption of normality needed for conducting a paired sample #-
test. We also found that pre- and post-test MKT scores were significantly
correlated (» = .419, p <.001), hence pre-service teachers who scored high at pre-
test were more likely to have a higher mathematical knowledge for teaching at
post-test.

We then compared the pre-service teachers MKT scores from pre-test (M = -
0.069, SD = 0.950) and post-test (M = 0.070, SD = 1.044) using a paired sample #-
test. We found that the score at post-test were significantly higher than the score
at pre-test (#(1222) = -4.476, p <.001).

At a first glance, this is of course promising. A significant increase of pre-
service teachers’ mathematical knowledge for teaching number concepts and
operations during their first year in the IPTE program is important, as knowledge
about number concepts and operations is critical to quality teaching of primary
mathematics (Hill et al., 2005). It is critical that pre-service teachers understand
and competently use basic number concepts and operations properties for them to
effectively teach mathematics. The items we used in this study were all selected
with the specific purpose to address aspects of number concepts and operations
that can be considered prerequisite for the learning of school mathematics beyond
mathematical literacy level (OECD, 2003). Both forms contained items that
examined pre-service teachers’ knowledge of whole number operations,
subtraction of integers, representation and operations of fractions, decimal
representations, prime numbers, and the order of operations.

As the results of data analysis show, when we consider the mean MKT score
for the whole group of preservice teachers from the eight Malawian teacher
colleges, the group’s knowledge for teaching these essential aspects of
mathematics improved from the beginning of term one (pre-test, week three in
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term one), to the beginning of term three (post-test, week two of term three). The
increase is not big—M = -0.069, SD = 0.950 at pre-test and M= 0.070, SD = 1.044
at post-test—but it gives confidence to be able to confirm that the IPTE have had
an impact on the pre-service students. In particular, since all the prospective
teachers’ colleges are boarding schools and all the prospective teachers had spent
all their time at the college between pre- and post-test and were not exposed to
other programs, it is likely to assume that the mathematics course was the main
cause for the change in MKT that we measured.

For further research, we propose to use an ANOVA test to investigate if there
are differences in development among the eight teacher colleges (Pallant, 2010).
An earlier study with less participants (N = 725) indicated no significant
improvement among majority of the teacher colleges (Kasoka, Jakobsen, Kazima,
2017), hence it is interesting to see if we can identify colleges who are able to
improve MKT the most during their IPTE.

In conclusion, we found that after spending a year at a teacher training college
and completing a mathematics course involving number concepts and operations,
the prospective teachers MKT related to these concepts had significantly
increased. It is likely that the change was caused by the mathematics course that
all the prospective teachers were exposed to.
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Towards an organizing frame for mapping
teachers’ learning in professional development
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In their claim that teachers’ learning is treated as a “black box” in research on
professional development programs for mathematics teachers, Goldsmith, Doerr,
& Lewis (2014) call for “an organizing framework that clearly distinguishes
dimensions of teachers’ learning and identifies catalysts of teachers’ learning...”
(p. 23). The aim of this study is to present initial efforts to construct a framework
for categorizing descriptions of activities designed to support teachers’ learning
as presented in research articles within mathematics education. Based on existing
literature on professional development and examination of research articles, an
organizing frame is constructed.

Introduction

The field of mathematics education needs to “build a shared body of knowledge
about the nature of teachers’ learning and the catalysts that support it” (Goldsmith,
Doerr, & Lewis, 2014, p. 25). In order to build such a shared body of knowledge,
Goldsmith et al. call for “an organizing framework that clearly distinguishes
dimensions of teachers’ learning and identifies catalysts of teachers’ learning...”
(p. 23). Further, they argue that research on professional development programs
(hereafter PDPs) for mathematics teachers mostly concern whether a program has
affected practice or student learning, while the teachers’ learning is treated as a
“black box”. That is, research on PDPs often lacks in explicit descriptions of, for
instance, what forms of activities (e.g. reading, discussing, acting in the classroom,
cooperating etc.) that promote learning and conceptualizations of teachers’
learning processes.

Models for teachers’ learning (e.g. Clarke & Hollingsworth, 2002; Kazemi &
Franke, 2004: Vermunt & Endedijik, 2011) often center on certain activities that
are intended to act as catalyst for teacher learning in PDP. Such activities are often
described in terms of what to do and #ow to do it (Goldsmith et al., 2014), but not
in terms of a rationale for, or description of, #ow these activities are to function as
instigates for teachers’ learning (Vermunt & Endedijik, 2011; Robutti et al., 2016).

In this paper, we aim to contribute to this complex research field of
mathematics teachers’ learning by presenting initial efforts to develop an
organizing frame for categorizing PD activities as presented in research articles
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and discussing how they support teachers’ learning. The rationale for this aim is to
help “researchers share findings in a way that leads to greater accumulation of
knowledge” (Goldsmith et al., 2014, pp. 23-24). Methodologically we 1) use and
build upon prior models of teachers learning from PDPs in order to establish a
“pilot framework” with categories for the mapping and 2) develop the pilot
framework iteratively by applying it to a number of journal articles.

Constructing the frame

To build the organizing frame, we; 1) draw upon literature on different models of
mathematics teachers’ learning and PDPs and 2) conduct an analysis of a number
of empirical articles of PDPs. We use the models of teachers’ learning and PDPs
as a starting point in the construction of an initial frame. Then we analyse journal
articles that reports on PDPs as a means to test and iteratively evolve the set of
categories from the initial organizing frame. That is, the development of the frame
comprised two steps: 1) reading, choosing, and relating already established
theories/models of teachers’ learning in PDPs in order to establish an initial frame;
and 2) iteratively developing the initial frame by applying it to a number of journal
articles reporting on empirical studies of PDPs in mathematics education.

Process

The construction of the frame is based on the assumption that activities within
PDPs are the catalyst for teachers’ learning (Clarke & Hollingsworth, 2002;
Vermunt & Endedijik, 2011). The activity is then understood in terms of the
underlying theoretical perspective of learning, what the activity primarily aims to
accomplish (its function), the type of teacher knowledge it aims to develop, and the
forms of the activity.

In aiming at understanding PD in terms of views on how teachers develop
knowledge, the theoretical perspective on learning is mapped according to the
notions of Kazemi and Franke (2004). Kazemi and Franke (2004) stress that how
the activity is intended to be understood as a catalyst for learning depends on what
theoretical perspective one takes. We therefore start the analysis of articles by
mapping this perspective.

The next step in the analysis is to study the main aim of the PDP — its function.
The PDP’s function and activities are analyzed using the work by Desimone
(2009). That is, the question we ask is: Does the PDP aim primarily at developing
teachers’ knowledge and/or beliefs, improving instruction, or developing students’
knowledge of mathematics? Through this, we have been able to capture whether
teachers’ learning is the main aim of the PD or if it serves as a means to accomplish
other aims.

Whatever the main aim of the PDP, teachers’ development of knowledge
typically constitutes an important component of it. We aim to characterize the
activities in the PDP in terms of the type of teacher knowledge the teachers are
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expected to develop. We focus on both what the teachers are expected to know and
how they are expected to know this content. To capture what teachers are expected
to know, we used Ball, Thames and Phelps (2008) as a starting point. To capture
how they are expected to know the content, we used the framework of proficiency
of mathematics teacher knowledge by Kilpatrick et al. (2001).

Finally, the form of the activity is categorized using Kwakman (2004),
Kennedy (2016) and Desimone (2009). These frameworks enable us to capture
how individual teachers learn through, for instance, reading, testing or reflecting,
whether they develop as teachers by following prescription, practicing strategies
or building a more solid knowledge base, as well as how PDP settings can be
structured through, for instance, emphasis on collective participation, duration or
active learning.

Thus, the process for critiquing and formulating which categories should
compose the organizing frame was to: 1) depart from models of teachers’ learning
that suggest that the activity is the main catalyst for learning; 2) state and depart
from the view that activities can be productively understood in terms of the
underlying theoretical perspective of learning, what the activity primarily aims to
accomplish (its function), the type of teacher knowledge the activity aims to
develop, and the forms of activity; and 3) use research reports on PDPs for in-
service mathematics teachers to iteratively determine categories that are
suitable/interesting to map.

Models of professional development and teachers’ learning

Learning is a concept that is difficult to define and/or describe coherently and
comprehensively, but common to all theories of learning is that some change
occurs with regard to the learner. Here we adopt the elementary definition of
teachers’ learning by Goldsmith et al. (2014) as ... include changes in knowledge,
changes in practice, and changes in dispositions or beliefs that could plausibly
influence knowledge or practice” (p. 7). To understand how research articles in
mathematics understand these changes, we aim to categorize the activities and their
theoretical base, function, type of teacher knowledge in focus, and how learning is
intended to take place, according to the literature below.

Focusing on activities

A substantiated assumption in the model by Clarke and Hollingsworth (2002) is
that, to promote change/growth, reflective participation in activities is preferred
over the passive reception of knowledge. Similarly, Vermunt and Endedijik (2011)
suggest a model for teachers’ learning patterns in which an intertwining of
activities is intended to catalyze learning. Kazemi and Franke (2004) also hold the
activity as the primary unit of analysis, and in their model an individual is seen to
develop through participation in interpersonal and cultural-historical activities.
Thus, Clarke and Hollingsworth (2002), Vermunt and Endedijik (2011), and
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Kazemi and Franke (2004) all emphasize the activity as the main catalyst for
learning.

Theoretical perspective on learning

Kazemi and Franke (2004) emphasize that how an activity is to be understood as
a catalyst for learning depends on which theoretical perspective one takes. It is
well known that learning is a concept and phenomenon that is hard to define and
is possible to see from many viewpoints. In mapping articles, we search for
assumptions about learning by using a set of perspective on learning as our basis.
The set includes perspectives such as constructivism, sociocultural theories, social
practice theory, adult learning, cognitive load theory, etc. We find support in using
this set of theories as a starting point, but do not restrict the analysis to only these
perspectives.

Function of the activity

For studying the effects of a PDP — what has changed in its wake — Desimone
(2009) suggests a model: a) increased teacher knowledge and skills and/or change
in attitudes and beliefs; b) teacher change in instruction; and ¢) improved student
learning. The suggested categories of the effectiveness of PDPs are useful in
mapping the main function, aim or goal of the activities within the programs. In
particular, this helps us determine whether teachers’ learning is the means or the
end of a PDP.

Types of teacher knowledge

Ball et al. (2008) summarize their view of mathematics teachers’ knowledge in
two domains: subject matter knowledge (SMK) and pedagogical content
knowledge (PCK). The SMK domain is categorized into the sub-domains of
common content knowledge, specialized content knowledge and horizon content
knowledge, while the PCK domain is categorized into the sub-domains of
knowledge of content and students, knowledge of content and teaching, and
knowledge of content and curriculum. Even though Ball et al. (2008) proclaim that
their current categorization is not a final product, it is useful in mapping the teacher
knowledge a PDP emphasizes as the subject the teachers are to learn.

We are interested in understanding not only what the teachers are expected to
know, but also the ways in which they are expected to know this content. We find
Kilpatrick et al. (2001) useful here and adopt their five categories for proficiency
in teaching mathematics: conceptual understanding of core knowledge,
instructional routine fluency, strategic competence, adaptive reasoning, and
productive disposition. Together, these categories constitute a basis for
understanding issues that can be summarized as mathematics teacher knowledge,
in the sense of #ow to know a certain content.
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We find a combination of categories from Ball et al. (2008) and Kilpatrick et
al. (2001) useful to map in order to understand what teachers are expected to know
and how they are expected to know it.

Forms of activities

The form of a professional learning activity, according to Kwakman (2003), can
be mapped into four categories: a) reading in order to collect new personal input
(data, knowledge, information); b) doing/experimenting to gain new experiences
and apply new ideas; c) reflection in order to recognize and change routine
behaviour; and d) collaboration, which provides teachers with new ideas and
feedback.

Desimone (2009) presents a conceptualization of features for studying effects
on teachers’ PDPs. Our proposed frame categorizes the core features of PDPs as:
a) content focus, as empirical evidence points at a “link between activities that
focus on subject matter content and how students learn that content with increases
in teacher knowledge and skills...” (p. 184); b) active learning, which simply
states that activities in which the teacher is active are more effective than passive
activities such as lectures; ¢) coherence, which indicates whether the learning
content is “consistent with teachers’ knowledge and beliefs ... and state reforms
and policies ...” (p. 184); d) duration, in which both the number of hours and the
spread of time count; and e) collective participation, which emphasizes
arrangements for potential interaction between participants, based on the idea that
collaboration promotes learning.

In her review on PDPs, Kennedy (2016) suggests four types of enactment that
a program may facilitate, according to the extent to which the outcome gives the
teacher independence in how to act upon the content of the program. A program
can be prescriptive, with explicitly described actions the teacher should take, like
following a recipe. If the “recipe” is followed by the described rationale for the
suggested action this is called strategy, and the teacher is expected not only to act,
but also to understand the strategy behind the action. When a PDP gives the teacher
an “aha moment” this is called insight, whereby there is no suggested action to
take as compared to the two previous categories. The fourth category is called body
of knowledge; here, no particular action is suggested, and the knowledge may be
communicated as a lecture or a book. This fourth category is suggested to give the
teacher the most freedom and independence in how to act upon the knowledge.

Developing our initial framework by using empirical studies

To test and iteratively develop the initial organizing frame developed from the first
step of this process, we applied it to journal articles in mathematics education
reporting on PD initiatives. We randomly (no conceived selection was made)
picked some journal articles from the literature review by Goldsmith et al. (2014).
We read one article, noted plausible categories, read another article and added and
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deleted categories to adjust and amend the initial frame derived from the first step
of the methodology. This process was repeated until no categories were added or
deleted from reading a new article. The use of the list of articles from Goldsmith
et al. (2014) was both timesaving (compared to searching for papers) and fulfilled
the criteria for what kind of articles we were looking for (reports on mathematics
teachers’ learning from PDPs for practicing in-service teachers, reported in
refereed journals only). We found this procedure, and the use of these articles as a
means to develop our initial frame into the final organizing frame, fruitful.

Example

An example of the process is provided. The report by Anderson and Hoffmeister
(2007) on a PDP for mathematics teachers addressing the procedure for
examinations. The initial frame, with categories according to the frameworks of
mathematics teachers’ learning and PDPs, is used as a starting point. The iterative
process of adding comments to improve this initial frame is undertaken. This
procedure was repeated with following articles, saturating the number of
categories and resulting in the finalized organizing frame.

Theoretical perspective
The theoretical perspective on which the paper was grounded was not explicitly
reported; this lack of information was noted.

Function
The PDP was intended to increase teachers’ own knowledge by applying the three
learning strategies of a problem-solving course, examination of student thinking
by interviewing students, and reading and discussing research on learning and
teaching mathematics. As this program’s approach aims to develop the teachers’
own knowledge and does not focus on a change in their instruction or the students,
it fits the category increased knowledge according to the frame by Desimone
(2009). We conclude that the categorization according to this model is functional.

Types of teacher knowledge
The model by Ball et al. (2008) helps categorize the three learning strategies of the
PDP according to the content it intends to mediate. The problem-solving course,
which is the content of the PDP, is categorized as SMK, covering specialized
content knowledge and common content knowledge. The examination of student
thinking is categorized as PCK, and the sub-category knowledge of content and
students. The discussion of research mostly concerns the content of one book (Ma,
1999, as cited in Anderson & Hoffmeister, 2007) and covers content specific to
elementary mathematics teachers, which fits SMK with specialized content
knowledge.

The three strategies in the program aim to prepare teachers for understanding
certain content, how students understand this content, and what research says about
the content. Thus, the category conceptual understanding of core knowledge by
Kilpatrick et al. (2001) offers a satisfying explanation of #ow the content of the
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three strategies of the program is expected to be known by the teachers. We
conclude that the model suggested by Kilpatrick et al. (2001) enables us to focus
on how the teachers are expected to know the content.

Form
The three learning strategies of the PDP are performed by reading (Ma,1999),
doing (studying problem-solving) and reflecting (discussing Ma (1999) and
examining student thinking). We regard these categories, suggested by Kwakman
(2004), as satisfactorily capturing the approach of how to facilitate learning
activities.

Regarding the settings of the PDP, the model by Desimone (2009) works well
as a template for categorization. The described PDP lasted one school year and one
summer course (duration) and was in line with other activities and the school’s
curriculum (coherence); also, the teachers actively participated in the activities
(active learning) and worked together (collective participation). Besides these
categories, the examination of this article suggests the categories number of
participants, material and facilities to achieve a more complete picture of the
settings that may affect the learning situation for the participants. The number of
participants indicates possibilities for cooperation and collective participation.
Different types of material (in the example article; a book to read and discuss) may
be vital for completing the program. The location in which the PDP is held may
influence conditions for performing the activeties. A familiar place may facilitate
finding materials and/or space for discussions and a new milieu may be perceived
as uplifting. Both the alternatives could affect the outcome of the program. Thus,
we regard the categories number of participants, material and facilities as
completing the categories of the model by Desimone (2009) in order to map the
settings for the PD program.

Applying Kennedy’s (2016) four categories to the example article suggests
that teachers should develop some conceptual knowledge of problem-solving and
student thinking, but not truly focus on how to act in the classroom through
engaging in strategies for teaching or following prescriptions for how to carry out
teaching. Thus, the learning strategies problem-solving and examining student
thinking are regarded as body of knowledge. Discussing Ma (1999) provides the
participants with insights on learning and teaching early mathematics. This might
fit the body of knowledge category in one sense, but as it is described in the article
it better fits the insight category. However, the categories suggested by Kennedy
(2016) provide us with information about the extent to which the outcome allows
the teacher to act independently upon the content of the program.

To sum up, we created a pilot framework based on theoretical models for
teachers learning and effective PDPs. This pilot framework was then applied to
some articles in an iterative procedure until a saturation in establishing categories
was reached.
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The resulting frame

From the iterative procedure of analyzing the articles, a resulting organizing frame
for mapping activities, intended to catalyze mathematics teachers’ learning, was
generated (see Figure 1).

‘ Categorization of mathematics teachers’ learning activities

Theoretical perspective T £t h K led Form
- Constructivism ypes:ot:teacher:knowledge Approach:
- Sociocultural theories - Reading
- Social practice What to know How to know it - Doing/experimenting
theories Subject matter knowledge | | - Conceptual - Reflecting
- Adult learning (SMK) understanding of core - Cooperating
- Cognitive load a) Common content knowledge el
i y . Settings:
theories knowledge - Instructional routine i
. 8 - Duration
- Other theories b) Horizon content fluency
g - Coherence
knowledge - Strategic competence " .
- : . - Active learning
c) Specialized content - Adaptive reasoning i S o
X N A - Collective participation
knowledge - Productive disposition i
& - Number of participants
Pedagogical content _Mateital
Function knowledge (PCK) - Eacilities
- Increased knowledge a) Knowledge of content | | __ =
and/or changed and students Teaching independence:
attitudes or beliefs b) Knowledge of content - Prescriptive
- Changed instruction and teaching - Strategy
- Improved student c) Knowledge of content - Insight
learning and curriculum - Body of knowledge

Figure 1: An organizing frame for mapping activities and settings intended to catalyze
mathematics teachers’ learning

This final frame contains what we find most useful to map in order to make way for
understanding teachers learning in PDPs; 1) The theoretical perspective the PDP is
based on, 2) What main function the PDP has, 3) What type of knowledge the PDP
emphasize and 4) In what form the PDP is launched.

Concluding remarks

In this paper we have presented our initial efforts to construct an organizing frame
aimed at capturing different aspects of teachers’ learning in PDPs. Just as students’
learning and reasoning are central in mathematical classrooms, teachers’ learning,
and reasoning should be central in PDPs. Nevertheless, Goldsmith et al. (2014)
claim that teachers’ learning is often treated as a “black box”. Therefore, there is
good reason to continue the work to better understand this topic. Further, in order
to “... share findings in a way that leads to greater accumulation of knowledge”
(Goldsmith et al., 2014, pp. 23-24), we encourage to utilize and test the suggested
frame. Even if we conjecture that the suggested organizing frame will function as
a tool for mapping mathematics teachers’ learning, we consider future use of it as
needed to establish or develop it further.
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